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Notation

Variables: x , y , z , . . .

Represent elements of an underlying set

Constants: a, b, c, . . .

Specific elements of underlying set

Function symbols: f , g , h, . . .

Arity of function: # of arguments
0-ary functions: constants

Relation (predicate) symbols: P,Q,R, . . .

Hence, also called “predicate calculus”
Arity of predicate: # of arguments

Fixed symbols:

Carried over from prop. logic: ∧, ∨, ¬, →, ↔, (, )
New in FOL: ∃, ∀ (“quantifiers”)
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Equality in FOL

A special binary predicate, used widely in maths

Represented by special predicate symbol “=”

Semantically, binary identity relation (more on this later ...)

First-order logic with equality

Different expressive power vis-a-vis first-order logic
Most of our discussions will assume availability of “=”
Refer to as “first-order logic” unless the distinction is
important
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Syntax of FOL

Two classes of syntactic objects: terms and formulas

Terms

Every variable is a term

If f is an m-ary function, t1, . . . tm are terms, then
f (t1, . . . tm) is also a term

Atomic formulas

If R is an n-ary predicate, t1, . . . tn are terms, then
R(t1, . . . tm) is an atomic formula

Special case: t1 = t2
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Syntax of FOL

Primitive fixed symbols: ∧, ¬, ∃
Other choices also possible: E.g., ∨, ¬, ∀

Rules for formuling formulas

Every atomic formula is a formula

If ϕ is a formula, so are ¬ϕ and (ϕ)

If ϕ1 and ϕ2 are formulas, so is ϕ1 ∧ ϕ2

If ϕ is a formula, so is ∃x ϕ for any variable x

Formulas with other fixed symbols definable in terms of
formulas with primitive symbols.

ϕ1 ∨ ϕ2 , ¬(¬ϕ1 ∧ ¬ϕ2)
ϕ1 → ϕ2 , ¬ϕ1 ∨ ϕ2

ϕ1 ↔ ϕ2 , (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)
∀x ϕ , ¬(∃x ¬ϕ)
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FOL formulas as strings

Alphabet (over which strings are constructed):

Set of variable names, e.g. {x1, x2, y1, y2}
Set of constants, functions, predicates, e.g. {a, b, f ,=,P}
Fixed symbols {¬,∨,∧,→,↔,∃,∀}

Well-formed formula: string formed according to rules on
prev. slide

∀x1(∀x2 (((x1 = a) ∨ (x1 = b)) ∧ ¬(f (x2) = f (x1)))) is
well-formed
∀(∀x1(x1 = ab)¬()x2) is not well-formed

Well-formed formulas can be represented using parse trees

Consider the rules on prev. slide as production rules in a
context-free grammar
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Vocabulary

Alphabet (over which strings are constructed):

Set of variable names, e.g. {x1, x2, y1, y2}
Set of constants, functions, predicates, e.g. {a, b, f ,=}:
Vocabulary
Fixed symbols {¬,∨,∧,→,↔,∃,∀}

Smallest vocabulary to generate
∀x1(∀x2 (((x1 = a) ∨ (x1 = b)) ∧ ¬(f (x2) = f (x1))))?

{a, b, f ,=}
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Free Variables in a Formula

Free variables are those that are not quantified in a formula.
Let free(ϕ) denote the set of free variables in ϕ

If ϕ is an atomic formula, free(ϕ) = {x | x occurs in ϕ}
If ϕ = ¬ψ or ϕ = (ψ), free(ϕ) = free(ψ)

If ϕ = ϕ1 ∧ ϕ2, free(ϕ) = free(ϕ1) ∪ free(ϕ2)

if ϕ = ∃x ϕ1, free(ϕ) = free(ϕ1) \ {x}

What is free((∃x P(x , y)) ∧ (∀y Q(x , y))) ?

