
CS615 Quiz 2

Max marks: 45 Time: 1.5 hours

• Be brief, complete and stick to what has been asked.

• If needed, you may cite results/proofs covered in class without reproducing them.

• If you need to make any assumptions, state them clearly.

• Do not copy solutions from others.

Consider the following program in the syntax studied in class. The program is annotated with location
labels for ease of reference.

0: int x, y;

1: x := 0;
2: y := 0;
3: while (?) {
4: assume(x <= 10000);
5: x := x + 1;
6: y := y + 1;
7: }
8: assume(x > 10000);
9: if (?) {
10: assume(y <= 0)

ERROR: goto ERROR;
11: }

We intend to determine whether location ERROR is reachable starting from the precondition True.

1. We will first use abstract interpretation in the domain of Difference Bound Matrices (DBMs) to
analyze the above program.

(a) [5 marks] Suppose we use the lub operator to estimate the loop invariant at location 3 after
the first iteration through the loop, and use widen for all subsequent iterations. What are the
estimates of loop invariants obtained at location 3 as the abstract analysis proceeds, and how
many times do you need to iterate through the loop to determine that you have obtained a loop
invariant in your abstract analysis?
You need not list the DBMs obtained after every statement of the program as your analysis
proceeds. It is sufficient to list the DBM at location 3 before/after every iteration through the
loop until the loop invariant is obtained.

(b) [2 marks] Does the loop invariant obtained above suffice to show unreachability of the ERROR
location? Briefly justify your answer.

2. We now wish to use predicate abstraction using location specific predicates obtained as Craig inter-
polants from spurious counterexamples. We start off by not tracking any predicates at all.

When a spurious counterexample is encountered, a simple strategy to compute Craig interpolants at
different locations is as follows:

1



• Strategy 1: Let X1, X2, Xn be (potentially overlapping) sets of integer valued variables. Let
p1(X1), p2(X2), . . . pn(Xn) be quantifier-free predicates, where each predicate pi(Xi) expresses
a linear equality or inequality between variables in Xi. For 1 ≤ i ≤ j ≤ n, we define Yi,j =⋃j

k=iXk, ψ−j (Y1,j) =
∧j

k=1 pk(Xk) and ψ+
j (Yj+1,n) =

∧n
k=j+1 pk(Xk). If ψ−j (Y1,j)∧ψ+

j (Yj+1,n) is
unsatisfiable, we compute a Craig interpolant between ψ−j (Y1,j) and ψ+

j (Yj+1,n) by existentially
quantifying out all variables in Y1,j \ Yj+1,n from ψ−j (Y1,j). This gives a conjunction of one or
more equalities and/or inequalities between variables in Y1,j ∩ Yj+1,n. We use each equality or
inequality in the resulting interpolant as a predicate to track at the corresponding location of
the program.

(a) [5 marks] Consider a spurious counterexample corresponding to following sequence of locations:
1, 2, 3, 8, 9, 10, ERROR. This corresponds to hitting the ERROR location without entering
the while loop even once, and can be obtained if we are not tracking any predicates at all. Using
interpolating strategy 1 described above, compute predicates to be tracked at each location that
appears in the counterexample. Your predicates should be such that tracking these predicates
at the corresponding locations guarantees the elimination of this counterexample in the next
iteration of predicate abstraction.

(b) [10 marks] Suppose after the above counterexample is eliminated, the abstract analysis indicates
the presence of a counterexample corresponding to the following sequence of locations: 1, 2,
3, 4, 5, 6, 7, 3, 8, 9, 10, ERROR. This corresponds to hitting the ERROR location after
iterating through the while loop only once. It turns out that this is a spurious counterexample as
well. Using the same interpolating strategy 1 described above, what are the final set of predicates
to be tracked at each location of the program after the above two spurious counterexamples have
been analyzed.

(c) [3 marks] If we continue the same process as above, i.e. identify abstract counterexamples of
the shortest length every time a set of location specific predicates are used to do predicate
abstraction, and analyze the counterexample to refine the abstraction, how many refinement
iterations are needed before the CEGAR loop terminates? Briefly justify your answer.

(d) [5 marks] Suppose you had the ability to tell the predicate abstraction refinement tool that
it must track a user-provided set of predicates at a specific location, in addition to whatever
location specific predicates it automatically finds using Craig interpolation. Indicate what predi-
cate(s) you would ask the tool to track and at which location such that the number of refinement
iterations is minimized. Note that you are allowed to specify a set of predicate(s) for only a
single location in the program.

(e) [10 marks] Briefly describe an alternnative strategy (different from that in strategy 1 above)
for computing a Craig interpolant between ψ−j (Yi,j) and ψ+

j (Yj+1,n) as described above. Your
method/algorithm must not use anything other than existentially quantifying out variables from
a conjunction/disjunction of linear equalities/inequalities and possibly negating linear equali-
ties/inequalities. Briefly justify why your algorithm/method gives a Craig interpolant.

(f) [5 marks] Repeat part (a) of this question using your algorithm/method for computing location
specific predicates.

2


