First Order Logic: A Brief Introduction (Parts 1 and 2)

Supratik Chakraborty IIT Bombay

Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction (Parts 1 and 2)

- ∢ ⊒ →

Notation

- Variables: x, y, z, ...
 - Represent elements of an underlying set
- Constants: *a*, *b*, *c*, . . .
 - Specific elements of underlying set
- Function symbols: f, g, h, \ldots
 - Arity of function: # of arguments
 - 0-ary functions: constants
- Relation (predicate) symbols: P, Q, R, ...
 - Hence, also called "predicate calculus"
 - Arity of predicate: # of arguments
- Fixed symbols:
 - Carried over from prop. logic: $\land,~\lor,~\neg,~\rightarrow,~\leftrightarrow,~(,~)$
 - New in FOL: \exists , \forall ("quantifiers")

・ロト ・回ト ・ヨト ・ヨト

- A special binary predicate, used widely in maths
- Represented by special predicate symbol "="
- Semantically, binary identity relation (more on this later ...)
- First-order logic with equality
 - Different expressive power vis-a-vis first-order logic
 - Most of our discussions will assume availability of "="
 - Refer to as "first-order logic" unless the distinction is important

Two classes of syntactic objects: terms and formulas

Terms
 Every variable is a term
• If f is an m -ary function, t_1, \ldots, t_m are terms, then
$f(t_1,\ldots,t_m)$ is also a term

Atomic formulas

- If R is an *n*-ary predicate, t_1, \ldots, t_n are terms, then $R(t_1, \ldots, t_m)$ is an atomic formula
- Special case: $t_1 = t_2$

(ロ) (同) (E) (E) (E)

Syntax of FOL

- Primitive fixed symbols: \land , \neg , \exists
 - Other choices also possible: E.g., \lor, \neg, \forall

Rules for formuling formulas

- Every atomic formula is a formula
- If φ is a formula, so are $\neg \varphi$ and (φ)
- If φ_1 and φ_2 are formulas, so is $\varphi_1 \wedge \varphi_2$
- If φ is a formula, so is $\exists x \varphi$ for any variable x
- Formulas with other fixed symbols definable in terms of formulas with primitive symbols.

•
$$\varphi_1 \lor \varphi_2 \triangleq \neg (\neg \varphi_1 \land \neg \varphi_2)$$

•
$$\varphi_1 \to \varphi_2 \triangleq \neg \varphi_1 \lor \varphi_2$$

•
$$\varphi_1 \leftrightarrow \varphi_2 \triangleq (\varphi_1 \rightarrow \varphi_2) \land (\varphi_2 \rightarrow \varphi_1)$$

• $\forall x \varphi \triangleq \neg (\exists x \neg \varphi)$

イロト イポト イヨト イヨト

- Alphabet (over which strings are constructed):
 - Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
 - Set of constants, functions, predicates, e.g. $\{a, b, f, =, P\}$
 - Fixed symbols $\{\neg, \lor, \land, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Well-formed formula: string formed according to rules on prev. slide
 - ∀x₁(∀x₂ (((x₁ = a) ∨ (x₁ = b)) ∧ ¬(f(x₂) = f(x₁)))) is well-formed
 - $\forall (\forall x_1(x_1 = ab) \neg ()x_2)$ is not well-formed
- Well-formed formulas can be represented using parse trees
 - Consider the rules on prev. slide as production rules in a context-free grammar

• Alphabet (over which strings are constructed):

- Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
- Set of constants, functions, predicates, e.g. {*a*, *b*, *f*,=}: Vocabulary
- Fixed symbols $\{\neg, \lor, \land, \rightarrow, \leftrightarrow, \exists, \forall\}$

(4回) (4回) (4回)

• Alphabet (over which strings are constructed):

- Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
- Set of constants, functions, predicates, e.g. {*a*, *b*, *f*,=}: Vocabulary
- Fixed symbols $\{\neg, \lor, \land, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Smallest vocabulary to generate $\forall x_1(\forall x_2(((x_1 = a) \lor (x_1 = b)) \land \neg(f(x_2) = f(x_1))))?$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Alphabet (over which strings are constructed):

- Set of variable names, e.g. $\{x_1, x_2, y_1, y_2\}$
- Set of constants, functions, predicates, e.g. {*a*, *b*, *f*,=}: Vocabulary
- Fixed symbols $\{\neg, \lor, \land, \rightarrow, \leftrightarrow, \exists, \forall\}$
- Smallest vocabulary to generate ∀x₁(∀x₂ (((x₁ = a) ∨ (x₁ = b)) ∧ ¬(f(x₂) = f(x₁))))?
 {a, b, f, =}

▲圖▶ ★ 国▶ ★ 国▶

• If φ is an atomic formula, free $(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, free $(\varphi) =$ free (ψ)

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, free $(\varphi) =$ free $(\varphi_1) \cup$ free (φ_2)

• if
$$\varphi = \exists x \varphi_1$$
, free $(\varphi) =$ free $(\varphi_1) \setminus \{x\}$

(4回) (4回) (4回)

• If φ is an atomic formula, free $(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, free $(\varphi) =$ free (ψ)

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, free $(\varphi) =$ free $(\varphi_1) \cup$ free (φ_2)

• if
$$\varphi = \exists x \, \varphi_1$$
, free $(\varphi) = \mathsf{free}(\varphi_1) \setminus \{x\}$

• What is free($(\exists x P(x, y)) \land (\forall y Q(x, y)))$?

▲圖▶ ★ 国▶ ★ 国▶

• If φ is an atomic formula, free $(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, free $(\varphi) =$ free (ψ)

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, free $(\varphi) =$ free $(\varphi_1) \cup$ free (φ_2)

• if
$$\varphi = \exists x \varphi_1$$
, free $(\varphi) =$ free $(\varphi_1) \setminus \{x\}$

• What is free($(\exists x P(x, y)) \land (\forall y Q(x, y))$)?

