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Motivation

@ Assertion checking in (sequential) programs
@ Interesting stuff happens when heap memory allocated, freed and
mutated

» Absolutely thrilling stuff happens if you throw in concurrency!

@ Hoare Logic: A logic for reasoning about programs and assertions
» Program as a mathematical object
» Inference system: Properties of program from properties of

sub-programs
@ This lecture primarily about sequential programs that don't change

heap.
» Highlight problems that arise when dealing with heap
» Hongseok Yang will show how separation logic allows Hoare-style
reasoning on heap-manipulating programs
» Can also be used to reason about concurrent programs sharing
resources
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Example programs

int foo(int n) {

}

local int k, int j;
k := 0;

J = L

while (k != n) {
k :=k +1;
j o= 2%

}

return(j)

Wish to prove:

int bar(int n) {

local int k, int j;
k := 0;

j =1

while (k !'= n) {
k :=k +1;
j =2+ 7;

}

return(j);

© If foo is called with parameter n greater than 0, it returns 2"

@ If bar is called with parameter n greater than 0, it returns 1 + 2n

Note: No heap manipulation by above programs.
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Some observations

Proof goals from previous slide:

@ If foo is called with parameter n greater than 0, it returns 2"

@ |If bar is called with parameter n greater than 0, it returns 1 + 2n

@ What we want to prove involves both the program and properties of
input and output values

@ Our proof goal (and subgoals) and proof technique must therefore
refer to both program and input/output values “at par” (equally
important)

@ Program must therefore be treated as much a mathematical object as
formulas like (n > 0)

@ This is what Hoare logic does very elegantly

We will be able to prove properties of both programs by end of today!
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A list reversal program

=
1]
-

NULL

ptr list Reverse(ptr list i) {
local ptr list j, ptr list k;

j := NULL;

while (i !'= NULL) {
k := i->next;
i->next := j;
j =1
i = k;

}

return(i);

Wish to prove: If i points to an acyclic list before Reverse executes, it
also points to an acyclic list after Reverse returns.

@ Requires specifying properties of /reasoning about heap memory!
@ We should be able to prove this by end of this week!

» Not by end of today
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A simple storage model

Assume integer and pointer types.

Vars = {x,y,z,...} ... User-defined variables
Locs ={1,2,3,...} ... Memory addresses in heap
Vals D Locs ... Values in variables/heap locations
Vals = Z (for our purposes)
Heaps = Locs —, Vals
Stacks = Vars — Vals
States = Stacks x Heaps
Example:

e Vars = {x,y}, Locs = {97,200, 1371}
@ Stack: x — 1,y — 29
@ Heap: 97 — 29,200 — 235,1371 — 46
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A simple imperative language

E = x|n|E+E|—-E]|... Heap-indepedent expr
B = E=E|E>E|BAB|-B Boolean condn
P == x:=E | P,;P | if BthenPelseP | Standard constructs
while BP | Looping construct
x :=new(E) | Allocation on heap
x = *E | Lookup of heap
xE =E | Mutation of heap
free(E) Deallocation of heap

@ This lecture primarily discusses how to reason about programs
without heap-related constructs

@ Hongseok Yang will show how this reasoning can be extended to
programs with heap-related constructs
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A simple assertion language

@ Assertion: A logic formula describing a set of states with some
“interesting” property

@ Recall States = Stacks x Heaps

@ Assertions can refer to both stack and heap

E == x|n|E+E|—E| ... Heap-indepedent expr

B = E=E|E>E Boolean conditions

A = B Atomic predicates on stack
emp | E— E Atomic predicates on heap
AxA|A—xA Wait for a day !!!

true | ANA | -A | Vv.A Logical connectives
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Assertion semantics

@ As program executes, its state changes.

@ At some point during execution, let state be (s, h)

@ Program satisfies assertion A at this point iff (s, h) = A

(s,h) =B iff [B]s = true
(s,h) E-A iff (s,h)}£EA
(s,h) AL ANAy iff (s,h) = Aqr and (s, h) = A2
(s,h)=EVv.A iff YxeZ. (s[vex],h)=A

(s,h) =emp iff dom(h) =10

(s.h) = E1— E» iff [E1]s € dom(h) and A([Ei]s) = [Eo]s
(5, h) ): A1 x Ay iff Thg, hy. (dom(ho) N dom(hl) DA h=hgx*h
() = 1 (5 = )
(s,h) = A1 — Ay iff  VH'.(dom(K) N dom(h) =0 A (s,h) E A1)

implies (s, h* h') = A2
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Examples of assertions in programs

