
CS254 (Spring 2018): Lab Assignment 4 Instructions

February 6, 2018

Your circuit, when mapped down to the FPGA board, must behave as follows:

• The circuit reads in the data to be encrypted/decrypted from the slider input switches on the board.
These inputs are called data in sliders in the VHDL design. Note that there are only eight slider
input switches on the board, so data in sliders is declared as STD LOGIC VECTOR (7 downto 0).

• . The circuit displays the encrypted/decrypted result on the LEDs available on the board. These
outputs are called data out leds in the VHDL design. Note that there are only eight LEDs on the
board, so data out leds is declared as STD LOGIC VECTOR (7 downto 0).

• The circuit also has a few 1-bit inputs that it reads from the push-button inputs on the FPGA board.
These inputs and their functions are as follows:

– next data in button: Recall that we need to read in 32 bits of plaintext/ciphertext for encryp-
tion/decryption; however we have only 8 slider input switches on the FPGA board. The way
we want to solve this problem is by breaking up the 32 bits into 8 chunks of 8 bits, and reading
each chunk at a time. The next data in button, which is mapped to a push button input on
the FPGA board, tells the circuit when the next chunk of 8 bit input is ready at data in sliders,
and can be read in. So to read in 32 bits of plaintext/ciphertext prior to encryption/decryption,
we must proceed as follows.

We first present the least significant 8 bits of plaintext/ciphertext at data in sliders, and then
push next data in button once and release it. This causes the design to read in the 8 bits of
data from data in sliders and store them as the least significant 8 bits of the required plain-
text/ciphertext. After next data in button is released, we must present the next significant 8
bits of plaintext/ciphertext at data in sliders, and then push next data in button again and
release it. This causes the design to read in the next 8 bits of data from data in sliders and
store them as the next significant 8 bits of the required plaintext/ciphertext. This process is
repeated until all the 8-bit chunks of the required 32-bit plaintext/ciphertext is read in. If you
press the button more than 4 times, it will again read and store the bits in the least significant
8 bits of plaintext/ciphertext. So don’t press the button more than four times for one input.

– next data out button: We need to display 32 bits of ciphertext/plaintext after encryption/decryption;
however we have only 8 LED outputs on the FPGA board. The way we want to solve this prob-
lem is by breaking up the 32 bits into 8 chunks of 8 bits and displaying each chunk at a time.
The next data out button, which is mapped to a push button input on the FPGA board, tells
the circuit when the next chunk of 8 bit output is ready to be displayed, and can be displayed
on the LEDs.

So to display 32 bits of ciphertext/plaintext, we first present the least significant 8 bits of
ciphertext/plaintext at data out leds. This causes the least significant 8 bits to be displayed

1



on the 8 LEDs on the FPGA board. To display the next significant 8 bits on the LEDs on the
FPGA board, we must push next data out button once and release it. This causes the design
to output the next significant 8 bits of ciphertext/plaintext on data out leds so that this is
displayed on the LEDs on the board. On pressing next data out button again and releasing
it, the next significant 8 bits of ciphertext/plaintext are displayed at data out leds, and so on.
This process is repeated until all the 8-bit chunks of the required 32-bit ciphertext/plaintext are
displayed on the 8 LEDs on the board.

– start encrypt button and start decrypt button: These are mapped to two push button
inputs on the FPGA board. After reading in all 32 bits of plaintext (or ciphertext), as described
above, if we push start encrypt button (or start decrypt button once and release it, the
design is supposed to compute the encrypted 32-bit ciphertext (or decrypted 32-bit plaintext)
and present the least significant 8 bits of the result on data out leds. Subsequent chunks of 8
bits of the result can be read out (or displayed) by pushing next data out button, as described
above. Note that displaying the least significant 8 bits of the result does not require pressing
next data out at all.

• The circuit has a single-bit output done that is reset (i.e. has value 0) immediately after pressing
start encrypt button or start decrypt button, and gets set (i.e. has value 1) after the encryption
or decryption (as the case may be) gets done.

A skeleton of the VHDL code has been provided for you to fill in. You must use this skeleton to design
your circuit. The skeleton code has the following components. DO NOT CHANGE THE NAMES OF
MODULES AND THEIR INPUT/OUTPUT PORTS

• debouncer: When push button switches are used to give inputs to a circuit, often the switch bounces
(i.e. goes on and off) initially a few times before settling to a stable position (although the user
thinks the switch has been pressed only once). This can give rise to multiple inputs being read from
the switch, although the user wanted to send only a single input. To protect us against this, the
input coming from a push-button switch needs to be de-bounced. In other words, we must wait
for a certain amount of time to see if the input coming from the switch has stayed constant for the
entire duration, before reading in the input from the switch. A debouncer module, adapted from
http://fpga-tutorials.blogspot.in/2012/12/deouncing-push-buttons.html has been provided
with the skeleton code, for you to get started. Note that slider input switches can also bounce. How-
ever, since we are reading inputs from the slider input switches only after some time (e.g. after next
data in is pushed), the data read in from these switches can be expected to be stable when they are
being read. Hence, we are not going to use debouncers for the slider inputs.

• encrypter and decrypter: These are the core modules you must design so that they do encryption
and decryption of 32 bits. The input and output ports of these modules are self-explanatory from
their names, as given in the skeleton code. The computation (encryption/decryption) should start
once the input enable of the module goes to 1.

• read multiple data bytes: This module helps in reading 8 chunks of 8 bit data input from its data
in port, as discussed above, and presents it as a 32 bit data output on its output port data read.
Please read and understand the module description in the VHDL files given.

• display multiple data bytes: This module helps in displaying 8 chunks of 8 bit data on its data
out port, as discussed above, given a 32 bit data input on its data in port. Please read and understand
the module description in the VHDL files given.

2