• = free((
$$\exists x P(x, y)$$
)) \cup free($\forall y Q(x, y)$)

• = free
$$(P(x, y)) \setminus \{x\} \cup \text{free}(Q(x, y)) \setminus \{y\}$$

• =
$$\{x, y\} \setminus \{x\} \cup \{x, y\} \setminus \{y\} = \{x, y\}$$

▲圖▶ ★ 国▶ ★ 国▶

• If φ is an atomic formula, free $(\varphi) = \{x \mid x \text{ occurs in } \varphi\}$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, free $(\varphi) =$ free (ψ)

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, free $(\varphi) =$ free $(\varphi_1) \cup$ free (φ_2)

• if
$$\varphi = \exists x \varphi_1$$
, free $(\varphi) =$ free $(\varphi_1) \setminus \{x\}$

• What is free($(\exists x P(x, y)) \land (\forall y Q(x, y))$)?

• = free((
$$\exists x P(x, y)$$
)) \cup free($\forall y Q(x, y)$)

- = free(P(x, y)) \ {x} \cup free(Q(x, y)) \ {y}
- = $\{x, y\} \setminus \{x\} \cup \{x, y\} \setminus \{y\} = \{x, y\}$

If φ has free variables $\{x, y\}$, we write $\varphi(x, y)$ A formula with no free variables is a **sentence**, e.g. $\exists x \forall y f(x) = y$

イロト イポト イヨト イヨト

Bound Variables in a Formula

Bound variables are those that are quantified in a formula. Let $bnd(\varphi)$ denote the set of bound variables in φ

• If
$$arphi$$
 is an atomic formula, $\mathsf{bnd}(arphi) = \emptyset$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\psi)$

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \mathsf{bnd}(\varphi_2)$

• if
$$\varphi = \exists x \, \varphi_1$$
, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \{x\}$

Bound Variables in a Formula

Bound variables are those that are quantified in a formula. Let $bnd(\varphi)$ denote the set of bound variables in φ

• If
$$arphi$$
 is an atomic formula, $\mathsf{bnd}(arphi) = \emptyset$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\psi)$

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \mathsf{bnd}(\varphi_2)$

• if
$$\varphi = \exists x \, \varphi_1$$
, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \{x\}$

• What is
$$bnd((\exists x P(x, y)) \land (\forall y Q(x, y)))$$
?

Bound Variables in a Formula

Bound variables are those that are quantified in a formula. Let $bnd(\varphi)$ denote the set of bound variables in φ

• If
$$arphi$$
 is an atomic formula, $\mathsf{bnd}(arphi) = \emptyset$

• If
$$\varphi = \neg \psi$$
 or $\varphi = (\psi)$, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\psi)$

• If
$$\varphi = \varphi_1 \land \varphi_2$$
, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \mathsf{bnd}(\varphi_2)$

• if
$$\varphi = \exists x \varphi_1$$
, $\mathsf{bnd}(\varphi) = \mathsf{bnd}(\varphi_1) \cup \{x\}$

• What is bnd($(\exists x P(x, y)) \land (\forall y Q(x, y)))$?

• = bnd((
$$\exists x P(x, y)$$
)) \cup bnd($\forall y Q(x, y)$)

• = bnd(
$$P(x, y)$$
) \cup {x} \cup bnd($Q(x, y)$) \cup {y}

$$\bullet = \emptyset \cup \{x\} \cup \emptyset \cup \{y\}$$

• =
$$\{x\} \cup \{y\} = \{x, y\} !!!$$

• free(φ) and bnd(φ) are not complements!

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Suppose $x \in \text{free}(\varphi)$ and t is any term.

We wish to replace every free occurrence of x in φ with t, such that free variables in t stay free in the resulting formula.

Term t is free for x in φ if no free occurrence of x in φ is in the scope of $\forall y$ or $\exists y$ for any variable y occurring in t.

- $\varphi \triangleq \exists y R(x, y) \lor \forall x R(z, x)$, and t is f(z, x)
- f(z,x) is free for x in φ , but f(y,x) is not

 $\varphi[t/x]$: Formula obtained by replacing each free occurrence of x in φ by t, if t is free for x in φ

• For φ defined above, $\varphi[f(z,x)/x] \triangleq \exists y R(f(z,x),y) \lor \forall x R(z,x)$

(1) マン・ション・ (1) マン・

$$\varphi \triangleq \forall x \forall y \left(P(x, y) \to \exists z \left(\neg (z = x) \land \neg (z = y) \land P(x, z) \land P(z, y) \right) \right)$$

æ

$$\varphi \triangleq \forall x \forall y (P(x, y) \to \exists z (\neg (z = x) \land \neg (z = y) \land P(x, z) \land P(z, y))$$

English reading: For every x and y, if P(x, y) holds, we can find z distinct from x and y such that both P(x, z) and P(z, y) hold.

・回 ・ ・ ヨ ・ ・ ヨ ・

$$\varphi \triangleq \forall x \forall y (P(x, y) \to \exists z (\neg (z = x) \land \neg (z = y) \land P(x, z) \land P(z, y))$$

English reading: For every x and y, if P(x, y) holds, we can find z distinct from x and y such that both P(x, z) and P(z, y) hold. **Case 1:**

- Variables take values from real numbers
- P(x, y) represents $\mathbf{x} < \mathbf{y}$
- English reading simply states "real numbers are dense"
- φ is true

(4月) (4日) (4日)

$$\varphi \triangleq \forall x \forall y (P(x, y) \to \exists z (\neg (z = x) \land \neg (z = y) \land P(x, z) \land P(z, y))$$

Case 2:

- Variables take values from real numbers
- P(x, y) represents $\mathbf{x} \leq \mathbf{y}$
- English reading requires the following to be true
 - If x = y, there is a z such that $z \neq x$, $x \leq z$ and $z \leq x$

• Thus,
$$z \neq x$$
 and $z = x$

• φ is false

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$\varphi \triangleq \forall x \forall y (P(x, y) \to \exists z (\neg (z = x) \land \neg (z = y) \land P(x, z) \land P(z, y))$$

