
Very High Speed Integrated Circuit
(VHSIC)

 Hardware Description Language

VHDL

What will be taking about?

• How to code up Digital logic and realize it in
hardware…

• What do we mean by Digital Logic??

• How’s it different from Analog Logic??

Origins

• VHDL was developed as a language for modelling and simulation.
– To create coherence between projects that US DoD offloaded to

external vendors.

• Primary goal was simulation…
• Later-on synthesis (inferring hardware from the code) also became

an application.

• Important to note that there is mismatch between synthesis and
simulation…
– Most constructs are good for simulation but not synthesizable.
– Synthesizable subset of VHDL is relatively small % of all constructs.

Other HDLs

• Verilog
– Syntax like C… quite common in US markets.

• SystemC

– C++ based library. Quite useful for rapid prototyping.
– Evolve simulation/abstract system description into detailed hardware as time progresses.

• System Verilog
– Evolved version of Verilog with even advanced Verification constructs.

• Matlab Simulink
– Specially useful for DSP applications.

• Why VHDL?
– It’s like the assembly language of HDLs.
– Simple
– Extremely typed – very difficult (not impossible though!) to make mistakes.

Some ‘Zen’ teaching stuff…

• Keep in mind it’s HDL…

– Used to ‘DESCRIBE’ Hardware…

– That means one should know what Hardware is to
be described…

– It’s not just coding the flow as in CS… we’ll see
what difference does it make…

• To area, speed, cost, time of development…

What does hardware look like…

• Lots of chips interconnected
together with wires (either
external or on PCB)…

• Some logic inside these chips
executing as per
specifications…

• Some interfaces to interact
with external world…

• Lets say we want to describe
this board…
– How should we start …

32
external

pins IC 1

IC 2

IC 3

IC 4

IC 5

Structure of a VHDL program

• Libraries

– For compiler to interpret base functions.

• Entity

– Information regarding the interface of the module/chip.

– Eg: 1 Vcc pin, 1 Gnd pin, 8 inputs, 4 outputs.

• Architecture

– Functionality of the module/chip.

Some Data types and Libraries

Data Types
• Integer
• Bit

– For defining an ideal wire.
– 2 binary values

• Bit_vector
– For defining a bus… lot of wires

together.

• Std_logic
– For defining an actual wire.
– 9 logic values:

• 0,1
• X – Unknown, multiple signals driving

the same wire – kind of short circuit.
• U - Uninitialized
• Z – High impedance

• Std_logic_vector

Libraries
• Std_logic_1164

– The std_logic data types and a few
functions.

• std_logic_arith
– some types and basic arithmetic

operations for representing integers in
standard ways.

• std_logic_unsigned
– extends the std_logic_arith library to

handle std_logic_vector values as
unsigned integers.

• std_logic_signed
– extends the std_logic_arith library to

handle std_logic_vector values as signed
integers.

• std_logic_textio
– File handling operations for simulation.

Entity

• Library IEEE;

• Use IEEE.std_logic_1164.all;

• Entity IC_7402 is

Port (

 p1 : out std_logic;

 p2: in std_logic;

 p3 : in std_logic;

 … and so on …

);

End IC_7402;

• Library IEEE;

• Use IEEE.std_logic_1164.all;

• Entity IC_7402 is

Port (

 outp : out std_logic_vector(3 downto 0);

 inp_a : in std_logic_vector(3 downto 0);

 inp_b : in std_logic_vector(3 downto 0);

);

End IC_7402;

OR

Suppose we want to declare a ‘N’
input IC…

• Library IEEE;

• Use IEEE.std_logic_1164.all;

• Entity IC_7402 is

Generic (

 N : integer range 7 downto 0 := 4;

Port (

 outp : out std_logic_vector(N-1 downto 0);

 inp_a : in std_logic_vector(N-1 downto 0);

 inp_b : in std_logic_vector(N-1 downto 0);

);

End IC_7402;

• Generics

– Used to pass
certain properties
into a design to
make it more
general.

• Bus widths.

• Delays.

