
A Short Introduction to Hoare Logic

Supratik Chakraborty

I.I.T. Bombay

June 23, 2008

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 1 / 34

Motivation

Assertion checking in (sequential) programs

Interesting stuff happens when heap memory allocated, freed and
mutated

I Absolutely thrilling stuff happens if you throw in concurrency!

Hoare Logic: A logic for reasoning about programs and assertions
I Program as a mathematical object
I Inference system: Properties of program from properties of

sub-programs

This lecture primarily about sequential programs that don’t change
heap.

I Highlight problems that arise when dealing with heap
I Hongseok Yang will show how separation logic allows Hoare-style

reasoning on heap-manipulating programs
I Can also be used to reason about concurrent programs sharing

resources

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 2 / 34

Example programs

int foo(int n) { int bar(int n) {
local int k, int j; local int k, int j;
k := 0; k := 0;
j := 1; j := 1;
while (k != n) { while (k != n) {

k := k + 1; k := k + 1;
j := 2*j; j := 2 + j;

} }
return(j) return(j);

} }

Wish to prove:

1 If foo is called with parameter n greater than 0, it returns 2n

2 If bar is called with parameter n greater than 0, it returns 1 + 2n

Note: No heap manipulation by above programs.

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 3 / 34

Some observations
Proof goals from previous slide:

1 If foo is called with parameter n greater than 0, it returns 2n

2 If bar is called with parameter n greater than 0, it returns 1 + 2n

What we want to prove involves both the program and properties of
input and output values

Our proof goal (and subgoals) and proof technique must therefore
refer to both program and input/output values “at par” (equally
important)

Program must therefore be treated as much a mathematical object as
formulas like (n > 0)

This is what Hoare logic does very elegantly

We will be able to prove properties of both programs by end of today!

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 4 / 34

A list reversal program

NULL

i

ptr list Reverse(ptr list i) {
local ptr list j, ptr list k;
j := NULL;
while (i != NULL) {

k := i->next;
i->next := j;
j := i;
i := k;

}
return(i);

}
Wish to prove: If i points to an acyclic list before Reverse executes, it
also points to an acyclic list after Reverse returns.

Requires specifying properties of/reasoning about heap memory!

We should be able to prove this by end of this week!
I Not by end of today

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 5 / 34

A simple storage model
Assume integer and pointer types.

Vars = {x , y , z , . . .} . . . User-defined variables
Locs = {1, 2, 3, . . .} . . . Memory addresses in heap

Vals ⊇ Locs . . . Values in variables/heap locations
Vals = Z (for our purposes)

Heaps = Locs→fin Vals
Stacks = Vars→ Vals
States = Stacks× Heaps

Example:

Vars = {x , y}, Locs = {97, 200, 1371}
Stack : x → 1, y → 29

Heap : 97→ 29, 200→ 235, 1371→ 46

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 6 / 34

A simple imperative language

E ::= x | n | E + E | −E | . . . Heap-indepedent expr
B ::= E = E | E ≥ E | B ∧ B | ¬B Boolean condn
P ::= x := E | P;P | ifB thenP elseP | Standard constructs

whileB P | Looping construct
x := new(E) | Allocation on heap
x := ∗E | Lookup of heap
∗E = E | Mutation of heap
free(E) Deallocation of heap

This lecture primarily discusses how to reason about programs
without heap-related constructs

Hongseok Yang will show how this reasoning can be extended to
programs with heap-related constructs

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 7 / 34

A simple assertion language

Assertion: A logic formula describing a set of states with some
“interesting” property

Recall States = Stacks× Heaps

Assertions can refer to both stack and heap

E ::= x | n | E + E | −E | . . . Heap-indepedent expr
B ::= E = E | E ≥ E Boolean conditions
A ::= B Atomic predicates on stack

emp | E 7→ E Atomic predicates on heap
A ? A | A −−? A Wait for a day !!!
true | A ∧ A | ¬A | ∀v .A Logical connectives

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 8 / 34

Assertion semantics

As program executes, its state changes.

