
FSVP Project Report

Sukanto Ghosh(07305801)
Ganesh Wagle(07305805)
Suhas Kajbaje(07305906)

Computer Science and Engineering Department
Indian Institute of Technology

Bombay,India.

1



1 Introduction to the code

Readahead is a widely deployed technique to bridge the huge gap between the
characteristics of disk drives and the inefficient usage by applications. At one
end, disk drives are good at large sequential accesses and bad at seeks. At the
other, applications tend to do a lot of tiny reads. To make the two ends meet,
modern kernels and disk drives do readahead: to bring in the data before it is
needed and try to do so in big chunks.Readahead typically involves actively
detecting the access pattern of all read streams and maintaining information
about them.

2 Description

We are verifying readahead.c file from linux kernel: (http://lxr.linux.no/
linux+v2.6.22.14/mm/readahead.c).

The heuristics in the function readahead.c can be summarized in four
aspects:

2.1 Sequential Detection

If the first read at the start of a file, or a read that continues from where
the previous one ends, assume a sequential access. Otherwise it is taken as a
random read.

2.2 Readahead Size

There are three phases in a typical readahead sequence:

1. initial : When there exists no current window or ahead window, the
size of initial readahead is mainly inferred from the size of current read
request. Normally readahead size will be 4 or 2 times read size.

2. ramp-up: When there is a previous readahead, the size is doubled or x4.

3. full-up: When reaching max readahead.

2



2.3 Readahead Pipelining

To maximally overlap application processing time and disk IO time, it main-
tains two readahead windows: current window is where the application ex-
pected to be working on; ahead window is where asynchronous IO happens.
ahead window will be openedrenewed in advance, whenever it sees a sequen-
tial request that-

1. is oversize

2. has only current window

3. crossed into ahead window

2.4 Cache hit/miss

A readahead cache hit happens when a page to be readahead is found to be
cached already.When the threshold VM MAX CACHE HIT(=256) is reached,
readahead will be turned off to avoid unnecessary lookups of the page-cache.

A readahead cache miss happens when a page that was brought in by reada-
head is found to be lost on time of read.

3 Property verification

If the read mode is sequential, and in such case if the pages to be readahead
are found to be in cache itself(i.e. cache hit) in large numbers, the readahead
mode should be disabled. This property is not obvious on inspection of code
because the decision to turn off RA mode depends unpo the number of pages
found in cache itself.
During the study of code we came to know that there was a bug in this module
about “accidental Read Ahead off”. The span of the bug was not limited to
the file we delt with. Thus we zeroed on this property which could be thought
of as a subproperty of the bug.

4 Problems faced while analyzing the code

The only viable source of infomation about the specification of linux kernel is
the comments present in the source code itself. We made an exaustive search
through kernel source files. Thus we had to put efforts in getting a code, that

3



made sense from verification point of view. However, after we zeroed upon
the code, we found an elegent research paper on the module “Page Cache
Readahead”.

5 Problems encountered while verifying the

code using BLAST

1. The code uses few Struct elements and the instances are accessed using
pointers to these struct elements. Using the -talias option in BLAST
the pointers could be handled.

2. However, We could not put asserertion involving conjunction between
two or more predicates. e.g assert(ra→ size == 0&&ra→ flags ==
0). It is important to note that in the code, the struct instance is
passed by reference, to other functions and the its elements’ values are
getting modified in functions two levels down the main caller function.
To make things easier we wrote a dummy program to make assertion of
these type. But BLAST was able to assert on only one predicate at the
time. We used different predicate generators, such as -craig, -clp; but
that couldn’t help. This does not remain a problem if the we are not
dealing with the pass by reference progamming style.

3. We couldn’t provide predicates through .pred file which involve condi-
tion on struct element which are accessed via pointers. e.g. (ra →
size! = 0) couldnt be provided to BLAST, and we didnt find any syn-
tax, so as to how provide it. Again; we created a dummy program to
check this.

4. There were few bitwise operations in the code, those couldnt be handled
by tool. But those operations made no impact on the properties we were
verifying.

6 Changes made in the original source code

1. The file we looked into is mm/readahead.c. In the beginning we com-
mented out the code that was not relevent to our analysis. However as
we moved on we restored the original source file to atmost extent.

2. We added few constructs (struct and macro) those were declared in
other file and were indeed used in the readahead.c such as:

4



Structs : address space, file ra state, file
Macros : min, roundup pow of two

7 Conclusion

1. BLAST is much more powerful than what we explored for this exercise,
however its available documentation underestimates its significance.

2. Finding a code was indeed a standalone exercise; however we got to
learn few nudgets of linux kernel.

5