Entity Declaration

• An entity declaration describes the interface of the component.

• PORT clause indicates input and output ports.

• An entity can be thought of as a symbol for a component.

Port Declaration

• PORT declaration establishes the interface of the object to
the outside world.

• Three parts of the PORT declaration
• Name

• Any identifier that is not a reserved word.

• Mode

• In, Out, Inout

• Data type

• Any declared or predefined datatype.

• Sample PORT declaration syntax:

Ok… interface has been defined…
now what??

Library IEEE;

Use IEEE.std_logic_1164.all;

• Entity IC_7402 is
Port (

 outp : out std_logic_vector(3 downto 0);

 inp_a : in std_logic_vector(3 downto 0);

 inp_b : in std_logic_vector(3 downto 0);

);

End IC_7402;

• Architecture IC_7402_arch of IC_7402 is
Begin

 outp(3) <= inp_a(3) nor inp_b(3);

 outp(2) <= inp_a(2) nor inp_b(2);

 outp(1) <= inp_a(1) nor inp_b(1);

 outp(0) <= inp_a(0) nor inp_b(0);

End architecture IC_7402_arch;

Concurrent statements of execution

Sensitivity list for execution –
concept of delta delays

Architecture Declaration

• Architecture declarations describe the operation of the component.

• Many architectures may exist for one entity, but only one may be
active at a time.

• An architecture is similar to a schematic of the component.

How does the simulation work?

What is the output of C?

The two-phase simulation cycle

1) Go through all functions. Compute the next value to

appear on the output using current input values and store

it in a local data area (a value table inside the function).

2) Go through all functions. Transfer the new value from the

 local table inside to the data area holding the values of

 the outputs (=inputs to the next circuit)

Cycle-based simulators

Go through all functions using current

inputs and compute next output

Update outputs & increase time with 1

delay unit

Event-based Simulators

Go through all functions whose inputs has

changed and compute next output

Update outputs & increase time with 1

delay unit

Event-based simulators with event queues

Go through all functions whose inputs has

changed and compute value and time for

next output change

Increase time to first scheduled event &

update signals

VHDL Simulation Cycle

• VHDL uses a simulation cycle to model the stimulus and

response nature of digital hardware.

What did we cover till now…

• Philosophy of VHDL coding…

• Entity-Architecture declarations…

• How simulator works and concept of delta
delay…

Before we proceed… lets look at some
other VHDL constructs…

• library ieee;
• use ieee.std_logic_1164.all;

• ---

• entity Comparator is

• Generic (n: natural :=2);
• Port (A: in std_logic_vector(n-1 downto 0);
• B: in std_logic_vector(n-1 downto 0);
• less: out std_logic;
• equal: out std_logic;
• greater: out std_logic
•);
• end Comparator;

Architecture in a sequential manner

• architecture behav of Comparator is
• begin
• process(A,B)
• begin
• if (A<B) then
• less <= '1';
• equal <= '0';
• greater <= '0';
• elsif (A=B) then
• less <= '0';
• equal <= '1';
• greater <= '0';
• else
• less <= '0';
• equal <= '0';
• greater <= '1';
• end if;
• end process;
• end behv;

Architecture in a concurrent manner

• architecture behav of Comparator is

• begin

• Less <= ‘1’ when a < b else ‘0’;

• Greater <= ‘1’ when a > b else ‘0’;

• Equal <= ‘1’ when a = b else ‘0’;

• End behav;

Testbench

• library ieee;

• use ieee.std_logic_1164.all;

• use ieee.std_logic_unsigned.all;

• use ieee.std_logic_arith.all;

• entity Comparator_TB is

• end Comparator_TB;

Testbench Architecture

• architecture TB of Comparator_TB is

• component Comparator
• port(A: in std_logic_vector(1 downto 0);
• B: in std_logic_vector(1 downto 0);
• less: out std_logic;
• equal: out std_logic;
• greater: out std_logic
•);
• end component;

• signal A, B: std_logic_vector(1 downto 0):="00";
• signal less, equal, greater: std_logic;

