
31st International Conference on
Foundations of Software
Technology and Theoretical
Computer Science

FSTTCS 2011, December 12–14, 2011, Mumbai, India

Edited by

Supratik Chakraborty
Amit Kumar

LIPIcs – Vo l . 13 – FSTTC 2011 www.dagstuh l .de/ l ip i c s

Editors
Supratik Chakraborty Amit Kumar
Dept. of Computer Science & Engineering Dept. of Computer Science & Engineering
Indian Institute of Technology, Bombay Indian Institute of Technology, Delhi
Powai, Mumbai 400076 Hauz Khas, New Delhi 110016
India India
supratik@cse.iitb.ac.in amitk@cse.iitd.ac.in

ACM Classification 1998
D.2.4 Software/Program Verification, F.1.1 Models of Computation, F.1.2 Modes of Computation, F.1.3
Complexity Measures and Classes, F.2.2 Nonnumerical Algorithms and Problems, F.3.1 Specifying and
Verifying and Reasoning about Programs

ISBN 978-3-939897-34-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-34-7.

Publication date
December, 2011

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
license: http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2011.i

ISBN 978-3-939897-34-7 ISSN 1868-8969 www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-34-7
http://www.dagstuhl.de/dagpub/978-3-939897-32-3
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.i
http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (Humboldt University Berlin)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Wolfgang Thomas (RWTH Aachen)
Vinay V. (Chennai Mathematical Institute)
Pascal Weil (Chair, University Bordeaux)
Reinhard Wilhelm (Saarland University, Schloss Dagstuhl)

ISSN 1868-8969

www.dagstuhl.de/lipics

FSTTCS 2011

http://www.dagstuhl.de/lipics

Contents

Preface ix

Conference Organization xi

External Reviewers xiii

Author Index xvi

Invited Talks

Energy-Efficient Algorithms
Susanne Albers . 1

Constraints, Graphs, Algebra, Logic, and Complexity
Moshe Y. Vardi . 3

Physical limits of Communication
Madhu Sudan . 4

A Domain-Specific Language for Computing on Encrypted Data
Alex Bain, John Mitchell, Rahul Sharma, Deian Stefan and Joe Zimmerman 6

Schema Mappings and Data Examples: Deriving Syntax from Semantics
Phokion G. Kolaitis . 25

Quantum State Description Complexity
Umesh V. Vazirani . 26

Contributed Papers
Session 1A

Approximation Algorithms for Union and Intersection Covering Problems
Marek Cygan, Fabrizio Grandoni, Stefano Leonardi, Marcin Mucha, Marcin Pilipczuk,
and Piotr Sankowski . 28

Tight Gaps for Vertex Cover in the Sherali-Adams SDP Hierarchy
Siavosh Benabbas, Siu On Chan, Konstantinos Georgiou, and Avner Magen 41

Applications of Discrepancy Theory in Multiobjective Approximation
Christian Glaßer, Christian Reitwießner, and Maximilian Witek 55

Session 1B

Quasi-Weak Cost Automata: A New Variant of Weakness
Denis Kuperberg and Michael Vanden Boom . 66

Using non-convex approximations for efficient analysis of timed automata
Frédéric Herbreteau, Dileep Kini, B. Srivathsan, and Igor Walukiewicz 78

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: S. Chakraborty, A. Kumar

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

vi Contents

Shrinking Timed Automata
Ocan Sankur, Patricia Bouyer, and Nicolas Markey . 90

The Quantitative Linear-Time–Branching-Time Spectrum
Uli Fahrenberg, Axel Legay, and Claus Thrane . 103

Session 2A

Isomorphism testing of read-once functions and polynomials
Raghavendra Rao B.V. and Jayalal Sarma M.N. 115

The Limited Power of Powering: Polynomial Identity Testing and a Depth-four Lower
Bound for the Permanent

Bruno Grenet, Pascal Koiran, Natacha Portier, and Yann Strozecki 127

Session 2B

Petri Net Reachability Graphs: Decidability Status of FO Properties
Philippe Darondeau, Stéphane Demri, Roland Meyer, and Christophe Morvan 140

Approximating Petri Net Reachability Along Context-free Traces
Mohamed Faouzi Atig and Pierre Ganty . 152

Session 3A

Minimum Fill-in of Sparse Graphs: Kernelization and Approximation
Fedor V. Fomin, Geevarghese Philip, and Yngve Villanger . 164

Cubicity, Degeneracy, and Crossing Number
Abhijin Adiga, L. Sunil Chandran, and Rogers Mathew . 176

Session 3B

Conditional Reactive Systems
H. J. Sander Bruggink, Raphaël Cauderlier, Mathias Hülsbusch, and Barbara König 191

Transforming Password Protocols to Compose
Céline Chevalier, Stéphanie Delaune, and Steve Kremer . 204

Session 4A

Obtaining a Bipartite Graph by Contracting Few Edges
Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and Christophe Paul 217

Simultaneously Satisfying Linear Equations Over F2: MaxLin2 and Max-r-Lin2
Parameterized Above Average

Robert Crowston, Michael Fellows, Gregory Gutin, Mark Jones, Frances Rosamond,
Stéphan Thomassé, and Anders Yeo . 229

Rainbow Connectivity: Hardness and Tractability
Prabhanjan Ananth, Meghana Nasre, and Kanthi K Sarpatwar 241

Contents vii

Session 4B

Dependence logic with a majority quantifier
Arnaud Durand, Johannes Ebbing, Juha Kontinen, and Heribert Vollmer 252

Modal Logics Definable by Universal Three-Variable Formulas
Emanuel Kieroński, Jakub Michaliszyn, and Jan Otop . 264

The First-Order Theory of Ground Tree Rewrite Graphs
Stefan Göller and Markus Lohrey . 276

Layer Systems for Proving Confluence
Bertram Felgenhauer, Harald Zankl, and Aart Middeldorp . 288

Session 5A

The Semi-stochastic Ski-rental Problem
Aleksander Mądry and Debmalya Panigrahi . 300

Streamability of Nested Word Transductions
Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais 312

The update complexity of selection and related problems
Manoj Gupta, Yogish Sabharwal, and Sandeep Sen . 325

Session 5B

A Tight Lower Bound for Streett Complementation
Yang Cai and Ting Zhang . 339

Parameterized Regular Expressions and Their Languages
Pablo Barceló, Leonid Libkin, and Juan L. Reutter . 351

Definable Operations On Weakly Recognizable Sets of Trees
Jacques Duparc, Alessandro Facchini, and Filip Murlak . 363

Session 6

Nash Equilibria in Concurrent Games with Büchi Objectives
Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels 375

A Perfect-Information Construction for Coordination in Games
Dietmar Berwanger, Łukasz Kaiser, and Bernd Puchala . 387

Efficient Approximation of Optimal Control for Continuous-Time Markov Games
John Fearnley, Markus Rabe, Sven Schewe, and Lijun Zhang . 399

Minimal Disclosure in Partially Observable Markov Decision Processes
Nathalie Bertrand and Blaise Genest . 411

FSTTCS 2011

viii Contents

Session 7A

Optimal Packed String Matching
Oren Ben-Kiki, Philip Bille, Dany Breslauer, Leszek Gąsieniec, Roberto Grossi, and
Oren Weimann . 423

Dynamic programming in faulty memory hierarchies (cache-obliviously)
Saverio Caminiti, Irene Finocchi, Emanuele G. Fusco, and Francesco Silvestri . . . 433

Session 7B

Deciding Probabilistic Simulation between Probabilistic Pushdown Automata and
Finite-State Systems

Hongfei Fu and Joost-Pieter Katoen . 445

Parameterised Pushdown Systems with Non-Atomic Writes
Matthew Hague . 457

Higher order indexed monadic systems
Didier Caucal and Teodor Knapik . 469

Preface

The 31st international conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2011) was held at Indian Institute of Technology, Bombay from
December 12 to December 14, 2011. This proceedings volume contains contributed papers
and (extended) abstracts of invited talks presented at the conference.

FSTTCS is the annual flagship conference of the Indian Association for Research in
Computing Science (IARCS). Over the past 31 years, the conference has consistently attracted
top-quality submissions, and the legacy continued this year as well. There were a total of 116
submissions, with contributing authors from 32 countries, spanning 6 continents. Most of
these were high-quality papers, and the competition for making it to the final list of accepted
papers was very stiff. We wish to thank all authors of submitted papers for helping make
FSTTCS such a competitive conference.

The program committee, in which we had the privilege of working with 30 distinguished
colleagues from 13 countries, spent almost two months reviewing and discussing in great
detail the strengths and weaknesses of submitted papers. The committee also sought help
from 243 external reviewers, and was able to obtain a total of 447 reviews for the contributed
papers. All papers within the scope of the conference had at least 3 expert reviews, and all
but a few papers were evaluated by 4 independent reviewers. Multiple rounds of elimination
and intense discussions and debates followed to help us narrow down the set of papers to
be accepted. A total of 37 papers were finally selected for presentation at the conference.
Several very good papers had to be left out of this list owing to stiff competition. Our
thanks to all members of the program committee for lending their valuable time, expertise
and acumen for this significant task. Without their inputs, hard work and detailed critical
comments, it would not have been possible to maintain the high standards that FSTTCS has
set for itself over the years. We would also like to take this opportunity to thank all external
reviewers for their detailed comments and critical assessment of papers.

Six eminent computer scientists readily agreed to travel from different parts of the world
to deliver invited talks at the conference. We would like to thank Susanne Albers, Phokion
G. Kolaitis, John C. Mitchell, Madhu Sudan, Moshe Y. Vardi and Umesh V. Vazirani for
enriching the conference with their invited talks and with their participation. It has been
our privilege to have them as part of FSTTCS 2011.

Paper submission, reviewing and program committee discussion for the conference were
managed using EasyChair. We wish to thank Andrei Voronkov and the entire EasyChair
team for making this excellent service available to us, and for ensuring that the reviewing,
discussion and paper management processes went smoothly.

We would like to thank IIT Bombay and its administration for allowing us to use the
facilities of the institute for hosting this prestigious conference in its premises. We would like
to thank staff, students, post-doctoral research scholars and faculty colleagues of the Dept. of
Computer Science and Engineering at IIT Bombay for pitching in myriad ways to help make
the organization of the conference a success. Our special thanks go to Hrishikesh Karmarkar
for ensuring that several organizational issues that threatened to spiral out of control, were
eventually tamed in time. We would like to thank our student system administrators, Prajish
Prasad and Jagadish M., for helping with networking and all computer system related
issues. The team of project “ekalavya” at IIT Bombay, under the guidance of Prof. D.B.
Phatak, readily agreed to record the proceedings of the conference, and make the recordings
available in open source under a Creative Commons license. We would like to thank the
31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: S. Chakraborty, A. Kumar

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

x Preface

entire “ekalavya” team for lending us such a big helping hand. It is also our pleasure to
acknowledge the financial support we received from IARCS and from four additional sponsors
for FSTTCS 2011. These additional sponsors were: Google India Pvt. Ltd., Dept. of
Computer Science and Engineering at IIT Bombay, Tata Consultancy Services and IBM
India Pvt. Ltd. The institutional members of IARCS, whose contributions help support
various activites of IARCS, including FSTTCS, are Geodesic Ltd., Microsoft Research India
and Sasken Communication Technologies Ltd.

In addition to the technical program of the main conference, two satellite events were
co-located with FSTTCS 2011. These included a pre-conference workshop on Finite and
Algorithmic Model Theory and a post-conference workshop on Breakthroughs in Theoretical
Computer Science. The workshop on Finite and Algorithmic Model Theory featured Anuj
Dawar, Phokion G. Kolaitis, Emanuel Kieroński, Dietmar Berwanger, Benjamin Rossman
and R. Ramanujam as speakers. The workshop on Breakthroughs in Theoretical Computer
Science had Manindra Agrawal, Naveen Garg, Sanjeev Khanna, Aleksander Mądry, Jaikumar
Radhakrishnan, Madhu Sudan, Umesh V. Vazirani, Amit Kumar and Nisheeth Vishnoi as
speakers. Our thanks to all invited speakers of the two workshops for adding to the richness
and diversity of the technical program.

As in the past few years, the proceedings of FSTTCS 2011 is being published as a volume
in the LIPIcs series under a Creative Commons license, with free online access to all, and
with authors retaining rights over their contributions. We wish to thank the editorial board
of LIPIcs for agreeing to publish the current proceedings as a LIPIcs volume. Our special
thanks to Marc Herbstritt for answering our deluge of questions pertaining to publishing and
editing issues clearly and promptly. We gratefully acknowledge his help and the help of the
entire team in the LIPIcs editorial office in preparing the final version of the proceedings.

Supratik Chakraborty and Amit Kumar
Mumbai, December 2011

Conference Organization

Program Chairs
Supratik Chakraborty (IIT Bombay, India)
Amit Kumar (IIT Delhi, India)

Program Committee
Luca Aceto (Reykjavik U., Iceland) Radha Jagadeesan (DePaul U., USA)
Yossi Azar (Tel-Aviv U., Israel) Ragesh Jaiswal (Columbia U., USA)
Mikołaj Bojańczyk (Warsaw U., Poland) Sanjeev Khanna (U. of Pennsylvania, USA)
Krishnendu Chatterjee (IST, Austria) K. Narayan Kumar (CMI, India)
Shuchi Chawla (U. Wisconsin-Madison, USA) Kim G. Larsen (Aalborg U., Denmark)
Anuj Dawar (U. of Cambridge, UK) Ashwin Nayak (U. of Waterloo, Canada)
Stephanie Delaune (LSV-ENS Cachan, France) Madhusudan Parthasarathy (UIUC, USA)
Benjamin Doerr (MPII, Saarbrücken, Germany) Seth Pettie (U. Michigan, Ann Arbor, USA)
Zoltań Ésik (U. of Szeged, Hungary) S. Ramesh (GM ISL, India)
Friedrich Eisenbrand (EPFL, Switzerland) Saket Saurabh (IMSc, India)
Javier Esparza (TU München, Germany) Anil Seth (IIT Kanpur, India)
Martin Fränzle (U. Oldenburg, Germany) Aravind Srinivasan (UMCP, USA)
Sariel Har-Peled (UIUC, USA) Martin Strauss (U. Michigan, Ann Arbor, USA)
Prahladh Harsha (TIFR, India) Ashish Tiwari (SRI International, USA)
Holger Hermanns (Saarland U., Germany) Nisheeth K. Vishnoi (Microsoft Research, India)

Organizing Committee
Bharat Adsul (IIT Bombay, India) Jagadish M. (IIT Bombay, India)
A. K. Bhattacharjee (BARC, India) Jinesh Machchhar (IIT Bombay, India)
Supratik Chakraborty (IIT Bombay, India) Ruta Mehta (IIT Bombay, India)
Ashish Chiplunkar (IIT Bombay, India) Soumitra Pal (IIT Bombay, India)
Ayush Choure (IIT Bombay, India) Prajish Prasad (IIT Bombay, India)
Jugal Garg (IIT Bombay, India) Abhiram Ranade (IIT Bombay, India)
Pravin Jadhav (IIT Bombay, India) Abhisekh Sankaran (IIT Bombay, India)
Hrishikesh Karmarkar (IIT Bombay, India) Shetal Shah (IIT Bombay, India)
S. Krishna (IIT Bombay, India) Chandrakant Talekar (IIT Bombay, India)
Nutan Limaye (IIT Bombay, India)

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: S. Chakraborty, A. Kumar

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

External Reviewers

Fidaa Abed Henning Dierks
Bharat Adsul Dino Distefano
Shipra Agrawal Laurent Doyen
Susanne Albers Manfred Droste
Eric Allender Andreas Eggers
Antonios Antoniadis Christian Eisentraut
Takahito Aoto Thomas Erlebach
Mohamed Faouzi Atig Yuri Faenza
Christel Baier Uli Fahrenberg
Sandie Balaguer Tomás Feder
Maria-Florina Balcan José Luiz Fiadeiro
Nikhil Bansal Nathanael Fijalkow
Vince Barany Bernd Finkbeiner
Siddharth Barman Dimitris Fotakis
Djamal Belazzougui Mahmoud Fouz
Henrik Björklund Fabrizio Frati
Udi Boker Kimmo Fredriksson
Benedikt Bollig Dominik D. Freydenberger
Remi Bonnet Sorelle Friedler
Patricia Bouyer Sibylle Fröschle
Tomas Brazdil Stanley Fung
Vaclav Brozek Stefan Funke
Peter Bulychev Pierre Ganty
Guillaume Burel Naveen Garg
Danny Bøgsted Poulsen Simon Gay
Iliano Cervesato Zsolt Gazdag
Rohit Chadha Blaise Genest
Sourav Chakraborty Amelie Gheerbrant
Timothy Chan Hugo Gimbert
Rajesh Chitnis Petr Golovach
Marek Chrobak Manoj Gopalkrishnan
Matteo Cimini Eugen-Ioan Goriac
Anthony Coadou Sathish Govindarajan
Thomas Colcombet Fabrizio Grandoni
Kevin Compton Ankit Gupta
Bruno Courcelle Anupam Gupta
Dipankar Das Annegret Habel
Alexandre David Michel Hack
David De Frutos Avinatan Hassidim
Julie De Pril Michael Hoffmann
Stephane Demri Piotr Hofman
Amit Deshpande Nicolai Hähnle

