
CS615 Autumn 2006 Hints to Quiz 7 Solution

How do we execute a program in an abstract domain? As studied in class, starting from an abstract
precondition (a, b, c, d, e, f), the best abstract postcondition after executing a program statement is obtained
by computing the postcondition of γ((a, b, c, d, e, f)) in the concrete domain, and then abstracting this
concrete postcondition (recall the operator α(F (γ(Ŝ))) we studied in class). Also, when iterating through
a loop, in the concrete domain, we keep collecting sets of states at every program location in the loop
using the union operator (lub operator in concrete domain). In the abstract domain, we have to use the
corresponding lub operator instead of the union operator. You may even want to replace the lub operator
in the abstract domain by widening, but then your invariants may not be strong. However, what you’ll
get will still be a correct invariant.

Let the current abstract element at program location L0 be (a, b, c, d, e, f). The abstract element we’ll
get at L3 by pushing (a, b, c, d, e, f) through the body of the loop is obtained by concretizing (max(31, a),
b, c, min(99, d), e, f) (this is to take care of the conditions (y < 100) and (x > 30), computing the post-
condition of this concretization under L2: x := x - y, and then abstracting the concrete postcondition.
Similarly, the abstract element at L7 is obtained by concretizing (a,min(30, b), c, min(99, d), e, f) (to take
care of the conditions (y < 100) and (x <= 30)), computing the postcondition of this under L6: x = x
+ y, and abstracting the concrete postcondition. Finally, to compute the abstract precondition of state-
ment L8: y := y + 1, we must compute the lub (in the abstract domain) of the postconditions obtained
at L3 and L7. By pushing this through L8: y := y + 1, i.e. by concretizing, computing the concrete
postcondition and abstracting, we can obtain the abstract postcondition at L9. Before the next iteration
of the while loop starts, we must compute the lub of this abstract postcondition at L9 with the abstract
precondition at the beginning of the current iteration, i.e. (a, b, c, d, e, f). If you use the widening operator
here, instead of the lub operator, you will converge faster.

In the interests of time, I am not showing the abstract execution below. However, you can work this
out by computing the lubs for the first few iterations and then start widening. When widening, it is
advantageous to use threshold widening keeping as thresholds some important constants that appear in
the condition checks in program (or are derived from it), e.g. 101 (from the check on y at the beginning
of the while loop), 31 (from the check on x in the if-then-else conditions), 1 +

∑99
i=1 i (from the maximum

value that x can take at L7 if statement L6 was executed in each iteration), and 31 −
∑99

i=1 i (from the
minimum value that x can take at L7 if statement L2 was executed in each iteration.

Also, after you have obtained the abstract loop invariant at L0 using the above method, you can
tighten it further by concretizing it, and then pushing the concretized version through the loop body in
the concrete domain a few times (at least once) and then abstracting the resulting postcondition. This is
a consequence of the fact that the concretization of an abstract loop invariant is always a postfix point in
the concrete lattice, and therefore computing its postcondition in the concrete domain can only (and very
often significantly) help you in tightening the loop invariant in the concrete domain. Once you obtain this
tighter loop invariant in the concrete domain, you can abstract it to get a loop invariant in the abstract
domain.

1