• begin

Testbech Architecture … cont

 Unit: Comparator port map (A, B, less, equal, greater);

 process

 variable err_cnt: integer :=0;

 begin
 -- Case 1 (using the loop statement)

 A <= "11";

 B <= "00";

 for i in 0 to 2 loop

 wait for 10 ns;

 assert (greater='1') report "Comparison Error detected!"

 severity error;

 if (greater/='1') then

 err_cnt:=err_cnt+1;

 end if;

 B <= B + '1';

 end loop;

 -- Case 2 (using the loop statement)

 A <= "00";

 B <= "01";

 for i in 0 to 2 loop

 wait for 10 ns;

 assert (less='1') report "Comparison Error detected!"

 severity error;

 if (less/='1') then

 err_cnt:=err_cnt+1;

 end if;

 B <= B + '1';

 end loop;

-- Case 3

 A <= "01";

 B <= "01";

 wait for 10 ns;

 assert (equal='1') report "Comparison Error detected!"

 severity error;

 if (equal/='1') then

 err_cnt:=err_cnt+1;

 end if;

 -- summary of all the tests

 if (err_cnt=0) then

 assert false

 report "Testbench of Adder completed successfully!"

 severity note;

 else

 assert true

 report "Something wrong, try again"

 severity error;

 end if;

 wait;

 end process;

end TB;

Configuration

• configuration CFG_TB of Comparator_TB is

• for TB

• end for;

• end CFG_TB;

Constructs in VHDL

Concurrent Statements
• All concurrent statements in an architecture are executed

simultaneously.

• Concurrent statements are used to express parallel activity as is the case with

any digital circuit.

• Concurrent statements are executed with no predefined order by the simulator

. So the order in which the code is written does not have any effect on its

function.

• They can be used for behavioral and structural and data flow descriptions.

• Process is a concurrent statement in which sequential
statements are allowed.

Concurrent statements contd.

• All processes in an architecture are executed simultaneously.

• Concurrent statements are executed by the simulator when one of the

signals in its sensitivity list changes . This is called occurrence of an

‘event’.

eg : c <= a or b;

is executed when either signal ‘a’ or signal ‘b’ changes.

process(clk , reset) ...

is executed when either ‘clk’ or ‘reset’ changes

• Signals are concurrent whereas variables are sequential objects.

• The ‘when‘ statement
– This type of assignment has one target but

multiple condition expressions.

– This statement assigns value based on the priority
of the condition.

– syntax

Conditional signal assignment

 sig_name <= exp1 when condition1 else

 exp2 when condition2 else

 exp3;

entity my_nand is

port (a, b : in std_logic;

 c : out std_logic);

end my_nand;

architecture beh of my_nand is

begin

 c <= „0‟ when a = „1‟ and b = „1‟ else

 „1‟ ;

end beh;

entity tri_state is

port (a, en : in std_logic;

 b : out std_logic);

end tri_state;

architecture beh of tri_state is

begin

 b <= a when en = „1‟ else

 „Z‟;

end beh;

architecture try_A of try is

begin

Y <= i1 when s1 = „0‟ and s0 = „0‟ else

 i2 when s1 = „0‟ and s0 = „1‟ else

 i3 when s1 = „1‟ and s0 = „0‟ else

 i4 when s1 = „1‟ and s0 = „1‟ else

 „0‟ ;

end try_A;

example

Incomplete specification is not allowed

example

architecture when_grant of bus_grant is

 signal …

begin

data_bus <= a and b when e1 = „1‟

else

 e or f when a = b else

 g & h when e3 = „1‟ else

 (others => „Z‟);

end when_grant;

Selective signal assignment
The with statement

• This statement is similar to the case statement

• syntax

 with expression select

 target <= expression1 when choice1

 expression2 when choice2

 expressionN when choiceN;

• all possible choices must be enumerated

• when others choice takes care of all the

 remaining alternatives.

