
CS615 Autumn 2006 End-semester Exam

Time: 180 mins Total marks: 40

• You must write your answers only in the spaces provided.

• The exam is open book and notes.

• Results/proofs covered in class/problem sessions/assignments may simply be cited, un-
less specifically asked for.

• Unnecessarily lengthy solutions will be penalized.

• If you need to make any assumptions, state them clearly.

• Do not copy solutions from others or indulge in unfair means.

1. Consider the following program P with location labels Li, in which all variables are of integer type:

L0: i := 0;
L1: y := n;
L2: while (y <= 10) {
L3: y := x * y;
L4: i := i + 1;
L5: }
L6: i := i*i;

A student has conjectured (from a large number of trial and errors and informal reasoning!) that
whenever the program is started with (x ≤ −2)∧ (0 < n < 10), it terminates and the resulting value
of i is at most 16. We wish to prove the partial correctness of this statement formally using our
knowledge of Hoare logic. In other words, we are interested in proving that if P terminates when
started with (x ≤ −2) ∧ (0 < n < 10), then i ≤ 16 on termination.

(a) [(2 marks)] Give a loop invariant λ possibly (but not necessarily) involving all variable(s) x,
y, i, n that will allow you to prove the above.

(b) [(4+4 marks)] Show that the following Hoare triples are valid.

• {λ} fragment of P with L2,L3,L4,L5 {λ}.
• {λ ∧ (y > 10)} i:= i*i {i ≤ 16}.

1



2. [(10 × 1 marks)] Consider the following program P with location labels Li.

L0: x := y;
L1: while (y >= 10) {
L2: x := x + 1;
L3: y := y - 1;
L4: x := x + y;
L5: }

We wish to construct a Boolean program using the following predicates such that the traces of P ′

are captured as accurately as possible by the traces of the Boolean program.

Boolean variable Predicate
b1 y ≥ 10
b2 x ≥ 10

The Boolean program is obtained by giving expressions (Ei) in the following skeleton.

L0’: b1, b2 := E1, E2;
L1’: while (*) {
L1’’: assert(b1);
L1’’’: b1, b2 := E3, E4;
L2’: b1, b2 := E5, E6;
L3’: b1, b2 := E7, E8;
L4’: b1, b2 := E9, E10;
L5’: }

Give each Ei to complete the Boolean program.

2



3. Consider the following program with location labels Li. All variables are of the integer type.

L0: x := y;
L1: while (y <= 10000) {
L2: x := x + 1;
L3: y := y + 1;
L4: }

We wish to analyze this program using the abstract domain of intervals (or rectangles). Thus, our
abstract domain is the set of tuples (a, b, c, d) where a, b, c, d are integers or +∞ or −∞. For every
set S of integer pairs (x, y) in the concrete doamin, α(S) = (min(x),max(x),min(y),max(y)) where
the minimization and maximization are over all integer pairs in S, and for every four-tuple (a, b, c, d)
in the abstract domain, γ((a, b, c, d)) = {(x, y) | (a ≤ x ≤ b) ∧ (c ≤ y ≤ d), x, y integers}. The lub
and glb operators to be used in the abstract domain are those that have been discussed in class. The
widening operator is defined as follows:
(a1, b1, c1, d1)∇ (a2, b2, c2, d2) = (a3, b3, c3, d3) where

• if a1 ≤ a2 then a3 = a1, else if (−5000 ≤ a2 < a1) then a3 = −5000, else a3 = −∞.

• if b1 ≥ b2 then b3 = b1, else if (b1 < b2 ≤ 5000) then b3 = 5000, else b3 = +∞.

• if c1 ≤ c2 then c3 = c1, else if (−10000 ≤ c2 < c1) then c3 = −10000, else c3 = −∞.

• if d1 ≥ d2 then d3 = d1, else if (d1 < d2 ≤ 10000) then d3 = 10000, else d3 = +∞.

Starting with the precondition (0 ≤ x2 + y2 ≤ 100), we wish to compute the abstract loop invariant
at L1 by executing the program in the abstract domain.

(a) [(2 marks)] Give the abstract precondition of the program.

(b) [(2 marks)] Compute the abstract postcondition at the end of the first iteration of the loop.

(c) [(3 marks)] Compute the loop invariant obtained by using the widening operator defined above.
You must use the widening operator everytime you wish to compute an upper bound of two
abstract elements at location L1

(d) [(3 marks)] Compute the concrete loop invariant at L1 that would be obtained if we concretize
the abstract loop invariant computed in the previous subquestion and push it through the body
of the loop exactly once.

3



4. Consider the following two programs that read and write the same shared Boolean variables x and y.
The programs are run concurrently, i.e. a sequence of instructions of one program can be interleaved
in any arbitrary way with a sequence of instructions of the other program. However, at any time,
the instruction of only one program can be executed. Assume that each instruction of each program
executes atomically.

Program P1: do forever Program P2: do forever
L1: if (x) y = !x; L3: if (y) x = !y;
L2: if (x) x = y; L4: if (y) y = x;

(a) [(5 marks)] Construct a Kripke structure representing the behaviour of the two programs run-
ning concurrently. You may assume that the shared variables are both set to true to begin
with. In describing the Kripke structure, you must simply specify what are the values of the
different state variables in each state, and which other states it has an edge to. Program P1
starts in location L1 and program P2 in location L3.

(b) [(5 marks)] Use the CTL model checking algorithm discussed in class to check if AGEF (x∧y)
is true in the starting state of the above Kripke structure.

4


