
CS254 (Spring 2017): Lab Assignment 3

March 15-March 22, 2017

In this assignment, we will put together various parts that you designed in the last two assignments to
implement a simple ATM controller.

The assignment has two parts. The first part relates to VHDL programming and mapping your design
to the Digilent Atlys board. We will call this part the frontend hardware. This will be the physical
device with which ATM users are going to interact. The second part relates to C programming, and
interfacing to the controller on the Digilent Atlys board. This will serve as the back-end software that
does checks of passwords, updates of account balances, issuing of instructions to the ATM controller to
dispense money etc. We will call this part the backend software.

We first describe how an ATM user is supposed to interact with the hardware controller.

T
E
A

E
n
cr

yp
ti
o
n

T
E
A

D
ec

ry
p
ti
o
n

Slider Switches

P
us

h 
B

ut
to

n 
S

w
itc

he
s

A
T

M
 

M
ai

n 
C

on
tr

ol
le

r

C
om

m
_

F
P

G
A

_
F

X
2

LED Bank

Debouncers

U
S

B
 p

or
t

L0 L7L3 L4

Figure 1: ATM controller

Interaction Specification: Please refer to Fig. 1 to understand the interaction specification clearly. For
purposes of the following discussion, let T denote a suitably defined time period, say the time taken by

1



a counter to count from 0 to N in your VHDL design, where N should be a generic (recall generic in
VHDL) parameter, than can be suitably set.

• The user presses a push-button start on the board to start using the ATM.

• The user uses the eight slider switches on the board to input data (ID, PIN, request) to the ATM in
chunks of one byte. A push-button next data in is used to separate one input byte from the next,
and to indicate to the ATM that an input byte is ready to be read in.

• The user presses a push-buttom done on the board to indicate that (s)he is done interacting with
the ATM.

• LEDs L0 through L7 are used for displaying encoded messages to the user. The encoding of messages
is explained below.

– L0 through L7 turned off: Frontend controller in Ready state.

– L0 blinking with inter-blink gap of T , L4 through L7 turned off: Frontend controller in
Get User Input state. In this state, LEDs L1 through L3 are used display the number of in-
put bytes (0 through 7) have read so far from the slider switches. A total of 8 bytes must be
read in from the slider switches, with a push-button next data in being pressed to separate
one input byte from the next (like we did in Assignment 1 involving encryption and decryption).
After each press of next data in, LEDs L1 through L3 should indicate (in binary) how many
bytes of the user input have been read in so far, so that the user doesn’t have to remember this.

In all cases, the first two bytes constitute the user ID, and the next two bytes constitute the
PIN. Depending on the user type (normal or admin), the interpretation of the next four bytes
are different.

∗ If the user is a normal user (wants to withdraw cash from the ATM), the fifth byte indicates
in binary the number of Rs. 2000 notes (s)he wants to withdraw. Similarly, the sixth,
seventh and eighth bytes indicate the number of Rs. 1000, Rs. 500 and Rs. 100 notes,
respectively, the user wants to withdraw.

∗ If the user is an admin user (wants to load cash in the ATM), the fifth byte indicates in
binary the number of Rs. 2000 notes (s)he wants to keep in the ATM. Similarly, the sixth,
seventh and eighth bytes indicate the number of Rs. 1000, Rs. 500 and Rs. 100 notes,
respectively, the user wants to keep in the ATM. An admin user can remove notes from an
ATM or load notes in an ATM, regardless of the count of notes in the ATM at the point.
Thus, the fifth to eighth bytes input by an admin user give the actual number of notes in
the ATM after the operation.

– L0 and L1 blinking together with inter-blink gap of T , all other LEDs turned off: Frontend
controller in Communicating With Backend state.

– L0, L1 and L2 blinking together for a total duration of at least 5T (longer, if needed by your
design, is fine) with inter-blink gap of T , all other LEDs turned off: Frontend controller in
Loading Cash state.