• Each choice in the with statement should be unique

Difference between with and when
statements

• Compared to the ‘when’ statement, in the ‘with’ statement, choice is limited

to the choices provided by the with ‘expression’, whereas for the ‘when’

statement each choice itself can be a separate expression.

• The when statement is prioritized (since each choice can be a different

expression, more than one condition can be true at the same time, thus

necessitating a priority based assignment) whereas the with statement does

not have any priority (since choices are mutually exclusive)

entity my_mux is

 port (a, b, c, d : in std_logic;

 sel0, sel1 : in std_logic;

 e : out std_logic);

end my_mux;

architecture my_mux_A of my_mux is

 signal sel: std_logic_vector(1 downto 0);

begin

 sel <= sel1 & sel0;

 with sel select

 e <= a when “00”

 b when “01”

 c when “10”

 d when others;

end my_mux_A;

• A component represents an entity architecture pair.

Component Instantiation

• Component allows hierarchical design of complex circuits.

• A component instantiation statement defines a part lower in the hierarchy of

the design entity in which it appears. It associates ports of the component

with the signals of the entity. It assigns values to the generics of the

component.

• A component has to be declared in either a package or in the declaration

part of the architecture prior to its instantiation.

• Syntax(Declaration)

 component component_name

 [generic list]

 [port list]

 end component;

Component Declaration and
Instantiation

• Syntax(Instantiation)

 label:component_name

 [generic map]

 port map;

entity my_and is

 port(a : in std_logic;

 b : in std_logic;

 c : out std_logic);

end my_and;

architecture my_and_A of my_and is

 component and2

 generic (tpd: time := 2 ns);

 port (x : in std_logic;

 y : in std_logic;

 z : out std_logic);

 end component;

 signal temp : std_logic;

begin

 c <= temp;

 -- component instantiation here

end my_and_A;

U1: my_and

 generic map (tpd => 5 ns)

 port map (x => a,

 y => b,

 z => temp);

U2: my_and

 generic map (tpd => 2 ns)

 port map (x => a,

 y => b,

 z => temp);

architecture exor_A of exor is

 component my_or

 port (a : in std_logic;

 b : in std_logic;

 y : out std_logic

);

 end component;

 component my_and

 port (a : in std_logic;

 b : in std_logic;

 y : out std_logic

);

 end component;

 signal a_n, b_n : std_logic;

 signal y1, y2, y3 : std_logic;

begin

end exor_A;

u1 : my_or

 port map (y2,

 y3,

 y1);

u2 : my_and

 port map (a_n,

 b,

 y2);

u3 : my_and

 port map (a,

 b_n,

 y3);

a_n <= not a ;

b_n <= not b ;

Positional association

Named Association

U1:my_and

generic map (tpd => 5 ns)

port map (x => a,

 y => b,

 z => temp);

U1: my_and

generic map(5 ns)

port map(a, b, temp);

Component Instantiation contd.

The formal and the actual can have the same name

Component Instantiation contd.

• Named association is preferred because it makes the code more
readable and pins can be specified in any order whereas in positional
association order should be maintained as defined in the component
and all the pins need to be connected .

• Multiple instantiation of the same component should have different
labels.

Process statement

• The process statement is a concurrent statement , which delineates a part

of an architecture where sequential statements are executed.

• Syntax

 label: process [(sensitivity list)]

 declarations

 begin

 sequential statements

 end process;

Process statement

• All processes in an architecture are executed concurrently with all other

concurrent statements.

• Process is synchronized with the other concurrent statements using the

sensitivity list or a wait statement.

• Process should either have sensitivity list or an explicit wait statement.

Both should not be present in the same process statement.

• The order of execution of statements is the order in which the statements

appear in the process

• All the statements in the process are executed continuously in a loop .

Process contd.

• The simulator runs a process when any one of the signals in the sensitivity

list changes. For a wait statement, the simulator executes the process after

the wait is over.