@ Consider program with two variables x and y, both initialized to 0.
o Assertions Ay : x — y, Ax: y? > 28

pc Program Stack Heap Sat A1l Sat A,
1 x =mnew(l); x:237,y:0 237 : 123456 No No
2 y = 37; x:237,y : 37 237 :123456 No Yes
3 *x = 37; x:237,y: 37 237 : 37 Yes Yes
4 x =new(1); x:10,y:37 237:37,10:54 No Yes

It therefore makes sense to talk of assertions at specific pc values and how
program statements and control flow affect validity of assertions
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Hoare logic
In honour of Prof. Tony Hoare who formalized the logic in the way we know
it today

A Hoare triple {1} P{¢2} is a formula

® 1,2 are formulae in a base logic (e.g., full predicate logic,
Presburger logic, separation logic, quantifier-free fragment of
predicate logic, etc.)

@ P is a program in our imperative language
@ Note how programs and formulae in base logic are intertwined
@ Terminology: Precondition 1, Postcondition 2
Examples of syntactically correct Hoare triples:
o {(n>0)A(n*>28)lm :=n + 1; m := mkm {~(m = 36)}

» Quantifier-free fragment of predicate logic
> Interpretted predicates and functions over integers

o {Ix,y. (y>0)A(n=x")}n := nx(n+1) {Ix,y.(n=x")}
» Above fragment augmented with quantifiers

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 11 /34



Semantics of Hoare triples

The partial correctness specification {¢1}P{p2} is valid iff starting from a
state (s1, h1) satisfying 1,

@ No execution of P accesses an unallocated heap cell (no memory
error)

@ Whenever an execution of P terminates in state (sp, h2), then
(521 h2) ): P2

The total correctness specification [p1]P[y2] is valid iff starting from a
state (s1, h1) satisfying 1,

@ No execution of P accesses an unallocated heap cell

@ Every execution of P terminates

@ When an execution of P terminates in state (sp, h2), then
(s2, h2) = 2

@ For programs without loops, both semantics coincide

@ Memory error checking unnecessary in well-specified programs
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Hoare logic for a subset of our language

@ We will use partial correctness semantics

@ Base logic: Predicate logic (with quantifiers) with usual interpretted
functions and predicates over integers
@ Programs without any heap-manipulating instructions
» Reasoning about heap: Hongseok's lectures over next 5 days

Restricted program constructs:

E = x|n|E+E|—-E]|. Heap-indepedent expr

B = E=E|E>E| B/\B|—|B Boolean condn

P = x:=E | P;P | if BthenPelseP | Standard constructs
while BP Looping construct
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Hoare logic: Assignment rule

Program construct:
E == x|n|E+4+E| —E|... Heap-indepedent expr
P == x:=E Assignment statement

Hoare inference rule: If x is free in ¢

{o(lx = ED} x:=E {p(x)}

Examples:
o {(x+zy)?>28} x:=x + z*y {x*> > 28}
> ldentical to weakest precondition computation

o {(zy>5) AN (Bx.y =x)} x:=z* {(x >5) A (3x. y = x¥)}
» x must be free in ¢
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Hoare logic: Sequential composition rule

Program construct:
P := P;P Sequencing of commands

Hoare inference rule:

{¢} P {n} {n} P> {4}

{e} P1; P2 {4}

Example:
{y+z>4} y=y+z—-1 {y >3} {y>3} x:=y+2 {x>5}

{y+z>4} y=y+z—1;x:=y+2 {x>5}
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Hoare logic: Strengthening precedent, weakening
consequent

Hoare inference rule:

=1 {p1} P {e2} 02 = 1P

{v} P {¥}

@ © = 1 and ¢ = 1 are implications in base (predicate) logic
@ Applicable to arbitrary program P

Example:
((y>8)N(z>1) = (y+z>5) {y+z>5} y:=y+z {y>5} (y>5)= (y>3)

{y>n(z>D} yi=y+z {y>3}
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Hoare logic: Conditional branch

Program construct:

E = x|n|E+E|—-E]|... Heap-indepedent expr
B = E=E|E>E| BAB| =B Boolean condn
P == if BthenPelseP Conditional branch

Hoare inference rule:

{en B} P {¢} {o A =B} Py {4}

{¢} if BthenP;else Py {¢}

Example:
{b>Hr(z>1)} y=y+z {y>3} {b>Hn~(z>1)} y=y—1 {y>3}
{y >4} if (z > 1) then y := y+z else y := y-1 {y >3}
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Hoare logic: Partial correctness of loops

Program construct:

E = x|n|E+E|—-E]|... Heap-indepedent expr
B = E=E|E>E| BAB | =B Boolean condn
P = whileB P Looping construct

Hoare inference rule:

{eA B} P {p}

{¢} whileB P {¢p A =B}

@ ¢ is a loop invariant
@ Partial correctness semantics

» If loop does not terminate, Hoare triple is vacuously satisfied
» If it terminates, (¢ A =B) must be satisfied after termination
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Hoare logic: Partial correctness of loops

Hoare inference rule:

{on B} P {}
{¢} whileB P {p A -B}

Example:
{y=x+2)AN(z#0)} x:=x+1,z:=2z—1 {y=x+1z}
{y = x4z} while (z '= 0){x:=x+1,z:=2z1} {(y=x+2)A (z=0)}

{(y=x+2z)A true} x:=x+1z:=2—1 {y =x+1z}
{y = x+z} while (true){x:=x+1;z:=z1} {(y = x+ z) A false}

{¢} while (true) P {¢} holds vacuously for all ¢, P and ¢
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Summary of Hoare rules for our (sub-)language

{o([x—E])} x:=E {o(x)} Assignment

{onB} PL {¢} {pA=B} Py {4} L
o) ile then Py olse P, {2¢} Conditional branch

{pAB} P1 {v}

ToT while (B) P, {»A=E] While loop
Y1 —P {gﬁ g ?jj} i Precedent-strengthen

Antecedent-weaken

Proof system sound and relatively complete
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Proving properties of simple programs

int foo(int n) {

}

local int k, int j;
k := 0;

J = L

while (k !=n) {
k :=k +1;
J o= 2%j;

}

return(j)

int bar(int n) {

}

local int k, int j;

o= 1

while (k '= n) {
k : =k +1;
=243

}

return(j);

Can we apply our rules to prove that if bar is called with n greater than 0,
it returns 1 + 2n?

@ Function bar has a while loop

@ Partial correctness: If bar is called with n greater than 0, and if bar
terminates, it returns 1 + 2n.
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Proving properties of simple programs

Let P: Sequence of executable statements in bar

P :: k := 0;
j :=1;
while (k '= n) {
k :=k + 1;
ji=2+g;
}

Our goal is to prove the validity of {n >0} P {j =1+ 2.n}

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 22 / 34



A Hoare logic proof

Sequential composition rule will give us a proof if we can fill in the
template:

{n>0} Precondition
k :=0
{¢1} Midcondition
j =1
2} Midcondition
while (k !=n) {k := k+1; j := 2+j}
{{=1+2.n} Postcondition

@ How do we prove
{2} while (k !'=n) {k := k+1; j := 2+j} { =1+ 2.n}7

@ Recall rule for loops requires a loop invariant

o "“Guess" a loop invariant (j = 1+ 2.k)
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A Hoare logic proof
To prove:
{¢2} while (k !'=n) k := k+1; j := 2+j {j=1+42.n}
using loop invariant (j = 1 + 2.k)
If we can show:
e o = (j=1+2k)
o {J=142k) A (k#n)} k :=k+1; j:=2+j {j=1+42k}
o (=14+2k)AN=(k#n)) = (j=1+2.n)

then
By inference rule for loops

{=1+2k)A(k#n)} k := k+1; j:= 2+ {j=1+2.k}
{=1+2k} while (k !'=n) k := k+l; j:= 2+ {(j=1+2k)A =(k #n)}

By inference rule for strengthening precedents and weakening consequents
w2 = (j=1+42.k)
{y=1+2k} while (k '=n) k := k+1; j:= 2+ {(j=1+2k)A =(k #n)}
(G=1+2k) A —(k+#n)) = (j=1+2.n)
{2} while (k != n) k := k+1; j:= 2+j {(j=1+2.n)}
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A Hoare logic proof

How do we show:
@ v = (j=1+2k)
o {{ =142k AN (k#n)} k :=k+1; j:=2+j {j=1+2k}
o (j=142k)AN—(k#n) = (=1+2.n)

Note:
@ vo» = (j =1+ 2.k) holds trivially if @2 is (j =1+ 2.k)
o (j=1+4+2k)N —=(k#n)) = ( =1+ 2.n) holds trivially in integer
arithmetic
Only remaining proof subgoal:

{G=142k)AN(k#n)} k :=k+1l; ji= 2+ {j=1+2.k}
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A Hoare logic proof

To show:
{U=14+2.k)A (k#n)} k :=k+1; j:= 2+ {j=1+2k}

Applying assignment rule twice
{24j=1+2k} j =2+ {j=1+2k}
{2+j=1+2(k+1)} k :=k+1 {24,j=1+2.k}

Simplifying and applying sequential composition rule
{1+j=2k} j :=2+j {j=1+2k}
{/=1+42k)} k := k+t1 {1+j=2k}

