
CS226 Mid-Semester Examination (Spring 2018)

Max marks: 50 Time: 120 mins

• The exam is open book and notes brought to the exam hall.

• Be brief, complete and stick to what has been asked.

• Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.

• If you need to make any assumptions, state them clearly.

• Please start writing your answer to each sub-question on a fresh page. DO NOT write
answers to multiple sub-questions on the same page.

• The use of internet enabled devices is strictly prohibited. You will be debarred from taking
the examination if you are found accessing the internet during the examination. All IIT
Bombay rules apply in this respect.

• Please do not engage in unfair or dishonest practices during the examination. Anybody
found indulging in such practices will be referred to the D-ADAC.

1. [10 marks] Represent the Boolean function f(x1, x2, x3, x4, x5) = ite(x1, x2 + (x3 · x4), x5 + (x3 + x4))
as an ROBDD with complement edges using the variable order x1 < x2 < x5 < x3 < x4 (x1 is the
top-most variable). Use solid edges for 1-edges and dotted edges for 0-edges. Your final solution must
not have any 1-leaf or any solid edge (1-edge) with a bubble on it. However, the root of the ROBDD
(with complement edges) may have a bubble on its output, if necessary. Solutions that violate the above
constraints will not be awarded any marks.

2. [15 marks] We wish to implement the following numerical algorithm where X and Y are signed n-
bit integers and Y 6= 0. In the algorithm, some statements are specified as executable in parallel.
Specifically, parallelly executable statements s1, s2, . . . sn are represented as PAR(s1, s2, ... sn);.
All statements in a PAR(...) construct must be executed to completion before the statement following
the PAR(...) construct can be executed.

L0: done = 0;

// read X and Y, initialize T and D, all in parallel

L1: PAR(read(X), read(Y), T = 1, D = 0);

L2: while (D < Y) {

// assign to T and D in parallel

L3: PAR(T = T * Y, D = D + X);

// sequential statements

L4: D = D + 1;

L5: T = T * D;

L6: }

l7: output(T);

L8: done = 1;

1



You are required to design a controller to implement the above algorithm using the datapath shown in
Fig. 1. This datapath has five registers, T, Y, D, X and Res and two hardwired constant values 0 and
1. Assume that the adder and multiplier implement signed addition and multiplication, respectively,
and the comparator implements signed comparison. Assume further that the bit-widths are wide enough
so that there are no overflows in any arithmetic operation. Note that the multiplexor control signals
MT and MD are two bits wide, while all other multiplexor control signals are one bit wide.

MULTIPLIER ADDER

D XT Y

1

1 0

00 01 11 00 01 110 1 0 1

0 10 1

MT

00

MY
MD

MX

MM MA

INPUT Y INPUT X

COMPARATOR

a b

b < a

D<Y

Res

0 1 MR

OUTPUT

Figure 1: Datapath for Question 1

Your implementation must execute all statements in a PAR(...) construct in parallel. Execution of
output(T); should result in loading the value of register T in the result register Res in Fig. 1. The
controller must also reset a done output to 0 when the computation starts, and set it to 1 after the
final result is available in register Res. The value in register Res when done is 0 is inconsequential. You
may assume that all registers in the datapath, as well as all flip-flops in your controller, are positive
edge-triggered, and are fed by the same clock.

You MAY NOT assume that a reset input is available in the datapath to reset all registers to have
the value 0. However, you may assume that the controller, when switched on, has its flip-flops set to
values that correspond to the starting state of the controller.

2



You must provide your solution in the form of a table as shown below. In each row of the table, you
must clearly indicate comments that explain what actions are effected in the datapath by the signals
that are assigned in that row.

CurrentState D < Y NextState MT MY MD MX MM MA MR done Comment

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
...

3. A 3-input programmable Look-Up Table (or LUT, for short) is a circuit element that has three inputs
and one-output, and that can be programmed to implement any arbitrary Boolean function of 3 inputs.

i1

i2

i3

i4

i5 i5

i6i6

i4

i5 i5

i6i6

i7

i8

i9

1 0

LUT1

LUT2

LUT3

LUT4

i1
i2
i3

i4
i5
i6

i7
i8
i9

f

(a)

(b)

Figure 2: ROBDD and LUTs for Question 2

(a) [10 marks] You are given a Boolean function f of 9 inputs specifed by the ROBDD shown in
Fig. 2a. Here, dotted edges represent 0-edges and solid edges represent 1-edges. You are required
to implement this using four 3-input LUTs connected as shown in Fig. 2b. Indicate what Boolean
functions must each of LUT1, LUT2, LUT3 and LUT4 implement. Assume that the 4 LUTs can
be programmed independently, i.e. the Boolean function implemented by one LUT need not have
any relation to the Boolean function implemented by another LUT. Answers without justification
will fetch no marks.

3



(b) [5 marks] Argue whether it is possible to implement every 9-input Boolean function by choosing
appropriate 3-input Boolean functions to be implemented by each of the four LUTs shown in Fig. 2b.
You are not allowed to change the interconnection between the four LUTs. However, you are free
to program each LUT to implement any arbitrary 3-input Boolean function. As before, assume
that the four LUTs can be programmed independently. You must give complete justification for
your answer. Answers without justification will fetch no marks.

4. [10 marks] We wish to implement a circuit with two inputs a and b and one output c that has the
following behaviour:

• If a and b are both 0, the output c is 0.

• If a and b are both 1, the output c is 1.

• If the values of a and b differ, the output c doesn’t change, i.e. it retains its previous value.

Give an implementation of the above circuit using AND, OR and NOT gates. Assume that changes in
a and b happen very slowly compared to the delays of gates in the circuit. Also, assume that either
both a and b change simultaneously (i.e. at the same time) or the time separation between a change in
a and a change in b is very large compared to the delays of gates in the circuit.

4