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: S. Chakraborty, A. Kumar

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

xiv External Reviewers

Hans Hüttel Michael Mahoney
Szabolcs Iván Andreas Maletti
Petr Jančar Sebastian Maneth
Bart Jansen Amaldev Manuel
David N. Jansen Nicolas Markey
Gwenaël Joret Dániel Marx
Marcin Jurdziński Ruta Mehta
Aditya Kanade Raghu Meka
Haim Kaplan Paul-André Melliès
Prateek Karandikar Stefan Mengel
Hrishikesh Karmarkar Massimo Merro
Ken-Ichi Kawarabayashi Roland Meyer
Neeraj Kayal Ulrich Meyer
Andrew King Jakub Michaliszyn
Shiva Kintali Zoltan Miklos
Christian Knauer Sounaka Mishra
Barbara König Swarup Mohalik
Naoki Kobayashi Carsten Moldenhauer
Eryk Kopczyński Apurva Mudgal
Vijay Anand Korthikanti Madhavan Mukund
Stefan Kratsch N. Raja
Jörg Kreiker Rajagopal Nagarajan
Jan Kretinsky N.S. Narayanaswamy
Antonin Kucera Martin Niemeier
Manfred Kufleitner Jan Obdrazalek
Orna Kupferman Martin Otto
Martin Kutrib Youssouf Oualhadj
Markus Latte Scott Owens
Ranko Lazić Konstantinos Panagiotou
Lap-Kei Lee Paritosh Pandya
Axel Legay Gennaro Parlato
Henry C.M. Leung Daniel Paulusma
Clemens Ley Mikkel L. Pedersen
Xueliang Li Gustavo Petri
Daniel R. Licata Nir Piterman
Nutan Limaye Thomas Place
Anthony Widjaja Lin Libor Polak
Andreas Lochbihler Ely Porat
Kamal Lodaya M. Praveen
Satyanarayana Lokam David Pritchard
Daniel Lokshtanov Kirk Pruhs
Alejandro Lopez-Ortiz Arjun R.
Michael Luttenberger R. Ramanujam
Christof Löding Arash Rafiey
Meena Mahajan Willard Rafnsson

External Reviewers xv

C.R. Ramakrishnan Piyush Srivastava
Venkatesh Raman Sam Staton
Jean-Francois Raskin S.P. Suresh
Michael Rink Ola Svensson
Thomas Rothvoss Mani Swaminathan
Sambuddha Roy Chaitanya Swamy
Krishna S. Stefan Szeider
Yogish Sabharwal Robert Tarjan
Sushant Sachdeva Tino Teige
Prakash Saivasan Dimitrios Thilikos
Jacques Sakarovitch Wolfgang Thomas
Rishi Saket Claus Thrane
Sylvain Salvati Tobe Toben
Prahladavaradan Sampath Akihiko Tozawa
Abhisekh Sankaran Madhur Tulsiani
Ocan Sankur Seeun Umboh
Luigi Santocanale Michael Ummels
Jayalal Sarma M.N. Pawel Urzyczyn
Srinivasa Rao Satti Jouko Väänänen
Zdenek Sawa Sándor Vágvölgyi
Sven Schewe Vincent Van Oostrom
Maximilian Schlund Mahesh Viswanathan
Henning Schnoor Adrian Vladu
Grant Schoenebeck Heiko Vogler
Thomas Schwentick Heribert Vollmer
Sandeep Sen Björn Wachter
Olivier Serre William Wadge
Farhad Shahrokhi Magnus Wahlström
K.C. Shashidhar Oren Weimann
Sarai Sheinvald Bernd Westphal
Sunil Simon Raphael Yuster
Randy Smith Lijun Zhang
Pawel Sobocinski Shengyu Zhang
Jiri Srba Martin Zimmermann
Srikanth Srinivasan

FSTTCS 2011

Author Index
Abhijin Adiga .176 Bruno Grenet . 127
Susanne Albers .1 Roberto Grossi . 423
Prabhanjan Ananth . 241 Manoj Gupta . 325
Mohamed Faouzi Atig 152 Gregory Gutin . 229
Alex Bain . 6 Matthew Hague .457
Pablo Barceló . 351 Pinar Heggernes . 217
Oren Ben-Kiki . 423 Frédéric Herbreteau . 78
Siavosh Benabbas . 41 Mathias Hülsbusch . 191
Nathalie Bertrand .411 Mark Jones . 229
Dietmar Berwanger . 387 Łukasz Kaiser . 387
Philip Bille . 423 Joost-Pieter Katoen 445
Patricia Bouyer . 90, 375 Emanuel Kieroński .264
Romain Brenguier . 375 Dileep Kini . 78
Dany Breslauer . 423 Teodor Knapik .469
H.J. Sander Bruggink 191 Barbara König . 191
Yang Cai . 339 Pascal Koiran . 127
Saverio Caminiti . 433 Phokion G. Kolaitis . 25
Didier Caucal . 469 Juha Kontinen . 252
Raphaël Cauderlier . 191 Steve Kremer . 204
Siu On Chan . 41 Denis Kuperberg .66
L. Sunil Chandran . 176 Axel Legay . 103
Céline Chevalier . 204 Stefano Leonardi . 28
Robert Crowston . 229 Leonid Libkin . 351
Marek Cygan . 28 Markus Lohrey . 276
Philippe Darondeau .140 Daniel Lokshtanov . 217
Stéphanie Delaune . 204 Aleksander Mądry . 300
Stéphane Demri . 140 Avner Magen .41
Jacques Duparc . 363 Nicolas Markey . 90, 375
Arnaud Durand . 252 Rogers Mathew . 176
Johannes Ebbing . 252 Roland Meyer . 140
Alessandro Facchini . 363 Jakub Michaliszyn . 264
Uli Fahrenberg .103 Aart Middeldorp . 288
John Fearnley . 399 John Mitchell . 6
Bertram Felgenhauer 288 Christophe Morvan . 140
Michael Fellows . 229 Marcin Mucha . 28
Emmanuel Filiot . 312 Filip Murlak . 363
Irene Finocchi . 433 Meghana Nasre . 241
Fedor V. Fomin . 164 Jan Otop . 264
Hongfei Fu .445 Debmalya Panigrahi 300
Emanuele G. Fusco . 433 Christophe Paul . 217
Pierre Ganty .152 Geevarghese Philip .164
Leszek Gąsieniec . 423 Marcin Pilipczuk .28
Olivier Gauwin . 312 Natacha Portier .127
Blaise Genest . 411 Bernd Puchala . 387
Konstantinos Georgiou 41 Markus Rabe . 399
Christian Glaßer . 55 Raghavendra Rao B.V. 115
Stefan Göller . 276 Christian Reitwießner 55
Fabrizio Grandoni . 28 Juan L. Reutter .351

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. xvi–xvii

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

xvii

Pierre-Alain Reynier 312
Frances Rosamond . 229
Yogish Sabharwal . 325
Piotr Sankowski . 28
Ocan Sankur .90
Jayalal Sarma M.N. 115
Kanthi K. Sarpatwar 241
Sven Schewe . 399
Sandeep Sen . 325
Frédéric Servais . 312
Rahul Sharma . 6
Francesco Silvestri . 433
B. Srivathsan . 78
Deian Stefan . 6
Yann Strozecki . 127
Madhu Sudan . 4
Stéphan Thomassé . 229
Claus Thrane . 103
Michael Ummels . 375
Michael Vanden Boom 66
Pim van ’t Hof .217
Moshe Y. Vardi . 3
Umesh V. Vazirani . 26
Yngve Villanger . 164
Heribert Vollmer .252
Igor Walukiewicz .78
Oren Weimann . 423
Maximilian Witek .55
Anders Yeo . 229
Harald Zankl . 288
Lijun Zhang . 399
Ting Zhang . 339
Joe Zimmerman .6

FSTTCS 2011

Energy-Efficient Algorithms
Susanne Albers∗1

1 Department of Computer Science
Humboldt-Universität zu Berlin, Germany
albers@informatik.hu-berlin.de

Abstract
This presentation surveys algorithmic techniques for energy savings. We address power-down as
well as dynamic speed scaling mechanisms.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases energy efficiency, power-down mechanisms, dynamic speed scaling, offline
algorithm, online algorithm

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.1

Summary

Algorithmic techniques for energy savings have received considerable research interest over
the past years. Power dissipation is critical in portable, battery operated devices where the
amount of available energy is severely limited. Moreover, energy consumption is a concern
in desktop computers and servers as electricity costs impose a substantial strain on the
budget of computing and data centers. Last but not least, power dissipation causes thermal
problems. Most of the consumed energy is eventually converted into heat, resulting in wear
and reduced reliability of hardware components.

Algorithmic work on energy conservation focuses mostly on the system and device level:
How can we save energy in a given computational device? The following two mechanisms
have been studied extensively.

Power-down mechanisms: When a system is idle, it can be transitioned into low-power
standby or sleep states. This technique is well-known and widely used. The goal is to
determine good shutdown times subject to the constraint that a transition back to the
active mode requires extra energy.
Dynamic speed scaling: Microprocessors currently sold by chip makers such as AMD and
Intel are able to operate at variable speed. The higher the speed, the higher the power
consumption is. The goal is to save energy by applying the full speed/frequency spectrum
of a processor and utilizing low speeds whenever possible.

In this talk we will review the above techniques along with some fundamental results. Most
of the presentation will be devoted to dynamic speed scaling. We concentrate on a basic
processor scheduling problem introduced in a seminal paper by Yao, Demers and Shenker [3].
Here a set of jobs, each specified by a release time, a deadline and a processing volume, has
to be scheduled on a variable-speed processor so as to minimize energy consumption. Yao et
al. devised a polynomial time offline algorithm as well as two online algorithms. We study
settings with parallel processors and present efficient offline and online algorithms developed
in [2]. Moreover, we investigate a setting where a variable-speed processor is equipped with

∗ Work supported by the German Research Foundation.

© Susanne Albers;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 1–2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Energy-efficient algorithms

a sleep state. We show how to integrate power-down and speed scaling mechanisms and give
efficient offline approximation algorithms [1].

References
1 S. Albers and A. Antoniadis. Race to idle: New algorithms for speed scaling with a sleep

state. Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms, 2012.
2 S. Albers, A. Antoniadis and G. Greiner. On multi-processor speed scaling with migration.

Proc. 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures, 2011.
3 F.F. Yao. A.J. Demers and S. Shenker. A scheduling model for reduced CPU energy. Proc.

36th IEEE Symposium on Foundations of Computer Science, 374–382, 1995.

Constraints, Graphs, Algebra, Logic, and
Complexity∗

Moshe Y. Vardi1

1 Department of Computer Science
Rice University, Houston, TX 77005, USA
vardi@cs.rice.edu.com

Abstract
A large class of problems in AI and other areas of computer science can be viewed as constraint-
satisfaction problems. This includes problems in database query optimization, machine vision,
belief maintenance, scheduling, temporal reasoning, type reconstruction, graph theory, and sat-
isfiability. All of these problems can be recast as questions regarding the existence of homomor-
phisms between two directed graphs. It is well-known that the constraint-satisfaction problem
is NP-complete. This motivated an extensive research program into identify tractable cases of
constraint satisfaction.

This research proceeds along two major lines. The first line of research focuses on non-uniform
constraint satisfaction, where the target graph is fixed. The goal is to identify those target graphs
that give rise to a tractable constraint-satisfaction problem. The second line of research focuses
on identifying large classes of source graphs for which constraint-satisfaction is tractable. We
show in how tools from graph theory, universal algebra, logic, and complexity theory, shed light
on the tractability of constraint satisfaction.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases constraint satisfaction, NP completeness, dichotomy

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.3

References
1 P.G. Kolaitis and M.Y. Vardi. A logical approach to constraint satisfaction. In Complexity

of Constraints, Lecture Notes in Computer Science 5250, pp. 125–155, Springer, 2008.

∗ Work supported in part by NSF grants CCF-0728882, and CNS 1049862, by BSF grant 9800096, and
by gift from Intel.

© Moshe Y. Vardi;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 3–3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.3
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Physical limits of Communication
Madhu Sudan1

1 Microsoft Research New England, One Memorial Drive, Cambridge, MA
02142, USA. madhu@mit.edu

Abstract
We describe recent work with Sanjeev Khanna (U. Penn.) where we explore potential axioms
about the mechanics of information transmission with a view to understanding whether continu-
ous signals can carry more information than analog signals.

1998 ACM Subject Classification H.1.1 Systems and Information Theory

Keywords and phrases Analog signals, information capacity, delays

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.4

1 Summary

Year after year, we have seen explosions in the amount of information that we can store on
storage devices, and the speed at which we can ship this information around the universe.
Are we close to reaching limits imposed by the physics? What are these limits and what
axioms do they come from? The study of such questions has primarily been the domain of
signal processing and information theory. In this talk we will speak about joint work with
Sanjeev Khanna, in which we explore such questions with some discrete and probabilistic
modeling.

The fundamental underlying issue is that digital communication is implemented on
physical objects. Classical models of the communication power of this physical layer study
the information carrying power of “continuous time signals”, i.e., real-valued functions over
a continuous interval of time. In the absence of sources of uncertainty such signals have
“infinite” information carrying capacity for two reasons: (1) At each instant of time, the
signal has infinitely many different values; and (2) There are infinitely many instances of
time (even in a bounded interval).

The former issue was resolved quite convincingly in the work of Shannon, who said that if
there is a additive error at each instant of time (where the error could be a simple Gaussian
random variable), then the information carrying power of a signal bounded in energy is a
finite number of bits. The latter issue unfortunately appears to be a bit more subtle. Classical
signal processing tends to deal with this issue by first looking at the Fourier spectrum of
the signal being transmitted, and then placing some restrictions on these. Converting back
to time domain, these restrictions miraculously say it is sufficient to sample the signal at
discrete time intervals. But what are these restrictions, where did they come from, and are
they really distinct from the assumption that the signal should be inferrable from its values
at a discrete set of sample points? In this talk we discuss such questions, and then contrast
with the more discrete and probabilistic models analyzed in our work [1].

In our work we ask what happens if nature provides us with a collection of N particles,
each one of which is capable of transmitting one bit somewhat unreliably. In particular we
study the case where this unreliability comes in two forms: error, where the bit carried by
a particle may flip during transmission, and delay, where the particle’s arrival time at a

© Madhu Sudan;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 4–5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.4
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Madhu Sudan 5

destination may not correspond exactly to its departure time. In particular we let the delay
be a random variable with a variance of one unit of time, and study how much information
can the sender communicate in T units of time, The natural method to deal with this
uncertain delay would be to transmit roughly N/T particles every, say, two units of time
and then the delay variance of one unit of time would not lead to interference from particles
transmitted at different time slots. But this would lead to a rate of information transmission
of only T log(N/T) bits. A more “continuous” transmission protocol might allow particles to
be transmitted at any point of time in the interval [0, T]. Would this enhance the capacity?
Surprisingly our (simple) analysis shows that the capacity does grow with such schemes. In
particular one can transmit as T · (N/T)ε bits, for some positive ε, in T units of time in
such settings. Thus we find that using the continuum of time does enhance capacity, up to
physical limits imposed by the particular nature of matter.

References
1 Sanjeev Khanna and Madhu Sudan. Delays and the capacity of continuous-time channels.

CoRR, abs/1105.3425, 2011.

FSTTCS 2011

A Domain-Specific Language for Computing on
Encrypted Data
Alex Bain, John Mitchell, Rahul Sharma, Deian Stefan and
Joe Zimmerman

Stanford University, Stanford, CA

Abstract
In cloud computing, a client may request computation on confidential data that is sent to un-
trusted servers. While homomorphic encryption and secure multiparty computation provide
building blocks for secure computation, software must be properly structured to preserve confi-
dentiality. Using a general definition of secure execution platform, we propose a single Haskell-
based domain-specific language for cryptographic cloud computing and prove correctness and
confidentiality for two representative and distinctly different implementations of the same pro-
gramming language. The secret sharing execution platform provides information-theoretic se-
curity against colluding servers. The homomorphic encryption execution platform requires only
one server, but has limited efficiency, and provides secrecy against a computationally-bounded
adversary. Experiments with our implementation suggest promising computational feasibility, as
cryptography improves, and show how code can be developed uniformly for a variety of secure
cloud platforms, without explicitly programming separate clients and servers.

1998 ACM Subject Classification D.3.3 Language Constructs and Features

Keywords and phrases Domain-Specific Language, Secret Sharing, Homomorphic Encryption

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.6

1 Introduction

Recent advances in secure multiparty computation and homomorphic encryption promise a
wide range of new applications. In particular, it is cryptographically possible to protect data
in the cloud from the servers manipulating it, subject to varying threat models. However,
the practical widespread use of these cryptographic techniques requires a suitable software
development, testing, and deployment infrastructure.

In this paper, we present the design, foundational analysis, implementation, and per-
formance benchmarks for an initial embedded domain-specific language (EDSL) that allows
programmers to develop code that can be run on different secure execution platforms with
different security guarantees. Figure 1 shows how our separation of programming environ-
ment from cryptographically secure execution platforms can be used to delay deployment
decisions or run the same code on different platforms.

While homomorphic encryption and secure multiparty computation are based on dif-
ferent cryptographic insights and constructions, there is a surprising structural similarity
among them that we express in our definition of secure execution platform. This defini-
tion allows us to develop a single set of additional definitions, theorems, and proofs that
are applicable to many platforms. In particular, we prove functional correctness and con-
fidentiality, for an honest-but-curious adversary, across relevant platforms. We then show
that fully homomorphic encryption satisfies our definition, as does a specific secret-sharing
scheme, subject to assumptions on the number of potentially colluding servers. Moreover,

© A. Bain, J. Mitchell, R. Sharma, D. Stefan and J. Zimmerman;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 6–24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.6
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Bain, J. Mitchell, R. Sharma, D. Stefan and J. Zimmerman 7

Debug monad on local
sever (no crypto)

Standard Haskell RTS

Secret-sharing monad on
multiple Cloud servers

Replicated Haskell RTS

Homomorphic encryption
monad on a Cloud server

Crypto-optimized RTS

Haskell EDSL

Figure 1 Multiple deployment options using different runtime systems (RTS)

our definition of secure execution platform is parameterized over the set of primitive oper-
ations on secret values, so that our language and our theoretical guarantees are applicable
to partially homomorphic schemes, when they support the operations actually used in the
program code. Our correctness theorems show equivalence with a reference implementation
and therefore imply output equivalence for alternative secure execution platforms.