– L0, L1, L2 and L3 blinking together for a total duration of at least 5T (longer, if needed by
your design, is fine) with inter-blink gap of T : Frontend controller in Dispensing Cash state. In
this state, LEDs L4 through L7 are used to visually render dispensing of cash and exception
conditions. Specifically, we have the following three situations:

2



∗ Sufficient balance in user’s account, sufficient cash in ATM : If k notes of Rs. 2000 are to
be dispensed, LED L4 should blink k times with a gap of 2T between consecutive blinks. A
similar visual rendering should happen for dispensation of notes of Rs. 1000 (LED L5 should
blink), Rs. 500 (LED L6 should blink) and Rs. 100 (LED L7 should blink). Only one type
of note should be dispensed at a time, and there should be a gap of 2T between dispensation
of notes of different denominations. Furthermore, notes of higher denomination should be
dispensed before those of lower denomination.
As an example, if two notes of Rs. 2000, two notes of Rs. 500 and one note of Rs. 100
is to be dispensed, the sequence of blinking of LEDs L4 through L7 should be as follows:
L4 blinks twice followed by L6 blinks twice followed by L7 blinks once, with a gap of 2T
between consecutive blnks.

∗ Insufficient balance in user’s account: LEDs L4 through L7 must blink together 3 times
with an inter-blink gap of T .

∗ Sufficient balance in user’s account, insufficient cash in ATM: LEDs L4 through l7 must
blink together 6 times with an inter-blink gap of T .

Frontend Controller Specification: The controller is made of the following communicating components:

• Eight slider switches to input a byte of data at a time

• Four push-button switches: reset, start, next data in and done.

The reset switch is pressed once to reset the front-end controller before it starts operating. The
start switch is pressed once by a user when (s)he wants to start using the ATM. The next data in

switch is pressed once between every consecutive input byte read from the slider switches, as described
above. The done switch is pressed once after a user is done using the ATM.

• Debouncers: Each push-button switch needs a debouncer, like in Lab Assignment 1.

• Encrypter module: This is the same TEA encrypter that we designed in Assignment 1. It takes
as input 64 bits of plaintext data and generates 64 bit of ciphertext data that are to be sent over
the communication channels to the backend software (see below for how this communication must
happen).

• Decrypter module: This is the same TEA decrypter that we designed in Assignment 1. It takes as
input 64 bits of ciphertext data read from the backend software over the communication channels
(see below for how this communication must happen) and generates 64 bit of plaintext data.

• Communication module: This is the comm fpga fx2 VHDL module we referred to in Lab Assignment
2. You are not required to design this module but use it in your design to communicate with the
USB controller on the FPGA board. Please see the problem statement handout for Lab Assignment
2 to find out where this VHDL module can be found.

• ATM controller module: This is the heart of the controller. It consists of four essential components,
which must be present in your design; you may need to add additional components to suit your design
objectives.

The essential components are as follows:

– Four registers named n2000, n1000, n500, n100, one each to store the number of Rs. 2000,
Rs. 1000, Rs. 500 and Rs. 100 notes in the ATM at any point of time.

3



– Timer: This is a counter that increments from 0 to N − 1 (the generic parameter referrred to
earlier), and outputs a pulse of duration one clock period when the count reaches N − 1. This
is used to implement the blinks of LEDs with inter-blink gaps of T , etc.

– Sequencer: This keeps track of the state of the controller, and makes it transition from one
state to another as required. The controller has five primary states: Ready, Get User Input,
Communicating With Backend, Loading Cash and Dispensing Cash. Transitions between these
primary states are described below. In each state, the sequencer must also make the LEDs turn
on/off/blink as specified in the user interaction specification.

∗ On pressing reset once, the controller goes from any state to the Ready state, and fills 0
in the register n2000, n1000, n500, n100.

∗ In Ready state, if the start button is pressed once, the controller goes to the Get User Input
state.

∗ In Get User Input state, after all 8 bytes of input data have been read in from the slider
switches, the controller goes to Communicating With Backend state.

∗ In Communicating With Backend state, the following sequence of actions happen. The 8
bytes of data read in from the slider switches are first encrypted using the Encrypter mod-
ule. The 64 bits of ciphertext thus generated are then sent to the backend software through
the Communication module. The sequencer then waits to receive 64 bits of ciphertext
response from the backend software through the Communication module. Details of the
communication protocol between the frontend controller and the backend software are de-
scribed below. Finally, the ciphertext response is decrypted using the Decoder module.
Depending on the plaintext response thus obtained, the controller goes to one of Load-
ing Cash, Dispensing Cash or Ready states.

