CS615 Quiz 2

- Be brief, complete and stick to what has been asked.
- Unless asked for explicitly, you may cite results/proofs covered in class without reproducing them.
- If you need to make any assumptions, state them clearly.
- Do not copy solutions from others. Penalty for offenders: FR grade.

We have studied a bit about intervals as an abstract domain. For a program with n variables (for simplicity, let us consider all variables of type int), an element of the interval abstract domain is an n-tuple of intervals, where each interval is of one of the following forms:

- [l, u] where l, u are integers and $l \le u$
- $(-\infty, u)$ where u is an integer
- $[l, +\infty)$ where l is an integer
- $(-\infty, +\infty)$
- (), denoting the empty interval

Suppose the abstract state at a particular point of program analysis is given by $(I_1, I_2, \ldots I_n)$, where each I_k is an interval of one of the forms mentioned above. Intuitively, I_k gives an overapproximation of the interval in which the value of the k^{th} program variable lies at that point of the program analysis.

Now suppose we were to use a slightly more complex abstract domain where every element of the abstract domain is an *n*-tuple of *pairs of intervals* (once again, for a program with *n* integer variables). Let (I_k, J_k) denote the k^{th} pair of intervals in an abstract state at a particular point of program analysis. We wish to interpret the abstract state as specifying that the value of the k^{th} program variable either lies in the interval I_k or J_k . Note that I_k and J_k may represent disjoint intervals on the integer line.

We wish to have the new abstract domain as a lattice.

- 1. [10 marks] Give an effective definition of the \sqsubseteq relation in the new abstract domain. In other words, given abstract elements $a = ((I_1, J_1), \dots, (I_n, J_n))$ and $b = ((I'_1, J'_1), \dots, (I'_n, J'_n))$, describe how you would determine if $a \sqsubseteq b$.
- 2. [10 marks] Give an effective definition of the *lub* and *glb* operators in the new abstract domain. Thus, you must give an algorithm to compute the *lub* and *glb* of a pair of abstract elements.
- 3. [10 marks] Give an effective definition of the ∇ operator in the new abstract domain. Once again, you must give an algorithm to compute the result of applying ∇ .