Our embedded domain-specific language is implemented as a Haskell library, rather than
as a completely new language, so that developers can use existing and carefully engineered
Haskell development tools, compilers, and run-time systems. Programmers also have the
benefit of sophisticated type-checking and general programming features of Haskell because
we rely only on the Haskell type discipline, not ad hoc code restrictions. Further, we use
the Haskell type system to impose an information-flow discipline that is critical to pre-
serving confidentiality against cloud servers that could otherwise leak information through
control-flow analysis or other forms of program monitoring. Our Haskell implementation
also provides flexible data structures, since our information-flow constraints make secrecy-
preserving operations on such such structures possible.

generalizedMillionaires = do
-- Read worth from all users:
allWorth ← withUsers readWorth
-- Find richest user and her worth
(richest, worth) ← foldlM1 maxWorth allWorth
-- Notify the users of the status:
richestUser ← reveal richest
withUsers_ (λu →

if u == richestUser
then uPutStrLn u "You are the richest!"
else uPutStrLn u "Keep working!")

where readWorth u = do
w ← uRead u
return (hide u, w)

maxWorth (u1,w1) (u2, w2) = do
b ← (w1 .> w2)
sif b sthen (u1,w1) selse (u2, w2)

Figure 2 Generalized Millionaires’ Problem

As a working example, we consider the
Generalized Millionaires’ Problem: given
a number of millionaires, request their
net worth, identify the richest million-
aire, and, finally, notify each one of their
status without revealing their net worth.
Figure 2 shows an example implemen-
tation, that highlights several key as-
pects of our Haskell EDSL. First, our lan-
guage provides various primitives such as
withUsers, uRead, and reveal that are
respectively used to apply a function (e.g.,
readWorth) to each connected user, read
a secret input from the user, and reveal
(decrypt) a secret value. Second, the DSL
embedding allows the programmer to use
existing Haskell features including higher-
order functions, abstract data types, general recursion, etc. An example use of recursion
in our example is foldlM1 which, with maxWorth, is used to find the richest millionaire.
Finally, compared to languages with similar goals (e.g., SMCL [24]), where a programmer
is required to write separate client and server code, using our EDSL, a programmer need
only write a single program; we eliminate the client/server code separation by providing a
simple runtime system that directs all parties.

We describe a Haskell implementation of secure execution platforms based on both secret

FSTTCS 2011

8 A Domain-Specific Language for Computing on Encrypted Data

sharing and fully homomorphic encryption, both using SSL network communication between
clients and any number of servers. Our implementation effort produced 2500 lines of Haskell
and 650 lines of C/C++ code. We developed sample applications and measured performance
on benchmarks, as reported in Section 4.3. Because our implementation is packaged in
the form of Haskell libraries, other researchers could use our libraries to implement other
programming paradigms over the same forms of cryptographic primitives. Conversely, we
could target our language to other run-time systems such as SMCR [24], for programmers
only interested in that execution paradigm.

The contributions of this work include:
We leverage the similarity between secure multiparty computation and homomorphic
encryption, as captured in a precise definition of secure execution platform.
We design, implement, and test an embedded DSL that allows programmers to develop
code that runs on any secure execution platform supporting the operations used in the
code. We avoid ad hoc language restrictions by relying only on the Haskell type system
for information flow properties and other constraints.
We prove general functional correctness and security theorems, beyond previous work on
related languages for secure multiparty computation (SMC [27], Fairplay [22], SIMAP [4,
24] and VIFF [8]).
We develop and evaluate distributed secret sharing and homomorphic encryption execu-
tion platforms, using SSL network communication, implemented in Haskell.

Although we develop our results using the commonly used honest-but-curious adver-
sary model, there are established methods for assuring integrity, using commitments and
zero-knowledge techniques [16]. Moreover, since these add communication and computation
overhead, we can also consider the possibility of using techniques from [23] in future work.
These methods employ computational commitment and proofs of knowledge to provide com-
putations on ciphertexts with verifiable integrity and smaller overhead. While we focus on
data confidentiality, we can also protect confidential algorithms by considering code as input
data to an interpreter (or “universal Turing machine”).

2 Background

We propose a domain-specific programming language (DSL) embedded in Haskell, drawing
on previous languages (e.g., Cryptol), use of monads for cryptographic computation, and
other works on programmable secure multiparty computation (e.g., Fairplay [22], SIMAP [4,
24]). In this section, we introduce Haskell, and review secure multiparty computation and
homomorphic encryption.

Haskell and EDLs Haskell is a widely used host language for EDSLs [17]. The language
offers a strong, static type system that includes parametric and ad-hoc polymorphism (via
type classes); first-class monads, with convenient syntactic sugar; and, the IO monad, strictly
separating pure from impure computations. Haskell’s type classes, lazy evaluation strategy
(i.e., expressions are evaluated only when their values are needed), and support for monads
makes it easy to define new data structures, syntactic extensions, and control structures—
features commonly desired when embedding DSLs.

class Monad M where
return :: α→Mα
(>>=) :: Mα→ (α→Mβ)→Mβ

Figure 3 Monad operations

The main Haskell constructs used in embedding our
DSL are monads and type classes. A monad M pro-
vides a type constructor and related operations that
obey several laws. Specifically, if M is a monad and α

A. Bain, J. Mitchell, R. Sharma, D. Stefan and J. Zimmerman 9

is an arbitrary type, then Mα is a type with operations return, and >>= (pronounced
“bind”), whose types are shown in Figure 3. As shown in the figure, Haskell provides sup-
port for monads through the Monad type class. Type classes provide a method of associating
a collection of operations with a type or type constructor. Programmers, then, declare
instances of a given type class by naming the type or type constructor and providing im-
plementations of all required operations. As explained later, type classes are also useful in
‘overloading’ arithmetic operations over secret and public data.

Homomorphic encryption A homomorphic encryption scheme 〈KeyGen,Enc,Dec,Eval〉 con-
sists of a key generation algorithm, encryption and decryption algorithms, and an evaluation
function that evaluates a function f ∈ F on one encrypted value to produce another. More
specifically, if c = Enc(pk,m) then Eval(pk, c, f) = Enc

(
pk, f(m)

)
for every f ∈ F , where

F ⊆ (Plaintext → Plaintext) is some set of functions on plaintexts. As stated here, F is a
set of unary functions; however, we consider the more general case where each function has
a specific arity and type. We say that the scheme is homomorphic with respect to the set F
of functions.

While some homomorphic encryption schemes [6, 15, 20] are homomorphic with respect
to a restricted class of functions, such as the set of quadratic multivariate polynomials or
the set of shallow branching programs, recent research has produced an encryption scheme
that is fully homomorphic, i.e., homomorphic with respect to all functions of polynomial
complexity [11, 12, 28, 29]. Since this work has generated substantial interest, there is a
rapidly growing set of fully homomorphic constructions. However, for efficiency reasons
we remain interested in partially homomorphic schemes as well. Moreover, for any given
program, it is only necessary to use a form of homomorphic encryption that is sufficient for
the functions used by that program.

Secure multiparty computation Another approach to computing on ciphertexts makes
use of generic 2-party or multi-party secure computation [30, 21, 2, 18, 7, 23, 19, 9, 1], in
which the client, who has the plaintext x, communicates through some protocol with the
server(s), who have the function f to be computed on x. The standard conditions for secure
multiparty computation guarantee that the client only learns f(x) and the server learns
nothing about x.

In Shamir secret sharing and the multi-party computation algorithm based on it (see
[10]), a client C shares a secret value a0 from a finite field F among N other parties that we
will refer to as servers. In an (N, k) secret sharing scheme, N servers can jointly perform
computations on a0 and other shared secrets, such that at least k of the N servers must
cooperate to learn anything about a0.

The client C shares a secret value a0 by choosing values a1, . . . , ak−1 uniformly at random
from F , and forms the polynomial p(x) =

∑k−1
i=0 aix

i. Then, C computes and distributes
the secret shares s1 = p(1), . . . , sN = p(N) to the servers S1, . . . , SN , respectively.

Addition is easy for the servers to compute, since they can simply add their shares of two
values pointwise: if the values si form a sharing of a0 via p, and ti form a sharing of b0 via
q, then si + ti form a sharing of a0 + b0 via p+ q. Similarly, if the values si form a sharing
of a0 via p, then, for a constant c, c · si form a sharing of c · a0 via c · p. Multiplication of
two secret values is more complicated, because multiplication of polynomials increases their
degree. The solution involves computing and communicating a new sharing, which increases
the cost because the servers must communicate.

FSTTCS 2011

10 A Domain-Specific Language for Computing on Encrypted Data

3 Language design for Secure Cloud Computing (SCC)

For the purpose of analysis, we present a functional language whose definition is parameter-
ized by a set of given operations over some given type of encryptable values. This language,
λ→P,S, is a form of simply-typed lambda calculus, with labeled types as used in information
flow languages (see, e.g., [26]). Our implementation, described in Section 4, embeds an ex-
tension of this language in Haskell, and provides specific operations over encryptable integer
values. From the programmer’s standpoint, different cryptographic backends that support
the same operations provide the same programming experience. However, our analysis of
security and correctness depends on the number of servers, the form of cryptography used,
and the form and extent of communication between servers.

In order to provide a uniform analysis encompassing a range of cryptographic alterna-
tives, we formulate both a standard reference semantics for λ→P,S and a distributed semantics
that allows an arbitrary number of servers to communicate with the client and with each
other in order to complete a computation. Correctness of each distributed cryptographic
semantics is proved by showing an equivalence with the reference semantics. Security prop-
erties are proved by analyzing the information available to each server at every point in the
program execution.

Before presenting the definition of λ→P,S, we summarize the semantic structure used in
our analysis. As shown below, our semantic structure is sufficient to prove correctness and
security theorems for λ→P,S, and general enough to encompass secret sharing, homomorphic
encryption, and other platforms.

Reference semantics primitives In the reference semantics, the private values used in
computation are interpreted using a set Y of base values, together with primitive operations
op1, . . . , opr : Y ×Y → Y . For simplicity, we consider only binary operators over a single set
of base values. The generalization to arbitrary typed operations over several types of base
values is straightforward. We note that this parameterization allows our language (and its
Haskell implementation) to easily encompass a variety of platforms, including cryptosystems
that are only additively or multiplicatively (rather than fully) homomorphic.

Randomness Because cryptographic primitives used by each of N servers in the dis-
tributed semantics may require randomness, we assume a set R of tuples of sequences,
where each R = (RC , RS1 , . . . , RSN

) ∈ R provides N + 1 infinite sequences of elements
of some finite set Z (such as Z = {0, 1}). As the notation suggests, if there are N + 1
parties, the sequence RP is assumed available to the party P ∈ {C, S1, . . . , SN}. Since
security relies on correct random sequences, we let UR be a uniform randomness source:
UR = ((UR)C , (UR)S1 , . . . , (UR)SN

) = (UωZ , UωZ , . . . , UωZ), where UωZ denotes an infinite se-
quence of uniform random variables over Z.

Distributed computing infrastructure We assume N servers, S1, . . . , SN , execute the se-
cure computation on behalf of one client, C; the extension to multiple clients is straight-
forward. (In many natural cases, such as homomorphic encryption, N = 1). The (N + 1)
parties will communicate by sending messages via secure party-to-party channels; we denote
by M the set of possible message values that may be sent. A communication round is a set
{(P (i)

1 , P
(i)
2 ,m(i))}1≤i≤r of triples, each indicating a sending party, a receiving party, and a

message m ∈ M . A communication trace is a sequence of communication rounds, possibly
empty, and T is the set of communication traces.

A. Bain, J. Mitchell, R. Sharma, D. Stefan and J. Zimmerman 11

If A ⊆ {S1, . . . , SN} is any subset of the servers, the projection of trace T onto A, written
ΠA(T), is the portion of the trace visible to the servers in A, i.e., ΠA(ε) = ε and:

ΠA({(S(i)
1 , S

(i)
2 ,m(i))}‖T) = {(S(i)

1 , S
(i)
2 ,m(i)) | {S(i)

1 , S
(i)
2 } ∩A 6= ∅}‖ΠA(T) .

General form of cryptographic primitives We work with a two-element security lattice,
S = {P,S} (with P v S), representing (respectively) “public” values, which are transmitted
in the clear and may be revealed to any party; and “secret” values, which are encrypted or
otherwise hidden, and must remain completely unknown to the adversary. We assume a set
ES(Y), holding “secret equivalents” of base values in Y ; for notational uniformity, we also
define EP(Y) = Y , signifying that the “public equivalent” of a value is just the value itself.

We also assume a cryptographic protocol operation Init : R → I × R that establishes
the initial parameters of the platform (e.g., it may generate a public/private key pair for
use throughout the computation). Init is a randomized operation, taking a random source
in R (and returning the modified source after potentially consuming some values). We
define ι̂ to be the random variable over R that is derived from running Init on a uniformly
random source (ι̂ = π1(Init(UR))). Further, we assume a projection operator from the
initial parameters onto any collection of servers A ⊂ {S1, . . . , Sn}, writing ΠA(ι) to mean,
intuitively, the portion of the initial parameters ι that servers in A should receive.

The other cryptographic operations used in the distributed semantics return secret or
public values, but may also consume random values (R), read from the initial parameters
(I), and/or result in communication among the parties (T). We assume the following
operations:

EncS : Y ×R× I → ES(Y)×R× T , “hiding” y ∈ Y .
DecS : ES(Y)×R× I → Y ×R× T , “unhiding”.
Encα,β(opi) : Eα(Y)×Eβ(Y)×R×I → Eαtβ(Y)×R×T (when α t β = S), evaluating
a primitive.

For notational uniformity, as above, we also define the corresponding operations in the
degenerate case of “hiding” public values: EncP(y,R, ι) = (y,R, ε), DecP(y,R, ι) = (y,R, ε),
and EncP,P(opi)(y1, y2, R, ι) = (opi(y1, y2), R, ε).

In reasoning about the distributed semantics, we require that all of the protocol opera-
tions consume randomness sources correctly, i.e., when given random sources R = (RC , RS1 ,

. . . , RSN
), each operation returns a tuple R′ = (R′C , R′S1

, . . . , R′SN
), where each R′P is a

suffix of RP and the entire result of the operation depends only on the prefix consumed
(and thus independent of R′P). As a corollary, any operation given uniform randomness UR
must return UR.

Cryptographic functional correctness We assume the usual encryption and homomor-
phism conditions, augmented for cryptographic primitives that depend on explicit random-
ness and that may communicate among servers to produce their result. More precisely, for
every y ∈ Y , and every choice of initial parameters ι ∈ I, we assume a family of safe sets
Eα(y, ι): intuitively, any value l ∈ Eα(y, ι) can safely serve as the “hiding” of y under the
initial parameters ι (at secrecy level α ∈ {P,S}). More precisely:

π1(Encα(y,R, ι)) ∈ Eα(y, ι)
We also require that unhiding (“decryption”) is the left-inverse of hiding (“encryption”),
and hiding commutes homomorphically with the primitive operations:

π1(Decα(π1(Encα(y,R1, ι)), R2, ι)) = y

π1(Encα,β(opi)(l1, l2), R3, ι) ∈ Eαtβ(opi(y1, y2)) whenever l1 ∈ Eα(y1, ι) and l2 ∈ Eβ(y2, ι)

FSTTCS 2011

12 A Domain-Specific Language for Computing on Encrypted Data

Cryptographic statistical correctness Analogous to functional correctness, for every y ∈
Y , and every choice of initial parameters ι ∈ I, we assume a family of safe distributions
Êα(y, ι) over the safe sets Eα(y, ι): intuitively, any distribution l ∈ Êα(y, ι) can safely serve
as the “hiding” of y under the initial parameters ι (at secrecy level α ∈ {P,S}), assuming
randomness is uniform at all stages. We require that “hiding” a base value using a uniform
randomness source must yield a safe distribution:

π1(Encα(y, UR, ι)) ∈ Êα(y, ι)
In addition, for any two base values y1 and y2, we require that evaluating a primitive
operation opi on safe distributions of these two values must yield a safe distribution of
opi(y1, y2):

π1(Encα,β(opi)(l1, l2, UR, ι)) ∈ Êαtβ(opi(y1, y2), ι) whenever l1 ∈ Êα(y, ι) and l2 ∈ Êβ(y, ι)

Indistinguishability conditions The distributed threat model may generally involve any
set of possible combinations of colluding servers. We formalize this by assuming a family
A ⊆ 2{S1,...,SN} of sets that we refer to as valid sets of untrusted servers. Intuitively, for any
A ∈ A, we assume the cryptographic primitives are intended to provide security even if an
adversary has access to all information possessed by servers in A.

Since different platforms may provide different security guarantees of their primitives,
we assume a generic notion of indistinguishability; for the purposes of our examples, we
will restrict our attention to information-theoretic indistinguishability and computational
indistinguishability (with respect to some security parameter of the implementation), but
our results easily generalize. Using the form of indistinguishability provided by the platform
in question, we assume that any two sequences of partial traces are indistinguishable if
each pair of corresponding partial traces describes either a primitive operation or a “hiding”
operation on two safely-distributed values.1 More precisely, for all T (ι) = (T1(ι), . . . , Tr(ι))
and T ′(ι) = (T ′1(ι), . . . , T ′r(ι)), if for each i, either:

Ti(ι) = π3(EncS(yi, UR, ι)) or
Ti(ι) = π3(Encα,β(opi)(Li,1(ι), Li,2(ι), UR, ι))

where Li,1(ι) ∈ Êα(yi,1, ι) and Li,2(ι) ∈ Êβ(yi,2, ι)
O(ι) = (πA(ι), πA(T1(ι)), . . . , πA(Tk(ι)))

(and analogously for O′, T ′, substituting y′i, y′i,1, y′i,2 for yi, yi,1, yi,2), then the distributions
O(ι̂) and O′(ι̂) are indistinguishable.