Case 3:

- Variables take values from natural numbers
- P(x, y) represents $\mathbf{x} < \mathbf{y}$
- English reading states that "natural numbers are dense"
- φ is false

・ 回 ト ・ ヨ ト ・ ヨ ト

$$\varphi \triangleq \forall x \forall y (P(x, y) \to \exists z (\neg (z = x) \land \neg (z = y) \land P(x, z) \land P(z, y))$$

Case 3:

- Variables take values from natural numbers
- P(x, y) represents $\mathbf{x} < \mathbf{y}$
- English reading states that "natural numbers are dense"
- φ is false

Truth of φ depends on the underlying set from which variables take values, and on how constants, functions, predicates are interpreted

・ 同 ト ・ ヨ ト ・ ヨ ト …

Vocabulary \mathcal{V} : E.g. \mathcal{V} : {a, f, =, R}

(本部) (本語) (本語) (語)

Vocabulary \mathcal{V} : E.g. \mathcal{V} : $\{a, f, =, R\}$ \mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ $free(\varphi) = \{y\}$

・ 「 ト ・ ヨ ト ・ ヨ ト ・

Vocabulary \mathcal{V} : E.g. \mathcal{V} : $\{a, f, =, R\}$ \mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ $free(\varphi) = \{y\}$

Truth of φ depends on

・ 同 ト ・ ヨ ト ・ ヨ ト …

Vocabulary \mathcal{V} : E.g. \mathcal{V} : $\{a, f, =, R\}$ \mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ $free(\varphi) = \{y\}$

Truth of φ depends on

1 Universe U from which variables take values, e.g. \mathbb{N}

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Vocabulary \mathcal{V} : E.g. \mathcal{V} : $\{a, f, =, R\}$ \mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ $free(\varphi) = \{y\}$

Truth of φ depends on

- **1** Universe U from which variables take values, e.g. \mathbb{N}
- 2 Interpretation of vocabulary \mathcal{V} on U

・ 同 ト ・ ヨ ト ・ ヨ ト …

Vocabulary \mathcal{V} : E.g. \mathcal{V} : $\{a, f, =, R\}$ \mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ $free(\varphi) = \{y\}$

Truth of φ depends on

- **1** Universe U from which variables take values, e.g. \mathbb{N}
- **2** Interpretation of vocabulary \mathcal{V} on U
 - Map each constant symbol to an element of U, e.g. $a \mapsto 0$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Vocabulary \mathcal{V} : E.g. \mathcal{V} : $\{a, f, =, R\}$ \mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ $free(\varphi) = \{y\}$

Truth of φ depends on

- **1** Universe U from which variables take values, e.g. \mathbb{N}
- **2** Interpretation of vocabulary \mathcal{V} on U
 - Map each constant symbol to an element of U, e.g. $a \mapsto 0$
 - Map each *n*-ary function symbol to a function from U^n to U, e.g. f(u, v) = u + v

▲□→ ▲注→ ▲注→

Vocabulary \mathcal{V} : E.g. \mathcal{V} : $\{a, f, =, R\}$ \mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ $free(\varphi) = \{y\}$

Truth of φ depends on

- **1** Universe U from which variables take values, e.g. \mathbb{N}
- **2** Interpretation of vocabulary \mathcal{V} on U
 - Map each constant symbol to an element of U, e.g. $a \mapsto 0$
 - Map each *n*-ary function symbol to a function from U^n to U, e.g. f(u, v) = u + v
 - Map each *m*-ary predicate symbol to a subset of U^m
 e.g. Interp. for =: {(c, c) | c ∈ N} fixed interpretation Interp. for R : {(c, d) | c, d ∈ U, c < d}

Vocabulary \mathcal{V} : E.g. \mathcal{V} : $\{a, f, =, R\}$ \mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ $free(\varphi) = \{y\}$

Truth of φ depends on

- **1** Universe U from which variables take values, e.g. \mathbb{N}
- **2** Interpretation of vocabulary \mathcal{V} on U
 - Map each constant symbol to an element of U, e.g. $a \mapsto 0$
 - Map each *n*-ary function symbol to a function from U^n to U, e.g. f(u, v) = u + v
 - Map each *m*-ary predicate symbol to a subset of U^m
 e.g. Interp. for =: {(c, c) | c ∈ N} fixed interpretation Interp. for R : {(c, d) | c, d ∈ U, c < d}

1 and 2 define a \mathcal{V} -structure $M = (U^M, (a^M, f^M, R^M))$

Vocabulary \mathcal{V} : E.g. \mathcal{V} : $\{a, f, =, R\}$ \mathcal{V} -formula: E.g. $\varphi \triangleq \exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ $free(\varphi) = \{y\}$

Truth of φ depends on

- **1** Universe U from which variables take values, e.g. \mathbb{N}
- **2** Interpretation of vocabulary \mathcal{V} on U
 - Map each constant symbol to an element of U, e.g. $a \mapsto 0$
 - Map each *n*-ary function symbol to a function from U^n to U, e.g. f(u, v) = u + v
 - Map each *m*-ary predicate symbol to a subset of U^m
 e.g. Interp. for =: {(c, c) | c ∈ N} fixed interpretation Interp. for R : {(c, d) | c, d ∈ U, c < d}

1 and 2 define a \mathcal{V} -structure $M = (U^M, (a^M, f^M, R^M))$

Given structure *M* and binding α , does φ evaluate to **true**? Notationally, does **M**, $\alpha \models \varphi$?

▲□ → ▲ □ → ▲ □ → …

Given structure *M* and binding α , does φ evaluate to **true**? Notationally, does **M**, $\alpha \models \varphi$?