• The simulator takes 0 simulation time to execute all the statements in the

process. (provided there is no wait)

process (clk,reset)

begin

 if (reset = „1‟) then

 A <= „0‟;

 elsif (clk‟event and clk = „1‟) then

 A <= „B‟;

 end if;

end process;

process

begin

 if (reset = „1‟) then

 A <= „0‟ ;

 elsif (clk‟event and clk = „1‟) then

 A <= „B‟;

 end if;

 wait on reset, clk;

end process;

• Sequential statements are statements which are analyzed
serially one after the other. The final output depends on the
order of the statements, unlike concurrent statements where
the order is inconsequential.

Sequential Statements

• Sequential statements are allowed only inside process and subprograms

(function and procedure)

• Process and subprograms can have only sequential statements within

them.

• Only sequential statements can use variables.

• The Process statement is the primary concurrent VHDL statement used to

describe sequential behaviour.

• Sequential statements can be used to generate
– Combinational logic

– Sequential logic

Sequential Statements contd.

• Clocked process

It is easily possible to infer flip-flops using if

statements and ‘event attribute.

• Combinatorial process

generates purely combinatorial logic.

All the inputs must be present in the sensitivity

list. Otherwise the simulation and synthesis

results will not match.

• Syntax

 if condition1 then

 statements

 [elsif condition2 then

 statements]

 [else

 statements]

 end if;

• An if statement selects one or none of a sequence of events to
execute . The choice depends on one or more conditions.

Priority

The if statement

• If statements can be nested.

if sel = „1‟ then

 c <= a;

else

 c <= b;

end if;

if (sel = “00”) then

 o <= a;

elsif sel = “01” then

 x <= b;

elsif (color = red) then

 y <= c;

else

 o <= d;

end if;

The if statement contd.

• If statement generates a priority structure

• If corresponds to when else concurrent statement.

The case statement - syntax

case expression is

 when choice 1 =>

 statements

 when choice 3 to 5 =>

 statements

 when choice 8 downto 6 =>

 statements

 when choice 9 | 13 | 17 =>

 statements

 when others =>

 statements

end case;

The case statement

• The case statement selects, for execution one of a number of alternative

sequences of statements .

• Corresponds to with select in concurrent statements .

• Case statement does not result in prioritized logic structure unlike the if

statement.

process(sel, a, b, c, d)

begin

 case sel is

 when “00” =>

 dout <= a;

 when “01” =>

 dout <= b;

 when “10” =>

 dout <= c;

 when “11” =>

 dout <= d;

 when others =>

 null;

 end case;

end process;

process (count)

begin

 case count is

 when 0 =>

 dout <= “00”;

 when 1 to 15 =>

 dout <= “01”;

 when 16 to 255 =>

 dout <= “10”;

 when others =>

 null;

 end case;

end process;

The case statement contd.

Think Hardware! (Mutually exclusive
conditions)

This priority is useful for timings.

myif_pro: process (s, c, d, e, f)

begin

 if s = "00" then

 pout <= c;

 elsif s = "01" then

 pout <= d;

 elsif s = "10" then

 pout <= e;

 else

 pout <= f;

 end if;

end process myif_pro;

Think Hardware! Use a case for mutually
exclusive things

mycase_pro: process (s, c, d, e, f)

 begin

 case s is

 when "00" =>

 pout <= c;

 when "01" =>

 pout <= d;

 when "10" =>

 pout <= e;

 when others =>

 pout <= f;

 end if;

 end process mycase_pro;

C

D

E

F

S

POUT

There is no priority with case.

BEHAVIORAL (Processes using
signals)

Sig2 = 1

Sig1 = 2 + 3 = 5

Sig3 = 2

Sum = 1 + 2 + 3 = 6

BEHAVIORAL (Processes using
Variables)

var1 = 2 + 3 = 5

var2 = 5

var3 = 5

Sum = 5 + 5 + 5 = 15

Behavioral Description of a 3-to-8 Decoder

Except for different

syntax, approach is

not all that different

from the dataflow

version

A Different Behavioral Description of a 3-to-8 Decoder

May not be synthesizable,

or may have a slow or inefficient realization.

But just fine for simulation and verification.

