
CS226 End-Semester Examination (Spring 2018)

Max marks: 100 Time: 180 mins

Roll No.: Name:

• Please write your name and roll number in the space provided at the top.

• Please write your answer to each sub-question only in the space provided in the question paper.
Answers written elsewhere will not be graded.

• You must return the question paper along with your answer at the end of the exam.

• The exam is open book and notes brought to the exam hall.

• Be brief, complete and stick to what has been asked.

• Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.

• If you need to make any assumptions, state them clearly.

• The use of electronic devices is strictly prohibited. You will be debarred from taking the examination
if you are found accessing the internet during the examination. All IIT Bombay rules apply in this
respect.

• Please do not engage in unfair or dishonest practices during the examination. Anybody found
indulging in such practices will be referred to the D-ADAC.

1. Consider the Boolean function F (x1, . . . x4) = (x1 ⊕ x2) · ((x3 + x4)⊕ x1) · (x1 ⊕ x4).

(a) [10 marks] Construct an ROBDD for F using the variable order x1 < x2 < x3 < x4.

1

(b) [10 marks] Construct an AIG for F using (exactly) the following sequence of operations. You must show
all AIG nodes obtained using the given sequence of operations. You must use only strash-ing (structural
hashing) and no fraig-ing. You must also not use any re-write rules other than AND(0, g) rewrites to 0, and
AND(1, h) rewrites to h for any AIG node g or h.

1 t1 = XOR(x1, x2)

2 t2 = OR(x3, x4)

3 t3 = XOR(t2, x1)

4 t4 = XOR(x1, x4)

5 t5 = AND(t1, t3)

6 F = AND(t5, t4)

(c) [10 marks] We wish to design a circuit that implements F using only XOR and NOT gates. Do you think this
is possible? If so, give the resulting circuit. Otherwise, explain why this is not possible. If you are answering
in the affirmative, you will not get marks without a correct circuit. If you are answering in the negative, you
will not get marks without justification.

2

2. A synchronous token-ring arbiter (henceforth called STA) is a synchronous sequential circuit with 2n request
inputs, R0, . . . R2n−1, and 2n grant outputs G0, . . . G2n−1. The behaviour of the STA is as follows:

• At the rising edge of the clock, the STA samples all its request inputs.

• If none of the Ri’s are sampled 1, all Gj are set to 0 in the same cycle.

• If exactly one Ri is sampled 1, only the corresponding Gi is set to 1 and all other Gj ’s (for j 6= i) are set to
0 in the same cycle.

• If more than one Ri are sampled 1, exactly one of the corresponding Gj ’s is set to 1, while all other Gk’s (for
k 6= j) are set to 0 in the same cycle.

In order to determine which Gj should be set to 1 in a fair manner, a token is kept circulating (within the
STA circuit) among the Ri inputs. When the circuit starts operation, R0 has the token. At each rising edge
of the clock, the token moves from Ri to R(i+1) (mod 2)n.

If Rj is sampled 1 by the rising edge of the clock and if the token was with Rl immediately prior to this rising
edge, then Gj is set to 1 if Rj the only request sampled 1 within the set {Rl, R(l+1) (mod 2)n, R(l+2) (mod 2)n . . . Rj}.
In other words, if we were to hypothetically move the token forward from Rl (i.e. from Rl to R(l+1) (mod 2)n

to R(l+2) (mod 2)n and so on), then Rj would be the first request encountered whose value was sampled to
be 1.

Note that using the above mechanism, Gj may be set to 1 even if Rj didn’t have the token in the current
cycle.

Unfortunately, building an STA for large values of n can become unwieldy. Hence a designer wants to come up with
a synchronous sequential circuit called modular token-ring arbiter (henceforth called MTA), instances of which
can be connected together to build an STA. Specifically, an MTA is a synchronous sequential circuit with two
request inputs: r1 and r2, and two additional inputs: tin (for “token in”) and cthis (for “can grant request from
this MTA”). It has two grant outputs: g1 and g2, and two additional outputs: tout (for “token out”) and cnext (for
“can grant request from next MTA”). Tin and Tout are used to manage the circulation of the token among the
different MTA’s. Specifically, Tin being 1 means that the token is being given to the current MTA (by another
MTA), and Tout being 1 means that the current MTA is passing the token to the next MTA. Similarly, if cthis is
1, it means that the current MTA can grant one of its incoming requests even if it doesn’t have a token. Finally,
if cnext is 1, the current MTA is informing the next MTA that it can grant one of its incoming requests, even if it
doesn’t have a token.