• Extend α : free $(\varphi) \rightarrow U^M$ to $\overline{\alpha}$: $Terms(\varphi) \rightarrow U^M$

• If
$$t$$
 is a variable x , $\overline{lpha}(t) = lpha(x)$

• If t is
$$f(t_1, \ldots, t_m)$$
, $\overline{\alpha}(t) = f^{M}(\overline{\alpha}(t_1), \ldots, \overline{\alpha}(t_m))$

(日本) (日本) (日本)

Given structure *M* and binding α , does φ evaluate to **true**? Notationally, does **M**, $\alpha \models \varphi$?

- Extend α : free $(\varphi) \rightarrow U^M$ to $\overline{\alpha}$: $Terms(\varphi) \rightarrow U^M$
 - If t is a variable x, $\overline{\alpha}(t) = \alpha(x)$
 - If t is $f(t_1, \ldots, t_m)$, $\overline{\alpha}(t) = f^M(\overline{\alpha}(t_1), \ldots, \overline{\alpha}(t_m))$

• In prev. example, $\overline{\alpha}(f(y,a)) = f^M(\alpha(y), a^M) = 2 + 0 = 2$

・ 戸 ト ・ ヨ ト ・ ヨ ト ・
Given structure *M* and binding α , does φ evaluate to **true**? Notationally, does **M**, $\alpha \models \varphi$?

- Extend α : free $(\varphi) \rightarrow U^M$ to $\overline{\alpha}$: $Terms(\varphi) \rightarrow U^M$
 - If t is a variable x, $\overline{\alpha}(t) = \alpha(x)$
 - If t is $f(t_1, \ldots, t_m)$, $\overline{\alpha}(t) = f^M(\overline{\alpha}(t_1), \ldots, \overline{\alpha}(t_m))$

• In prev. example, $\overline{\alpha}(f(y,a)) = f^M(\alpha(y), a^M) = 2 + 0 = 2$

• If φ is an atomic formula

•
$$M, \alpha \models (t_1 = t_2)$$
 iff $\overline{\alpha}(t_1)$ and $\overline{\alpha}(t_2)$ coincide

•
$$M, \alpha \models P(t_1, \ldots, t_m) \text{ iff } (\overline{\alpha}(t_1), \ldots, \overline{\alpha}(t_m)) \in P^M$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Given structure *M* and binding α , does φ evaluate to **true**? Notationally, does **M**, $\alpha \models \varphi$?

- Extend α : free $(\varphi) \rightarrow U^M$ to $\overline{\alpha}$: $Terms(\varphi) \rightarrow U^M$
 - If t is a variable x, $\overline{\alpha}(t) = \alpha(x)$
 - If t is $f(t_1, \ldots, t_m)$, $\overline{\alpha}(t) = f^M(\overline{\alpha}(t_1), \ldots, \overline{\alpha}(t_m))$

• In prev. example, $\overline{\alpha}(f(y, a)) = f^M(\alpha(y), a^M) = 2 + 0 = 2$

• If φ is an atomic formula

•
$$M, \alpha \models (t_1 = t_2)$$
 iff $\overline{\alpha}(t_1)$ and $\overline{\alpha}(t_2)$ coincide

•
$$M, \alpha \models P(t_1, \dots, t_m) \text{ iff } (\overline{\alpha}(t_1), \dots, \overline{\alpha}(t_m)) \in P^M$$

• In prev. example, suppose $\alpha'(x) = 1, \alpha'(y) = 2$. Then $M, \alpha' \models R(x, f(y, a))$ as $(\overline{\alpha'}(x), \overline{\alpha'}(f(y, a))) = (1, 2) \in R^M$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Given structure *M* and binding α , does φ evaluate to **true**? Notationally, does **M**, $\alpha \models \varphi$?

- Extend α : free $(\varphi) \rightarrow U^M$ to $\overline{\alpha}$: $Terms(\varphi) \rightarrow U^M$
 - If t is a variable x, $\overline{\alpha}(t) = \alpha(x)$

• If t is
$$f(t_1, \ldots, t_m)$$
, $\overline{\alpha}(t) = f^M(\overline{\alpha}(t_1), \ldots, \overline{\alpha}(t_m))$

• In prev. example, $\overline{\alpha}(f(y,a)) = f^M(\alpha(y), a^M) = 2 + 0 = 2$

• If φ is an atomic formula

•
$$M, \alpha \models (t_1 = t_2)$$
 iff $\overline{\alpha}(t_1)$ and $\overline{\alpha}(t_2)$ coincide

•
$$M, \alpha \models P(t_1, \dots, t_m)$$
 iff $(\overline{\alpha}(t_1), \dots, \overline{\alpha}(t_m)) \in P^M$

• In prev. example, suppose $\alpha'(x) = 1, \alpha'(y) = 2$. Then $M, \alpha' \models R(x, f(y, a))$ as $(\overline{\alpha'}(x), \overline{\alpha'}(f(y, a))) = (1, 2) \in R^M$.

• $M, \alpha \models \neg \varphi_i$ iff $M, \alpha \not\models \varphi_1$

- 4 周 ト 4 日 ト 4 日 ト - 日

Given structure *M* and binding α , does φ evaluate to **true**? Notationally, does **M**, $\alpha \models \varphi$?

- Extend α : free $(\varphi) \rightarrow U^M$ to $\overline{\alpha}$: $Terms(\varphi) \rightarrow U^M$
 - If t is a variable x, $\overline{\alpha}(t) = \alpha(x)$
 - If t is $f(t_1, \ldots, t_m)$, $\overline{\alpha}(t) = f^{\dot{M}}(\overline{\alpha}(t_1), \ldots, \overline{\alpha}(t_m))$

• In prev. example, $\overline{\alpha}(f(y,a)) = f^M(\alpha(y), a^M) = 2 + 0 = 2$

• If φ is an atomic formula

•
$$M, \alpha \models (t_1 = t_2)$$
 iff $\overline{\alpha}(t_1)$ and $\overline{\alpha}(t_2)$ coincide

•
$$M, \alpha \models P(t_1, \dots, t_m)$$
 iff $(\overline{\alpha}(t_1), \dots, \overline{\alpha}(t_m)) \in P^M$

• In prev. example, suppose $\alpha'(x) = 1, \alpha'(y) = 2$. Then $M, \alpha' \models R(x, f(y, a))$ as $(\overline{\alpha'}(x), \overline{\alpha'}(f(y, a))) = (1, 2) \in R^M$.