∗ If the response from the backend software indicates that the user ID and PIN could not be
validated, the controller must go directly to the Ready state.

∗ In Loading Cash state, the decrypted response is used to update the registers n2000, n1000,

n500, n100. After the updates of the registers are done, if done is pressed once, the
controller returns to the Ready state.

∗ In Dispensing Cash state, the decrypted response and registers are checked to see which of
the following three cases hold:

· Sufficient balance in user’s account, sufficient cash in ATM

· Insufficient balance in user’s account

· Sufficient balance in user’s account, insufficient cash in ATM

Depending on which case holds, LEDs should be turned on/off/made to blink as described
in the user interaction specification above.
After the indications are done with the LEDs, if done is pressed once, the controller returns
to the Ready state.

Backend Software Specification: On the host PC/laptop, you will be given a spreadsheet in .csv
format that contains the following columns:
ID (values from 0-65535), a hash of the PIN (values from 0-65535), admin privilege (either 0 or 1), and
Account Balance (values from 0 to 232 − 1).

Your program must do the following in an infinite loop:

• Poll (i.e. read) channel 0 every 1 second to see if 0x01 or 0x02 is available on this channel. Once
0x01 or 0x02 is read on channel 0, the program must check whether the same value is read for three

4



consecutive reads on channel 0, each separated by 1 second. If not, the program must go back to
polling channel 0 afresh.

• If 0x01 or 0x02 is read for three consecutive times on channel 0, the program must read channels 1
through 8 to read in the encrypted input from the frontend controller.

• The encrypted input must then be decrypted by a software implementation of the TEA decryption
algorithm to figure out the 8 plaintext bytes. The user ID (read from channels 1-2), PIN (read from
channels 3-4) and the four bytes of cash details (read from channels 5-8, with channel 5 giving the
least significant byte and channel 8 giving the most significant byte) must then be identified.

• The PIN must be hashed by computing a cyclic left shift of the two PIN bytes by 11 bit positions.

• The user ID is then checked in the .csv file to identify the user’s account. The hash of the PIN
is checked, and if both match, your program must print Valid user found. If the user is also an
admin, the program must print User has admin privileges

• If the user is not an admin user, the cash request details read from channels 5 thorugh 8 are then
checked to see if the user has sufficient balance in his/her account. If so, the program must send
the cash request details in encrypted form back to the frontend controller over channels 10 through
17 (pad with most signficant 0s to make it 64 bits, and use the TEA encryption algorithm in your
program). In this case, the program must also send 0x01 on channel 9 to the frontend controller to
indicate that there is sufficient balance in the user’s account, and update the user’s account balance
accordingly (only if code received on channel 0 was 0x01). If the user doesn’t have sufficient balance
in his/her account, the program must send 0x02 on channel 9 to the frontend controller. In this case,
channels 10 through 17 must have values 0 on each of them.

• If the user is an admin user, the program must send 0x03 on channel 9 and the cash upload request
in encrypted form is sent to the front-end controller over channels 10 through 17 (pad with most
significant 0s to make it 64 bits and use TEA encryption algorithm).

• If the user’s ID and PIN cannot be validated from the .csv file, the program must send 0x4 on channel
9.

Communication protocol:

• Channel 0 is used to send a code from frontend controller to the backend software.

Codes are: 0x00: no communication, 0x01: user inputs ready on channels 1 through 8 and adequate
cash available in ATM, 0x02: user inputs ready on channels 1 through 8 but adequate cash not
available in ATM, 0x03: received response from backend.

• Channel 9 is used to send a code from backend software to frontend controller.

Codes are: 0x00: no communication, 0x01: normal user validated and there are sufficient funds in
balance, 0x02: normal user validated but there are insufficient funds in balance, 0x03: admin user
validated, 0x04 : user not validated (ID/PIN didn’t match)

5