= free((∃x P(x , y))) ∪ free(∀y Q(x , y))
= free(P(x , y)) \ {x} ∪ free(Q(x , y)) \ {y}
= {x , y} \ {x} ∪ {x , y} \ {y} = {x , y}

If ϕ has free variables {x , y}, we write ϕ(x , y)
A formula with no free variables is a sentence, e.g. ∃x∀y f (x) = y
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Bound Variables in a Formula

Bound variables are those that are quantified in a formula.
Let bnd(ϕ) denote the set of bound variables in ϕ

If ϕ is an atomic formula, bnd(ϕ) = ∅
If ϕ = ¬ψ or ϕ = (ψ), bnd(ϕ) = bnd(ψ)

If ϕ = ϕ1 ∧ ϕ2, bnd(ϕ) = bnd(ϕ1) ∪ bnd(ϕ2)

if ϕ = ∃x ϕ1, bnd(ϕ) = bnd(ϕ1) ∪ {x}

What is bnd((∃x P(x , y)) ∧ (∀y Q(x , y))) ?

= bnd((∃x P(x , y))) ∪ bnd(∀y Q(x , y))
= bnd(P(x , y)) ∪ {x} ∪ bnd(Q(x , y)) ∪ {y}
= ∅ ∪ {x} ∪ ∅ ∪ {y}
= {x} ∪ {y} = {x , y} !!!

free(ϕ) and bnd(ϕ) are not complements!
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Substitution in FOL

Suppose x ∈ free(ϕ) and t is any term.
We wish to replace every free occurrence of x in ϕ with t, such
that free variables in t stay free in the resulting formula.

Term t is free for x in ϕ if no free occurrence of x in ϕ is in the
scope of ∀y or ∃y for any variable y occurring in t.

ϕ , ∃y R(x , y) ∨ ∀x R(z , x), and t is f (z , x)

f (z , x) is free for x in ϕ, but f (y , x) is not

ϕ[t/x ]: Formula obtained by replacing each free occurrence of x in
ϕ by t, if t is free for x in ϕ

For ϕ defined above,
ϕ[f (z , x)/x ] , ∃y R(f (z , x), y) ∨ ∀x R(z , x)
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Semantics of FOL: Some Intuition

ϕ , ∀x∀y (P(x , y)→ ∃z (¬(z = x)∧¬(z = y)∧P(x , z)∧P(z , y))

English reading: For every x and y , if P(x , y) holds, we can find z
distinct from x and y such that both P(x , z) and P(z , y) hold.
Case 1:

Variables take values from real numbers

P(x , y) represents x < y

English reading simply states “real numbers are dense”

ϕ is true

Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction (Parts 1 and 2)



Semantics of FOL: Some Intuition

ϕ , ∀x∀y (P(x , y)→ ∃z (¬(z = x)∧¬(z = y)∧P(x , z)∧P(z , y))

English reading: For every x and y , if P(x , y) holds, we can find z
distinct from x and y such that both P(x , z) and P(z , y) hold.

Case 1:

Variables take values from real numbers

P(x , y) represents x < y

English reading simply states “real numbers are dense”

ϕ is true

Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction (Parts 1 and 2)



Semantics of FOL: Some Intuition

ϕ , ∀x∀y (P(x , y)→ ∃z (¬(z = x)∧¬(z = y)∧P(x , z)∧P(z , y))

English reading: For every x and y , if P(x , y) holds, we can find z
distinct from x and y such that both P(x , z) and P(z , y) hold.
Case 1:

Variables take values from real numbers

P(x , y) represents x < y

English reading simply states “real numbers are dense”

ϕ is true

Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction (Parts 1 and 2)



Semantics of FOL: Some Intuition

ϕ , ∀x∀y (P(x , y)→ ∃z (¬(z = x)∧¬(z = y)∧P(x , z)∧P(z , y))
English reading: For any x and y , if P(x , y) holds, we can find z
distinct from x and y such that both P(x , z) and P(z , y) hold.
Case 2:

Variables take values from real numbers

P(x , y) represents x ≤ y

English reading requires the following to be true

If x = y , there is a z such that z 6= x , x ≤ z and z ≤ x
Thus, z 6= x and z = x

ϕ is false

Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction (Parts 1 and 2)



Semantics of FOL: Some Intuition

ϕ , ∀x∀y (P(x , y)→ ∃z (¬(z = x)∧¬(z = y)∧P(x , z)∧P(z , y))
English reading: For any x and y , if P(x , y) holds, we can find z
distinct from x and y such that both P(x , z) and P(z , y) hold.
Case 3:

Variables take values from natural numbers

P(x , y) represents x < y

English reading states that “natural numbers are dense”

ϕ is false

Truth of ϕ depends on the underlying set from which variables take
values, and on how constants, functions, predicates are interpreted

Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction (Parts 1 and 2)



Semantics of FOL: Some Intuition

ϕ , ∀x∀y (P(x , y)→ ∃z (¬(z = x)∧¬(z = y)∧P(x , z)∧P(z , y))
English reading: For any x and y , if P(x , y) holds, we can find z
distinct from x and y such that both P(x , z) and P(z , y) hold.
Case 3:

Variables take values from natural numbers

P(x , y) represents x < y

English reading states that “natural numbers are dense”

ϕ is false

Truth of ϕ depends on the underlying set from which variables take
values, and on how constants, functions, predicates are interpreted

Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction (Parts 1 and 2)



Semantics of FOL: Formalizing the intuition

Vocabulary V: E.g. V : {a, f ,=,R}

V-formula: E.g. ϕ , ∃x R(x , f (y , a))→ ∃z (¬(z = a) ∧ R(z , y))
free(ϕ) = {y}

Truth of ϕ depends on

1 Universe U from which variables take values, e.g. N
2 Interpretation of vocabulary V on U

Map each constant symbol to an element of U, e.g. a 7→ 0
Map each n-ary function symbol to a function from Un to U,
e.g. f (u, v) = u + v
Map each m-ary predicate symbol to a subset of Um

e.g. Interp. for =: {(c , c) | c ∈ N} – fixed interpretation
e.g. Interp. for R : {(c , d) | c , d ∈ U, c < d}

1 and 2 define a V-structure M = (UM , (aM , f M ,RM))

3 Binding (aka environment) α : free(ϕ)→ U
e.g. α(y) = 2
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Semantics of FOL: Formalizing the intuition
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Semantics of FOL: Formalizing the intuition

Given structure M and binding α, does ϕ evaluate to true?
Notationally, does M, α |= ϕ?

Extend α : free(ϕ)→ UM to α : Terms(ϕ)→ UM

If t is a variable x , α(t) = α(x)
If t is f (t1, . . . tm), α(t) = f M(α(t1), . . . α(tm))

In prev. example, α(f (y , a)) = f M(α(y), aM) = 2 + 0 = 2

If ϕ is an atomic formula
M, α |= (t1 = t2) iff α(t1) and α(t2) coincide
M, α |= P(t1, . . . tm) iff (α(t1), . . . α(tm)) ∈ PM

In prev. example, suppose α′(x) = 1, α′(y) = 2. Then
M, α′ |= R(x , f (y , a)) as (α′(x), α′(f (y , a))) = (1, 2) ∈ RM .

M, α |= ¬ϕi iff M, α 6|= ϕ1

M, α |= ϕ1 ∧ ϕ2 iff M, α |= ϕ1 and M, α |= ϕ2

M, α |= ∃x ϕ iff there is some c ∈ UM such that
M, α[x 7→ c] |= ϕ, where

α[x 7→ c](v) = α(v), if variable v is different from x
α[x 7→ c](x) = c
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Semantics of FOL: Illustration

ϕ , ∃x R(x , f (y , a)) → ∃z (¬(z = a) ∧ R(z , y))

Vocabulary V : {a, f ,=,R}

M = (

UM︷︸︸︷
N , (

aM︷︸︸︷
0 ,

f M(u,v)︷ ︸︸ ︷
u + v ,

RM(u,v)︷ ︸︸ ︷
u < v ))

free(ϕ) = {y}, and α(y) = 2

M, α[z 7→ 1] |= (¬(z = a) ∧ R(z , y))

Therefore, M, α |= ∃z (¬(z = a) ∧ R(z , y))

Similarly, M, α[x 7→ 0] |= R(x , f (y , a))

Therefore, M, α |= ∃x R(x , f (y , a))

Finally, M, α |= ϕ

Note that if α′(y) = 1, M, α′ 6|= ϕ
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Semantic Relations in FOL

Let F = {ϕ1, ϕ2, . . .} be a (possibly infinite) set of formulas, and
ψ be a formula

Semantic Entailment: F |= ψ holds iff whenever M, α |= ϕi

for all ϕi ∈ F , then M, α |= ψ as well.