IC 74x148 behavioral description
(8 to 3 line cascadable Priority Encoder)

type conversion

--EI - Enable I/P
--EO - O/P Enable
--I - I/P(data to be encoded)
--A - O/P

CONCLUSION

• Many VHDL constructs, although useful for simulation and
other stages in the design process, are not relevant to
synthesis. A sub-set of VHDL only can be used for synthesis.

• A construct may be fully supported, ignored, or unsupported.

• Ignored means that the construct will be allowed in the VHDL
file but will be ignored by the synthesis tool.

• Unsupported means that the construct is not allowed and the
code will not be accepted for synthesis.

• See the documentation of tools for exact details.

VHDL Delay Models

• Delay is created by scheduling a signal assignment for a

future time.

• Delay in a VHDL cycle can be of several types

• Inertial

• Transport

• Delta

Inertial Delay

• Default delay type

• Allows for user specified delay

• Absorbs pulses of shorter duration than the specified delay

Transport Delay

• Must be explicitly specified by user

• Allows for user specified delay

• Passes all input transitions with delay

Delta Delay

• Delta delay needed to provide support for concurrent
 operations with zero delay

– The order of execution for components with zero delay is not
clear

• Scheduling of zero delay devices requires the delta
 delay

– A delta delay is necessary if no other delay is specified
– A delta delay does not advance simulator time
– One delta delay is an infinitesimal amount of time
– The delta is a scheduling device to ensure repeatability

Example – Delta Delay

Sequential vs Concurrent Statements

• VHDL provides two different types of execution:
sequential and concurrent.

• Different types of execution are useful for
modeling of real hardware.
• Supports various levels of abstraction.

• Sequential statements view hardware from a
“programmer” approach.

• Concurrent statements are order-independent
and asynchronous.

Sequential Style

Sequential Style Syntax

• Assignments are executed sequentially inside
processes.

Concurrent Process Equivalents

• All concurrent statements correspond to a process
equivalent.

 U0: q <= a xor b after 5 ns;

 is short hand notation for

 U0: process

 begin

 q <= a xor b after 5 ns;

 wait on a, b;

 end process;

Sequential Statements

• {Signal, Variable} assignments

• Flow control
• if <condition> then <statments>

 [elsif <condition> then <statments>]

 else <statements>

 end if;

• for <range> loop <statments> end loop;

• while <condition> loop <statments> end loop;

• case <condition> is
 when <value> => <statements>;

 when <value> => <statements>;

 when others => <statements>;

• Wait on <signal> until <expression> for <time>;

Data Objects

• There are three types of data objects:

• Signals

• Can be considered as wires in a schematic.

• Can have current value and future values.

• Variables and Constants

• Used to model the behavior of a circuit.

• Used in processes, procedures and functions.

Constant Declaration

• A constant can have a single value of a given type.

• A constant’s value cannot be changed during the
simulation.

• Constants declared at the start of an architecture can be
used anywhere in the architecture.

• Constants declared in a process can only be used inside
the specific process.

CONSTANT constant_name : type_name [: = value];

CONSTANT rise_fall_time : TIME : = 2 ns;

CONSTANT data_bus : INTEGER : = 16;

Variable Declaration

• Variables are used for local storage of data.

• Variables are generally not available to multiple
components or processes.

• All variable assignments take place immediately.

• Variables are more convenient than signals for the
storage of (temporary) data.

Variables are tricky… if you don’t understand
them properly, you’ll definitely mess up

Signal Declaration

• Signals are used for communication between components.

• Signals are declared outside the process.

• Signals can be seen as real, physical signals.

• Some delay must be incurred in a signal assignment.

Signal Assignment

• A key difference between variables and signals is the
assignment delay.

Variable Assignment

IF – vs CASE – statement Syntax

FOR – vs WHILE – statement Syntax

For is considered to be a

combinational circuit by some

synthesis tools. Thus, it cannot

have a wait statement to be

synthesized.

While is considered to be an

FSM by some synthesis tools.

Thus, it needs a wait statement

to be synthesized.

WAIT – statement Syntax

• The wait statement causes the suspension of a process statement or a
procedure.

