
Getting Started with Xilinx ISE

● Start the Xilinx ISE
● Create a new Project by clicking on ‘New Project’ (on the top left window panel)

● Enter the project details as shown here

And thus finish the creation of the project.

● Add a new source, VHDL module to your project and enter details of the input/output
variables. Also note how a vector can be declared here itself.

Thus finish the creation of this module.

● Then you can write the code you need in the architectural section as shown below:

● Save your code. Synthesize, which should then change to a green tick if all goes right. If

not, go through the errors and warnings dumped on the console and debug.
● Then add a testbench for testing and simulation of your program by right clicking on the

project and then ‘New Source’ as we did in step1 while adding VHDL module

Then click on Next -> Next -> Finish to see the testbench added to your project.

● If you are don’t need clock in your simulation, you can remove it from the testbench.

Comment the clock_process entirely out of the code as shown below (shortcut: Alt+C)
-- constant <clock>_period = 2*10ns

-- <clock>_process :process
-- begin
-- <clock> <= '0';
-- wait for <clock>_period/2;
-- <clock> <= '1';
-- wait for <clock>_period/2;
-- end process;
Else use this clock to give waits.

● Visualize the testbench as a script to give various inputs to the program with timed waits.
Consider the example given below:

● Click on ‘Behavioral Check Syntax’. It should change to a green tick if all goes right. If

not, go through the errors and warnings dumped on the console and debug.

Playing around with inputs

● You can also add signals and variables to waveform viewer window as shown
Click on the main instance on left side of screen. Expand it to be able to see the objects

Right click on the variable/signal you wish to see in waveform. Click on ‘Add to Wave
Window’ option

You can see your variable/signal added to the waveform.

● You can also force values to the input variables directly in the simulation as shown below

You can see the value ‘0001’ been forced on to the variable a.

Modularity: Multiple files in same project

Often you would feel the need to modularize your code by putting different functional entities
into different files. These files can be added the same way you add vhdl codes and testbenches
in your project. To link them however, you would need to link their ports via what is called port
mapping. Below is an example where the entity arthur is composed of internal VHDL modules
barney and elmo . We define the components first with their port types and then map the ports to
those arthur .

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY arthur IS

PORT(clk : IN STD_LOGIC; --clock input
enbl : IN STD_LOGIC; --enable for arthur
adv : IN STD_LOGIC; --advance the state
pulse : OUT STD_LOGIC; --pulse the dog collar
open_door : OUT STD_LOGIC --output to door driver
);

END arthur;

ARCHITECTURE struct OF arthur IS

SIGNAL ask_me : STD_LOGIC; --barney asks elmo
SIGNAL clear : STD_LOGIC; --elmo clears request to ask

COMPONENT barney PORT(

clk : IN STD_LOGIC;
enable : IN STD_LOGIC;
adv : IN STD_LOGIC;
clear : IN STD_LOGIC;
outa : OUT STD_LOGIC;
ask_me : OUT STD_LOGIC
);

END COMPONENT;

COMPONENT elmo PORT(

ask_me : IN STD_LOGIC;
go : OUT STD_LOGIC;
clear : OUT STD_LOGIC
);

END COMPONENT;

BEGIN
U1 : barney PORT MAP(

clk => clk,
enable => enbl,

adv => adv,
clear => clear,
outa => pulse,
ask_me => ask_me
);

U2 : elmo PORT MAP(

ask_me => ask_me,
go => open_door,
clear => clear
);

END struct;

Forcing Signal via ISim
Right click on the variable you want to change -> select Force Clock/Force Constant option ->
Fill the required details -> click OK -> Refresh.
Force to Value : 1
Starting at Time Offset : 10ns
Cancel after Time Offset : 30ns

For more details view this video : https://www.youtube.com/watch?v=EheplQla9hg

https://www.youtube.com/watch?v=EheplQla9hg

Common Errors

In Entities and Architectures:
reference: VHDL for Programmable_Logic by Kevin Skahill

