- The quiz is open book and notes.
- Results/proofs covered in class/problem sessions/assignments may simply be cited, unless specifically asked for.
- Unnecessarily lengthy solutions will be penalized.
- If you need to make any assumptions, state them clearly.

- Do not copy solutions from others or indulge in unfair means.

Consider the program P given below:

```
L0: t1 := x;
L1: t2 := y;
L2: i := 0;
L3: while ((t1 != 0) AND (t2 != 0))
L4: t1 := *t1;
L5: t2 := *t2;
L6: i := i+1;
L7: // end of while loop
```

Let mylist (x) and mylistlen (x, n) be recursive predicates defined as follows:

$$
\operatorname{mylist}(x) \equiv(x=0) \vee \exists z \cdot((x \mapsto z) \star \operatorname{mylist}(z))
$$

$$
\operatorname{mylistlen}(x, n) \equiv((n=0) \wedge(x=0)) \vee((n>0) \wedge \exists z .((x \mapsto z) \star \text { mylistlen }(z, n-1)))
$$

Informally, mylist (x) says that x is a NULL-terminated list (including the degenerate case when x is itself 0), and mylistlen (x, n) says that x is a NULL-terminated list of n elements (for $n \geq 0$).
We want to prove $\{\varphi\} \mathrm{P}\{\psi\}$, where $\varphi \equiv(\operatorname{mylistlen}(x, m) \star \operatorname{mylistlen}(y, n))$ and $\psi \equiv(i=\min (m, n)$). Note that m and n are auxiliary variables that do not appear in the program. Instead of proving $\{\varphi\} P$ $\{\psi\}$ (call this Hoare triple HT1) directly, we will first prove $\{\varphi \wedge(m \leq n)\} \mathrm{P}\{(i=m) \wedge(m \leq n)\}$ (call it HT2). By symmetry of the formulas and of the program P , this would also give us a proof of $\{\varphi \wedge(n \leq m)\}$ P $\{(i=n) \wedge(n \leq m)\}$ (call it HT3). HT1 can then be obtained from HT2 and HT3 by disjoining the corresponding pre-conditions and post-conditions.
So our goal now is to prove HT2: $\{\operatorname{mylistlen}(x, m) \star \operatorname{mylistlen}(y, n) \wedge(m \leq n)\} \mathrm{P}\{(i=m) \wedge(m \leq n)\}$. The real meat of such a proof is obtaining the loop invariant at L3.
Show that $\xi \equiv$ mylistlen $(t 1, m-i) \star$ mylistlen $(t 2, n-i) \wedge(m \leq n)$ suffices as a loop invariant to prove HT2. In other words, you must show the following three facts:

1. [3 marks] $\{\varphi \wedge(m \leq n)\}$ L0: ... L1: ... L2: ... $\{\xi\}$
2. [8 marks] $\{\xi \wedge(t 1 \neq 0) \wedge(t 2 \neq 0)\}$ L4: ... L5: ... L6: ... $\{\xi\}$
3. [4 marks] $\xi \wedge((t 1=0) \vee(t 2=0)) \Rightarrow\{(i=m) \wedge(m \leq n)\}$.