{∀x ((x = a) ∨ R(x , y)), R(a, y)} |= ∀z R(z , y)

Satisfiability: ψ is satisfiable iff there is some M and α such
that M, α |= ψ

∃x R(x , f (y , a))→ ∃z (¬(z = a) ∧ R(z , y)) is satisfiable

Validity: A V-formula ψ is valid iff M, α |= ψ for all
V-structures M and all bindings α that assign values from UM

to free(ψ).

∀x P(x , y)→ ∃x P(x , y) is valid

Consistency: F is consistent iff there is at least one M and α
such that M, α |= ϕi for all ϕi ∈ F .

{∃x R(x , y), ∃x R(f (x), y), ∃x R(f (f (x)), y), . . .} is
consistent
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{∀x ((x = a) ∨ R(x , y)), R(a, y)} |= ∀z R(z , y)

Satisfiability: ψ is satisfiable iff there is some M and α such
that M, α |= ψ

∃x R(x , f (y , a))→ ∃z (¬(z = a) ∧ R(z , y)) is satisfiable

Validity: A V-formula ψ is valid iff M, α |= ψ for all
V-structures M and all bindings α that assign values from UM

to free(ψ).

∀x P(x , y)→ ∃x P(x , y) is valid

Consistency: F is consistent iff there is at least one M and α
such that M, α |= ϕi for all ϕi ∈ F .

{∃x R(x , y), ∃x R(f (x), y), ∃x R(f (f (x)), y), . . .} is
consistent
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Sematic Equivalence in FOL

ϕ ≡ ψ iff {ϕ} |= ψ and {ψ} |= ϕ.

Quantifier Equivalences

∀x∀y ϕ ≡ ∀y∀x ϕ, ∃x∃y ϕ ≡ ∃y∃x ϕ
∀x (ϕ1 ∧ ϕ2) ≡ (∀x ϕ1) ∧ (∀x ϕ2)

∃x (ϕ1 ∨ ϕ2) ≡ (∃x ϕ1) ∨ (∃x ϕ2)

If x 6∈ free(ϕ2), then Qx (ϕ1 op ϕ2) ≡ (Qx ϕ1) op ϕ2, where
Q ∈ {∃, ∀} and op ∈ {∨,∧}.

Renaming Quantified Variables

Let z 6∈ free(ϕ) ∪ bnd(ϕ).
Then Qx ϕ ≡ Qz ϕ[z/x ] for Q ∈ {∃,∀}.

Enabler for substitution, e.g., ∃x R(f (x , y),w) ≡ ∃z R(f (z , y),w)
f (x , y) not free for y in ∃x R(f (x , y),w), but is free for y in
∃z R(f (z , y),w).
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A Proof System for FOL

All proof rules considered for Propositional Logic are sound for FOL
Additional proof rules for quantifiers and equality

{ } ` t = t (= introduction)

F ` t1=t2 F ` ϕ[t1/x ]
F ` ϕ[t2/x ] (= elimination)

F ` ∀x ϕ
F ` ϕ[t/x ] (∀ elimination)

[x0 ··· F ` ϕ[x0/x ]]
F ` ∀x ϕ (∀ introduction)

F ` ϕ[t/x ]
F ` ∃x ϕ (∃ introduction)

F ` ∃x ϕ [x0 ··· F∪{ϕ[x0/x ]}`ψ]
F ` ψ (∃ elimination)
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Soundness, Completeness, Undecidability

Let F be a set of FOL formulas, and ψ be a FOL formula.
We say F ` ψ if ψ can be syntactically derived from F by a finite
sequence of application of our proof rules.

Soundness

If F ` ψ, then F |= ψ

Completeness

If F |= ψ, then F ` ψ

Undecidabilty

Given a FOL formula ϕ, checking validity of ϕ, i.e. does {} |= ϕ is
undecidable.