•
$$M, \alpha \models \neg \varphi_i$$
 iff $M, \alpha \not\models \varphi_1$

• $M, \alpha \models \varphi_1 \land \varphi_2$ iff $M, \alpha \models \varphi_1$ and $M, \alpha \models \varphi_2$

- 4 周 ト 4 日 ト 4 日 ト - 日

Given structure *M* and binding α , does φ evaluate to **true**? Notationally, does **M**, $\alpha \models \varphi$?

- Extend α : free $(\varphi) \rightarrow U^M$ to $\overline{\alpha}$: $Terms(\varphi) \rightarrow U^M$
 - If t is a variable x, $\overline{\alpha}(t) = \alpha(x)$
 - If t is $f(t_1, \ldots, t_m)$, $\overline{\alpha}(t) = f^M(\overline{\alpha}(t_1), \ldots, \overline{\alpha}(t_m))$

• In prev. example, $\overline{\alpha}(f(y,a)) = f^M(\alpha(y), a^M) = 2 + 0 = 2$

• If φ is an atomic formula

•
$$M, \alpha \models (t_1 = t_2)$$
 iff $\overline{\alpha}(t_1)$ and $\overline{\alpha}(t_2)$ coincide

•
$$M, \alpha \models P(t_1, \ldots, t_m) \text{ iff } (\overline{\alpha}(t_1), \ldots, \overline{\alpha}(t_m)) \in P^M$$

• In prev. example, suppose $\alpha'(x) = 1, \alpha'(y) = 2$. Then $M, \alpha' \models R(x, f(y, a))$ as $(\overline{\alpha'}(x), \overline{\alpha'}(f(y, a))) = (1, 2) \in R^M$.

•
$$M, \alpha \models \neg \varphi_i$$
 iff $M, \alpha \not\models \varphi_1$

- $M, \alpha \models \varphi_1 \land \varphi_2$ iff $M, \alpha \models \varphi_1$ and $M, \alpha \models \varphi_2$
- $M, \alpha \models \exists x \varphi$ iff there is some $c \in U^M$ such that $M, \alpha[x \mapsto c] \models \varphi$, where
 - α[x → c](v) = α(v), if variable v is different from x
 α[x → c](x) = c

 $\varphi \triangleq \exists x \, R(x, f(y, a)) \to \exists z \, (\neg(z = a) \land R(z, y))$

(4回) (4回) (4回)

- $\varphi \triangleq \exists x \, R(x, f(y, a)) \to \exists z \, (\neg(z = a) \land R(z, y))$
 - Vocabulary $\mathcal{V}: \{a, f, =, R\}$

・ 回 ト ・ ヨ ト ・ ヨ ト

$$\varphi \triangleq \exists x \, R(x, f(y, a)) \to \exists z \, (\neg(z = a) \land R(z, y))$$

• Vocabulary
$$\mathcal{V} : \{a, f, =, R\}$$

• $M = (\overset{U^M}{\longrightarrow}, (\overset{a^M}{\longrightarrow}, \overset{f^M(u,v)}{\underbrace{u+v}}, \overset{R^M(u,v)}{\underbrace{u$

→ 御 → → 注 → → 注 →

 $\varphi \triangleq \exists x \, R(x, f(y, a)) \to \exists z \, (\neg(z = a) \land R(z, y))$

• Vocabulary
$$\mathcal{V}: \{a, f, =, R\}$$

• $M = (\overbrace{\mathbb{N}}^{M}, (\overbrace{0}^{a^{M}}, \overbrace{u+v}^{f^{M}(u,v)}, \overbrace{u
• free $(\varphi) = \{y\}$, and $\alpha(y) = 2$$

Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction (Parts 1 and 2)

 $\varphi \triangleq \exists x \, R(x, f(y, a)) \to \exists z \, (\neg(z = a) \land R(z, y))$

• Vocabulary
$$\mathcal{V}$$
 : $\{a, f, =, R\}$

•
$$M = (\overset{U^M}{\boxtimes}, (\overset{a^M}{\bigcirc}, \overset{f^M(u,v)}{\underbrace{u+v}}, \overset{R^M(u,v)}{\underbrace{u$$

• free
$$(\varphi) = \{y\}$$
, and $\alpha(y) = 2$

•
$$M, \alpha[z \mapsto 1] \models (\neg(z = a) \land R(z, y))$$

• Therefore,
$$M, \alpha \models \exists z (\neg (z = a) \land R(z, y))$$

・ 回 と ・ ヨ と ・ ヨ と

 $\varphi \triangleq \exists x \, R(x, f(y, a)) \to \exists z \, (\neg(z = a) \land R(z, y))$

• Vocabulary
$$\mathcal{V} : \{a, f, =, R\}$$

•
$$M = (\overset{U^M}{\mathbb{N}}, (\overset{a^M}{\mathbb{O}}, \overset{f^M(u,v)}{u+v}, \overset{R^M(u,v)}{u$$

• free(φ) = {y}, and α (y) = 2

•
$$M, \alpha[z \mapsto 1] \models (\neg(z = a) \land R(z, y))$$

- Therefore, $M, \alpha \models \exists z (\neg (z = a) \land R(z, y))$
- Similarly, $M, \alpha[x \mapsto 0] \models R(x, f(y, a))$
- Therefore, $M, \alpha \models \exists x R(x, f(y, a))$

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $\varphi \triangleq \exists x \, R(x, f(y, a)) \to \exists z \, (\neg(z = a) \land R(z, y))$

• Vocabulary
$$\mathcal{V} : \{a, f, =, R\}$$

•
$$M = (\overset{U^M}{\boxtimes}, (\overset{a^M}{\bigcirc}, \overset{f^M(u,v)}{\underbrace{u+v}}, \overset{R^M(u,v)}{\underbrace{u$$