I Definition 1. We say that a platform (Z,N,M,E ,Enc,A) is a secure execution platform
for (Y, (opi)) if it satisfies all of the assumptions of this section.

3.1 Framework
We introduce a simple language, λ→P,S, based on the simply-typed lambda calculus with base
values and primitive operations. In addition to standard constructs, expressions in λ→P,S
may include variables bound at the program level by the read construct, representing secret
values input by the clients before the body of the program is evaluated; these input variables
are represented by capital letters X (in contrast to lambda-bound variables, which use lower-
case letters x), to emphasize the phase distinction between input processing and evaluation

1 These values may be either secret (S) or public (P). In the latter case, we still assume that the
communication traces are indistinguishable, since a properly implemented protocol should not need to
exchange publicly-known information between servers at each operation.

A. Bain, J. Mitchell, R. Sharma, D. Stefan and J. Zimmerman 13

of the program body. Programs in λ→P,S may also include reveal operations, which specify
that the value in question need not be kept secret during the computation. Throughout this
section, we assume a set Y , primitive operations (opi), and a secure execution platform for
(Y, (opi)), as specified in Section 3.

Listing 1 Syntax for expressions and programs.

e ::= x | λx.e | e1 e2 | opi(e1, e2) | y ∈ Y | X | reveal e
p ::= read X1, . . . , Xr ; e

The static semantics (Listing 2) are standard; we assume the two-element security lattice
{P,S}, P v S, denoting the types of (respectively) public values, which may be revealed to
any party (including the servers); and secret values, about which the protocol may reveal
no information. Note that we include both the static semantics for expressions (Γ ` e : τ)
and those for values (Γ `v v : τ).

Listing 2 Static semantics for expressions and values.

Γ ` y : (Y,P) Γ ` X : (Y, S)
Γ ` e : (Y,S)

Γ ` reveal e : (Y,P)
Γ[x 7→ τ1] ` e : τ2
Γ ` λx.e : τ1 → τ2

Γ ` x : Γ(x)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Γ ` e1 : (Y, α) Γ ` e2 : (Y, β)
Γ ` opi(e1, e2) : (Y, α t β)

y ∈ Y
Γ `v (y, α) : (Y, α)

Γ ` λx.e : τ1 → τ2

Γ `v λx.e : τ1 → τ2

We give a standard dynamic semantics for λ→P,S (Listing 3), based on the usual evaluation
rules for lambda calculus with primitive operations; to simplify notation, we overload the
symbol ↓ to represent the evaluation judgments for programs, (κ, p) ↓ (v,O), as well as
those for expressions, (κ, ρ, e) ↓ (v,O). The environment κ represents the initial (secret)
values supplied by the client. Operationally, the read construct is a no-op, but for clarity
we retain it in the syntax, since in the implementation semantics (Listing 5) it will represent
the “hiding” and initial transmission of the values from the client to the servers. The reveal
construct acts as a cast from S to P, and may therefore have side effects in an implementation
of λ→P,S (as discussed below), but these effects are guaranteed to be benign with respect to
functional correctness, since they do not change the first component of the resulting value in
the dynamic semantics (Listing 3). We also track a list of “observations”, O, throughout the
evaluation, holding all values ever supplied to reveal; this is important in proving security
properties (Theorem 6), as we will show that an appropriately constrained adversary learns
nothing except what is entailed by these observations.

We have the usual type safety theorem (encompassing both progress and preservation):2

I Theorem 2 (Soundness for Reference Semantics). If ∅ ` e : τ , p = read X1, . . . , Xr; e,
FV(e) ⊆ {X1, . . . , Xr}, and κ maps each Xr to an element of Y , then there exists a value v
and an observation sequence O such that (κ, p) ↓ (v,O) and ∅ `v v : τ .

2 For space reasons, we omit the proofs of theorems in this section.

FSTTCS 2011

14 A Domain-Specific Language for Computing on Encrypted Data

Listing 3 “Reference” dynamic semantics for λ→P,S.

(κ, ρ, y) ↓ ((y,P), ε) (κ, ρ,X) ↓ ((κ(X),S), ε) (κ, ρ, x) ↓ (ρ(x), ε) (κ, ρ, λx.e) ↓ (λx.e, ε)

(κ, ρ, e) ↓ ((y,S),O)
(κ, ρ, reveal e) ↓ ((y,P),O‖y)

(κ, ρ, e1) ↓ (λx.e,O1) (κ, ρ, e2) ↓ (v2,O2)
(κ, ρ[x 7→ v2], e) ↓ (v,O3)

(κ, ρ, e1 e2) ↓ (v,O1‖O2‖O3)

(κ, ρ, e1) ↓ ((y1, α),O1) (κ, ρ, e2) ↓ ((y2, β),O2)
(κ, ρ, opi(e1, e2)) ↓ ((opi(y1, y2), α t β),O1‖O2)

(κ, ∅, e) ↓ (v,O)
(κ, read X1, . . . , Xr; e) ↓ (v,O)

In order to address correctness and security of implementations, we augment the language
λ→P,S so that there is an additional case for result values, l ∈ ES(Y, I), representing hidden
values; we denote this augmented language by λ̂→P,S. We give a dynamic semantics for λ̂→P,S in
Listing 5. In contrast to the first, “reference”, dynamic semantics for λ→P,S, the “distributed”
semantics for λ̂→P,S reflects the steps taken by an actual implementation. We again have the
usual type safety theorem for λ̂→P,S under the distributed semantics:

I Theorem 3 (Soundness for Distributed Semantics). If ∅ ` e : τ , p = read(X1, . . . , Xr); e,
FV(e) ⊆ {X1, . . . , Xr}, and κ maps each Xi to an element of Y , then for all ι ∈ I, ran-
domness sources R ∈ R, there exists a value w, a trace T , and a randomness source R′ ∈ R
such that (κ,R, p) ⇓ (w,R′, T) and ∅ `tv w : τ .

Listing 4 Static semantics for values (“distributed” semantics).

y ∈ Y l ∈ Eα(y)
Γ `tv (l, α) : (Y, α)

Γ ` λx.e : τ1 → τ2

Γ `tv λx.e : τ1 → τ2

The reference semantics expresses the standard meaning of programs in λ→P,S, while the
distributed semantics expresses in more detail how an implementation should realize them.
Evidently, in a correct system we would expect evaluation to arrive at equivalent results
in both cases; this is guaranteed by the following theorem (where the relevant similarity
relation is defined in Listing 6):

I Theorem 4 (Functional Correctness). If ∅ ` e : τ , p = read(X1, . . . , Xr); e, FV(e) ⊆
{X1, . . . , Xr}, κ maps each Xi to an element of Y , and (κ, p) ↓ (v,O), then for all R ∈ R,
there exist R′ ∈ R, T , w, and ι such that (κ,R, p) ⇓ (T,R′, w,O) and v ∼∅,ιτ w.

Functional correctness expresses that for any well-formed randomness source R ∈ R,
regardless of whether it was in fact generated randomly, the distributed semantics yields the
correct answer. It will also be useful to have a correctness theorem expressing the behavior
of the system when given a truly random source. In particular, if we regard the values in
question as random variables, and assume that at the beginning of the computation they
satisfy appropriate safe distributions as given by Ê{P,S}(·, ·), we can show that values remain
in such distributions throughout the computation (Theorem 5). In order to state this result,
we introduce a similarity relation ≈Γ,ι

τ (Listing 6) to relate values in the reference semantics
with their safe distributions.

A. Bain, J. Mitchell, R. Sharma, D. Stefan and J. Zimmerman 15

Listing 5 “Distributed” dynamic semantics for λ̂→P,S.

(ι,Ψ,∆, R, y) ⇓ (ε,R, (y,P), ε) (ι,Ψ,∆, R,X) ⇓ (ε,R, (Ψ(X),S), ε)

(ι,Ψ,∆, R, x) ⇓ (ε,R,∆(x), ε) (ι,Ψ,∆, R, λx.e) ⇓ (ε,R, λx.e, ε)

(ι,Ψ,∆, R, e) ⇓ (T1, R1, (l,S),O1) (y,R2, T2) = DecS(l, R1, ι)
(ι,Ψ,∆, R, reveal e) ⇓ (T1‖T2, R2, (y,P),O1‖y)

(ι,Ψ,∆, R, e1) ⇓ (T1, R1, λx.e,O1)
(ι,Ψ,∆, R1, e2) ⇓ (T2, R2, v2,O2) (ι,Ψ,∆[x 7→ v2], R2, e) ⇓ (T3, R3, v,O3)

(ι,Ψ,∆, R, e1e2) ⇓ (T1‖T2‖T3, R3, v,O1‖O2‖O3)

(ι,Ψ,∆, R, e1) ⇓ (T1, R1, (l1, α),O1)
(ι,Ψ,∆, R1, e2) ⇓ (T2, R2, (l2, β),O2) (l, T3, R3) = Encα,β(opi)(l1, l2, R2, ι)

T = T1‖T2‖T3 O = O1‖O2

(ι,Ψ,∆, R, opi(e1, e2)) ⇓ (T,R3, (l, α t β),O)

(R0, ι) = Init(R) ∀i ∈ {1, . . . , N}. Ti = {(C, Si,Π{Si}(ι)}
∀j ∈ {1, . . . , r}. (lj , Rj , T ′j) = EncS(κ(Xj), Rj−1, ι)

(ι, {X1 7→ ll, . . . , Xr 7→ lr}, ∅, Rr, e) ⇓ (T, v,R′,O) T ′ = T1‖ . . . ‖TN‖T ′1‖ . . . ‖T ′r‖T
(κ,R, read(X1, . . . , Xr); e) ⇓ (T ′, v, R′,O)

Listing 6 Similarity relations for functional and statistical correctness.

l ∈ Eα(y, ι)
(y, α) ∼Γ,ι

(Y,α) (l, α)
Γ ` λx.e : τ1 → τ2

λx.e ∼Γ,ι
τ1→τ2

λx.e

l ∈ Êα(y, ι)
(y, α) ≈Γ,ι

(Y,α) (l, α)
Γ ` λx.e : τ1 → τ2

λx.e ≈Γ,ι
τ1→τ2

λx.e

I Theorem 5 (Statistical Correctness). If ∅ ` e : τ , p = read(X1, . . . , Xr); e, FV(e) ⊆
{X1, . . . , Xr}, κ maps each Xi to an element of Y , and (κ, p) ↓ (v,O), then there exist T
and w such that (κ, UR, p) ⇓ (T,UR, w,O) and v ≈∅,ι̂τ w (where the semantics judgments are
lifted to distributions).

For security, however, the above results are not sufficient. Rather, we now show that
if, during the evaluation of a program in λ→P,S, an adversary is confined to observing the
data visible to a valid subset of untrusted servers A ∈ A (represented by their views of
the communication trace), then that adversary learns nothing about the initial secret client
values that was not already implied by the observations from reveal:

I Theorem 6 (Security). If ∅ ` e : τ , p = read(X1, . . . , Xr); e, (κ, UR, p) ⇓ (T,UR, v,O),
and (κ′, UR, p) ⇓ (T ′, UR, v′,O), then for all valid sets of untrusted servers A ∈ A, the
distributions ΠA(T) and ΠA(T ′) are indistinguishable (in the sense specified by the secure
execution platform, as described in Section 3).

We remark that although the conclusion of this theorem seems simple, it requires some care
to set up the proof correctly. In particular, we can proceed by showing inductively that the
two evaluation derivations take the same form, with all resulting values, observations, and
traces being structurally equal; moreover, all traces can be decomposed into secret compo-
nents (which, by statistical correctness, must satisfy the hypothesis of the indistinguishabil-

FSTTCS 2011

16 A Domain-Specific Language for Computing on Encrypted Data

ity assumption), and public components (which are identical between T and T ′, since both
evaluations yield the same observations). We may then conclude indistinguishability of the
projections ΠA(T) and ΠA(T ′).

3.2 Shamir secret sharing
We now define Shamir secret sharing in the notation of our framework (Section 3), and show
that it is a secure execution platform (Definition 1) for addition and multiplication over a
finite field, thereby concluding all of the correctness and security results of Section 3.1 as
applied to λ→P,S with these two primitive operations. Let N be the number of servers execut-
ing the computation (i.e., we use an (N, k) sharing). The set of base values Y is the finite
field Fp, where p is a parameter of the implementation,3 equipped with the usual operations
of addition and multiplication (op1(x, y) = (x + y) mod p, op2(x, y) = (x · y) mod p). The
sets M of messages and Z of random numbers are also defined to be Fp. We define the
set of “hidden equivalents” ES(Fp) to be FNp ; during computations, we will be concerned
specifically with inhabitants of ES(Fp) that represent each of the N servers’ shares of some
base value. Apart from the initial secret sharing, there is no initialization phase, so we let
I be the singleton set {()}.

The “hiding” and “unhiding” operations are defined using the standard Shamir secret
sharing constructions, as described in Section 2. (For brevity, we defer the formal definitions
to the extended version of this article4.) The primitive operations EncS,S(+), EncS,P(+),
EncP,S(+), EncS,S(∗), EncS,P(∗), and EncP,S(∗) are defined similarly, following Section 2; We
note that each of the secret sharing operations consumes randomness correctly, by definition.
Further, since any base value has only one distribution that can result from using uniform
randomness (namely, the uniform distribution over all valid sharings), we define the set of
safe distributions to contain only this one: ÊS(n, ()) = {D(n)} = {EncS(n,UR, ())}. We also
define A, the family of valid untrusted subsets of the servers, to include exactly those subsets
with cardinality less than k, and we specify that the system should provide information-
theoretic security. Assuming this specification, the required functional correctness, statistical
correctness, and indistinguishability properties of the primitives follow from the properties
of secret sharing outlined in Section 2. (Again for brevity, we omit proofs of all of these
properties, but we refer the reader to the extended version.)

Given that the operations of Shamir secret sharing satisfy all of the required properties
(as enumerated in Section 3), we can conclude that Shamir secret sharing is a secure execu-
tion platform for (+,×), and thus all of the results of Section 3.1 hold of programs in λ→P,S
when it is given the semantics of Shamir secret sharing. In particular, functional correctness
(Theorem 4) takes on the flavor of a “SIMD” property, stating that the evaluation of a
program on N servers results in N -tuples in the “distributed” semantics (a share for each
server) being produced in lock-step with their equivalents (the shared value) in the “ref-
erence” semantics. Moreover, the security result (Theorem 6) now guarantees the desired
secrecy property for the entire language: if the adversary can observe the data from at most
k of the servers, then even with unbounded computational resources, it cannot distinguish
between any two initial secret value environments, except to the extent that they cause
different values to be provided to explicit “reveal” directives in the program.

3 In practice, it is more useful to have programs act on integers rather than elements of a finite field.
This can be done via a static analysis that infers the largest possible integer value that can arise during
the execution, given bounds on the input values.

4 Available at http://eprint.iacr.org/2011/561.

http://eprint.iacr.org/2011/561

A. Bain, J. Mitchell, R. Sharma, D. Stefan and J. Zimmerman 17

3.3 Fully homomorphic encryption
In addition to secure multiparty computation, a variety of homomorphic encryption schemes
can also serve as secure execution platforms for standard primitive operations. In partic-
ular, we will now show that any fully homomorphic encryption scheme, and notably Gen-
try’s scheme [11] (under the appropriate cryptographic assumptions), is a secure execution
platform for addition and multiplication over the ring Z2k , achieving security against a
computationally-bounded adversary.

In fully homomorphic encryption, the number of servers, N , is 1; the client simply sends
encrypted values to the server, and the server performs the computation homomorphically,
returning the encrypted result. Although traditionally the operations provided under fully
homomorphic encryption would be a complete set of circuit gates, in order to provide a
better analogy with secret sharing we define the set of base values Y to be the ring Z2k , and
the operations (op1, op2) to be addition and multiplication in the ring. The initialization
step is just Init = KeyGen(λ) generating the public/private key pair,5 where λ is the security
parameter to the system.

To begin the computation, the client sends the public key to the server (i.e., Π{S1}(ι)
here is Π{S1}((sk,pk)) = pk), then encrypts all of the initial values one bit at a time
and sends the corresponding ciphertexts to the server (i.e., EncS(bkbk−1 · · · b1, (sk,pk)) =
(Ψ, {(C, S1,Ψ)}) where Ψ = (Enc(pk, b1), . . . ,Enc(pk, bk))). During the computation, the
server itself performs additions and multiplications on the ciphertexts by homomorphically
evaluating the corresponding circuits, producing no communication trace with the client
(i.e., EncS,S(op)(Ψ1,Ψ2, (sk,pk)) = (Eval(pk, op,Ψ1,Ψ2), ε)); when one of the operands is a
public value (i.e., EncS,P, EncP,S), the server simply “hides” it using Enc(pk, ·), and then
uses EncS,S. For reveal operations, the server sends back to the client a tuple of ciphertexts
to be decrypted, and the corresponding plaintexts (bits of some base value) are returned
to the server (i.e., DecS(Φ, (sk,pk)) = (n, {(S1, C,Φ), (C, S1, n)}) where n =

∑k
i=1 bi2i,

bi = Dec(sk,Φi)). Finally, given these operations, we note that the set ES(Y) of possible
“hidden” values should be defined as the set of k-tuples of ciphertexts, while the set M of
messages in M consists of ciphertexts, plaintexts, and k-tuples of ciphertexts.

