
CS615 Endsem Exam (Autumn 2016)

Max marks: 110 Time: 180 mins

• Be brief, complete and stick to what has been asked.

• Unless asked for explicitly, you may cite results/proofs covered in class without reproducing
them.

• If you need to make any assumptions, state them clearly.

• Do not copy solutions from others. Penalty for offenders: FR grade.

1. This questions deals with the use of interval abstract domain and threshold widening.

Consider the following program P in a C-like language, where bool foo(int j) is an un-
specified function that takes an integer argument and returns a boolean value.

L1: int j = 0;

L2: while ((j >= 0) && (j <= 5000)) {

L3: if (j <= 1000) {

L4: j = j + 2;

L5: }

L6: else {

L7: if (foo(j)) {

L8: j = j - 999;

L9: }

L10: if (j > 1500) {

L11: j = j + 2000;

L12: printf("Whoa!");

L13: }

L14: }

L15: }

We wish to use the interval domain to answer the following two questions for this program.

Q1: Does the program terminate?

Q2: Does the program ever print “Whoa!”?

Towards this end, we’ll proceed step-by-step as below. :

(a) [10 marks] Use the abstract domain of intervals with the usual widening operator for
intervals studied in class to compute a loop invariant at L1. You may defer widening by
atmost 2 iterations if you wish to. Clearly show the steps of your calculation.

1



(b) [5+5 marks] Using the loop invariant obtained in the previous sub-question, provide
answers to Q1 and Q2. Using a wrong invariant from the previous question will lead to
zero marks for this sub-question.

(c) [5 marks] Recall the notion of threshold widening studied in class. We wish to use a single
threshold t to refine the widening operator for intervals for use in the above analysis,
such that the answers to both Q1 and Q2 are “No”. Indicate what is the smallest value
of threshold t that can be used for this purpose.

(d) [10+5+5 marks] Re-do the calculations of sub-questions (a) and (b) above using thresh-
old widening with the single threshold t, and show that this yields the answer “No” to
both Q1 and Q2. Simply indicating a threshold without showing this calculation will
fetch no marks for sub-questions (c) and (d).

2. This question deals with the theory of abstract interpretation.

Let (α, γ) be a pair of abstraction and concretization functions that form a Galois connection.
Let the abstract domain under consideration be A = (A,v,t,u,>,⊥), where A is of infinite
cardinality, and A is a complete lattice. The concrete domain is the usual C = (℘(C),⊆
,∪,∩, C, ∅), where C is the set of all concrete states of a program P . Assume that α(∅) = ⊥,
γ(⊥) = ∅, α(C) = > and γ(>) = C.

Let F C : ℘(C)→ ℘(C) be a monotone concrete state transformer, and let FA : A→ A be an
abstract state transformer satisfying ∀a ∈ A, α(F C(γ(a))) v FA(a). You are not allowed
to make any other assumptions, viz. monotonicity, about FA.

(a) [5 marks] Is it necessary for FA to have a fixed point in A? Either give a proof of
existence of a fixed point, or provide a counter-example.

(b) [5 marks] In case FA has a fixed point in A, does it necessarily have a least fixed point?
Either prove that whenever FA has fixed-point, it also has a least fixed point, or give an
example where FA has a fixed-point, but no least fixed point.

(c) [10 marks] By Knaster-Tarski Theorem, we know that F C has a unique least fixed point.
Denote this by µ. Now consider the sequence a0 = ⊥, and ai+1 = FA(ai) for all i ≥ 0.

Does there always exist a natural number k such that µ ⊆ γ(ak)? Either give a proof, or
provide a counter-example. Remember, you cannot assume monotonicity of FA in this
question.

3. This question deals with predicate abstraction and Boolean programs.

Consider the same C-like program given in question 1 of this paper. Let b1 and b2 be Boolean
variables denoting the predicates (j ≥ 0) and (j ≤ 1000) respectively.

(a) [10 marks] Construct the best (i.e. preserving as much behaviour of the C-like program
as possible) Boolean program as you can using the above Boolean variable. You must
neatly present your Boolean program as the final answer, and also indicate how you
obtained the various Boolean expressions used in your program. You may assume that
the printf statement has no effect on the values of program variables.

(b) [5 marks] Give a trace, i.e. sequence of program locations, of your Boolean program that
eventually reaches location L12, i.e. the printf statement in the original program.

2



(c) [5 marks] Construct the trace formula corresponding to the above trace and argue why it
is unsatisfiable. You must give adequate justification for the unsatisfiability of the trace
formula.

(d) [10 marks] For each location of the original C-like program that is present in the trace
obtained in sub-question (b), derive predicates based on Craig interpolants such that a
Boolean program constructed using your predicates does not permit the trace of sub-
question (b) to arise. You must clearly show the Craig interpolant for each location, and
the corresponding predicate derived from it.

4. This question deals with separation logic formulas for representing heaps in program analysis.

As discussed in class, a linked list pointed to by x and containing at least one element, can
be defined using a recursive predicate in separation logic as follows:

list(x) = (x 7→ NULL) ∨ ∃t ((x 7→ t) ? list(t))

Use separation logic to describe the post-condition as accurately as you can in each of the
following Hoare triples:

(a) [5 marks] {list(x)} x := NULL; {. . .}
(b) [5 marks] {list(x)} x := *x; {. . .}
(c) [5 marks] {list(x) ? list(y)} temp := x; x := *y; free(temp); {. . .}

3