• wait [sensitivity_clause] [condition_clause] [timeout_clause];

• Sensitivity_clause ::= on signal_name

wait on CLOCK;

• Condition_clause ::= until boolean_expression

wait until Clock = „1‟;

• Timeout_clause ::= for time_expression

wait for 150 ns;

Sensitivity-lists vs Wait-on - statement

Component Declaration

• The component declaration declares the interface of the
component to the architecture.

• Necessary if the component interface is not declared
elsewhere (package, library).

Component Instantiation

• The instantiation statement maps the interface of the
component to other objects in the architecture.

Component Instantiation Syntax

• The instantiation has 3 key parts
• Name

• Component type

• Port map

Supplementary info

VHDL Hierarchy

Std_logic_1164

• The std_ulogic type
• The std_logic type
• The std_ulogic_vector type
• The std_logic_vector type
• The to_bit function
• The to_stdulogic function
• The to_bitvector function
• The to_stdlogicvector function
• The rising_edge function
• The falling_edge function
• The is_x function

std_logic_arith

• The unsigned type
• The signed type
• The arithmetic functions: +, -, *
• The comparison functions: <, <=, >, >=, =, /=
• The shift functions: shl, shr
• The conv_integer function
• The conv_unsigned function
• The conv_signed function
• The conv_std_logic_vector function

std_logic_unsigned

• This library defines all of the same arithmetic (+, -, *),
comparison (<, <=, >, >=, =, /=) and shift (shl, shr)
operations as the std_logic_arith library. This difference is
that the extensions will take std_logic_vector values as
arguments and treat them as unsigned integers (ie. just like
type unsigned values).

• The function conv_integer is also defined on
std_logic_vector and treats the value like an unsigned
integer:

• function conv_integer(arg: std_logic_vector) return integer;

VHDL Data Types

Predefined Data Types

• bit (‘0’ or ‘1’)

• bit_vector (array of bits)

• integer

• real

• time (physical data type)

Integer

• Integer
• Minimum range for any implementation as defined by standard:

-2,147,483,647 to 2,147,483,647

• Integer assignment example

Real

• Real
• Minimum range for any implementation as defined by standard:

-1.0E38 to 1.0E38

• Real assignment example

Enumerated

• Enumerated
• User defined range

• Enumerated example

Physical

• Time units are the only predefined physical type in VHDL.

• Physical
• Can be user defined range

• Physical type example

Array

• Array
• Used to collect one or more elements of a similar type in a single

construct.

• Elements can be any VHDL data type.

Record

• Record
• Used to collect one or more elements of different types in a single

construct.

• Elements can be any VHDL data type.

• Elements are accessed through field name.

Subtype

• Subtype
• Allows for user defined constraints on a data type.

• May include entire range of base type.

• Assignments that are out of the subtype range result in error.

• Subtype example

Natural and Positive Integers

• Integer subtypes:

• Subtype Natural is integer range 0 to
integer’high;

• Subtype Positive is integer range 1 to
integer’high;

Boolean, Bit and Bit_vector

• type Boolean is (false, true);

• type Bit is (‘0’, ‘1’);

• type Bit_vector is array (integer range <>)
of bit;

Char and String

• type Char is (NUL, SOH, …, DEL);

• 128 chars in VHDL’87

• 256 chars in VHDL’93

• type String is array (positive range <>) of
Char;

IEEE Predefined data types

• type Std_ulogic is (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’);
• ‘U’ -- Uninitialized

• ‘X’ -- Forcing unknown

• ‘0’ -- Forcing zero

• ‘1’ -- Forcing one

• ‘Z’ -- High impedance

• ‘W’ -- Weak Unknown

• ‘L’ -- Weak Low

• ‘H’ -- Weak High

• ‘-’ -- Don’t care

• type std_logic is resolved std_ulogic;

• type std_logic_vector is array (integer range <>) of std_logic;

Assignments

• constant a: integer := 523;