• free(φ) = {y}, and α (y) = 2

•
$$M, \alpha[z \mapsto 1] \models (\neg(z = a) \land R(z, y))$$

- Therefore, $M, \alpha \models \exists z (\neg (z = a) \land R(z, y))$
- Similarly, $M, \alpha[x \mapsto 0] \models R(x, f(y, a))$
- Therefore, $M, \alpha \models \exists x R(x, f(y, a))$
- Finally, $M, \alpha \models \varphi$

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\varphi \triangleq \exists x \, R(x, f(y, a)) \to \exists z \, (\neg(z = a) \land R(z, y))$

• Vocabulary
$$\mathcal{V} : \{a, f, =, R\}$$

•
$$M = (\overset{U^M}{\mathbb{N}}, (\overset{a^M}{\mathbb{O}}, \overset{f^M(u,v)}{\overline{u+v}}, \overset{R^M(u,v)}{\overline{u$$

• free
$$(\varphi) = \{y\}$$
, and $\alpha(y) = 2$

•
$$M, \alpha[z \mapsto 1] \models (\neg(z = a) \land R(z, y))$$

- Therefore, $M, \alpha \models \exists z (\neg (z = a) \land R(z, y))$
- Similarly, $M, \alpha[x \mapsto 0] \models R(x, f(y, a))$
- Therefore, $M, \alpha \models \exists x R(x, f(y, a))$
- Finally, $M, \alpha \models \varphi$
- Note that if $\alpha'(y) = 1$, $M, \alpha' \not\models \varphi$

・ 同 ト ・ ヨ ト ・ ヨ ト

Semantic Relations in FOL

Let $\mathcal{F}=\{\varphi_1,\varphi_2,\ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

・ 回 と ・ ヨ と ・ ヨ と

Semantic Relations in FOL

Let $\mathcal{F}=\{\varphi_1,\varphi_2,\ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

・ 回 と ・ ヨ と ・ ヨ と

Semantic Relations in FOL

Let $\mathcal{F}=\{\varphi_1,\varphi_2,\ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

Semantic Entailment: F ⊨ ψ holds iff whenever M, α ⊨ φ_i for all φ_i ∈ F, then M, α ⊨ ψ as well.

• $\{\forall x ((x = a) \lor R(x, y)), R(a, y)\} \models \forall z R(z, y)$

Let $\mathcal{F}=\{\varphi_1,\varphi_2,\ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

Semantic Entailment: F ⊨ ψ holds iff whenever M, α ⊨ φ_i for all φ_i ∈ F, then M, α ⊨ ψ as well.

• $\{\forall x ((x = a) \lor R(x, y)), R(a, y)\} \models \forall z R(z, y)$

• Satisfiability: ψ is satisfiable iff there is some M and α such that $M, \alpha \models \psi$

• $\exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \land R(z, y))$ is satisfiable

イロト イボト イヨト イヨト 二日

Let $\mathcal{F}=\{\varphi_1,\varphi_2,\ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

Semantic Entailment: F ⊨ ψ holds iff whenever M, α ⊨ φ_i for all φ_i ∈ F, then M, α ⊨ ψ as well.

• $\{\forall x ((x = a) \lor R(x, y)), R(a, y)\} \models \forall z R(z, y)$

• Satisfiability: ψ is satisfiable iff there is some M and α such that $M, \alpha \models \psi$

• $\exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ is satisfiable

Validity: A V-formula ψ is valid iff M, α ⊨ ψ for all V-structures M and all bindings α that assign values from U^M to free(ψ).

• $\forall x P(x, y) \rightarrow \exists x P(x, y)$ is valid

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Let $\mathcal{F}=\{\varphi_1,\varphi_2,\ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

Semantic Entailment: F ⊨ ψ holds iff whenever M, α ⊨ φ_i for all φ_i ∈ F, then M, α ⊨ ψ as well.

• $\{\forall x ((x = a) \lor R(x, y)), R(a, y)\} \models \forall z R(z, y)$

• Satisfiability: ψ is satisfiable iff there is some M and α such that $M, \alpha \models \psi$

• $\exists x R(x, f(y, a)) \rightarrow \exists z (\neg (z = a) \land R(z, y))$ is satisfiable

Validity: A V-formula ψ is valid iff M, α ⊨ ψ for all V-structures M and all bindings α that assign values from U^M to free(ψ).

• $\forall x P(x, y) \rightarrow \exists x P(x, y)$ is valid

- Consistency: *F* is consistent iff there is at least one *M* and α such that *M*, α ⊨ φ_i for all φ_i ∈ *F*.
 - $\{\exists x R(x, y), \exists x R(f(x), y), \exists x R(f(f(x)), y), \ldots\}$ is consistent

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Sematic Equivalence in FOL

$$\varphi \equiv \psi \text{ iff } \{\varphi\} \models \psi \text{ and } \{\psi\} \models \varphi.$$

Quantifier Equivalences

•
$$\forall x \forall y \varphi \equiv \forall y \forall x \varphi$$
, $\exists x \exists y \varphi \equiv \exists y \exists x \varphi$

•
$$\forall x (\varphi_1 \land \varphi_2) \equiv (\forall x \varphi_1) \land (\forall x \varphi_2)$$

•
$$\exists x (\varphi_1 \lor \varphi_2) \equiv (\exists x \varphi_1) \lor (\exists x \varphi_2)$$

• If
$$x \notin \text{free}(\varphi_2)$$
, then $Qx(\varphi_1 \text{ op } \varphi_2) \equiv (Qx \varphi_1) \text{ op } \varphi_2$, where $Q \in \{\exists, \forall\} \text{ and } \text{ op } \in \{\lor, \land\}.$

Renaming Quantified Variables

Let $z \notin \operatorname{free}(\varphi) \cup \operatorname{bnd}(\varphi)$. Then $Qx \varphi \equiv Qz \varphi[z/x]$ for $Q \in \{\exists, \forall\}$.