Functional correctness of the primitives follows directly from the homomorphic properties
of the encryption scheme. For statistical correctness, we can trivially define a safe distri-
bution to be any distribution l ∈ ÊS(y, ι). Indistinguishability is then immediate for partial
traces derived from opi, since these operations produce empty traces. For the other partial
traces (i.e., the initial encryptions EncS), indistinguishability follows from CPA-security of
the encryption scheme, since the only values in the traces are the encryptions of each of the
bits of the secret client inputs.

Thus, fully homomorphic encryption is a secure execution platform for (+,×), and as
above, all of the results of Section 3.1 hold of programs in λ→P,S when it is given the semantics
of fully homomorphic encryption (now obtaining security guarantees against a computation-
ally bounded adversary).

4 Implementation

We implemented the language of Section 3 as an EDSL in Haskell. Our implementation
framework consists of a module that defines the language interface, and SMC and FHE

5 For clarity, we elide the randomness sources in this section.

FSTTCS 2011

18 A Domain-Specific Language for Computing on Encrypted Data

libraries that implement the interface combinators. In this section we detail the EDSL and
underlying libraries.

4.1 Haskell Secure Cloud Computing EDSL
Our EDSL defines a generic interface, extending the language given in Listing 1. We use
the type alias BType to denote the base type Y , and LType to denote the hidden, or lifted,
type ES(Y). Additionally, we provide SIO, a “secret” IO monad, which is used to carry
out IO operations and thread platform state (e.g., R and T of Section 3) through a given
computation.

As previously mentioned, we use Haskell type classes to overload the operators core to
the EDSL syntax. As many library functions have side effects (e.g., the SMC multiplication
requires network communication) we prefix the EDSL operators with ‘.’, and functions
with ‘s’, as to avoid name collisions with the standard Prelude library that is implicitly
imported by every Haskell module. Below we detail some of the core aspects of our EDSL.
However, we note that, compared to SMCL and other, similar, DSLs, we do not provide
any loop constructs—our Haskell embedding allow a programmer to use existing high-order
constructs (including general recursion) to create very powerful application-specific loop
constructs.

Primitive operations Secure addition, subtraction and multiplication operators are defined
using the multi-parameter type class EDSLArith. The use of multi-parameter type classes
allows us to define instances of the operators with operands of mixed secrecy types (e.g.,
addition of a public and hidden type). In a similar fashion, we provide standard comparison
operators, and a random number generator (RNG) interface. The RNG implementation is,
however, limited to SMC following [25].

We leverage Haskell’s strong type system (and newtype declaration) to provide a hidden
Boolean type. Specifically, we introduce BoolLType as a wrapper for LType, hiding the
constructor from the programmer (to avoid unsafe coercions). However, we provides basic
Boolean arithmetic and logic operators, including bit–and, bit–or, bit–exclusive-or, ∧,∨,
and ¬. Directly, our EDSL can be used to enforce safety of conditionals on hidden values.
Specifically, we provide the construct sif c sthen x selse y, which is implemented by safe
arithmetization (i.e., c · x + (1 − c) · y, that preserves/restores types). In addition to type-
safety, this allows writing code using familiar syntax. For example, we can write the max
function simply as: max x y = sif (x .<= y) sthen y selse x.

Hiding and unhiding functions Further using type classes, we define the EDSLHide class
which declares hide, a Haskell function corresponding to EncS; hide maps values to their
secret equivalent. Dually, we declare reveal and the EDSLReveal type class that implements
the functionality of DecS of Section 3; reveal maps hidden, or secret, values to their public
equivalent.

withUsers :: (BType → SIO α) → SIO [α]
withUsers_ :: (BType → SIO α) → SIO ()

Figure 4 Iterating over users

User I/O We provide three combinators for
interacting with users: uRead, uWrite, and
uPutStrLn. uRead is used to request a user for
input; the user responds by sending a hidden
value to the server(s). Dually, uWrite is used to
send a hidden value to the user, who then locally unhides the value. Observe, that, using

A. Bain, J. Mitchell, R. Sharma, D. Stefan and J. Zimmerman 19

this construct, a programmer can write a program that reveals results only to clients. Fi-
nally, uPutStrLn is used to print a string on a user’s terminal. To execute IO actions on
all the connected user clients, we provide withUsers and withUsers_, shown in Figure 4.
The former executes a function on all the clients, returning a list of results, while the latter
discards the results (useful, e.g., when executing uWrite).

4.2 SMC & FHE Library Implementations

In this section we present our SMC and FHE libraries, which instantiate our EDSL with
the secure execution platform respectively based on Shamir secret sharing and the Gentry-
Halevi FHE implementation [14, 13]. In our framework, each program, such as that of
Figure 2, that is executed by the Cloud server parties is actually an SIO action. Hence, all
the configuration details (e.g., which clients are connected, or the identity of the executing
server) are transparent and abstracted into this underlying monad and EDSL constructs. A
programmer need only provide an initial configuration that specifies the participating server
and client parties, in addition to the program. The same program and configuration is copied
to all the Could servers—in the SMC case, the servers execute in a network-SIMD fashion,
while in the FHE case the server executes in a standard (network-SISD) fashion. Clients,
on the other hand, are event-based: they await instructions from the server(s) and simply
respond accordingly. Below, we detail the core base and hidden types, and library-specific
details on parties and the execution environment.

share :: SMCScheme → Zp → SIO [Share]
reconstruct :: [Share] → Zp

Figure 5 Shamir sharing constructs

Secure Multi-party Computation To implement
Shamir secret sharing, we define a base type Zp
that represents elements of Fp as a wrapper for the
Haskell’s arbitrary precision Integer type with
the standard operators corresponding to their fi-
nite field counterparts. Directly, we define a share, or hidden, type (Share) as a record
enclosing a party number and share value, each of type Zp. Shamir secret sharing functions,
described in Section 2, are shown in Figure 5, where the type SMCScheme is used to encode
the (N, k)-scheme. Here, share breaks an element into shares, while reconstruct takes a
list of shares and constructs the corresponding element. We highlight that share returns
an SIO action: the function requires a RNG (we use a cryptographically secure determinis-
tic random bit generator) to break an element into its shares, while reconstruct is pure.
Further, we highlight, that, compared to the semantics of Listing 5, the RNG in part of
underlying monad and not explicitly passed to functions.

As previously mentioned, our implementation relies on the notion of party, which we
realize using the data type Party. A Party has an identifier, a network address (hostname,
port, SSL certificate), and two typed communication channels: an inbox and outbox. After
setting up a mutually-authenticated connection, parties can exchange message using the
inbox/outbox channels. Specifically, parties can exchange messages of several forms: (i) a
response (constructed with RespShare) when sending a server party a share from either a
client or another server party, (ii) a request (ReqShare) when requesting a client for input,
(iii) a reconstruct (ReconstrShare) when sending a client a share, who then combines all the
received shares to reconstruct the hidden value, (iv) a print (PrintStr) when writing a string
message to the user’s terminal, and (v) a disconnect (Disconnect) when the computation
has terminated, or failed. We found these message forms to be sufficient when implementing
the core Shamir secret sharing EDSL constructs.

FSTTCS 2011

20 A Domain-Specific Language for Computing on Encrypted Data

Each server party executes an SMC computation in two steps. First, each server listens
for incoming connections from other server or client parties. Upon accepting a connection
from a party it spawns two threads: a thread that reads incoming network messages and
writes them to the inbox channel, and a thread that block-reads the outbox channel, serializes
the message, and writes them to the network. Second, when all the servers are interconnected
and every client is connected to all the servers, the server parties execute the EDSL program
in lock-step, or SIMD fashion. The underlying monad abstracts-away and manages all the
configuration details, such as to which party or channel a share should be sent. Of course, the
configuration details are queried and used by constructs such as the multiplication operator
(.*).

Fully Homomorphic Encryption The Gentry-Halevi C++ implementation [14, 13] pro-
vides several functions, including a public/private key pair generation function, encryp-
tion/decryption functions, a recrypt (ciphertext refreshing) function and simple single-bit
homomorphic arithmetic operators. We extend their implementation with k-bit homomor-
phic addition, multiplication, comparison and equality testing functions. To integrate the
(extended) C++ FHE library into our Haskell framework, we further implemented C wrap-
pers for the basic FHE operations, and various library functions—calling foreign functions
in Haskell is accomplished using the Foreign Function Interface (FFI), which is currently
best suited for interfacing with C.

Similar to the SMC case, we define a base and hidden type. Specifically, we define the
base type (ZZ) as a simple wrapper for Haskell’s Int, bounding it to k-bits. The hidden,
encrypted, type is a wrapper for a C pointer (to a vector of “big integers”) that allows for
simple calling of the C/C++ FHE functions from Haskell. Although this adds the additional
complexity of performing garbage collection of the C-allocated big integers, it allows us to
use the optimzied C/C++ FHE functions when implementing the EDSL combinators such
as the addition operator (.+).

To support a practical Cloud-oriented FHE library, we require the separation of client
and server code, and we thus provide functions that serialize and deserialize encrypted val-
ues. Directly, this allows for transmission of encrypted values over the network. From a
networking perspective the FHE setting is a special case of SMC with N = 1. Hence,
the FHE notion of party is similar to that of SMC described above, though it additionally
requires associating public-private keys with a computation. However, among other differ-
ences, compared to SMC, where only server communication is necessary in unhiding, or
decrypting, a value, in the FHE setting, communication with a client is necessary. These
details are, of course, abstracted into the underlying SIO monad and corresponding EDSL
constructs (e.g., reveal) and thus transparent to the programmer.

4.3 Performance Evaluation
Our SMC library, including the EDSL interface, and comparison protocol of [4], was im-
plemented in roughly 1300 lines of Haskell code. Our FHE library was implemented in
about 1200 lines of Haskell, and 650 lines of C/C++ code extending the Gentry-Halevi im-
plementation. To evaluate the performance of these implementation we also implemented
various programs, including the Clock-Auction, and mall benchmark suite of [24]. The suite
consists of 3 programs that compute the sign of a quadratic polynomial: (i) the ideal pro-
gram operates solely on hidden values, (ii) the pragmatic program operates on mixed-secrecy
values—all values are secrec except for the evaluation point and the result of the polynomial
evaluation, (iii) the public program operates solely on public values.

A. Bain, J. Mitchell, R. Sharma, D. Stefan and J. Zimmerman 21

Table 1 Performance benchmarks for SMC and FHE, where the security parameter λtoy corre-
sponds to a “toy” security level (a lattice of with dimension 128). Tests with realistic parameters
are currently unfeasible.

Scheme Ideal Pragmatic Public

SMC (3, 1) 0.97 sec 3.3 ms < 1 ms
SMC (5, 2) 1.02 sec 3.3 ms < 1 ms
SMC (7, 3) 1.04 sec 3.3 ms < 1 ms
FHE λtoy 17.6 min 5.3 min < 1 ms

Table 1 presents our results for various SMC configurations and a “toy” FHE configu-
ration. The SMC implementation uses arithmetic modulo the largest 32-bit prime, while
the FHE implementation operates on 8-bit integers. Our experimental setup consisted of
7 machines, interconnected on a local Gig-E network, each machine containing two Intel
Xeon E5620 (2.4GHz) processors and 48GB of RAM. Similar to the results of SMCL [24],
we observe that the SMC pragmatic version is an order of magnitude faster than the ideal.
Compared to their results, our system is significantly faster; however, this is not a mean-
ingful comparison because we are using newer generation of hardware. More importantly,
we note that the performance results of both the ideal and pragmatic SMC benchmarks
highlight the usability of our SMC implementation for real-world applications.

5 Related work

Among several projects demonstrating potential applications of secure multiparty computa-
tions, SCET [5], with its focus on economic applications, implemented secure double auction.
In Fairplay [22], programs written in SFDL were converted to primitive operations on bits.
Fairplay was restricted to only two parties; this drawback was removed in FairplayMP.
Sharemind [3] aimed at general multiparty computation on large datasets, supporting three
players and providing security against a passive adversary.

VIFF [8] provides a basic language embedded in Python and API calls to cryptographic
primitives. It provides Shamir and pseudorandom secret sharing as options to the program-
mer. VIFF can be seen as a system for expert programmers to build complex cryptographic
protocols. Indeed, VIFF has been used for building distributed implementations of RSA
and AES. In contrast, our EDSL is for writing applications by nonexpert programmers, and
permits one to write at a substantially higher level of abstraction than that of the crypto-
graphic primitives. Moreover, compared to Python, Haskell has a natural advantage as a
host for EDSLs; as a functional language, Haskell allows extensive static reasoning about
programs, performs a variety of optimizations, and has lightweight multithreading capabil-
ities. On the other hand, our EDSL can complement systems such as VIFF by targeting
it as a platform, providing a higher-level abstraction layer over its powerful and efficient
cryptographic primitives.

From a theoretical standpoint, the systems discussed above are generally concerned with
implementing cryptographic protocols, without proving the more comprehensive correctness
and security properties we consider. The closest work is SMCL [24], an imperative-style
DSL. The papers on SMCL contain proofs of correctness and security properties, but they
do not formally define a crucial aspect: the requirements on the side-effects produced by
primitive operations so that security can be guaranteed. Our system is also implemented

FSTTCS 2011

22 A Domain-Specific Language for Computing on Encrypted Data

as an EDSL, rather than as a standalone language, so it can leverage the full power of
Haskell and its type system. In addition, unlike SMCL, our system easily generalizes to
other cryptographic schemes. As far as we know, we are the first to formalize and prove
correctness and security properties for a unified language framework which encompasses
a wide range of cryptographic schemes for computation on encrypted data, in particular
Shamir secret sharing and fully homomorphic encryption.

6 Conclusions

We present the design, foundational analysis, implementation, and performance benchmarks
for an embedded domain-specific language that allows programmers to develop code that
can be run on different secure execution platforms with different security guarantees. We
prove functional correctness and confidentiality for any secure execution platform meeting
our definitions and then show that a specific secret-sharing scheme and fully homomorphic
encryption both meet our definition. Our language allows developers to produce a single pro-
gram that can be executed on different secure execution platforms, making the deployment
decisions after development according to security and performance requirements.

As a programming language, our embedded DSL, implemented as a Haskell library, allows
developers to use standard Haskell software development environments. Programmers also
have the benefit of sophisticated type-checking and general programming features of Haskell
because we rely only on the Haskell type discipline to enforce information flow and other
restrictions; there are no unexpected ad hoc code restrictions. Our Haskell implementation
also provides more flexible data structures than previous work because our information-
flow constraints make secrecy-preserving operations on such such structures possible. In
future work, we plan to improve the expressiveness of the programming language through
more sophisticated information-flow typing of recursive and iterative constructs, for exam-
ple. In addition, we plan to apply our framework to other secure execution platforms that
can provide stronger guarantees, such as security against active adversaries. We will also
explore the possibility of proving formally that a particular implementation realizes our
secret semantics, possibly in a mechanically-verified fashion. Finally, we plan to develop
more sophisticated implementation techniques, possibly leveraging Template Haskell meta-
programming, such as automatically producing code that is optimized for particular forms
of partially homomorphic encryption with better performance.

Acknowledgments This work was supported by DARPA PROCEED, under contract
#N00014-11-1-0276-P00002, the National Science Foundation, and the Air Force Office of
Scientific Research. D. Stefan and J. Zimmerman are further supported by the Department
of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship
(NDSEG) Program.

References
1 B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verifica-

tion via secure computation. In ICALP (1), pages 152–163, 2010.
2 M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-

cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages
1–10, 1988.

3 D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-
preserving computations. In ESORICS, pages 192–206, 2008.

A. Bain, J. Mitchell, R. Sharma, D. Stefan and J. Zimmerman 23

4 P. Bogetoft, D. L. Christensen, I. Damgard, M. Geisler, T. Jakobsen, M. Krøigaard, J. D.
Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft. Multiparty
computation goes live. Cryptology ePrint Archive, Report 2008/068, 2008. http://eprint.
iacr.org/.

5 P. Bogetoft, I. B. Damgård, T. Jakobsen, K. Nielsen, J. Pagter, and T. Toft. Secure
computing, economy, and trust: A generic solution for secure auctions with real-world
applications. Technical Report RS-05-18, BRICS, 2005.

6 D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In TCC,
pages 325–341, 2005.

7 R. Cramer, I. Damgård, and U. M. Maurer. General secure multi-party computation from
any linear secret-sharing scheme. In EUROCRYPT, pages 316–334, 2000.

8 I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous multiparty com-
putation: Theory and implementation. In Public Key Cryptography, pages 160–179, 2009.

9 I. Damgård, Y. Ishai, and M. Krøigaard. Perfectly secure multiparty computation and the
computational overhead of cryptography. In EUROCRYPT, pages 445–465, 2010.

10 R. Gennaro, M. O. Rabin, and T. Rabin. Simplified vss and fact-track multiparty compu-
tations with applications to threshold cryptography. In PODC, pages 101–111, 1998.

11 C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178,
2009.

12 C. Gentry. Computing arbitrary functions of encrypted data. Commun. ACM, 53(3):97–
105, 2010.

13 C. Gentry and S. Halevi. Gentry-Halevi implementation of a fully-homomorphic encryption
scheme. https://researcher.ibm.com/researcher/files/us-shaih/fhe-code.zip.

14 C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In
EUROCRYPT, pages 129–148, 2011.

15 C. Gentry, S. Halevi, and V. Vaikuntanathan. A simple bgn-type cryptosystem from lwe.
In EUROCRYPT, pages 506–522, 2010.

16 O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

17 Embedded domain-specific languages in haskell. http://www.haskell.org/haskellwiki/
Research_papers/Domain_specific_languages.

18 Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with appli-
cations to round-efficient secure computation. In FOCS, pages 294–304, 2000.

19 Y. Ishai, E. Kushilevitz, and A. Paskin. Secure multiparty computation with minimal
interaction. In CRYPTO, pages 577–594, 2010.

20 Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. In TCC, pages
575–594, 2007.

