
CS254 (Spring 2018): Lab Assignment 3

January 23- January 30, 2018

In this lab assignment, you are required to implement an encrypter module and a decrypter module for our
own simple, custom encryption algorithm. The encryption algorithm takes as input a 32-bit plaintext word
P = p31p30 . . . p0 and a 32-bit key K = k31k30 . . . k0, and outputs a 32-bit ciphertext word C = c31c30 . . . c0.
The decryption algorithm similarly takes as input a 32-bit ciphertext word C = c31c30 . . . c0 and a 32-bit
key K = k31k30 . . . k0, and outputs a 32-bit plaintext word P = p31p30 . . . p0.

The encryption algorithm works as follows:

1. Let N1 be the count of 1’s in K and let T be a 4-bit vector.

2. C ← P .

3. T3 ← k31 ⊕ k27 ⊕ k23 ⊕ k19 ⊕ k15 ⊕ k11 ⊕ k7 ⊕ k3.

4. T2 ← k30 ⊕ k26 ⊕ k22 ⊕ k18 ⊕ k14 ⊕ k10 ⊕ k6 ⊕ k2.

5. T1 ← k29 ⊕ k25 ⊕ k21 ⊕ k17 ⊕ k13 ⊕ k9 ⊕ k5 ⊕ k1.

6. T0 ← k28 ⊕ k24 ⊕ k20 ⊕ k16 ⊕ k12 ⊕ k8 ⊕ k4 ⊕ k0.

7. for i = 0 to N1 − 1 in steps of 1

(a) C ← C
⊕

TTTTTTTT (component-wise xor of P and T cncatenated with itself 8 times).

(b) T ← T + 1 (32-bit addition ignoring carry generated at the most significant bit)

8. Output C.

Similarly, the decryption algorithm works as follows:

1. Let N0 be the count of 0’s in K and let T be a 4-bit vector.

2. P ← C.

3. T3 ← k31 ⊕ k27 ⊕ k23 ⊕ k19 ⊕ k15 ⊕ k11 ⊕ k7 ⊕ k3.

4. T2 ← k30 ⊕ k26 ⊕ k22 ⊕ k18 ⊕ k14 ⊕ k10 ⊕ k6 ⊕ k2.

5. T1 ← k29 ⊕ k25 ⊕ k21 ⊕ k17 ⊕ k13 ⊕ k9 ⊕ k5 ⊕ k1.

6. T0 ← k28 ⊕ k24 ⊕ k20 ⊕ k16 ⊕ k12 ⊕ k8 ⊕ k4 ⊕ k0.

7. T ← T + 15.

8. for i = 0 to N0 − 1 in steps of 1

1



(a) P ← P
⊕

TTTTTTTT (component-wise xor of P and T concatenated with itself 8 times).

(b) T ← T + 15 (32-bit addition ignoring carry generated at the most significant bit)

9. Output P .

Implement an encrypter and a decrypter module in VHDL, design an adequate testbench for it, and
show your design and simulation waveforms.

Important Note: You must use a process statement with a clock on its sensitivity list and a conditional
statement of the form if (clock’event and clock = ’1’) in the body of the process to implement the
sequencing of statements from one loop iteration to the next in both the encrypter and decrypter modules.
See the template file provided to see how to write such a process statement. When simulating the
design, the body of a process statement gets executed whenever there is a change in any of the signals in
its sensitivity list. The conditional statement if (clock’event and clock = ’1’) executes only when
clock has a transition (i.e. the clock’event condition evaluates to true), and the new value of clock is 1.
This effectively means that clock had a positive (0 to 1) transition. Thus, all signals assigned with the
<= operator and within the scope of the if (clock’event and clock = ’1’) statement can change only
after the clock has a positive edge. Effectively, all such signals become outputs of D flip-flops that are
triggered by the positive edge of the clock. In fact, all assignments with <= in the body of such a process

statement and in the scope of if (clock’event and clock = ’1’) happen concurrently at the outputs
of the corresponding D flip-flops immediately after the positive edge of the clock arrives. The values of
each of these signals stay unchanged between two consecutive positive edges of the clock. Note that this
is consistent with the behaviour of a positive edge-triggered D flip-flop, in which the input gets copied to
the output only when a positive edge of the clock arrives.

A sample VHDL file with a template of the design is provided for your convenience.

2