{{=142k} k :=k+1; j :=2+j {j=1+2.k}

Applying rule for strengthening precedent
=142k AN (k#n)} = (=1+2k)
{{=142k} k :=k+t1; j :=2+j {j=1+2k}
{G=1+4+2k) AN (k#n)} k :=k+1; j :=2+j {j=1+2.k}
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A Hoare logic proof

We have thus shown that with ¢ as (j =1+ 2.k)

2} while (k != n) k := k+1; j := 2+j {j =1+ 2.n} is valid
2 J J

Recall our template:

{n>0} Precondition
k :=0
{1} Midcondition
j =1
{p2:j =142k} Midcondition
while (k !'=n) k := kt+l; j := 2+]j
{{=1+2.n} Postcondition

The only missing link now is to show
{n>0} k :=0 {1} and
{oi} § =1 {j=1+2k}
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A Hoare logic proof

To show
{n>0} k :=0 {p1} and
{e1 J =1 {=1+2k}

Applying assignment rule twice and simplifying:
{0=k} j :=1 {j=1+42k}
{true} k :=0 {0=k}

Choose ¢ as (k =0),so {¢1} j :=1 {j=1+ 2.k} holds.
Applying rule for strengthening precedent:
(n>0) = true
{true} k := 0 {p1:k=0}
{n>0} k :=0 {p1:k=0}

We have proved partial correctness of function bar in Hoare Logic !!!
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Exercise

Try proving the other program using the following template:

{n >0} Precondition
k=0
{1} Midcondition
j =1
{2} Midcondition
while (k != n) k := k+1; j := 2%j
{i=2"} Postcondition

Hint: Use the loop invariant (j = 2K)
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A few sticky things

@ We “guessed” the right loop invariant
> A weaker invariant than (j = 1 + 2.k) would not have allowed us to
complete the proof.
» Finding the strongest invariant of a loop: Undecidable in general!

@ Annotations can help

Programmer annotates her intended loop invariant

This is not the same as giving a proof of correctness

But can significantly simplify constructing a proof

Checking whether a formula is a loop invariant much simpler than
finding a loop invariant

vV vy vYyy

Tools to infer midconditions from annotations exist

Some tools claim to infer midconditions directly from code

» Cannot infer strong enough invariants in all cases
» Otherwise we could check if a Turing Machine halts !!!

A powerful technique for proving program correctness, but requires
some help from user (by way of providing annotations)
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Some structural rules in Hoare logic

Structural rules do not depend on program statements

{p1} P{n} {po} P {tn} Conjunction
{p1A @2} P (1At} !

{e1} P{1} {wo} P{y2} .. .
1{901\/ so;} P {qp21v o} : Disjunction

{Elvii% g ?élb\];w} Exist-quantification (v not free in P)
{VV-{gi z ?Vp\]/’zp} Univ-quantification (v not free in P)

@ We have not given an exhaustive listing of rules
@ Just sufficient to get a hang of Hoare-style proofs

@ Other rules exist for procedure calls and even concurrency!
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What breaks with heap accesses?

Consider a code fragment

LO: local ptr int x, ptr int y;
L1: X =Y,

L2: *¥x := b;

L3: *y 1= 7;

L4: *x := 10;

@ When control flow reaches L4, the assertion (x — 7) A (y +— 7) holds.

@ Only *y is assigned to in statement at L3.

@ However, the following Hoare triple (in the spirit of the assignment
rule) is not valid:

{x= AT =7} *y =7 {x—=7)A(y=T7)}

» Although *x is not explicitly assigned to by statement at L3, the truth
of predicate (x — 7) changes
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What breaks with heap accesses?
Without heap (shared resource) accesses, the following Rule of Constancy
holds in Hoare Logic:

{v} P {9}
{onét P {PAE}

where no free variable of £ is modified by P.

This rule fails with heap (shared resource) accesses due to aliasing

{3t.x — t} *x :
{@t.x—t)A (y —5)} *x :

5 {x— 5}
5 {(x—5)A (y—5)}

is not a sound inference rule if x = y.

@ This motivates the need for special rules for heap accesses

o We'll learn about separation logic in the next few days.
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Conclusion

We saw a brief glimpse of Hoare logic and Hoare-style proofs

@ Hoare-style proofs have been extensively used over the past few
decades to prove subtle properties of complicated programs

@ This approach works best with programmer-provided annotations

@ The use of automated theorem provers and programmer annotations
has allowed application of Hoare-style reasoning to medium sized
programs quite successfully.

o Key-Hoare (from Chalmers University): A tool suite for
teaching/learning about Hoare logic

@ Scalability of Hoare-style reasoning is sometimes an issue

@ Yet, this is one of the most elegant techniques available for proving
properties of programs
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