Enabler for substitution, e.g., $\exists x R(f(x, y), w) \equiv \exists z R(f(z, y), w)$ f(x, y) not free for y in $\exists x R(f(x, y), w)$, but is free for y in $\exists z R(f(z, y), w)$.

A Proof System for FOL

All proof rules considered for Propositional Logic are sound for FOL Additional proof rules for quantifiers and equality

$$\begin{array}{ll}
\overline{\{\} \vdash t = t} & (= \text{ introduction}) \\
\frac{\overline{F} \vdash t_1 = t_2 \quad \overline{F} \vdash \varphi[t_1/x]}{\overline{F} \vdash \varphi[t_2/x]} & (= \text{ elimination}) \\
\frac{\overline{F} \vdash \forall x \varphi}{\overline{F} \vdash \varphi[t/x]} & (\forall \text{ elimination}) \\
\frac{[x_0 \quad \cdots \quad \overline{F} \vdash \varphi[x_0/x]]}{\overline{F} \vdash \forall x \varphi} & (\forall \text{ introduction}) \\
\frac{\overline{F} \vdash \varphi[t/x]}{\overline{F} \vdash \exists x \varphi} & (\exists \text{ introduction}) \\
\frac{\overline{F} \vdash \varphi[t/x]}{\overline{F} \vdash \exists x \varphi} & (\exists \text{ elimination}) \\
\end{array}$$

æ

Soundness, Completeness, Undecidability

Let \mathcal{F} be a set of FOL formulas, and ψ be a FOL formula. We say $\mathcal{F} \vdash \psi$ if ψ can be syntactically derived from \mathcal{F} by a finite sequence of application of our proof rules.

Completeness

If $\mathcal{F} \models \psi$, then $\mathcal{F} \vdash \psi$

▲□→ ▲注→ ▲注→

Soundness, Completeness, Undecidability

Let \mathcal{F} be a set of FOL formulas, and ψ be a FOL formula. We say $\mathcal{F} \vdash \psi$ if ψ can be syntactically derived from \mathcal{F} by a finite sequence of application of our proof rules.

Soundness
f $\mathcal{F}dash\psi$, then $\mathcal{F}\models\psi$

Completeness

If $\mathcal{F} \models \psi$, then $\mathcal{F} \vdash \psi$

Undecidabilty

Given a FOL formula φ , checking validity of φ , i.e. does $\{\} \models \varphi$ is undecidable.

Completeness implies that detecting non-validity is non-terminating, in general

(日) (同) (E) (E) (E)

- If φ is a $\mathcal V\text{-sentence}$ (no free vars), no binding α necessary for evaluating truth of φ
 - Given \mathcal{V} -structure M, we can ask if $M \models \varphi$
 - Class of \mathcal{V} -structures defined by φ is $\{M \models \varphi\}$
- Some examples of structures: graphs, databases, number systems

・ 同 ト ・ ヨ ト ・ ヨ ト …

- A graph G
 - U^G: set of vertices
 - Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
 - Interpretation: For a, b ∈ U^G, E^G(a, b) = true iff there is an edge from vertex a to vertex b in G

(4回) (4回) (日)

A graph G

- U^G: set of vertices
- Vocabulary \mathcal{V} : $\{E,=\}$, where E is a binary (edge) relation
- Interpretation: For a, b ∈ U^G, E^G(a, b) = true iff there is an edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

•
$$\forall x \forall y (\neg (x = y) \rightarrow E(x, y))$$

• (Infinite) class of all cliques

・ 同 ト ・ ヨ ト ・ ヨ ト

A graph G

- U^G: set of vertices
- Vocabulary \mathcal{V} : $\{E,=\}$, where E is a binary (edge) relation
- Interpretation: For a, b ∈ U^G, E^G(a, b) = true iff there is an edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

•
$$\forall x \forall y (\neg (x = y) \rightarrow E(x, y))$$

• (Infinite) class of all cliques

•
$$\exists x \forall y (\neg (x = y) \rightarrow \neg E(x, y))$$

• (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex

A graph G

- U^G: set of vertices
- Vocabulary \mathcal{V} : $\{E,=\}$, where E is a binary (edge) relation
- Interpretation: For a, b ∈ U^G, E^G(a, b) = true iff there is an edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

•
$$\forall x \forall y (\neg (x = y) \rightarrow E(x, y))$$

• (Infinite) class of all cliques

•
$$\exists x \forall y (\neg (x = y) \rightarrow \neg E(x, y))$$

• (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex

•
$$\forall x \forall y \forall z (\neg (x = y) \land \neg (y = z) \land \neg (z = x)) \rightarrow \neg (E(x, y) \land E(y, z) \land E(z, x))$$

 $\bullet~(\mbox{Infinite})$ class of all graphs with no cycles of length 3

A graph G

- U^G: set of vertices
- Vocabulary \mathcal{V} : $\{E,=\}$, where E is a binary (edge) relation
- Interpretation: For a, b ∈ U^G, E^G(a, b) = true iff there is an edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

•
$$\forall x \forall y (\neg (x = y) \rightarrow E(x, y))$$

• (Infinite) class of all cliques

•
$$\exists x \forall y (\neg (x = y) \rightarrow \neg E(x, y))$$

• (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex

•
$$\forall x \forall y \forall z (\neg (x = y) \land \neg (y = z) \land \neg (z = x)) \rightarrow \neg (E(x, y) \land E(y, z) \land E(z, x))$$

• (Infinite) class of all graphs with no cycles of length 3

•
$$\exists x \exists y (\neg (x = y) \land E(x, y) \land \forall z ((x = z) \lor (y = z)))$$

• (Finite) class of graphs with exactly two connected vertices.