At some point during execution, let state be (s, h)

Program satisfies assertion A at this point iff (s, h) |= A

(s, h) |= B iff [[B]] s = true
(s, h) |= ¬A iff (s, h) 6|= A

(s, h) |= A1 ∧ A2 iff (s, h) |= A1 and (s, h) |= A2

(s, h) |= ∀v .A iff ∀x ∈ Z. (s[v ← x], h) |= A
(s, h) |= emp iff dom(h) = ∅

(s, h) |= E1 7→ E2 iff [[E1]] s ∈ dom(h) and h([[E1]] s) = [[E2]] s

(s, h) |= A1 ? A2 iff ∃h0, h1. (dom(h0) ∩ dom(h1) = ∅ ∧ h = h0 ∗ h1

∧ (s, h0) |= A1 ∧ (s, h1) |= A2)
(s, h) |= A1 −−? A2 iff ∀h′. (dom(h′) ∩ dom(h) = ∅ ∧ (s, h′) |= A1)

implies (s, h ∗ h′) |= A2

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 9 / 34

Examples of assertions in programs

Consider program with two variables x and y, both initialized to 0.

Assertions A1 : x 7→ y , A2 : y2 ≥ 28

pc Program Stack Heap Sat A1 Sat A2

1 x = new(1); x : 237, y : 0 237 : 123456 No No
2 y = 37; x : 237, y : 37 237 : 123456 No Yes
3 *x = 37; x : 237, y : 37 237 : 37 Yes Yes
4 x = new(1); x : 10, y : 37 237 : 37, 10 : 54 No Yes

It therefore makes sense to talk of assertions at specific pc values and how
program statements and control flow affect validity of assertions

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 10 / 34

Hoare logic

In honour of Prof. Tony Hoare who formalized the logic in the way we know
it today

A Hoare triple {ϕ1}P{ϕ2} is a formula

ϕ1, ϕ2 are formulae in a base logic (e.g., full predicate logic,
Presburger logic, separation logic, quantifier-free fragment of
predicate logic, etc.)

P is a program in our imperative language

Note how programs and formulae in base logic are intertwined

Terminology: Precondition ϕ1, Postcondition ϕ2

Examples of syntactically correct Hoare triples:

{(n ≥ 0) ∧ (n2 > 28)} m := n + 1; m := m*m {¬(m = 36)}
I Quantifier-free fragment of predicate logic
I Interpretted predicates and functions over integers

{∃x , y . (y > 0) ∧ (n = xy)} n := n*(n+1) {∃x , y .(n = xy)}
I Above fragment augmented with quantifiers

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 11 / 34

Semantics of Hoare triples
The partial correctness specification {ϕ1}P{ϕ2} is valid iff starting from a
state (s1, h1) satisfying ϕ1,

No execution of P accesses an unallocated heap cell (no memory
error)

Whenever an execution of P terminates in state (s2, h2), then
(s2, h2) |= ϕ2

The total correctness specification [ϕ1]P[ϕ2] is valid iff starting from a
state (s1, h1) satisfying ϕ1,

No execution of P accesses an unallocated heap cell

Every execution of P terminates

When an execution of P terminates in state (s2, h2), then
(s2, h2) |= ϕ2

For programs without loops, both semantics coincide

Memory error checking unnecessary in well-specified programs

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 12 / 34

Hoare logic for a subset of our language

We will use partial correctness semantics

Base logic: Predicate logic (with quantifiers) with usual interpretted
functions and predicates over integers

Programs without any heap-manipulating instructions
I Reasoning about heap: Hongseok’s lectures over next 5 days

Restricted program constructs:
E ::= x | n | E + E | −E | . . . Heap-indepedent expr
B ::= E = E | E ≥ E | B ∧ B | ¬B Boolean condn
P ::= x := E | P;P | ifB thenP elseP | Standard constructs

whileB P Looping construct

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 13 / 34

Hoare logic: Assignment rule

Program construct:
E ::= x | n | E + E | −E | . . . Heap-indepedent expr
P ::= x := E Assignment statement

Hoare inference rule: If x is free in ϕ

{ϕ([x ← E])} x := E {ϕ(x)}

Examples:

{(x + z .y)2 > 28} x := x + z*y {x2 > 28}
I Identical to weakest precondition computation

{(z .y > 5) ∧ (∃x . y = xx)} x := z*y {(x > 5) ∧ (∃x . y = xx)}
I x must be free in ϕ

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 14 / 34

Hoare logic: Sequential composition rule

Program construct:
P ::= P;P Sequencing of commands

Hoare inference rule:

{ϕ} P1 {η} {η} P2 {ψ}

{ϕ} P1; P2 {ψ}

Example:
{y + z > 4} y := y + z− 1 {y > 3} {y > 3} x := y + 2 {x > 5}

{y + z > 4} y := y + z− 1; x := y + 2 {x > 5}

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 15 / 34

Hoare logic: Strengthening precedent, weakening
consequent

Hoare inference rule:

ϕ ⇒ ϕ1 {ϕ1} P {ϕ2} ϕ2 ⇒ ψ

{ϕ} P {ψ}

ϕ ⇒ ϕ1 and ϕ2 ⇒ ψ are implications in base (predicate) logic

Applicable to arbitrary program P

Example:
((y > 4) ∧ (z > 1)) ⇒ (y + z > 5) {y + z > 5} y := y + z {y > 5} (y > 5) ⇒ (y > 3)

{(y > 4) ∧ (z > 1)} y := y + z {y > 3}

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 16 / 34

Hoare logic: Conditional branch

Program construct:
E ::= x | n | E + E | −E | . . . Heap-indepedent expr
B ::= E = E | E ≥ E | B ∧ B | ¬B Boolean condn
P ::= ifB thenP elseP Conditional branch

Hoare inference rule:

{ϕ ∧ B} P1 {ψ} {ϕ ∧ ¬B} P2 {ψ}

{ϕ} ifB thenP1 elseP2 {ψ}

Example:
{(y > 4) ∧ (z > 1)} y := y + z {y > 3} {(y > 4) ∧ ¬(z > 1)} y := y− 1 {y > 3}

{y > 4} if (z > 1) then y := y+z else y := y-1 {y > 3}

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 17 / 34

Hoare logic: Partial correctness of loops
Program construct:
E ::= x | n | E + E | −E | . . . Heap-indepedent expr
B ::= E = E | E ≥ E | B ∧ B | ¬B Boolean condn
P ::= whileB P Looping construct

Hoare inference rule:

{ϕ ∧ B} P {ϕ}

{ϕ} whileB P {ϕ ∧ ¬B}

ϕ is a loop invariant

Partial correctness semantics
I If loop does not terminate, Hoare triple is vacuously satisfied
I If it terminates, (ϕ ∧ ¬B) must be satisfied after termination

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 18 / 34

Hoare logic: Partial correctness of loops

Hoare inference rule:

{ϕ ∧ B} P {ϕ}
{ϕ} whileB P {ϕ ∧ ¬B}

Example:
{(y = x + z) ∧ (z 6= 0)} x := x + 1; z := z− 1 {y = x + z}

{y = x + z} while (z != 0){x := x+1; z := z-1} {(y = x + z) ∧ (z = 0)}

{(y = x + z) ∧ true} x := x + 1; z := z− 1 {y = x + z}
{y = x + z} while (true){x := x+1; z := z-1} {(y = x + z) ∧ false}

{ϕ} while (true) P {ψ} holds vacuously for all ϕ, P and ψ

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 19 / 34

Summary of Hoare rules for our (sub-)language

{ϕ([x←E])} x := E {ϕ(x)} Assignment

{ϕ} P1 {η} {η} P2 {ψ}
{ϕ} P1;P2 {ψ} Seq. Composition

{ϕ∧B} P1 {ψ} {ϕ∧¬B} P2 {ψ}
{ϕ} ifB thenP1 elseP2 {ψ} Conditional branch

{ϕ∧B} P1 {ϕ}
{ϕ} while (B) P1 {ϕ∧¬B} While loop

ϕ1→ϕ {ϕ} P {ψ} ψ→ψ1

{ϕ1} P {ψ1} Precedent-strengthen

Antecedent-weaken

Proof system sound and relatively complete

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 20 / 34

Proving properties of simple programs

int foo(int n) { int bar(int n) {
local int k, int j; local int k, int j;
k := 0; k := 0;
j := 1; j := 1;
while (k != n) { while (k != n) {

k := k + 1; k := k + 1;
j := 2*j; j := 2 + j;

} }
return(j) return(j);

} }

Can we apply our rules to prove that if bar is called with n greater than 0,
it returns 1 + 2n?

Function bar has a while loop

Partial correctness: If bar is called with n greater than 0, and if bar
terminates, it returns 1 + 2n.

