
CS615 Autumn 2007 End-semester Exam

Time: 180 mins Total marks:

• You must write your answers only in the spaces provided.

• The exam is open book and notes.

• Results/proofs covered in class/problem sessions/assignments may simply be cited, un-
less specifically asked for.

• Unnecessarily lengthy solutions will be penalized.

• If you need to make any assumptions, state them clearly.

• Do not copy solutions from others or indulge in unfair means.

1. Consider the following program P in the language studied in class.

L1: x := y + z;

L2: d2 := 0;

L3: x1 := z;

L4: d1 := z;

L5:

L6: while (x < N) {

L7: x1 := x;

L8: d2 := d1;

L9: y := y + z;

L10: z := y + z;

L11: x := y + z;

L12: d1 := x - x1;

L13:}

L14:

We wish to prove the validity of the Hoare triple {True} P {d1 = d2 + x1}.

Using only conjunctions of linear equalities and inequalities between program variables
(no quantified formulae, no auxiliary variables), write an invariant for each location L2

through L14 in the above program. You must write your invariant only in the spaces provided
for this purpose below.

Recall that an invariant at location Li is a formula on program variables that holds whenever the
program reaches location Li. Your invariants should be such that:

• The invariant at L14 implies the postcondition (d1 = d2 + x1).

• For all locations other than L1, L6, L7, L14, the invariant at Li must be derivable using only
the invariant at Li−1, and the “assignment” and “implied” rules of Hoare Logic.

• The invariant at L6 must be implied both the invariants at L5 and L13.

• The invariant at L7 must be implied by the conjunction of the invariant at L6 and (x < N).

1



You need not write the strongest invariant at each location. Your invariants should however be strong
enough to permit a Hoare Logic proof of {True} P {d1 = d2 + x1}.

For your convenience, all rules of Hoare Logic that are relevant for proving validity of the above
Hoare triple are given below. Note, however, you are not being asked to give the complete Hoare
Logic proof.

{φ[E/x]} x:=E; {φ} Assignment

{φ} P1 {φ1} {φ1} P2 {ψ}
{φ} P1;P2 {ψ} Composition

{φ∧B} P {φ}
{φ} while(B) P; {φ∧¬B}

Partial while

φ1→φ {φ} P {ψ} ψ→ψ1

{φ1} P{ψ1}
Implied

Hint: Before jumping to provide a solution, consider running the program for a few iterations through
the loop to understand the pattern of dependency of variables.

(a) [13 × 2 marks] Write your invariants here:

L1: True

L2:

L3:

L4:

L5:

L6:

L7:

L8:

L9:

2



L10:

L11:

L12:

L13:

L14:

(b) [9 marks] Show how the invariant at L6 is implied both the invariants at L5 and L13.

3



(c) Consider the following program:

L1: x := 4 + z;

L2: while (x > z) {

L3: x := y + z;

L4: if (?) { y := y - 2;

L5: }

L6: else { y := y - 1;

L7: }

L8: z := y + z;

L9: }

L10:

We wish to analyze this program using the technique of abstract interpretation. We will use the
abstract domain of convex polyhedra for our analysis.

In the following subquestions, you must represent each convex polyhedron by a system of 2 or
fewer linear inequalities/equalities on the program variables x, y and z. All polyhedra arising in
this question can indeed be accurately represented in this manner. The constraints represented
by a set of linear inequalities are assumed to be conjoined (“and”-ed) in order to obtain the
desired polyhedron. For example, the polyhedron representing the state at L2 when we hit L2

for the first time is given by the single linear equality (x = 4 + z).

i. [7 × 2 marks] Give the convex polyhedron at each location from L3 through L9 after
analyzing one iteration of the while loop. Your convex polyhedra must be represented as
described above.

L1: True

L2: (x = 4 + z)

L3:

L4:

L5:

L6:

L7:

L8:

L9:

4



ii. Suppose we decide to use the lub operator (convex hull for convex polyhedra) at the loophead
(L2) to compute the loop invariant. Recall that such an approach has the risk that the
abstract analysis may not terminate in general.

A. [3 + 3 marks] What are the convex polyhedra at locations L2 and L9 after analyzing
two iterations of the loop? Briefly justify your answer.
At L2:

Justification:

At L9:

Justification:

iii. [5 marks] Will be abstract analysis of the above program using lub to compute the loop
invariant at L2 terminate? Briefly justify your answer in not more than three sentences.