21 Y. Lindell and B. Pinkas. A proof of security of yao’s protocol for two-party computation.
J. Cryptology, 22(2):161–188, 2009.

22 D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - secure two-party computation
system. In USENIX Security Symposium, pages 287–302, 2004.

23 M. Naor and K. Nissim. Communication preserving protocols for secure function evaluation.
In STOC, pages 590–599, 2001.

24 J. D. Nielsen and M. I. Schwartzbach. A domain-specific programming language for secure
multiparty computation. In PLAS, pages 21–30, 2007.

25 T. Nishide and K. Ohta. Multiparty computation for interval, equality, and comparison
without bit-decomposition protocol. In Public Key Cryptography, pages 343–360, 2007.

26 A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE JOURNAL
ON SELECTED AREAS IN COMMUNICATIONS, 21(1):2003, 2003.

FSTTCS 2011

http://eprint.iacr.org/
http://eprint.iacr.org/
https://researcher.ibm.com/researcher/files/us-shaih/fhe-code.zip
http://www.haskell.org/haskellwiki/Research_papers/Domain_specific_languages
http://www.haskell.org/haskellwiki/Research_papers/Domain_specific_languages

24 A Domain-Specific Language for Computing on Encrypted Data

27 M. C. Silaghi. Smc: Secure multiparty computation language. http://www.cs.fit.edu/
~msilaghi/SMC/tutorial.html, 2004.

28 N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key
and ciphertext sizes. In Public Key Cryptography, pages 420–443, 2010.

29 M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption
over the integers. In EUROCRYPT, pages 24–43, 2010.

30 A. Yao. Protocols for secure computations (extended abstract). In FOCS, pages 160–164,
1982.

http://www.cs.fit.edu/~msilaghi/SMC/tutorial.html
http://www.cs.fit.edu/~msilaghi/SMC/tutorial.html

Schema Mappings and Data Examples: Deriving
Syntax from Semantics
Phokion G. Kolaitis1

1 University of California Santa Cruz & IBM Research - Almaden
California, USA
kolaitis@cs.ucsc.edu

Abstract
Schema mappings are high-level specifications that describe the relationship between two database
schemas. Schema mappings are considered to be the essential building blocks in such critical data
interoperability tasks as data exchange and data integration. For this reason, they have been the
focus of extensive research investigations over the past several years. Since in real-life applica-
tions schema mappings can be quite complex, it is important to develop methods and tools for
illustrating, explaining, and deriving schema mappings. A promising approach to this effect is
to use “good” data examples that illustrate the schema mapping at hand.

In this talk, we present an overview of recent work on characterizing and deriving schema
mappings via a finite set of data examples. We show that every LAV schema mapping (i.e.,
a schema mapping specified by a finite set of local-as-view tuple-generating dependencies) is
uniquely characterized by a finite set of universal data examples with respect to the class of
all LAV schema mappings. We also show that this type of result does not hold for arbitrary
GAV schema mappings (i.e., schema mappings specified by a finite set of global-as-view tuple-
generating dependencies). After this, we give a necessary and sufficient algorithmic condition for
a GAV schema mapping to be uniquely characterizable by a finite set of universal examples with
respect to the class of all GAV schema mappings. Along the way, we establish tight connections
between unique characterizability of schema mappings and homomorphism dualities.

This is joint work with Bogdan Alexe (IBM Research - Almaden), Balder ten Cate (UC Santa
Cruz), and Wang-Chiew Tan (UC Santa Cruz and IBM Research - Almaden) based on [1, 2, 3].

1998 ACM Subject Classification D.2.12 Interoperability: Data mapping; H.2.5 Heterogeneous
Databases: Data translation

Keywords and phrases Schema mappings, database constraints, data exchange, data integration,
universal solutions, homomorphism dualities

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.25

References
1 Bogdan Alexe, Phokion G. Kolaitis, and Wang-Chiew Tan. Characterizing schema map-

pings via data examples. In ACM Symposium on Principles of Database Systems (PODS),
pages 261–272, 2010.

2 Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang-Chiew Tan. Designing
and refining schema mappings via data examples. In SIGMOD Conference, pages 133–144,
2011.

3 Balder ten Cate, Phokion G. Kolaitis, and Wang-Chiew Tan. Database constraints and
homomorphism dualities. In International Conference on Principles and Practice of Con-
straint Programming (CP), pages 475–490, 2010.

© Phokion G. Kolaitis;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 25–25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.25
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Quantum State Description Complexity
Umesh V. Vazirani1

1 University of California, Berkeley, vazirani@eecs.berkeley.edu

Abstract
Quantum states generally require exponential sized classical descriptions, but the long conjec-
tured area law provides hope that a large class of natural quantum states can be described
succinctly. Recent progress in formally proving the area law is described.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases area law, Hamiltonian, description complexity, detectability lemma, en-
tanglement

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.26

1 Summary

Arguably the most fundamental difference between quantum and classical systems is the
exponential difference in the number of parameters required to describe them - whereas
a classical system of n particles can be described by O(n) parameters, an arbitrary state
of a similar quantum system would in general require 2Ωn parameters. The reason for
this discrepancy is quantum entanglement, which is a fundamental resource in quantum
information processing, is also the principal obstacle in the efficient simulation of quantum
systems on a classical computer. But is there a significant class of quantum states which can
be described succinctly? More formally is there a set S of states such that for every state∣∣ψ〉 ∈ S there is a classical description w ∈ {0, 1}poly(n) that "describes"

∣∣ψ〉 — in the sense
that it is possible to efficiently compute interesting quantities about

∣∣ψ〉 , such as energy or
two point correlations, from the classical description w. This may be formalized by saying
that the result of any k-local measurement, for some constant k, on

∣∣ψ〉 can be efficiently
computed from w.

A possible candidate for S is the set of ground states of gapped local Hamiltonians. Local
Hamiltonians are quantum analogs of CSPs, and ground states are quantum analogs of
satisfying assignments or configurations that minimize the number of unsatisfied constraints.
More formally, consider a set of n (d dimensional) spins arranged in a lattice, with nearest-
neighbor interactions described by a local Hamiltonian H =

∑n−1
i=1 Hi. H is a dn × dn

Hermitian matrix, whose eigenvectors are the states of the system with definite energy equal
to the corresponding eigenvalue. We assume that H has a unique ground state

∣∣Ω〉 , the
lowest energy eigenvector. The spectral gap of H, denoted by ε, is the difference between
the two lowest eigenvalues. We will assume that each term Hi has unit norm and say that
H is gapped if the spectral gap ε is bounded below by some constant independent of n.

A remarkable conjecture in condensed matter physics dating back about a half century
is the Area Law, which strongly bounds the entanglement in ground states of gapped local
Hamiltonians. More specifically, for any contiguous region of the grid L, the entanglement
entropy between the particles inside L and the particles outside L is trivially bounded by
(log d times) the number of particles in L, which we may think of as the volume of L. The
surface area of L is the number of grid edges crossing between L and L or equivalently

© Umesh V. Vazirani;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 26–27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.26
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Umesh V. Vazirani 27

thenumber of terms of the Hamiltonian describing interactions between particles in L with
particles in L. Then a state

∣∣ψ〉 obeys an area law if the entanglement entropy between L
and L is upper-bounded by a quantity proportional to the surface area of L, rather than its
volume.

A few years ago, in a seminal paper [5] Hastings proved that ground states of gapped 1D
systems obey an area law. More specifically, for such systems, he proved that the entanglement
entropy across any cut in the chain is bounded by S1D ≤ eO(X), where X = log d

ε . As a
consequence he showed that the ground state of such systems has a polynomial classical
description by a Matrix Product State of size neS1D .

This left the area law for two (and higher) dimensional systems as one of the most
important open questions in Quantum Hamiltonian Complexity. One way to tackle this
question is to improve the bound on the entanglement entropy, since a bound of O(log d)
would automatically imply area laws for higher dimensional systems — simply treat the
system as a 1D system by grouping all the particles at the boundary as a huge particle of
dimension dB , where B is the number of particles on the boundary. A logarithmic bound on
entanglement entropy now yields a bound of O(B log d)).

A combinatorial approach to proving the area law for 1D frustration-free systems (i.e.,
systems where the ground state

∣∣Ω〉 is also the common ground state of all local terms)
was introduced in [2]. The new proof replaced Hastings’ analytical machinery, including
the Lieb-Robinson bound and spectral Fourier analysis, with the Detectability Lemma [1],
a combinatorial lemma about local Hamiltonians. However, the resulting bound was no
better than Hastings’ bound because, at its heart, the argument followed the same outline as
Hastings’, including the use of a “monogamy of entanglement”-type argument that leads to
an exponential slack.

A completely new approach to proving the 1D area law (based on the detectability lemma)
was pursued in [3] and [4]. This led to an exponential improvement in the bound on the
entanglement entropy. Formally, in [4] it was proved that for 1D frustration-free systems, the
entanglement entropy of every cut in the chain is upper bounded by S1D ≤ O(X3 log8X).
This also improves by an exponential factor the bound on the classical description of such
states by a Matrix Product State description. Moreover, by using the locality properties of
the Hamiltonian, for the case of 2D systems the entanglement bound can be improved to
S ≤ O(B2 ·X3 log8(B ·X)). This leaves the 2D area law poised at a very interesting point —
any non-trivial improvement in the existing bounds would result in the first sub-volume law
for 2D systems.

References
1 Dorit Aharonov, Itai Arad, Zeph Landau, and Umesh Vazirani. The detectability lemma

and quantum gap amplification. In STOC ’09: Proc. 41st Annual ACM Symposium on
Theory of Computing, arXiv:0811.3412, pages 417–426, New York, NY, USA, 2009. ACM.

2 Dorit Aharonov, Itai Arad, Zeph Landau, and Umesh Vazirani. Quantum Hamiltonian
complexity and the detectability lemma. arXiv:1011.3445, November 2010.

3 Dorit Aharonov, Itai Arad, Zeph Landau, and Umesh Vazirani. The 1d area law and the
complexity of quantum states: A combinatorial approach. In FOCS ’11: Proceedings of the
52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2011), 2011.

4 Itai Arad, Zeph Landau, and Umesh Vazirani. An improved 1d area law for frustration-free
systems. 2011. arXiv:1111.2970v1 [quant-ph].

5 MB Hastings. An Area Law for One Dimensional Quantum Systems. JSTAT, P, 8024,
2007.

FSTTCS 2011

Approximation Algorithms for Union and
Intersection Covering Problems
Marek Cygan1, Fabrizio Grandoni2, Stefano Leonardi3,
Marcin Mucha1, Marcin Pilipczuk1, and Piotr Sankowski1

1 Institute of Informatics, University of Warsaw, Poland.
{cygan,mucha,malcin,sank}@mimuw.edu.pl

2 Computer Science Department, University of Rome Tor Vergata, Roma, Italy.
grandoni@disp.uniroma2.it

3 Department of Computer and System Science, Sapienza University of Rome,
Italy. stefano.leonardi@dis.uniroma1.it

Abstract
In a classical covering problem, we are given a set of requests that we need to satisfy (fully or
partially), by buying a subset of items at minimum cost. For example, in the k-MST problem
we want to find the cheapest tree spanning at least k nodes of an edge-weighted graph. Here,
nodes represent requests whereas edges correspond to items.

In this paper, we initiate the study of a new family of multi-layer covering problems. Each
such problem consists of a collection of h distinct instances of a standard covering problem
(layers), with the constraint that all layers share the same set of requests. We identify two main
subfamilies of these problems:
• in an union multi-layer problem, a request is satisfied if it is satisfied in at least one layer;
• in an intersection multi-layer problem, a request is satisfied if it is satisfied in all layers.
To see some natural applications, consider both generalizations of k-MST. Union k-MST can
model a problem where we are asked to connect a set of users to at least one of two communication
networks, e.g., a wireless and a wired network. On the other hand, Intersection k-MST can
formalize the problem of providing both electricity and water to at least k users.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation algorithms, Partial covering problems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.28

1 Introduction

In the fundamental Minimum Spanning Tree problem (MST), the goal is to compute the
cheapest tree which spans all the n nodes of a given edge-weighted graph G = (V,E). To
handle the subtleties of real-life applications, several natural generalisations and variants of
the problem have been considered. For example, in the Steiner Tree problem we need to
connect only a given subset W of k terminal nodes. In the k-MST problem instead, the goal
is to connect at least k (arbitrary) nodes. One common feature of these generalizations is that
we need to design a single network. However, this is often not the case in the applications.
For example, suppose we want to provide at least k out of n users with both electricity and
water. In this case, we cannot design the water and electricity infrastructures independently:
our decisions on which users to reach have to be synchronized.

Consider now another classic problem, the Travelling Salesman problem (TSP): here
we are given a complete weighted graph, and the goal is to compute the minimum-length

© M. Cygan, F. Grandoni, S. Leonardi, M. Mucha, M. Pilipczuk, P. Sankowski;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 28–40

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.28
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Cygan et al. 29

tour traversing all the nodes. Again, several natural generalizations and variants of the
problem have been considered in the literature. Still, all of them deal only with the case
where there is a single network. However, there are natural applications which do not fit in
this framework. For example, suppose you want to visit a set of places (bank, post office,
etc.), and you can use your bike and your car. Of course, you cannot just reach a place by
bike, and then suddenly switch to your car (that you left at home). Your trip must consist
of a tour by bike and another tour by car, which together touch all the places that you need
to visit.

The above examples show the need for a new framework, which is able to capture
coordinated decision-making over multiple optimization problems. In this paper we initiate
the study of such multi-layer covering problems. These problems are characterized by a set of
h instances of a standard covering problem (layers), sharing a common set of n requests. The
goal is to satisfy, possibly partially, the requests by buying items in each layer at minimum
total cost. We identify two main families of such problems:
• Intersection problems. Here, as in the water-electricity example, a request is satisfied

if it is satisfied in all the layers.
• Union problems. Here, as in the car-bike example, a request is satisfied if it is satisfied

in at least one layer.

1.1 Our results.
We provide hardness and approximation results for the union and intersection versions of
several classical covering problems: MST, Steiner Tree, (Nonmetric and Metric)
Facility Location, TSP, and Set Cover. (Formal definitions are given at the end of this
section). We focus on the partial covering variant of these problems, i.e., k-MST, k-Steiner
Tree, etc.: here wet need to satisfy a target number k of the n requests. This allows us to
handle a wider spectrum of interesting problems. In fact, for intersection problems, if k = n

it is sufficient to compute an independent solution for each layer. On the other hand, some
of the union problems above are interesting also for the case k = n. However, the results
that we achieve for that case are qualitatively the same as for k < n.

For Intersection versions of k-MST, k-Steiner Tree, k-TSP, k-Set Cover, k-
Metric Facility Location, and k-Nonmetric Facility Location, we show that:
• Even for two layers, a polylogarithmic approximation for these problems would imply

a polylogarithmic approximation for k-Densest Subgraph. We recall that the best
approximation for the latter problem is O(n 1

4 +ε) [6] and finding a polylogarithmic approx-
imation is a major open problem. Indeed, many researchers believe that a polylogarithmic
approximation does not exist, and exploit this assumption in their hardness reductions
(see, e.g., [2, 3]).

• On the positive side, we give Õ(k1−1/h)-approximation algorithms1 for these problems.

Note that, in the single-layer case, the above problems can be approximated within
a constant or logarithmic factor. Hence, our results show that the complexity of natural
intersection problems changes drastically from one to two layers.

For Union versions of k-MST, k-Steiner Tree, k-TSP and k-Metric Facility
Location we show that:
• The problems are Ω(log k)-hard to approximate for an unbounded number h of layers.

Furthermore, there is a greedy O(log k)-approximation algorithm. For the first three

1 The Õ notation suppresses polylogarithmic factors.

FSTTCS 2011

30 Union and Intersection Covering Problems

problems this only holds for the rooted version — the unrooted case is inapproximable
(i.e., any bounded approximation factor implies P = NP).

• There is an LP-based algorithmic framework which provides O(h)-approximate solutions.
Furthermore, the natural LPs involved have Ω(h) integrality gap.

We remark that Union k-Set Cover and Union k-Nonmetric Facility Location can
be solved by collapsing all layers into one, and hence they are less interesting.

1.2 Related Work.
To the best of our knowledge, and somewhat surprisingly, approximation algorithms for
union and intersection problems seem to not have been studied much in the literature. The
notable exception is Matroid Intersection, which however is solvable in polynomial
time [7]. Some team formation games in social networks can be seen as special cases of our
intersection problems [1, 21]. Riaz et al. [25] observe that traditionally, wired and wireless
infrastructures have been planned separately, but there is a need for complementary use of
wired and wireless technologies in future networks. However, the authors do not consider the
optimization aspects of such planning, which is captured by our Union k-MST.

The idea of introducing multiple cost functions into one optimization problem is the main
theme of multi-objective optimization. Standard and multi-criteria approximation algorithms
have been developed for the multi-objective version of several classical problems, such as
Shortest Path, Spanning Tree, Matching, etc. (see, e.g., [4, 14, 15, 22, 23]). One
could view these problems as having several layers with different costs. However, in contrary
to our setting, solutions in different layers have to be exactly the same.

Partial covering problems (also known as problems with outliers), are well-studied in
the literature: e.g., k-MST [12], k-TSP [12], k-Metric Facility Location [19], and
k-Set Cover [26]. Their generalization on multiple layers is significantly harder, as our
results show. Note that our Union k-Steiner Tree problem generalizes all of the following
problems: k-Steiner Tree (and hence k-MST), Prize-Collecting Steiner Tree (see
the proof of Theorem 7), and k-Set Cover (see the proof of Theorem 8).

Rent-or-buy and buy-at-bulk problems [8, 9, 13, 16] can be seen as multi-layer union
problems where edge weights in different layers are related by a multiplicative factor. In
contrast, weights of different layers are unrelated in our framework.

