- The exam is open book and notes.
- Results/proofs covered in class/problem sessions/assignments may simply be cited, unless specifically asked for.
- Unnecessarily lengthy solutions will be penalized.
- If you need to make any assumptions, state them clearly.
- Do not copy solutions from others or indulge in unfair means.

1. $[10+10$ marks $]$ Consider the following program P in the language studied in class.
```
L1: t := x;
L2: while (t != y)
L3: t1 := *t;
L4: if (t1 = 0) then
L5: *t := y;
L6: else
L7: *t := t1;
L8: t := *t;
L9: // end of while loop
```

Let list1 (u, v) and list2 (u, v) be recursive predicates defined using separation logic as follows:

$$
\begin{gathered}
\operatorname{list} 1(u, v)=(u \mapsto v) \vee \exists w \cdot((u \mapsto w) \star \operatorname{list1}(w, v)) \\
\operatorname{list2} 2(u, v)=((u \mapsto 0) \star(v \mapsto 0)) \vee \exists p, q \cdot((u \mapsto p) \star(v \mapsto q) \star \operatorname{list2}(p, q))
\end{gathered}
$$

Prove the following Hoare triples.
(a) $\{\operatorname{list} 1(x, p) \star \operatorname{list} 1(y, p) \star \operatorname{list} 1(p, 0)\} P\{\operatorname{list} 1(x, p) \star \operatorname{list} 1(p, p)\}$
(b) $\{\operatorname{list} 2(x, y)\} P\{\operatorname{list} 1(x, 0)\}$.

In the above proofs, you can make use of the fact that $\operatorname{list} 1(u, v) \star \operatorname{list} 1(v, w) \vdash \operatorname{list} 1(u, w)$ for all u, v, w.
2. [10 marks] The following program Q is written in the language studied in class.

```
L1: let \(f(x)=\)
L2: if ( \(\mathrm{x}>=0\) ) then
L3: ret \(:=-x\);
L4: else
L5: ret \(:=1-\mathrm{f}(\mathrm{x}+1)\);
L6: in
L7: i :=0;
L8: while (v ! = 0)
L9: \(\quad v:=f(v)\);
L10: \(\quad\) i \(:=\) i +1 ;
L11: // end of program
```

Indicate whether $\{$ True $\}$ Q $\{0 \leq i \leq 5\}$ is a valid Hoare triple. If yes, you must give a proof. Otherwise, you must provide a counterexample, i.e. a state that satisfies the pre-condition, but violates the post-