A relational database D

- U^D: set of (possibly differently typed) data items
- Vocabulary V: {P₁,...P_k,=}, where P_i is a k_i-ary predicate corr. to the ith table in database with k_i columns
- Interpretation: For $a_1, \ldots a_{k_i} \in U^D$, $P_i(a_1, \ldots a_{k_i}) =$ true iff $(a_1, \ldots a_{k_1})$ is a row of the i^{th} table

(4月) (3日) (3日) 日

A relational database D

- U^D: set of (possibly differently typed) data items
- Vocabulary V: {P₁,...P_k,=}, where P_i is a k_i-ary predicate corr. to the ith table in database with k_i columns
- Interpretation: For $a_1, \ldots a_{k_i} \in U^D$, $P_i(a_1, \ldots a_{k_i}) =$ true iff $(a_1, \ldots a_{k_1})$ is a row of the i^{th} table

Examples of classes of databases definable in FOL:

- $\forall x \forall y \forall z \operatorname{StRec}(x, y, z) \leftrightarrow \operatorname{Dob}(x, y) \land \operatorname{Class}(x, z)$
 - Table StRec is the natural join of Tables Dob and Class

A relational database D

- U^D: set of (possibly differently typed) data items
- Vocabulary V: {P₁,...P_k,=}, where P_i is a k_i-ary predicate corr. to the ith table in database with k_i columns
- Interpretation: For $a_1, \ldots a_{k_i} \in U^D$, $P_i(a_1, \ldots a_{k_i}) =$ true iff $(a_1, \ldots a_{k_1})$ is a row of the i^{th} table

Examples of classes of databases definable in FOL:

- $\forall x \forall y \forall z \operatorname{StRec}(x, y, z) \leftrightarrow \operatorname{Dob}(x, y) \land \operatorname{Class}(x, z)$
 - Table StRec is the natural join of Tables Dob and Class
- $\forall x \forall y \operatorname{Dob}(x, y) \to \exists z \operatorname{StRec}(x, y, z)$
 - Table Dob is a projection of Table StRec

A relational database D

- U^D : set of (possibly differently typed) data items
- Vocabulary V: {P₁,...P_k,=}, where P_i is a k_i-ary predicate corr. to the ith table in database with k_i columns
- Interpretation: For $a_1, \ldots a_{k_i} \in U^D$, $P_i(a_1, \ldots a_{k_i}) =$ true iff $(a_1, \ldots a_{k_1})$ is a row of the i^{th} table

Examples of classes of databases definable in FOL:

- $\forall x \forall y \forall z \operatorname{StRec}(x, y, z) \leftrightarrow \operatorname{Dob}(x, y) \land \operatorname{Class}(x, z)$
 - Table StRec is the natural join of Tables Dob and Class
- $\forall x \forall y \operatorname{Dob}(x, y) \rightarrow \exists z \operatorname{StRec}(x, y, z)$
 - Table Dob is a projection of Table StRec

Example database query:

• $\varphi(x) \triangleq \exists y \exists z (\text{Dob}(x, y) \land \text{After}(y, "01/01/1990") \land \text{Class}(x, z) \land \text{Primary}(z))$

Defines set of students born after "01/01/1990" and studying in a primary class.

Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering and constants 0 and 1 (fixed interpretation)

•
$$\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$$

•
$$\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$$

回 と く ヨ と く ヨ と

Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering and constants 0 and 1 (fixed interpretation)

•
$$\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$$

•
$$\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$$

Examples of properties expressible in FOL:

•
$$\mathfrak{R} \models \forall x \exists y (x = ((y \times y) \times y))$$

• Every real number has a real cube root

向下 イヨト イヨト

Natural/real numbers with addition, multiplication, linear ordering and constants 0 and 1 (fixed interpretation)

•
$$\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$$

•
$$\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$$

Examples of properties expressible in FOL:

•
$$\mathfrak{R} \models \forall x \exists y (x = ((y \times y) \times y))$$

• Every real number has a real cube root

•
$$\mathfrak{N} \not\models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$$

 $\mathfrak{R} \models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$

• Not every natural number can be expressed as the sum of squares of two natural numbers. This can be done for real numbers

(日本) (日本) (日本)
Natural/real numbers with addition, multiplication, linear ordering and constants 0 and 1 (fixed interpretation)

•
$$\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$$

•
$$\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$$

Examples of properties expressible in FOL:

•
$$\mathfrak{R} \models \forall x \exists y (x = ((y \times y) \times y))$$

• Every real number has a real cube root

•
$$\mathfrak{N} \not\models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$$

 $\mathfrak{R} \models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$

• Not every natural number can be expressed as the sum of squares of two natural numbers. This can be done for real numbers

•
$$\mathfrak{N} \models \forall x \exists y ((x < y) \land (\forall z \forall w (y = z \times w) \rightarrow ((z = y) \lor (w = y)))$$

• There are infinitely many prime natural numbers

▲□→ ▲ 国 → ▲ 国 →

Compactness Theorem

Let \mathcal{F} be a (possibly infinite) set of FOL formulas. If all finite subsets of \mathcal{F} are consistent (satisfiable), then so is \mathcal{F}

▲□→ ▲ □→ ▲ □→

Compactness Theorem

Let \mathcal{F} be a (possibly infinite) set of FOL formulas. If all finite subsets of \mathcal{F} are consistent (satisfiable), then so is \mathcal{F}

Corollary

If ${\cal F}$ is inconsistent, then there is a finite subset of ${\cal F}$ that is also inconsistent (unsatisfiable)

- 4 回 2 - 4 □ 2 - 4 □

Amazing consequences of compactness

• Upward Lowenheim Skolem Theorem: Let φ be a

 \mathcal{V} -sentence such that for every natural number $n \ge 1$, there is a \mathcal{V} -structure M_n with $\ge n$ elements in its universe, such that $M_n \models \varphi$. Then there exists a \mathcal{V} -structure M with inifinitely many elements in its universe, such that $M \models \varphi$ *Proof:* Follows from Compactness Theorem Consequences:

There is no FOL sentence that describes the class of of finite cliques

There is no FOL sentence that describes the class of finite sets

・回 ・ ・ ヨ ・ ・ ヨ ・