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 21 / 34

Proving properties of simple programs

Let P: Sequence of executable statements in bar

P :: k := 0;
j := 1;
while (k != n) {

k := k + 1;
j := 2 + j;

}

Our goal is to prove the validity of {n > 0} P {j = 1 + 2.n}

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 22 / 34

A Hoare logic proof

Sequential composition rule will give us a proof if we can fill in the
template:

{n > 0} Precondition
k := 0
{ϕ1} Midcondition

j := 1
{ϕ2} Midcondition

while (k != n) { k := k+1; j := 2+j}
{j = 1 + 2.n} Postcondition

How do we prove
{ϕ2} while (k != n) { k := k+1; j := 2+j} {j = 1 + 2.n}?
Recall rule for loops requires a loop invariant

“Guess” a loop invariant (j = 1 + 2.k)

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 23 / 34

A Hoare logic proof
To prove:
{ϕ2} while (k != n) k := k+1; j := 2+j {j = 1 + 2.n}
using loop invariant (j = 1 + 2.k)

If we can show:
ϕ2 ⇒ (j = 1 + 2.k)

{(j = 1 + 2.k) ∧ (k 6= n)} k := k+1; j:= 2+j {j = 1 + 2.k}
((j = 1 + 2.k) ∧ ¬(k 6= n)) ⇒ (j = 1 + 2.n)

then
By inference rule for loops
{(j = 1 + 2.k) ∧ (k 6= n)} k := k+1; j:= 2+j {j = 1 + 2.k}
{j = 1 + 2.k} while (k != n) k := k+1; j:= 2+j {(j = 1 + 2.k) ∧ ¬(k 6= n)}

By inference rule for strengthening precedents and weakening consequents
ϕ2 ⇒ (j = 1 + 2.k)

{j = 1 + 2.k} while (k != n) k := k+1; j:= 2+j {(j = 1 + 2.k) ∧ ¬(k 6= n)}
((j = 1 + 2.k) ∧ ¬(k 6= n)) ⇒ (j = 1 + 2.n)

{ϕ2} while (k != n) k := k+1; j:= 2+j {(j = 1 + 2.n)}
Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 24 / 34

A Hoare logic proof

How do we show:

ϕ2 ⇒ (j = 1 + 2.k)

{(j = 1 + 2.k) ∧ (k 6= n)} k := k+1; j:= 2+j {j = 1 + 2.k}
((j = 1 + 2.k) ∧ ¬(k 6= n)) ⇒ (j = 1 + 2.n)

Note:

ϕ2 ⇒ (j = 1 + 2.k) holds trivially if ϕ2 is (j = 1 + 2.k)

((j = 1 + 2.k) ∧ ¬(k 6= n)) ⇒ (j = 1 + 2.n) holds trivially in integer
arithmetic

Only remaining proof subgoal:
{(j = 1 + 2.k) ∧ (k 6= n)} k := k+1; j:= 2+j {j = 1 + 2.k}

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 25 / 34

A Hoare logic proof

To show:
{(j = 1 + 2.k) ∧ (k 6= n)} k := k+1; j:= 2+j {j = 1 + 2.k}

Applying assignment rule twice
{2 + j = 1 + 2.k} j := 2+j {j = 1 + 2k}

{2 + j = 1 + 2.(k + 1)} k := k+1 {2 + j = 1 + 2.k}

Simplifying and applying sequential composition rule
{1 + j = 2.k} j := 2+j {j = 1 + 2k}
{j = 1 + 2.k)} k := k+1 {1 + j = 2.k}

{j = 1 + 2.k} k := k+1; j := 2+j {j = 1 + 2.k}

Applying rule for strengthening precedent
(j = 1 + 2.k) ∧ (k 6= n)} ⇒ (j = 1 + 2.k)

{j = 1 + 2.k} k := k+1; j := 2+j {j = 1 + 2.k}
{(j = 1 + 2.k) ∧ (k 6= n)} k := k+1; j := 2+j {j = 1 + 2.k}

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 26 / 34

A Hoare logic proof

We have thus shown that with ϕ2 as (j = 1 + 2.k)
{ϕ2} while (k != n) k := k+1; j := 2+j {j = 1 + 2.n} is valid

Recall our template:
{n > 0} Precondition
k := 0
{ϕ1} Midcondition

j := 1
{ϕ2 : j = 1 + 2.k} Midcondition

while (k != n) k := k+1; j := 2+j
{j = 1 + 2.n} Postcondition

The only missing link now is to show

{n > 0} k := 0 {ϕ1} and
{ϕ1} j := 1 {j = 1 + 2.k}

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 27 / 34

A Hoare logic proof
To show
{n > 0} k := 0 {ϕ1} and
{ϕ1} j := 1 {j = 1 + 2.k}

Applying assignment rule twice and simplifying:
{0 = k} j := 1 {j = 1 + 2.k}
{true} k := 0 {0 = k}

Choose ϕ1 as (k = 0), so {ϕ1} j := 1 {j = 1 + 2.k} holds.
Applying rule for strengthening precedent:

(n > 0) ⇒ true
{true} k := 0 {ϕ1 : k = 0}
{n > 0} k := 0 {ϕ1 : k = 0}

We have proved partial correctness of function bar in Hoare Logic !!!

