CS615 Theory Quiz 2 (Autumn 2017)

Max marks: 25

- Be brief, complete and stick to what has been asked.
- Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.
- If you need to make any assumptions, state them clearly.
- Do not copy solutions from others. Penalty for offenders: FR grade.
- 1. For purposes of this question, assume all program variables are of type int. Further assume that \mathbb{N} denotes the set of natural numbers and \mathbb{Z} denotes the set of integers.

We wish to define a *non-relational* abstract domain where the set of concrete values of an individual variable is abstracted by a pair of integers $\langle a, b \rangle$, with $a \in \mathbb{N}$ and $b \in \mathbb{Z}$. Furthermore, we require that if $a \neq 0$, then b < a.

The abstraction of a program state is simply the tuple of abstractions of individual program variables. Therefore, we will concern ourselves with simply the abstraction of a single program variable in this question (like in the case of intervals).

The abstraction and concretization functions for a single program variable are defined as follows:

- $\gamma(\langle a, b \rangle) = \{n \mid \exists m \in \mathbb{Z}, n = a.m + b\}$ for every $a \in \mathbb{N}$ and $b \in \mathbb{Z}$.
- $\alpha(S) = \langle a, b \rangle$, such that $-a = \gcd\{|n - n'| \text{ s.t. } n, n' \in S\}$. Assume $\gcd(0, n) = 1$ for all $n \in \mathbb{Z}$. $-b = \min\{n \mid n \in S\}$

The top-element of the abstract lattice (for a single program variable) is assumed to be $\langle 1, 0 \rangle$. Note that $\gamma(\langle 1, 0 \rangle) = \mathbb{Z}$. The bottom element is assumed to be a special element \bot such that $\alpha(\emptyset) = \bot$ and $\gamma(\bot) = \emptyset$.

- (a) [5 marks] It is easy to show that α and γ forms a Galois connection. Does it also form a Galois insertion, i.e. is it the case that $\forall \langle a, b \rangle \in \mathbb{N} \times \mathbb{Z}$, $\alpha(\gamma(\langle a, b \rangle)) = \langle a, b \rangle$? You may assume that if $a \neq 0$, then b < a. Either give a proof of the pair (α, γ) being a Galois insertion, or provide a counterexample.
- (b) [5+5+5+5 marks] Give as good *effective* definitions as you can for the following abstract domain operators. In each case, your definition should be *effective*, i.e. it should be possible to write an algorithm (that necessarily terminates, of course) that computes the resulting given the input abstract values.
 - i. Partial order relation (\sqsubseteq)
 - ii. Least upper bound (\sqcup)
 - iii. Greatest lower bound (\Box)
 - iv. Widen (∇)

Give brief explanation in each case why you think your definition is as good as possible.