5



2. Consider the following program that manipulates the heap.

// declarations etc. // actual code is here

typedef struct cell_t { L1: while (curr != NULL) {

int val; L2: if (curr->val == 0) {

struct node *left, *right; L3: curr := curr->lchild;

} cell; L4: }

L5: else { curr->val := 0;

cell *curr; L6: curr := curr->rchild;

L7: }

L8: }

We wish to study the effect of this program on the concrete heap structure shown in Fig. 1, using
the abstraction of shape graphs obtained by three valued logic analysis studied in class. We will use
the following predicates for constructing shape graphs. In the following table, v, v1, v2 denote heap
cells or a special cell denoting the NULL value.

curr
L R

L

L

L L

L

L

L

L

R

R R

R R

R

R

0

0

0

0

0

0

1

1

1

indicates NULL
values inside squares and circles indicate val field of heap cell

Figure 1: Concrete Heap Structure

Predicate Unary/Binary True if and only if

val(v) Unary v.val == 0
curr(v) Unary curr points to cell v
Null(v) Unary v is a special unique cell denoting NULL value
LNull(v) Unary v’s left child is NULL
RNull(v) Unary v’s right child is NULL
left(v1, v2) Binary v2 is v1’s left child
right(v1, v2) Binary v2 is v1’s right child

In addition, we have the unary sm (summary) predicate, which evaluates to False for an abstract
heap cell if the cell represents a unique concrete heap cell. Otherwise, if the abstract cell represents
potentially multiple concrete heap cells, all of which agree on the unary predicates in the above table,
sm evaluates to “?” or 1

2
for the abstract cell.

(a) [10 marks] Give the abstract shape graph corresponding to the concrete graph shown in Fig. 1.
Use the following notation when constructing the abstract shape graph:

• Cells for which val evaluates to True must be indicated as squares. Cells for which val
evaluates to False must be indicated as circles.

6



• Cells for which LNulL evaluates to True must be labeled L0, those for which LNulL
evaluates to False must be labeled L1.

• Cells for which RNulL evaluates to True must be labeled R0, those for which LNulL
evaluates to False must be labeled R1. Thus a cell can have multiple labels, e.g. L0,R1.

• There must be only one cell for which Null evaluates to True. You must show this as a
shaded cell shaped like a diamond.

• Arrows denoting right links must be labeled R and arrows denoting left links must be
labeled L.

• Summary nodes must be indicated by double-circling/double squaring them (as done in
class).

• Dotted arrows must be used to denote valuations of left or right predicates that evaluate
to “?” or 1

2
. Thus, if left(u, v) = “?′′, then you must have a dotted arrow labeled L from

u to v.

• curr must always point to a unique node. Thus, the curr arrow must never be dotted.

• No two abstract cells must have the same valuation of all unary predicates.

Abstract shape graph for Fig. 1:

(b) [5 marks] Give another concrete heap structure (different from Fig. 1) that would give rise to
the same abstract shape graph as that obtained from Fig. 1.

7



(c) Using the same notation for abstract shape graphs as described above, give the abstract shape
graph (or set of abstract shape graphs) at L1 after the first two iterations through the loop.
Note that you must no longer refer to the concrete heap structure in Fig. 1. Your entire analysis
must be based on the abstract shape graph you obtained above. Thus, the analysis you are
doing must apply not only to the concrete heap structure in Fig. 1, but also to all other concrete
heap structures that give rise to the same abstract shape graph as obtained above.

i. [5 marks] Abstract shape graph after first iteration through loop when analyzing abstract
shape graph for Fig. 1:

ii. [5 marks] Abstract shape graph after second iteration through loop when analyzing abstract
shape graph for Fig. 1a:

iii. [10 marks] If we continued the above analysis until all abstract shape graphs that can
arise at L1 have been obtained, how many abstract shape graphs will be there in the loop
invariant at L1. Briefly justify your answer.

8



3. [10 marks] Consider the program of Question 1 again. Suppose a student has correctly identified the
set of invariants at each program location, as asked in Question 1. Let the invariant identified by
the student for location Li be Ii. Each invariant Ii is a conjunction of linear equalities/inequalities,
as required by Question 1. Each such linear equality/inequality can also be considered a predicate
potentially usable in a Boolean program analysis based approach.

Thus, a potential approach to doing Boolean program analysis of the program in Question 1, is to
first identify the invariants as asked in Question 1, and to then use the set of predicates in invariant
Ii as the set of predicates to be tracked at location Ii. A Boolean program can then be constructed
according to the predicates tracked at each location.

If we follow this idea and construct a Boolean program corresponding to the program of Question 1, do
you think the Boolean program based analysis will succeed in proving the Hoare triple {True} P {d1 =
d2+ x1}? Give brief justification (no more than 10 sentences) for your answer. Note that a Boolean
program based analysis will assert the post condition at location L14 and then check the reachability
of the “error” location.

9


