
CS254 (Spring 2017): Lab Assignment 2

February 25-March 1, 2017

Please refer to the FPGALink (2012 version) user manual, a link to which has been provided on the
course web page. The figure on Page 1 of the document provides a very clear picture of what you need to
remember when trying to program a host application logic (a C program) to communicate with an FPGA
application logic (a VHDL program).

You must have both FPGALink and ISE installed on your laptop (preferably under Linux) in order
for this assignment to be completed. You will also have to add the path to the xst executable generated
when you install ISE before you run the FPGALink commands to compile your VHDL design. To do this
on Linux, execute the following from a terminal (bash shell):
export PATH=’’Your ISE Install Dir/14.7/ISE DS/ISE/bin/lin64:$PATH’’

Before proceeding with the instructions in this sheet, you must have successfully run flcli on your
laptop, and read as well as written bytes from and to the Digilent Atlys board through the USB port.
If you have not been able to do this so far, contact the instructor/TAs immediately. The remainder of this
sheet won’t make sense otherwise.

1. Programming the host application logic:
Use a text editor to open the file main.c in the directory
Your FPGALink Install Dir/20140524/makestuff/apps/flcli

This is the source file for the flcli application. You are required to modify and recompile main.c

to implement the following:

• Add a line in main.c after line 620 that prints out the string
******* Modified for CS254 Lab projects *******

• Create a new command-line option “-y” that makes flcli behave as specified below:

The application loops 128 times, and for iteration i (starting from i = 0 to i = 127) of the loop,
it reads a byte from channel i, prints it out on the screen, adds i to it, and writes the resulting
byte (modulo overflows) to channel (i + 1) (mod 1)28, and waits for 1 second before starting
the next iteration.

• Rebuild flcli with the above changes. For this, you need to run make deps in the directory
makestuff/apps/flcli after saving the above changes.

• Now run the flcli executable just created from Your FPGALink Distribution/rel/flcli,
where Distribution is lin.x64, msvc.x64 or msvc.x86, as appropriate.

2. Programming the FPGA application logic:
Use a text editor to open the file cksum rtl.vhdl in the directory
Your FPGALink Install Dir/20140524/makestuff/hdlmake/apps/makestuff/swled/cksum/vhdl

This is the source file for the checksum application that has been programmed into your FPGA. You
are required to modify and recompile cksum rtl.vhdl to implement the following:

1

• Add a comment in cksum rtl.vhdl after line 22 that says
Modified for CS254 Lab projects

• Change the logic implemented in architecture rtl of swled so that the FPGA application logic
behaves as specified below:

The module has a register bank of 128 registers, each 8 bits wide. On start-up, all the registers
in the bank must have the value 0. You must not use a “for” or “while” loop to do this
initialization. Subsequently (say after 500 clock cycles from start – think of using these cycles
to do the initialization), if the module receives a request to read from channel i (where i varies
from 0 to 127), it reads the data from the ith register and sends it to the host. If, on the other
hand, the module receives a request to write to channel i , it simply writes the data received
from the host to the ith register, overwriting whatever was already written there.

The entity declaration for the swled module is available in the file
Your FPGALink Install Dir/20140524/makestuff/hdlmake/apps/makestuff/swled/templates/harness.vhdl

Please go through the comments in this file to understand the purpose of the various ports of
the swled module. You should use these ports judiciously for implementing the functionality
you want.

You may also want to inspect the top level VHDL module that is actually mapped down to your
FPGA board in the file
Your FPGALink Install Dir/20140524/makestuff/hdlmake/apps/makestuff/swled/templates/fx2all/vhdl/top level.vhdl

Note that this instantiates the swled module and also another module called comm fpga fx2.
The module comm fpga fx2 is responsible for implementing the actual interface between the
Digiltent Atlys board and the host computer using the on-board Cypress FX2LP USB interface
micro-controller.

While it is not necessary for you to peek into the details of comm fpga fx2 for purposes of this
lab, the “curious cats” may look at the VHDL source for this at
Your FPGALink Install Dir/20140524/makestuff/hdlmake/libs/makestuff/comm-fpga/fx2/vhdl/comm fpga fx2.vhdl

Similarly, the constraints file (that defines which signal is mapped to which switch, LED, pin
etc. on the actual Atlys board) for your design is available at
Your FPGALink Install Dir/20140524/makestuff/hdlmake/apps/makestuff/swled/templates/fx2all/boards/atlys/board.ucf

Please do not make changes to comm fpga fx2.vhdl and board.ucf for purposes of
this assignment. We will need to do so for the next assignment.

• Make sure your VHDL code compiles (you may use ISE for this purpose).

• Compile your modified VHDL file by running

Your FPGALink Install Dir/20140524/makestuff/hdlmake/bin/hdlmake.py

-t Your FPGALink Install Dir/20140524/makestuff/hdlmake/apps/makestuff/swled/templates/fx2all/vhdl

-b atlys -p fpga

• Reprogram your FPGA with the newly generated FPGA programming file by running
Your FPGALink Install Dir/20140524/makestuff/apps/flcli/lin.x64/rel/flcli -v 1d50:602b:0002 -p J:D0D2D3D4:fpga.xsvf

3. Running the modified host application logic and FPGA application logic: Run the new
host application logic and the new FPGA application logic together and show your results.

2