• signal b: bit_vector(11 downto 0);

 b <= “000000010010”;

 b <= B”000000010010”;

 b <= B”0000_0001_0010”;

 b <= X”012”;

 b <= O”0022”;

Vector & Array assignments

• subtype instruction: bit_vector(31 downto 0);

• signal regs: array(0 to 15) of instruction;

regs(2) <= regs(0) + regs(1);

regs(1)(7 downto 0) <= regs(0)(11 downto 4);

Alias Statement

• Signal instruction: bit_vector(31 downto 0);

• Alias op1: bit_vector(3 downto 0) is instruction(23 downto 20);

• Alias op2: bit_vector(3 downto 0) is instruction(19 downto 16);

• Alias op3: bit_vector(3 downto 0) is instruction(15 downto 12);

• Op1 <= “0000”;

• Op2 <= “0001”;

• Op3 <= “0010”;

• Regs(bit2int(op3)) <= regs(bit2int(op1)) + regs(bit2int(op2));

Type Conversion (Similar Base)

• Similar but not the same base type:

• signal i: integer;

• signal r: real;

• i <= integer(r);

• r <= real(i);

Type Conversion (Same Base)

• Same base type:

 type a_type is array(0 to 4) of bit;

 signal a:a_type;

 signal s:bit_vector(0 to 4);

 a<=“00101” -- Error, is RHS a bit_vector or an a_type?

 a<=a_type’(“00101”); -- type qualifier

 a<=a_type(s); -- type conversion

Type Conversion (Different Base)

• Different base types:

 Function int2bits(value:integer;ret_size:integer) return
bit_vector;

 Function bits2int(value:bit_vector) return integer:

 signal i:integer;

 signal b:bit_vector(3 downto 0)

 i<=bits2int(b);

 b<=int2bits(i,4);

Built-In Operators

• Logic operators
• AND, OR, NAND, NOR, XOR, XNOR (XNOR in VHDL’93 only!!)

• Relational operators
• =, /=, <, <=, >, >=

• Addition operators
• +, -, &

• Multiplication operators
• *, /, mod, rem

• Miscellaneous operators
• **, abs, not

Files

• In all the testbenches we created so far, the test
 stimuli were coded inside each testbench.

• Hence, if we need to change the test stimuli we

 need to modify the model or create a new model.

• Input and output files can be used to get around

 this problem.

File Definition and Declaration

file_type_defn <= type file_type_name is file of type_mark ;

• A file class needs to be defined before it can be used.

• Once defined, a file object can be declared.

type integer _file is file of integer ;

file_decl <= file id { , …} : subtype_indication

[[open file_open_kind] is string_expr ;

file table: integer _file open read_mode is “table.dat” ;

type file_open_kind is
 (read_mode, write_mode, append_mode);

File reading

• Given a file definition, VHDL implicitly provides the
 following subprograms:

type file_type is file of element_type;

procedure read (file f: file_type; value : out element_type;
 length : out natural);
function endfile (file f: file_type) return boolean;

If the length of the element is greater than the length
of the actual data on the file, it is placed left justified
in the element.

Example
p1: process is

type bit_vector_file is file of bit_vectors;
file vectors: bit_vector_file open read_mode is “vec.dat”;
variable next_vector : bit_vector (63 downto 0);
variable actual_len: natural;

begin
while not endfile(vectors) loop

read (vectors,next_vector,actual_len);
if actual_len > next_vector’length then

report “vector too long”;
else

for bit_index in 1 to actual_len loop
….

end loop;
end if;

end loop;
wait;

end process;

File writing

• Given a file definition, VHDL implicitly provides the
 following subprograms:

type file_type is file of element_type;

procedure write (file f: file_type; value : in element_type);

Problem Description

• Write a process description that writes the
 data of integer type from an input signal to
 a file.
• Assume that the input signal “s1” is an “in”
 port of the top level entity.
• Assume the file name to be “out.dat”.

Example

P1: process (s1) is
type integer_file is file of integer;
file out_file: integer_file open write_mode is
“out.dat”;

begin
write (out_file,s1);

end;