There are several common errors that are worth mentioning. Identifying them early may
prevent misconceptions. Some of the errors are with syntax, others with semantics.
Following is a code example with several errors. See if you can identify the errors:
entity many_errors is port --line 1

a: bit _vector (3 to 0) ; --line 2
b: out std_logic_vector(O to 3) ; --line 3
c: in bit _vector (6 downto 0) ;) --line 4 \

end many_errors --line 5
line 6

architecture not_so_good of many_ errors --line 7
begin --line 8
my_ label: process --line 9

begin --line 10
if c x"F" then --line 11
b <= a --line 12
else --line 13
b <= ' 0101' ; --line 14
end if --line 15

end process; --line 16
end not_so_good --line 17

We'll take this design one line at a time because there are so many errors. The port
declaration requires an "(" at the end of line I or beginning of line 2. In line 2, "to" should
read "downto." The lack of the keyword IN to identify the mode is acceptable. If the
mode is not explicitly declared, then the default of IN is assumed. Line 3 is ok. The
semicolon on line 4 should appear after the second ")". The omission of a semicolon is
one of the most common syntax errors. A semicolon is required at the end of line 5.
There's even an error in line 6: The comment character " __ " is required. Line 7 is
missing the keyword "is" after the name of the entity. Line 8 is ok. The process
sensitivity list is missing from line 9. Line 10 is ok. The comparison of line 11 will always
evaluate to FALSE because x"F" represents "1111" not "001111 "-six bits must be
compared with six bits (this is not error, but is probably not what the designer wanted).
In line 12, a signal of one type may be assigned to a signal only of the same base type,
so we will have to change a or b to be of the same type. Line 13 is ok. The single quote
marks (') of line 14 should be replaced with double quote marks ("). Line 15 requires a
semicolon. Line 16 is ok. Line 17 requires a semicolon. The design is corrected and
listed below.

Corrected code:
entity many_errors is port(

a: std_logic_vector (3 downto 0);
b: out std_logic_vector(O to 3);
c: in bit_vector(6 downto 0));

end many_errors;
architecture not_so_good of many_errors is
begin
my_label: process(c, a)

begin
if c "001111" then
b <= a;
else
b <= "0101";
end if;

end process;
end not_so_good;

Initialisation of signals in architecture:
Credits: Team techNologic

architecture Behavioral of find_smallest_i is
signal b_new : STD_LOGIC_VECTOR(N downto 0);
signal i_current : STD_LOGIC_VECTOR(N-2 downto 0);

begin
 process(clk, reset)

variable flag : boolean := false;
b_new <= b; -- b is an input signal from entity definition

This snippet gives an error about initialising of b_new. Stating both b_new<3> and b<3>
are active.
This can be simply fixed by initialising b_new in a proper fashion.

architecture Behavioral of find_smallest_i is

signal b_new : STD_LOGIC_VECTOR(N downto 0) := b; -- changed line
signal i_current : STD_LOGIC_VECTOR(N-2 downto 0);

begin
 process(clk, reset)

variable flag : boolean := false;

In Creating Combinational and Synchronous Logic
reference: VHDL for Programmable_Logic by Kevin Skahill

Usage of variables:
In terms of processing VHDL for simulation, variables are only meaningful in a process
and do not retain their values between periods of time when the processes are inactive.
Variables must be reinitialized each time the process is activated. Synthesis creates
logic based on these assumptions. Thus, the following code does not describe a
counter:
architecture incorrect of bad_counter
begin
count: process (rst, clk)

variable cnt: integer;
begin

if rst = '1' then
cnt := 0;

elsif (clk'event and clk='l') then
cnt := cnt + 1;

end if;
end process;

end incorrect;
The variable ent does not retain its value for the time during which the process is
inactive.

In using Arithmetic and Comparison operations
These functions are defined in the library ‘IEEE.Std_logic_unsigned.ALL’.
reference: https://www.cs.sfu.ca/~ggbaker/reference/std_logic/unsigned/
The functions in this library take STD_LOGIC_VECTOR arguments and treat them as
unsigned integers when performing the operations. Hence, this library must be included
whenever any arithmetic operations are to be performed.

