CS615 Midsem Exam (Autumn 2016)

Max marks: 50

• Be brief, complete and stick to what has been asked.

serves as a counterexample.

- Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.
- If you need to make any assumptions, state them clearly.
- Do not copy solutions from others. Penalty for offenders: FR grade.
- 1. Let $\mathcal{A} = (A, \sqsubseteq, \sqcup, \sqcap, \nabla, \top, \bot)$ be an abstract lattice, and let P be the program fragment if (B) then P_1 else P_2 .

We will use α and γ to denote the usual abstraction and concretization functions, and assume that (α, γ) forms a Galois connection between the lattice of sets-of-program-states and \mathcal{A} .

Suppose the concrete state transformers for P_1 and P_2 (i.e. F_1^C and F_2^C) and the corresponding abstract state transformers (i.e. F_1^A and F_2^A) satisfy $\forall a \in A$, $\alpha(F_i^C(\gamma(a)) = F_i^A(a))$, for $i \in \{1, 2\}$.

- (a) [10 marks] Using notation defined in class, let F^A_P(a) be defined as F^A₁(a □ α(B)) ⊔ F^A₂(a □ α(¬B)), for all a ∈ A.
 Does it follow that α(F^C_P(γ(a)) = F^A_P(a) holds for all a ∈ A, where F^C_P denotes the concrete state transformer of P?
 If your answer is "Yes", provide a complete proof. Otherwise, provide a specific program P = if (B) then P₁ else P₂ and a specific abstract domain A, and show that this
- (b) [10 marks] A student has defined a new abstract state transformer FF_P^A , for the program fragment P, as follows.

$$FF_P^A(a) = F_1^A(\alpha(\gamma(a) \cap B)) \ \sqcup \ F_2^A(\alpha(\gamma(a) \cap (\neg B)))$$

The student claims that her state transformer is sound and provably no worse than F_P^A defined in the previous sub-question. In other words, she claims that $\forall a \in A, \alpha(F_P^C(\gamma(a))) \sqsubseteq FF_P^A(a) \sqsubseteq F_P^A(a)$.

If you think the claim is correct, provide a complete proof. Otherwise, provide a specific program P = if(B) then P_1 else P_2 and a specific abstract domain \mathcal{A} , and show that this serves as a counterexample.

(c) [10 marks] Suppose \mathcal{A} is the interval abstract domain studied in class. Let FF_P^A and F_P^A denote the abstract state transformers introduced in the previous sub-problems. Give an example of a program P = if (B) then P_1 else P_2 in the simple programming language discussed in class, and an abstract state (of intervals) a such that the conditions on F_1^A and F_2^A given above hold, and in addition, each of the following conditions hold:

- $F_P^A(a) \neq FF_P^A(a)$ • $FF_P^A(a) \neq \alpha(F_P^C(\gamma(a)))$
- $F_P^A(a) \neq \alpha(F_P^C(\gamma(a)))$
- 2. Consider the following program in the language studied in class.

```
int a, b;
L0:
L1: while (a > b) do {
L2: b := b + 1;
L3: a := a - b;
L4: }
```

You are told that the pre-condition at location L0 is $(100 < b < 200) \land ((0 < a < 1000) \lor (b < a < b + 1000)).$

We wish to compute as strong a loop invariant as we can at location L1 using the abstract domain \mathcal{D} of Difference Bound Matrices (DBMs). Towards this end, you are required to answer the following questions.

- (a) [5 marks] Find the best abstract state transformer $F^A : \mathcal{D} \to \mathcal{D}$ of the loop body (statement at L2 followed by that at L3) in the DBM domain. Your abstract state transformer should take a DBM as argument and return another DBM.
- (b) [5 marks] Give a monotone map $h : \mathcal{D} \to \mathcal{D}$ from the abstract lattice of DBMs back to itself such that any post-fix point of h other than \top gives a non-trivial abstract loop invariant of the above program at location L1. Your monotone map should take a DBM as argument and return another DBM.
- (c) [10 marks] Compute the best possible abstract loop invariant at L1 using the monotone map h obtained in the previous sub-question. You can defer the use of the widen operator (using *lub* instead) for two iterations when computing the abstract loop invariant. You must clearly show all steps in your calculation.