
CS615 Homework #1

Max marks: 60 Due Sept 11, 2007

• Be brief, complete and stick to what has been asked.

• Do not copy solutions from others.

1. [10 + 10 + 10 marks] The following programs use the simple language studied in class, with the
addition of the integer subtraction operator. Each program statement is labeled for ease of reference.
In program (c), f(z) and g(z) refer to unspecified expressions that return integer values.

Precond {φ} {∃k. (k > 1) ∧ (y = 3k)} {(8x < y < 16x) ∧ (x > 0)} {z > 0}

Program P

L1: x := 0;
L2: while (x < y) {
L3: x := x + 1;
L4: y := y - 2;
L5: }

L1: z := 0;
L2: while (x != y) {
L3: if (x < y) {
L4: x := 2*x;
L5: } else {
L6: x := x - 1;
L7: }
L8: z := z + 1;
L9: }

L1: x := 1;
L2: y := 1;
L3: while (z > 0) {
L4: if (f(z) > 0) {
L5: x := x - 1;
L6: y := y - 1;
L7: } else {
L8: x := x - f(z);
L9: y := y + f(z);
L10: }
L11: z := g(z);
L12: }
L13: while (x > 0) {
L14: x := x - 1;
L15: y := y - 1;
L16: }

Postcond {ψ} {y = x} {z ≤ y + 4} {y ≤ 0}

(a) (b) (c)

You are required to check if the Hoare triple {φ}P {ψ} evaluates to True in each of the three cases.
You must indicate what first-order logic formulae you are using to describe the state prior to execution
of each statement (use a statement’s label to refer to it). You must also indicate which inference rule
of Hoare Logic is used to justify the above formulae at each statement, starting from the given pre-
and post-conditions.

If you need to use loop invariants, please state them explicitly.

1



2. Let (P(S),⊆, ∅, S,∪,∩) and (L,v,⊥,>,t,u) be complete lattices, where P(S) denotes the powerset
of S.

(a) Let α : P(S) → L and γ : L → P(S) be functions satisfying the following properties:

• α is a monotone function.
• γ is a monotone function.
• ∀a ∈ P(S), ∀b ∈ L, α(a) v b ⇔ a ⊆ γ(b).

Show that

i. [10 marks] α(γ(b)) v b for all b ∈ L
ii. [10 marks] a ⊆ γ(α(a)) for all a ∈ P(S).

A pair (α, γ) satisfying the above properties is called a Galois connection. In our context, we
will refer to α as an abstraction function, and to γ as a concretization function.

(b) Let FC : P(S) → P(S) be a monotone function. Our interpretation of FC is a function that
computes the next concrete set of states, i.e. FC(a) gives the set of concrete states reached after
one step of execution of the program starting from a set a of concrete states. Let FA : L → L be
the next state computing function in the abstract lattice, and is defined by FA(b) = α(FC(γ(b))).

i. [5 marks] Let a0 ⊆ S, and b0 = α(a0). Recall that when trying to compute limi→∞
⋃i

j=0 F
(j)
C (a0)

and limi→∞
⊔i

j=0 F
(j)
A (b0), we defined two new functions, FC(a) = a0 ∪ FC(a) for all

a ∈ P(S), and FA(b) = b0 t FA(b) for all b ∈ L.
Prove that lfp(FC) ⊆ γ(lfp(FA)). In our context, this is equivalent to showing that
limi→∞F (i)

C (∅) ⊆ γ(limi→∞F (i)
A (⊥)).

ii. [5 marks] Let F ′A : L → L be a monotone function such that FA(b) v F ′A(b) for all b ∈ L.
Similar to what we did with FA, let us now define F ′A(b) = b0tF ′A(b) for all b ∈ L. It is easy
to show by induction on i that F (i)

A (⊥) v F
′(i)
A (⊥). Please don’t show this proof in your

solution sheets. Instead, show that lfp(FA) v lfp(F ′A). In our context, this is equivalent
to showing that limi→∞F (i)

A (⊥) v limi→∞F
′(i)
A (⊥)

2


