
CS615 Midsem Exam (Autumn 2017)

Max marks: 58 Time: 120 mins

• Be brief, complete and stick to what has been asked.

• Unless asked for explicitly, you can cite results/proofs covered in class.

• If you need to make any assumptions, state them clearly.

• Read the question paper carefully before answering questions.

• Do not copy solutions from others. Penalty for offenders: FR grade.

1. In class, we have always considered an abstract domain to be a lattice. In this question, we
relax this requirement and consider an abstract domain A = (A,≤, t̃ , ũ ,>,⊥, ∇̃ ), where

• ≤ is a pre-order, i.e. a reflexive, transitive (not necessarily anti-symmetric) relation.

• ∀a ∈ A, ⊥ ≤ a ≤ >
• ∀a1, a2 ∈ A, ai ≤ a1 t̃ a2 for i ∈ {1, 2} (i.e. a1 t̃ a2 is some upper bound of a1 and a2).

Also, a1 ≤ a2 ⇒ (a1 t̃ a2) = a2.

• ∀a1, a2, a3 ∈ A, (a3 ≤ a1 and a3 ≤ a2)⇒ a3 ≤ (a1 ũ a2) (i.e. a1 ũ a2 is at least as large
as any lower bound of both a1 and a2). Also, a1 ≤ a2 ⇒ (a1 ũ a2) = a1.

• ∇̃ is a widening operator, i.e.

– ∀a1, a2 ∈ A, ai ≤ (a1 ∇̃ a2) for i ∈ {1, 2}.
– For all non-decreasing chains a0 ≤ a1 ≤ . . . in A, the sequence b0, b1, . . . stabilizes

after a finite number of terms, where b0 = a0 and bi = bi−1 ∇̃ ai for i ≥ 1.

Also, assume that for all c, d ∈ A, d ≤ c⇒ c ∇̃ d = c.

Let α : ℘(C) → A and γ : A → ℘(C) be a pair of abstraction and concretization functions
that form a Galois connection, where C is the set of concrete states. Assume that γ(⊥) = ∅,
γ(>) = C, α(C) = > and α(∅) = ⊥.

We wish to calculate the abstract loop invariant λA for “while (B) P;” using A. Assume
that P always terminates, and the set of concrete states reaching the loop-head for the first
time is γ(a0), where a0 ∈ A.

Let FA : A → A be an abstract state transformer (i.e. computes a post-condition, given a
pre-condition) for the loop-body P , and let FC : ℘(C)→ ℘(C) denote the concrete state trans-
former for P . Assume that (i) FA is monotone with respect to ≤, (ii) ∀a ∈ A, α(FC(γ(a))) ≤
FA, and (iii) FA(⊥) = ⊥.

A student uses the following procedure to try to calculate an abstract loop invariant.

Step 1: Define G : A→ A as G(a) = a0 t̃ FA(a ũ α(B)) for all a ∈ A.

1



Step 2: Compute G10(⊥), and check if G11(⊥) = G10(⊥). If yes, report λA = G10(⊥).

Step 3: Otherwise, construct the following sequence (λ0, λ1, . . .) until G(λi) ≤ λi.

Step 3a: λ0 = G10(⊥)

Step 3b: λi = λi−1 ∇̃ G(λi−1) for i ≥ 1

Step 4: If the sequence stabilizes at λm, report λA = G10(λm).

(a) [10 marks] Show that G is not necessarily monotone even when FA is monotone. Specif-
ically, give an example of (A,≤, t̃ , ũ ), elements a0, a1, a2, b ∈ A and a function
F : A→ A such that

• F is monotone w.r.t. ≤
• G(a) = a0 t̃ F (a ũ b) for all a ∈ A
• a1 ≤ a2 and G(a1) 6≤ G(a2).

(b) [10 marks] Show that if the student’s procedure terminates, the computed λA satisfies
the property that γ(λA) is a concrete loop invariant.

(c) Unfortunately, the student is unable to show that her procedure always terminates. In
a desperate bid to ensure termination, the student modifies Step 3b to the following:

Step3b*: λi = λi−1 ∇̃ FA(λi−1 ũ α(B)) for i ≥ 1

i. [5 marks] Does the modified procedure always terminate?

ii. [5 marks] If the modified procedure terminates and returns λA, does γ(λA) always
represent a concrete loop invariant?

Justify your answer with explanation; simply saying “Yes”/”No” will fetch no marks.

2. We have studied in class how to model a single statement in a C-like programming language
with possibly multiple statements in a Boolean program. Here, we wish to do the same, but
with additional syntactic restrictions on the Boolean program statements.

Specifically, in each subquestion below, you are given a statement in a C-like programming
language with all variables being of type int. You are also given a set of predicates, and a
template of a (single) corresponding statement in the Boolean program. You are required
to indicate the (possibly conditional) Boolean expression or ∗ that best replaces each Ei in
the template, so that we get the best possible abstraction of the original program statement,
given the syntactic restrictions imposed by the template.

Note that you are not allowed to add extra statements like assume. You may not make
any assumption about the values of the Boolean variables bi prior to the execution of the
corresponding Boolean statement.

(a) [8× 2 marks] C-like program statement: x = (y > z) ? x-z : z-y;

Predicates: b1 ≡ (y > z), b2 ≡ (x > y), b3 ≡ (x > z), b4 ≡ (x > 0)
Boolean program statement template:
(b1, b2, b3, b4) = b1 ? (E1, E2, E3, E4) : (E5, E6, E7, E8);

(b) [6× 2 marks] C-like program statement: if (x > y) then y++; else x++;

Predicates: b1 ≡ (x > y), b2 ≡ (y > 100), b3 ≡ (x < 100)
Boolean program statement template:
if (b1) then (b1, b2, b3) = (E1, E2, E3); else (b1, b2, b3) = (E4, E5, E6);

2