In Synthesis :
Signal is connected to multiple drivers

Consider the following code:

entity test is
port (clk1 : in std_logic;
 clk2 : in std_logic;
 out1 : out std_logic_vector(7 downto 0)
);
end test;
architecture Behavioral of test is

https://www.cs.sfu.ca/~ggbaker/reference/std_logic/unsigned/

signal out2: std_logic_vector(7 downto 0);
begin
out1 <= out2;

process(clk1)
begin
if(clk1'event and clk1='1') then
out2 <= out2 + "00000001"; --increment by '1'
end if;
end process;

process(clk2)
begin
if(clk2'event and clk2='1') then
out2 <= out2 + "00000011" ; -- --increment by '3'
end if;
end process;

end Behavioral;

The above code can be successfully compiled without any errors or warnings.But when
you try to synthesis it you will get the following errors:
ERROR:Xst:528 - Multi-source in Unit on signal <0>>; this signal is connected to
multiple drivers.
ERROR:Xst:528 - Multi-source in Unit on signal ; this signal is connected to multiple
drivers.
...
ERROR:Xst:528 - Multi-source in Unit on signal ; this signal is connected to multiple
drivers.

This error occurs when we try to change a signal in two different processes.As you can
see from the above code the signal 'out2' is driven by two clocks,named clk1 and clk2.A
multi-driven signal cannot be realized in hardware.If the clk1'event and clk2'event
occurs at the same time then,the hardware doesn't know which statement to
execute.That is why this kind of code is not synthesizable.And there is no way to solve
this error.Only option is to change your logic in some way that you can get your things
done without using a multi-driven signal.

For more details visit :
http://vhdlguru.blogspot.in/2010/03/synthesis-error-signal-is-connected-to.html

The Golden Rules of Debugging

http://vhdlguru.blogspot.in/2010/03/synthesis-error-signal-is-connected-to.html
http://vhdlguru.blogspot.in/2010/03/synthesis-error-signal-is-connected-to.html

reference : https://www.doulos.com/knowhow/fpga/debugging/
1) Always fix the first error first:

Error: COMP96_0078: mux4_tb.vhd : (8, 16): Unknown identifier "STD_LOGIC_VECTOR".

This error generally pops on the top, the fix is most of the times

library IEEE;

use IEEE.std_logic_1164.all;

the error comes as the compiler can’t resolve logic vector, so similarly when ever you get

an unknown identifier try to find if you are including the right libraries

2) Don't ignore warnings
Warning (10492): VHDL Process Statement warning at alu.vhd(32):
signal "Op" is read inside the Process Statement but isn't in the Process Statement's
sensitivity list

This warning is interesting because most synthesis tools will actually automatically "fix"
your sensitivity list, that is they will "pretend" that the missing signal is actually there.
However simulation tools are not allowed to "pretend", so you will get a mis-match
between simulation and synthesis. Your simulation may appear to be doing what you
expect, but your hardware will behave differently. Or perhaps even more confusing, your
hardware may behave correctly but your simulation will fail!
In that case the fix is easy, and the consequences are sufficiently bad you should fix the

problem.

In synthesis you may be warned about latches - again this is an important warning that

you should take notice of it.

3) Try rebuilding
Sometimes tools go wrong for no apparent reason.

4) Don't Panic!

Additional reference:

For syntax: http://www.ics.uci.edu/~jmoorkan/vhdlref/vhdl_golden_reference_guide.pdf
For further more errors:
http://class.ece.iastate.edu/cpre583/ref/VHDL/Common_VHDL_mistakes.pdf

Compiled By:

https://www.doulos.com/knowhow/fpga/debugging/
http://www.ics.uci.edu/~jmoorkan/vhdlref/vhdl_golden_reference_guide.pdf
http://class.ece.iastate.edu/cpre583/ref/VHDL/Common_VHDL_mistakes.pdf

Utkarsh Kumar
Chandra Maloo
Aditya Kusupati
Anand Dhoot
Jash Dave