Recently Krishnaswamy et al. [20] considered a matroid median problem, where the set
of open centers must form an independent set in a matroid. We can interpret this as a
generalization of a union problem, where we add side constraints between bought items.
However, the authors assume that all layers share the same metric space.

1.3 Preliminaries.
In covering problems we are given a set U of n requests, and a set S of items, with costs
w : S → R≥0. The goal is to satisfy all requests by selecting a subset of items at minimum
cost. We already defined MST, Steiner Tree, and TSP. Here, nodes and edges represent
requests and items (with costs w : E → R≥0), respectively. In the Set Cover problem,
requests are the elements of a universe U , and items S are subsets S1, . . . , Sm of U . Any Si
satisfies all the v ∈ Si. Nonmetric Facility Location is a generalization of Set Cover,
where we are given a set F of facilities, with opening costs o : F → R≥0, and a set C of
clients, with connection costs w : C × F → R≥0. The goal is to compute a subset A of open
facilities such that

∑
f∈A o(f)+

∑
c∈C w(c,A) is minimized. Here, w(c,A) := minf∈A w(c, f).

We also say that c is connected to (or served by) A (c) := arg minf∈A w(c, f). If connection

M. Cygan et al. 31

costs satisfy triangle inequality, the problem is called Metric Facility Location. We can
naturally define partial covering versions for the above problems, i.e., k-MST, k-Steiner
Tree, k-TSP, k-Nonmetric Facility Location, and k-Metric Facility Location2.

It is straightforward to define union and intersection versions of the above problems
(more details in the corresponding sections). In the rest of this paper, the number of layers is
denoted by h, and variables associated to layer i have an apex i (e.g., wi, oi, etc.), whereas
OPT denotes the optimum solution, and opt its cost. By N we denote the total number of
requests and items (in all layers).

By standard reductions, a ρ-approximate algorithm for the k-MST problem implies a
2ρ-approximate algorithm for k-Steiner Tree and k-TSP. Moreover, a ρ-approximation
for k-TSP gives a 2ρ-approximation for k-MST. Essentially, the same reductions extend to
the union and intersection versions of these problems. For this reason, in the rest of this
paper we will consider the union and intersection version of k-MST only.

Proofs and details which are omitted due to lack of space will be given in the full version
of the paper.

2 Intersection Problems

In this section we present our main results on the intersection problems. In Intersection
k-Set Cover we are given h collections S1,S2, . . . ,Sh of subsets of a given universe U ,
where wi : Si → R≥0 is the cost of subsets in the i’th collection. The goal is to cover at
least k elements in all layers simultaneously, at minimum total cost. In Intersection
k-MST we are given a complete graph G = (V,E) on n nodes, and h metric edge-weight
functions w1, . . . , wh. The goal is to compute a tree T i for each layer such that

∑
i w

i(T i)
is minimized and |

⋂
i V (T i)| ≥ k. In Intersection k-Nonmetric Facility Location

we are given a set F of facilities, with opening costs oi : F → R≥0 on layer i, and a
set C of clients, with connection costs wi : C × F → R≥0 on layer i. The goal is to
compute a subset Ai of open facilities on each layer i and a subset C′ of k clients such
that

∑
i(

∑
f∈Ai oi(f) +

∑
c∈C′ w

i(c,Ai)) is minimized. Here wi(c,Ai) := minf∈Ai{wi(c, f)}.
Intersection k-Metric Facility Location is the special case of Intersection k-
Nonmetric Facility Location where connection costs satisfy triangle inequality.

2.1 Hardness

In order to show the hardness of our problems, we use reductions from the k-Densest
Subgraph problem: find the induced subgraph on k nodes with the largest possible number
of edges. The fact that partial coverage problems can be as hard as k-Densest Subgraph
is already known. Hajiaghayi and Jain [18] use k-Densest Subgraph to show that a partial
coverage version of the Steiner Forest problem has no polylogarithmic approximation. In
particular they introduce the Minimum `-Edge Coverage problem where one is to find
the minimum number of vertices in a graph, whose induced subgraph has at least ` edges.
Moreover Hajiaghayi and Jain show a relation between approximation ratios for k-Densest
Subgraph and Minimum `-Edge Coverage.

2 In the literature k-Nonmetric Facility Location often means that we are allowed to open at most
k facilities, while here we mean that we need to connect at least k clients. Similarly for k-Metric
Facility Location. Sometimes k-Set Cover indicates a Set Cover instance where the largest
cardinality of a set is k, while our problem is sometimes called Partial Set Cover.

FSTTCS 2011

32 Union and Intersection Covering Problems

Figure 1 Approximation algorithm for 2-layer Intersection k-Set Cover. For a ∈ {1, 2},
a is the other value in {1, 2}
1: procedure SCI(k,U ,S1,S2, w1, w2)
2: K ← ∅, A1 ← ∅, A2 ← ∅
3: repeat
4: for a=1 to 2 do
5: for all X ∈ Sa do
6: for b := 1 to min(k − |K|, |X \K|) do
7: Solve one-layer Intersection k-Set Cover problem on layer a

8: with universe X \K and target b.
9: Let (a′, b′, X ′) be the loop iterators which provide a solution (K′,A′)

10: minimizing the ratio of cost C′ to number b′ of covered elements.
11: K ← K ∪K′, Aa′ ← Aa′ ∪ {X ′}, Aa′ ← Aa′ ∪ A′

12: until |K| = k

13: return (K,A1,A2)

In order to simplify our reductions we extend the result on Minimum `-Edge Coverage
to bipartite graphs. In particular, we are able to show that a f(n)-approximation for
Minimum `-Edge Coverage on bipartite graphs implies a 16(f(2n))2-approximation for
k-Densest Subgraph on arbitrary graphs. One can naturally reduce a Minimum `-Edge
Coverage instance (G, `) on a bipartite graph G = (V1 ∪ V2, e) to Intersection k-Set
Cover (with k = `), by mapping edges into elements and each node v into the corresponding
subset of incident edges δ(v) ⊆ E. A similar reduction works for Intersection k-Metric
Facility Location, where facility opening costs are set to 1 and distances corresponding
to edges and anti-edges are set to 0 and +∞, respectively. For Intersection k-MST we
construct one layer (symmetrically for the other one) by connecting a dummy root node r
with all nodes in V1 at cost 1, and each v ∈ V1 with δ(v) at cost 0. As a consequence, we
obtain the following two theorems, which suggest that the existence of a polylogarithmic
approximation for the considered problems is rather unlikely (or at least hard to achieve).

I Theorem 1. If there exists an f(n)-approximation algorithm for unweighted Intersection
k-Set Cover on two layers or for Intersection k-Metric Facility Location on two
layers, then there exists a 16(f(2m))2-approximation algorithm for k-Densest Subgraph.

I Theorem 2. If there exists an f(n)-approximation algorithm for Intersection k-MST on
two layers, then there exists a 16(f(2n+ 2m+ 2))2-approximation algorithm for k-Densest
Subgraph.

2.2 Intersection k-Set Cover
The basic idea behind our Intersection k-Set Cover algorithm is as follows. We consider
any set X in any layer, and any number j ≤ k of elements in X. We solve recursively, on
the remaining layers, the intersection problem induced by X with target j. The base of the
induction is obtained by solving a one-layer Intersection k-Set Cover problem, using the
greedy algorithm which provides a (1 + ln k)-approximation [26]. We choose the set X and
the cardinality j for which we obtain the best ratio of cost to number of covered elements.
Next, we include covered elements in the solution under construction, and the problem is
reduced consequently.

In order to highlight the main ideas of our approach, we focus on the special case h = 2,
and we neglect polylogarithmic factors in the analysis.

M. Cygan et al. 33

I Theorem 3. There is a Õ(
√
k)-approximation algorithm for Intersection k-Set Cover

on two layers.

Proof. Consider the algorithm in Figure 1. Its running time is polynomial, since SCI
procedure calls the one-layer greedy algorithm O(Nk2) times.

Let (O1,O2) ⊆ S1 × S2 be the optimal solution, and let KO ⊆ (∪S∈O1S) ∩ (∪S∈O2S)
be any set of k elements in the intersection. For each element x ∈ KO and layer i = 1, 2,
let us fix a set Oi (x) ∈ Oi that covers x. We prove that at each iteration of the main loop
C ′/b′ = Õ(opt/

√
k − |K|). This implies that the total cost of the constructed solution is

bounded by
∑k−1
i=0 Õ(opt/

√
k − i) = opt · Õ(

√
k).

Let κ :=
√
k − |K|. We consider two cases, depending on whether there exists a set X in

the optimal solution that covers at least κ elements of KO \K.
Case 1. Assume that there exists 1 ≤ a ≤ 2 and X ∈ Oa, such that for at least κ

elements x of KO \K we have Oa (x) = X. Let us focus on the moment when our algorithm
considers taking the set X. Obviously we have κ ≤ k−|K|, therefore our algorithm considers
covering b := κ elements of X. As the optimal solution does it, it may be done with cost opt,
so the call to the one layer algorithm returns a solution with cost Õ(opt). Hence we have
C ′/b′ = Õ(opt/

√
k − |K|).

Case 2. For each 1 ≤ a ≤ 2 and every X ∈ Oa, at most κ− 1 elements of KO \K satisfy
Oa (x) = X. For each x ∈ KO \K, let w(x) := w1(O1 (x)) + w2(O2 (x)) be the sum of the
costs of sets covering x in the optimal solution. We have

∑
x∈KO\K

w(x) =
2∑
a=1

∑
X∈Oa

∑
x∈KO\K: Oa(x)=X

wa(Oa (x)) ≤
2∑
a=1

∑
X∈Oa

wa(X)κ ≤ κ · opt.

Thus there exists x0 ∈ KO \K such that w(x0) ≤ κ · opt/|KO \K|. If we take any a and
consider the iteration with X = Oa (x0) and b = 1, the algorithm computes a set of minimum
cost C0 ≤ w(x0) covering x0. We can conclude that

C ′

b′
≤ C0 ≤

κ · opt
|KO \K|

= Õ(opt/
√
k − |K|).

J

It is easy, just more technical, to extend the same approach to h > 2 and to refine
(slightly) the approximation factor. With some more work, our approach generalizes to
Intersection k-Nonmetric Facility Location. The details of this generalization will
be given in the full version of this paper.

I Theorem 4. There exists a (4k1−1/h log1/h(k))-approximation algorithm for Intersection
k-Nonmetric Facility Location (hence for Intersection k-Set Cover) running in
NO(h) time.

2.3 Intersection k-MST
Our Intersection k-MST algorithm works as follows. We consider a new metric w defined
as w(e) :=

∑
i w

i(e) for each e ∈ E, and compute a 2-approximate solution of the resulting
(one-layer) k-MST problem using the algorithm in [12].

I Lemma 5. Let K ⊆ V , and wi(K) denote the cost of a minimum spanning tree of K
on layer i. Then there exist two nodes u, v ∈ K such that wi(u, v) ≤ 4wi(K)/|K|1/h for
i = 1, . . . , h.

FSTTCS 2011

34 Union and Intersection Covering Problems

Proof. Let us prove the following claim by induction on i: for any i ∈ {0, . . . , h− 1}, there
exist a nodeset Ki ⊆ K and paths P 1

i , P
2
i . . . , P

i
i on Ki such that: (a) |Ki| ≥ |K|1−i/h and

(b) wj(P ji) ≤ 2wj(K)/|K|1/h for j = 1, . . . , i. Trivially K0 = K satisfies the claim, hence
assume i > 0. Let T i be the minimum spanning tree of K on layer i. Duplicate its edges,
compute an Euler tour, and shortcut duplicated nodes. Let Ci be the resulting cycle on K of
length at most 2wi(K). Remove up to |K|1/h edges from Ci so as to obtain |K|1/h segments
of length at most 2wi(K)/|K|1/h each. Let P be the segment maximizing the cardinality
of Ki := V (P) ∩Ki−1. Set Ki satisfies (a) since |Ki| ≥ |Ki−1|/|K|1/h ≥ |K|1−(i−1)/h−1/h.
The paths P ii and P ji , j < i, satisfying (b) are obtained from P and P ji−1, respectively, by
shortcutting the nodes not in Ki.

Similarly as above, we can split Ch into |K|1/h/2 segments which span K and have length
at most 4wh(K)/|K|1/h each. At least one of these segments contains 2|Kh−1|/|K|1/h ≥ 2
nodes of Kh−1. Thus there are two nodes u and v such that wi(u, v) ≤ 4wi(K)/|K|1/h for
i = 1, . . . , h. J

I Theorem 6. The Intersection k-MST algorithm above is 16k1−1/h-approximate.

Proof. Consider the following process: starting with the optimal set KO of k covered nodes,
we iteratively take the edge {x, y} guaranteed by Lemma 5 and contract it in all layers, until
KO collapses into a single node. The contracted edges form a tree T ′ (same for all layers)
spanning k nodes, of cost

w(T ′) ≤ 4
h∑
i=1

wi(KO)
k−1∑
i=1

(k − i+ 1)− 1
h ≤ 8k1− 1

h

h∑
i=1

wi(KO) = 8k1− 1
h opt.

The algorithm returns a solution of cost at most 2w(T ′). The claim follows. J

Via a non-trivial construction we can show that the approximation factor of our algorithm
is Ω(1

hk
1−1/h). The details will be given in the full version of this paper.

3 Union Problems

In this section we present our results for Union k-MST and Union k-Metric Facility
Location. In (unrooted) Union k-MST we have the same input and output as in Inter-
section k-MST, but here the trees T i must satisfy |

⋃
i V (T i)| ≥ k. In the rooted version

of the problem, we are also given a root ri for each layer i with the constraint ri ∈ T i. The
Union MST problem is the special case of Union k-MST with k = n (rooted and unrooted
versions are equivalent). In Union k-Metric Facility Location we have the same input
and output as in Intersection k-Metric Facility Location, but the objective function
to be minimized is

∑
i

∑
f∈Ai oi(f) +

∑
c∈C′ mini{wi(c,Ai)}.

3.1 Rooted Union k-MST
I Theorem 7. Rooted Union k-MST and Union k-Metric Facility Location are
APX-hard for any h ≥ 1. Union MST is APX-hard for any h ≥ 2.

Proof. The first claim trivially follows from the APX-hardness [12, 17] of the considered
problems for h = 1, by adding dummy layers with infinite edge weights.

For the second claim, we consider a reduction from the APX-hard [5] Prize-Collecting
Steiner Tree problem: given an undirected graph G = (V,E), edge weights w : E → R≥0,
a root node r ∈ V , and node prizes p : V → R≥0, find a tree T 3 r which minimizes

M. Cygan et al. 35

∑
e∈T w(e) +

∑
v/∈T p(v). We create a first layer, with edge weights w1 = w. Then we

construct a second layer, where we set w2({r, v}) = p(v) for any v ∈ V . All the other layers,
if any, are dummy layers defined as above. This reduction is approximation preserving. J

I Theorem 8. For an arbitrary number of layers, rooted Union k-MST and Union k-
Metric Facility Location are not approximable better than Ω(log k) unless P = NP ,
even when k = n.

Proof. We prove the claim for rooted Union k-MST, by giving a reduction from cardinality
Set Cover: given a universe U of n′ elements, and a collection S = {S1, . . . , Sm′} of m′
subsets of U , find a minimum cardinality subset A ⊆ S which spans U . This problem is
Ω(logn′)-hard to approximate [24]. We create one node per element of U , plus two extra
nodes r and s. We create one layer i for each set Si (i.e., h = m′). In layer i we let
wi({r, s}) = 1 and wi({s, v}) = 0 for each v ∈ Si. We also let ri := r for each i, and assume
k = n = n′ + 2. Note that any solution to the rooted Union k-MST instance of cost α can
be turned into a solution to the Set Cover instance of the same cost, and vice versa.

To prove the claim for Union k-Metric Facility Location, we use the same reduction
as above, where the edge {r, s} is replaced by a single node r, which is a facility of opening
cost 1. J

A simple greedy algorithm guarantees a O(log k)-approximation which matches the above
lower bound. The basic idea is as follows. Suppose that the considered covering problem
satisfies a natural composition property, namely two solutions satisfying k′ and k′′ distinct
requests, can be merged (without increasing the total cost) to obtain a solution satisfying
k′ + k′′ requests. (Merging might involve some polynomial-time operations). Suppose also
that there exists a ρ-approximation for one layer. The idea is then to compute, for each layer
separately and for each k′ ≤ k, a ρ-approximate solution to the partial covering instance
induced by that layer with target k′. The solution providing the best ratio of cost to number
k′ of satisfied requests is merged with the solution under construction. Then satisfied requests
are removed from the set of requests, k decremented by k′, and the process is iterated until
k ≤ 0. Via standard techniques this algorithms provides a O(ρ · log k)-approximation.

Removing requests transforms a given k-MST instance in each layer into a k-Steiner
Tree instance: for the latter problem there is a 4-approximation algorithm [12]. Note also
that all the partial solutions in each layer contain the corresponding root ri: hence the
merging step is trivial. For k-Metric Facility Location, there is a 2-approximation
algorithm in [19]. In this case removing a request simply means removing one client, and the
merging step is trivial. Altogether:

I Theorem 9. There exist O(log k)-approximation algorithms for Union k-MST and Union
k-Metric Facility Location.

We next describe an LP-based O(h)-approximation algorithm for rooted Union k-MST.
This is an improvement over the Θ(log k)-approximation given by the greedy algorithm for
the relevant case of bounded h.