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 28 / 34

Exercise

Try proving the other program using the following template:

{n > 0} Precondition
k := 0
{ϕ1} Midcondition

j := 1
{ϕ2} Midcondition

while (k != n) k := k+1; j := 2*j
{j = 2n} Postcondition

Hint: Use the loop invariant (j = 2k)

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 29 / 34

A few sticky things

We “guessed” the right loop invariant
I A weaker invariant than (j = 1 + 2.k) would not have allowed us to

complete the proof.
I Finding the strongest invariant of a loop: Undecidable in general!

Annotations can help
I Programmer annotates her intended loop invariant
I This is not the same as giving a proof of correctness
I But can significantly simplify constructing a proof
I Checking whether a formula is a loop invariant much simpler than

finding a loop invariant

Tools to infer midconditions from annotations exist

Some tools claim to infer midconditions directly from code
I Cannot infer strong enough invariants in all cases
I Otherwise we could check if a Turing Machine halts !!!

A powerful technique for proving program correctness, but requires
some help from user (by way of providing annotations)

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 30 / 34

Some structural rules in Hoare logic
Structural rules do not depend on program statements

{ϕ1} P {ψ1} {ϕ2} P {ψ2}
{ϕ1∧ϕ2} P {ψ1∧ψ2} Conjunction

{ϕ1} P {ψ1} {ϕ2} P {ψ2}
{ϕ1∨ϕ2} P {ψ1∨ψ2} Disjunction

{ϕ} P {ψ}
{∃v . ϕ} P {∃v . ψ} Exist-quantification (v not free in P)

{ϕ} P {ψ}
{∀v . ϕ} P {∀v . ψ} Univ-quantification (v not free in P)

We have not given an exhaustive listing of rules

Just sufficient to get a hang of Hoare-style proofs

Other rules exist for procedure calls and even concurrency!

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 31 / 34

What breaks with heap accesses?
Consider a code fragment

L0: local ptr int x, ptr int y;
L1: x := y;
L2: *x := 5;
L3: *y := 7;
L4: *x := 10;

When control flow reaches L4, the assertion (x 7→ 7)∧ (y 7→ 7) holds.

Only *y is assigned to in statement at L3.

However, the following Hoare triple (in the spirit of the assignment
rule) is not valid:

{(x 7→ 7) ∧ (7 = 7)} *y := 7 {(x 7→ 7) ∧ (y 7→ 7)}

I Although *x is not explicitly assigned to by statement at L3, the truth
of predicate (x 7→ 7) changes

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 32 / 34

What breaks with heap accesses?
Without heap (shared resource) accesses, the following Rule of Constancy
holds in Hoare Logic:

{ϕ} P {ψ}
{ϕ ∧ ξ} P {ψ ∧ ξ}

where no free variable of ξ is modified by P.

This rule fails with heap (shared resource) accesses due to aliasing

{∃t. x 7→ t} *x := 5 {x 7→ 5}
{(∃t. x 7→ t) ∧ (y 7→ 5)} *x := 5 {(x 7→ 5) ∧ (y 7→ 5)}

is not a sound inference rule if x = y .

This motivates the need for special rules for heap accesses

We’ll learn about separation logic in the next few days.

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 33 / 34

Conclusion

We saw a brief glimpse of Hoare logic and Hoare-style proofs

Hoare-style proofs have been extensively used over the past few
decades to prove subtle properties of complicated programs

This approach works best with programmer-provided annotations

The use of automated theorem provers and programmer annotations
has allowed application of Hoare-style reasoning to medium sized
programs quite successfully.

Key-Hoare (from Chalmers University): A tool suite for
teaching/learning about Hoare logic

Scalability of Hoare-style reasoning is sometimes an issue

Yet, this is one of the most elegant techniques available for proving
properties of programs

Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 34 / 34