The designer wishes to build an 2n-input, 2n-output SSA by connecting multiple MTA units as shown in Fig. 1
(for n = 3). Note that each MTA is a separate synchronous sequential circuit, and they communicate through
each other only through tin, cthis, tout and cnext. Assume that all MTAs are fed the same clock, and there is zero
delay in the clock distribution network across MTAs and within each MTA. Therefore, the clock signal reaches all
flip-flops at all MTAs at exactly the same time. In answering the following questions, remember that our goal is
to be able to build a 2n-input, 2n-ouptut STA by interconnecting n MTAs as shown in Fig. 1.

(a) [20 marks] Fill in the following (partial) state transition table for the synchronous sequential circuit MTA.
Note that the table uses only 3 states, and ignores several inputs combinations (marked as -) depending on
the state. Similarly, the outputs are don’t cares (marked as -) for several state/input combinations. State
“NoTok” signifies that the token is neither with r1 nor with r2 in the MTA. Similarly, state “riHasTok”
signifies that the token is with ri in the MTA. Assume also that when the interconnectd MTA units in Fig. 1
are started, the topmost MTA (corresponding to inputs R0 and R1 of the STA) starts in state“r1HasTok”
and all other MTA’s start in state “NoTok”.

3

r1

r2 g2

g1Tin c_this

Tout c_next

R0

R1 G1

G0

r1

r2 g2

g1Tin c_this

Tout c_next

R2

R3 G3

G2

r1

r2 g2

g1Tin c_this

Tout c_next

R4

R5 G5

G4

MTA 1

MTA 2

MTA 3

Clk

Figure 1: Arbiter Circuit

CurrentState r1 r2 Tin cthis g1 g2 Tout cnext NextState

NoTok - - 0 0
NoTok - - 1 0
NoTok 0 0 0 1
NoTok 0 1 0 1
NoTok 1 0 0 1
NoTok 1 1 0 1
NoTok 0 0 1 1
NoTok 0 1 1 1
NoTok 1 0 1 1
NoTok 1 1 1 1

r1HasTok 0 0 0 0
r1HasTok 0 1 0 0
r1HasTok 1 0 0 0
r1HasTok 1 1 0 0
r2HasTok 0 0 0 0
r2HasTok 0 1 0 0
r2HasTok 1 0 0 0
r2HasTok 1 1 0 0

4

(b) [10 marks] The above table only showed some of the state and input combinations. Do you think there
are state and input combinations in the complete table, for which all outputs (other than NextSt) can be
don’t cares, and yet the combination of MTAs will function as desired? If you think no such state/input
combinations are possible, give reasons. Otherwise, list all such state and input combinations in the following
format.

CurrentState r1 r2 Tin cthis g1 g2 Tout cnext NextState

5

(c) [15 marks] Suppose the setup and hold times of flip-flops used in the circuit in Fig. 1 are 2ns each. Assume
that the clock-to-q propagation delay of each flip-flop is 0 ns. Assume further that the maximum and minimum
delays through the combinational logic in each MTA that implements the state transition table, part of which
was shown in the previous sub-question, are 20ns and 100ns respectively. All wires may be assumed to have
zero delay. Recall that all clock distribution networks are assumed to have 0 delay.

If the designer wants to build an STA (as in Fig. 1) that can arbitrate between 20 inputs, what is the maximum
clock frequency that can be used to run the individual MTA units.

Given justification for your answer.

3. Consider two Boolean functions F (x1, x2, x3, x4) and G(x3, x4, x5, x6) and let H(x1, . . . x6) = FopG, where op is a
binary Boolean operator. Let ODCF,x3

(x1, x2, x4) denote the ODC of x3 in F , and similarly for ODCG,x3
(x4, x5, x6).

(a) [5 marks] Show that every satisfying assignment of ODCF,x3(x1, x2, x4) ·ODCG,x3(x4, x5, x6) is also an ODC
of H regardless of what F , G and op are.

6

(b) [10 marks] Give a K-map for F in which the absolute value of the difference in the number of squares (cells)
filled with 1’s and 0’s is minimized (as small as possible), and ODCF,x3

= (x1.x2) ⊕ x4 and ODCF,x4
=

x1 + x2 + x3.

(c) [10 marks] Does there exist a binary Boolean operator op such that ODCH,x3
(x1, x2, x4, x5, x6) = ODCF,x3

(x1, x2, x4)·
ODCG,x3(x4, x5, x6) regardless of what F and G are? Give justification for your answer. We are not interested
in Boolean operators that always evaluate to 1 or always evaluate to 0.

7