Completeness implies that detecting non-validity is
non-terminating, in general
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First-order Definable Structures

If ϕ is a V-sentence (no free vars), no binding α necessary for
evaluating truth of ϕ

Given V-structure M, we can ask if M |= ϕ
Class of V-structures defined by ϕ is {M |= ϕ}

Some examples of structures: graphs, databases, number
systems
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Graphs as FO structures

A graph G

UG : set of vertices

Vocabulary V: {E ,=}, where E is a binary (edge) relation

Interpretation: For a, b ∈ UG , EG (a, b) = true iff there is an
edge from vertex a to vertex b in G

Examples of classes of graphs definable in FOL:

∀x∀y (¬(x = y)→ E (x , y))
(Infinite) class of all cliques

∃x∀y (¬(x = y)→ ¬E (x , y))
(Infinite) class of all graphs with at least one vertex from
which there is no edge to any other vertex

∀x∀y∀z (¬(x = y) ∧ ¬(y = z) ∧ ¬(z = x))→
¬(E (x , y) ∧ E (y , z) ∧ E (z , x))

(Infinite) class of all graphs with no cycles of length 3

∃x∃y (¬(x = y) ∧ E (x , y) ∧ ∀z ((x = z) ∨ (y = z)))
(Finite) class of graphs with exactly two connected vertices.
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Relational Databases as FO structures

A relational database D

UD : set of (possibly differently typed) data items

Vocabulary V: {P1, . . .Pk ,=}, where Pi is a ki -ary predicate
corr. to the i th table in database with ki columns

Interpretation: For a1, . . . aki ∈ UD , Pi (a1, . . . aki ) = true iff
(a1, . . . ak1) is a row of the i th table

Examples of classes of databases definable in FOL:

∀x∀y∀z StRec(x , y , z)↔ Dob(x , y) ∧ Class(x , z)
Table StRec is the natural join of Tables Dob and Class

∀x∀y Dob(x , y)→ ∃z StRec(x , y , z)
Table Dob is a projection of Table StRec

Example database query:

ϕ(x) , ∃y∃z (Dob(x , y) ∧ After(y , “01/01/1990′′) ∧
Class(x , z) ∧ Primary(z))

Defines set of students born after “01/01/1990” and studying
in a primary class.
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Number systems as FO structures

Natural/real numbers with addition, multiplication, linear ordering
and constants 0 and 1 (fixed interpretation)

N = (N, 0, 1,×,+, <,=)

R = (R, 0, 1,×,+, <,=)

Examples of properties expressible in FOL:

R |= ∀x∃y (x = ((y × y)× y))

Every real number has a real cube root

N 6|= ∀x∃y∃z (x = (y × y) + (z × z))
R |= ∀x∃y∃z (x = (y × y) + (z × z))

Not every natural number can be expressed as the sum of
squares of two natural numbers. This can be done for real
numbers

N |= ∀x∃y ((x < y)∧
(∀z∀w (y = z × w)→ ((z = y) ∨ (w = y)))

There are infinitely many prime natural numbers
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Compactness of FOL

Compactness Theorem

Let F be a (possibly infinite) set of FOL formulas. If all finite
subsets of F are consistent (satisfiable), then so is F

Corollary

If F is inconsistent, then there is a finite subset of F that is also
inconsistent (unsatisfiable)

Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction (Parts 1 and 2)



Compactness of FOL

Compactness Theorem

Let F be a (possibly infinite) set of FOL formulas. If all finite
subsets of F are consistent (satisfiable), then so is F

Corollary

If F is inconsistent, then there is a finite subset of F that is also
inconsistent (unsatisfiable)

Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction (Parts 1 and 2)



Amazing consequences of compactness

Upward Lowenheim Skolem Theorem: Let ϕ be a
V-sentence such that for every natural number n ≥ 1, there is
a V-structure Mn with ≥ n elements in its universe, such that
Mn |= ϕ. Then there exists a V-structure M with inifnitely
many elements in its universe, such that M |= ϕ
Proof: Follows from Compactness Theorem
Consequences:
There is no FOL sentence that describes the class of of finite
cliques
There is no FOL sentence that describes the class of finite sets
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