For notational convenience, we assume that the roots R := ∪i{ri} are not counted into
the target number k of connected nodes. In other terms, we replace k by k − |R|. We make
the same assumption also in the case of one layer. Consider the following LP relaxation for

FSTTCS 2011

36 Union and Intersection Covering Problems

k-Steiner Tree (W 3 r is the set of terminals) denoted by LPkST (w,W, V, r, k):

min
∑
e∈E w(e)xe

s.t.
∑
e∈δ(S) xe ≥ zv, ∀(v, S) : S ⊆ V − {r}, v ∈ S ∩W ;∑
v∈W zv ≥ k;

xe ≥ 0, 1 ≥ zv ≥ 0, ∀v ∈W, ∀e ∈ E.

Here, variable xe indicates whether edge e is included in the solution, whereas variable zv
indicates whether terminal v is connected. Moreover δ(S) denotes the set of edges with
exactly one endpoint in S. Observe that LPkMST (w, V, r, k) := LPkST (w, V, V, r, k) is an LP
relaxation for k-MST. We need the following lemmas.

I Lemma 10. [11] Let (w, V, r, k) be an instance of k-MST, wmax := maxv∈V {w(r, v)},
and opt′ be the optimal solution to LPkMST (w, V, r, k). There is a polynomial-time algorithm
apx-kmst which computes a solution to the instance of cost at most 2opt′ + wmax.

I Lemma 11. [10] Let G = (V ∪{v}, E) be a directed graph, with edge capacities α : E → R≥0
such that

∑
e∈δ+(u) α(e) =

∑
e∈δ−(u) α(e) for all u ∈ V ∪ {v}. Then there is a pair of edges

(u, v) and (v, z), such that the following capacity reservation β supports the same flow as α
between any pair of nodes in V : for ∆α := min{α(u, v), α(v, z)}, set β(u, v) = α(u, v)−∆α,
β(v, z) = α(v, z)−∆α, β(u, z) = α(u, z) + ∆α, and β(e) = α(e) for the remaining edges e.

I Corollary 12. Given a feasible solution (x, z) to LPkST (w,W, V, r, k), there is a feasible
solution (x′, z′) to LPkMST (w,W, r, k) such that

∑
e w(e)x′e ≤ 2 ·

∑
e w(e)xe.

Proof. Variables xe can be interpreted as a capacity reservation which supports a fractional
flow of value zv from each v ∈W to the root. Let us replace each edge with two oppositely
directed edges, and assign to each such edge the same weight and capacity as the original
edge. This way, we obtain a capacity reservation α which costs twice the original capacity
reservation, and satisfies the condition of Lemma 11. We consider any non-terminal node
v 6= r with some incident edge of positive capacity, and apply Lemma 11 to it. Due to triangle
inequality, the cost of the capacity reservation does not increase. We iterate the process
on the resulting capacity reservation. Within a polynomial number of steps, we obtain a
capacity reservation β which: (1) supports the same flow from each terminal to the root r as
α, (2) has value 0 on edges incident to non-terminal nodes (besides r), and (3) does not cost
more than α. At this point, we remove the nodes V − (W ∪ {r}), and merge the capacity of
oppositely directed edges to get an undirected capacity reservation x′. By construction, the
pair (x′, z) is a feasible solution to LPkMST (w,W, r, k) of cost at most 2 ·

∑
e w(e)xe. J

We are now ready to describe our algorithm for rooted Union k-MST. In a preliminary
step we guess the largest distance L in the optimal solution between any connected node
and the corresponding root, and discard nodes at distance larger than L from their root.
This introduces a factor O(nh) in the running time. Note that L ≤ opt. We let V i be the
remaining nodes in layer i.

Then we compute the optimal fractional solution OPT ∗ = (xi, zi, z)i, of cost opt∗, to
the following LP relaxation LPukMST for the problem, where variables xie and ziv indicate
whether edge e is included in the solution of layer i and node v is connected in layer i,
respectively. Variable zv indicates whether node v is connected in at least one layer.

M. Cygan et al. 37

min
∑
i=1,...,h

∑
e∈E w

i(e)xie
s.t.

∑
e∈δ(S) x

i
e ≥ ziv, ∀i ∈ {1, . . . , h},∀(v, S) : S ⊆ V i − {ri}, v ∈ S;∑

i=1,...,h z
i
v ≥ zv, ∀v ∈ V −R;∑

v∈V−R zv ≥ k;
ziv, x

i
e ≥ 0, 1 ≥ zv ≥ 0, ∀i ∈ {1, . . . , h},∀v ∈ V −R,∀e ∈ E.

Given OPT ∗, we compute for each layer i a subset of nodes W i, where v belongs to
W i iff ziv = maxj=1,...,h{zjv} (breaking ties arbitrarily). We also define ki := b

∑
v∈W i zvc.

For each layer i, we consider the k-MST instance on nodes W i ∪ {ri} with target ki. This
instance is solved using the 2-approximation algorithm apx-kmst of Lemma 10: the resulting
tree T i is added to the solution for layer i. Let k′ be the number of connected nodes. If
k′ < k, the algorithm connects k − k′ extra nodes, chosen greedily, to the corresponding root
in order to reach the global target k.

I Theorem 13. There is a O(h)-approximation algorithm for rooted Union k-MST. The
running time of the algorithm is O((nh)O(1)).

Proof. Consider the above algorithm. The claim on the running time is trivial. By construc-
tion, the solution computed is feasible (i.e., it connects k nodes). It remains to consider the
approximation factor.

For each v ∈W i, we let z̃iv = zv, and set z̃iv = 0 for the remaining nodes. Furthermore,
we let x̃ie = h ·xie. Observe that (x̃i, z̃i, z)i is a feasible fractional solution to LPukMST of cost
h · opt∗. Observe also that (x̃i, z̃i) is a feasible solution to LPkST (wi,W i, V i, ri, ki): let ˜apxi
be the associated cost. By Lemma 11, there is a fractional solution to LPkMST (wi,W i, ri, ki)
of cost at most 2 ˜apxi. It follows from Lemma 10 that the solution computed by apx-kmst
on layer i costs at most 4 ˜apxi + L.

Since the W i’s are disjoint, the algorithm initially connects at least
∑
i k
i ≥ k − h nodes.

Hence the cost of the final augmentation phase is at most h · L ≤ h · opt. Putting everything
together, the cost of the solution returned by the algorithm is at most:∑

i

(4 · ˜apxi + L) + h · L ≤ 4h · opt∗ + 2h · L ≤ 6h · opt .

JThe constant multiplying h in the approximation factor can be reduced with a more
technical analysis, at the cost of a higher running time. We also observe that the integrality
gap of LPukMST is Ω(h). In fact, consider the (cardinality) Set Cover instance as in
[27]: given a hyper-graph on m′ nodes, with hyper-edges given by all subsets of m′/2 nodes,
create an element for each hyper-edge, and a set for each node containing all the hyper-edges
incident to that node. It is easy to see that the best fractional solution for the standard set
cover LP (assigning value 2/m′ to all elements) has cost 2, while the best integral solution
contains m′/2 + 1 sets. The same reduction as in Theorem 8 implies the claim.

Essentially the same approach works also for Union k-Metric Facility Location.
Also in this case, we can show that the corresponding LP has integrality gap Ω(h).

I Theorem 14. There is a O(h)-approximation algorithm for Union k-Metric Facility
Location. The running time of the algorithm is O((nh)O(1)).

FSTTCS 2011

38 Union and Intersection Covering Problems

3.2 Unrooted Union k-MST
I Theorem 15. Unrooted Union k-MST is not approximable in polynomial time for an
arbitrary number h of layers unless P = NP .

Proof. We give a reduction from SAT: given a CNF boolean formula on m′ clauses and
n′ variables, determine whether it is satisfiable or not. For each variable i, we create
two nodes ti and fi. Intuitively, these nodes represent the fact that i is true or false,
respectively. Furthermore, we have a node for each clause. Hence the overall number of
nodes is n = 2n′ +m′. We create a separate layer for each variable i (i.e., h = n′). In layer
i, we connect with an edge of cost zero ti (resp., fi) to all the clauses which are satisfied
by setting i to true (resp., to false)3. The target value is k = n′ +m′. Note that, there is a
satisfying assignment to the SAT instance iff there is a solution of cost zero to the Union
k-MST instance. J

For h = O(1), the rooted and the unrooted versions of the problem are equivalent
approximation-wise. In fact, one obtains an approximation-preserving reduction from the
unrooted to the rooted case by guessing one node ri in the optimal solution per layer: this
introduces a polynomial factor O(nh) in the running time. We remark that an exponential
dependence on h of the running time is unavoidable in the unrooted case, due to Theorem
15. An opposite reduction is obtained by appending n dummy nodes to each root (distinct
nodes for distinct layers), with edges of cost zero, and setting the target to k + hn. The
following result follows.

I Corollary 16. Unrooted Union k-MST is APX-hard for any h ≥ 1. There is a O(h)-
approximation algorithm for the problem of running time O((hn)O(1)nh).

4 Conclusions and Open Problems

In this paper, we introduced multi-layer covering problems, a new framework that can be
used to describe a wide spectrum of yet unstudied problems. We addressed two natural
ways of combining the layers: intersection and union. We gave multi-layer approximation
algorithms, as well as hardness results, for a few classic covering problems (and their partial
covering versions). There are several research questions that merit further study.
• There are other natural ways one can combine the layers. Consider, for example, the

car/bike problem in the case where you can put your bike in the car trunk. Now you
can make more than one tour by bike, the only requirement being that the bike tours all
touch the (unique) car tour.

• What about min-max multi-layer problems, where the goal is to minimize the maximum
cost over the layers?

• We considered covering problems: what about packing problems?
• Our algorithms for union problems give tight bounds only with respect to the corresponding

natural LPs. This leaves room for improvement.
• There is a considerable gap between upper and lower bounds for intersection problems.

In particular, our hardness results do not depend on h, while the approximation ratios
deteriorate rather rapidly for increasing h.

3 Without loss of generality, we can assume that each clause does not contain both a literal and its
negation.

M. Cygan et al. 39

References
1 A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis, and S. Leonardi. Power in unity:

forming teams in large-scale community systems. In CIKM, pages 599–608, 2010.
2 B. Applebaum, B. Barak, and A. Wigderson. Public-key cryptography from different as-

sumptions. In STOC, pages 171–180, 2010.
3 S. Arora, B. Barak, M. Brunnermeier, and R. Ge. Computational complexity and inform-

ation asymmetry in financial products (extended abstract). In ICS, pages 49–65, 2010.
4 A. Berger, V. Bonifaci, F. Grandoni, and G. Schäfer. Budgeted matching and budgeted

matroid intersection via the gasoline puzzle. Mathematical Programming, 128:355–372,
2011.

5 M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. Information
Processing Letters, 32:171–176, 1989.

6 A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting high
log-densities – an O(n1/4) approximation for densest k–subgraph. In STOC, pages 201–210,
2010.

7 J. Edmonds. Matroid intersection. North-Holland, 1979.
8 F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer. Connected facility location via

random facility sampling and core detouring. Journal of Computer and System Sciences,
76:709–726, 2010.

9 L. Fleischer, J. Könemann, S. Leonardi, and G. Schäfer. Simple cost sharing schemes for
multicommodity rent-or-buy and stochastic Steiner tree. In STOC, pages 663–670, 2006.

10 A. Frank. On connectivity properties of Eulerian digraphs. Annals of Discrete Mathematics,
41:179–194, 1989.

11 N. Garg. A 3-approximation for the minimum tree spanning k vertices. In FOCS, pages
302–309, 1996.

12 N. Garg. Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In STOC,
pages 396–402, 2005.

13 F. Grandoni and G. F. Italiano. Improved approximation for single-sink buy-at-bulk. In
ISAAC, pages 111–120, 2006.

14 F. Grandoni, R. Ravi, and M. Singh. Iterative rounding for multi-objective optimization
problems. In ESA, pages 95–106, 2009.

15 F. Grandoni and R. Zenklusen. Approximation schemes for multi-budgeted independence
systems. In ESA (1), pages 536–548, 2010.

16 Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanita. From uncertainty to nonlinearity:
Solving virtual private network via single-sink buy-at-bulk. Mathematics of Operations
Research, 36(2):185–204, 2011.

17 S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms. In
SODA, pages 649–657, 1998.

18 Mohammad Taghi Hajiaghayi and Kamal Jain. The prize-collecting generalized steiner tree
problem via a new approach of primal-dual schema. In SODA, pages 631–640, 2006.

19 K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. Greedy facility location
algorithms analyzed using dual fitting with factor-revealing LP. Journal of the ACM,
50(6):795–824, 2003.

20 Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish Sabharwal, and
Barna Saha. The matroid median problem. In SODA, 2011. To appear.

21 T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social networks. In KDD,
pages 467–476, 2009.

22 C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and optimal
access of Web sources. In FOCS, pages 86–92, 2000.

FSTTCS 2011

40 Union and Intersection Covering Problems

23 R. Ravi and M. X. Goemans. The constrained minimum spanning tree problem (extended
abstract). In SWAT, pages 66–75, 1996.

24 R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP. In STOC, pages 475–484, 1997.

25 M. Riaz, R. Nielsen, J. Pedersen, N. Prasad, and O. Madsen. A framework for planning a
unified wired and wireless ict infrastructure. Wireless Personal Communications, 54:169–
185, 2010.

26 P. Slavik. Improved performance of the greedy algorithm for partial cover. Information
Processing Letters, 64(5):251–254, 1997.

27 V. V. Vazirani. Approximation Algorithms. Springer, 2003.

Tight Gaps for Vertex Cover in the Sherali-Adams
SDP Hierarchy∗

Siavosh Benabbas1, Siu On Chan2, Konstantinos Georgiou3, and
Avner Magen1

1 Department of Computer Science, University of Toronto
siavosh@cs.toronto.edu

2 Department of Computer Science, University of California, Berkeley
siuon@cs.berkeley.edu

3 Department of Combinatorics and Optimization, University of Waterloo
k2georgiou@math.uwaterloo.ca

Abstract
We give the first tight integrality gap for Vertex Cover in the Sherali-Adams SDP system. More
precisely, we show that for every ε > 0, the standard SDP for Vertex Cover that is strengthened
with the level-6 Sherali-Adams system has integrality gap 2− ε. To the best of our knowledge this
is the first nontrivial tight integrality gap for the Sherali-Adams SDP hierarchy for a combinatorial
problem with hard constraints.

For our proof we introduce a new tool to establish Local-Global Discrepancy which uses
simple facts from high-dimensional geometry. This allows us to give Sherali-Adams solutions with
objective value n(1/2 + o(1)) for graphs with small (2 + o(1)) vector chromatic number. Since
such graphs with no linear size independent sets exist, this immediately gives a tight integrality
gap for the Sherali-Adams system for superconstant number of tightenings. In order to obtain
a Sherali-Adams solution that also satisfies semidefinite conditions, we reduce semidefiniteness
to a condition on the Taylor expansion of a reasonably simple function that we are able to
establish up to constant-level SDP tightenings. We conjecture that this condition holds even for
superconstant levels which would imply that in fact our solution is valid for superconstant level
Sherali-Adams SDPs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Vertex Cover, Integrality Gap, Lift-and-Project systems, Linear Pro-
gramming, Semidefinite Programming

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.41

1 Introduction

A vertex cover of a graph G = (V,E) is a subset S of the vertices such that for every
edge ij ∈ E at least one vertex among i, j lies in S. In the Minimum Vertex Cover
problem the objective is to find the vertex cover of minimum size. While a 2-approximation
algorithm is rather straightforward, considerable effort has failed to yield any polynomial
time algorithm with approximation ratio 2−Ω(1). Indeed the best algorithm known achieves
an approximation ratio of 2−O(

√
1/ logn) [21]. On the other hand, the strongest PCP-based

hardness result [12] shows that 1.36-approximating Vertex Cover is NP-hard. Only by

∗ The full version of this work is available as [5]

© S. Benabbas, S. O. Chan, K. Georgiou, A. Magen;
licensed under Creative Commons License ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 41–54

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.41
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42 Tight Gaps for VC in the SA SDP Hierarchy

assuming Khot’s Unique Game Conjecture [24], whose validity is the subject of an active
area of research (see [1, 25] for example), one can show a 2− o(1) hardness.

Motivation for studying Vertex Cover is two-fold. For one thing it is arguably one
of the simplest NP-hard problems whose inapproximability remains unresolved. But more
importantly, studying Vertex Cover has introduced some very important techniques both
in terms of approximation algorithms and hardness of approximation with [12] being a prime
example. Intuitively this is, at least partly, due to the “hard constraints” of Vertex Cover,
that is the solution has to satisfy a number of inflexible constraints (the edge constraints).
As many of the standard techniques for proving hardness of approximation and integrality
gaps produce solutions which satisfy most constraints in an instance, showing tight hardness
for Vertex Cover has remained unresolved.

Trying to resolve the approximability of Vertex Cover, one could study the behav-
ior of prominent algorithmic schemes, such as Linear Programming (LP) and Semidefinite
Programming (SDP) relaxations, which have yielded state-of-the-art algorithms for many
combinatorial optimization problems. There, the measure of efficiency is the Integrality Gap
which sets the approximation limitation of the algorithms based on these relaxations. In
this work we show that a large family of LP and SDP relaxations for Vertex Cover have
integrality gap arbitrarily close to 2. Such an integrality gap rules out a rich and important
family of approximation algorithms for the problem at hand.

Furthermore, there seems to be a connection between integrality gaps for strong LP/SDP
relaxations of a problem and its hardness of approximation. In one direction the reductions
used to establish hardness of approximation for many problems have been used to construct
integrality gaps for them, e.g. [26, 9, 29, 33]. In the other direction, and specifically for
Vertex Cover, Vishwanathan [34] shows that any hard instance of the problem should
have subgraphs that look like the so called “Borsuk graphs”. Interestingly a specific subfamily
of Borsuk graphs were previously used in many integrality gap instances for Vertex Cover,
e.g. [17, 8, 20, 15, 16]. To make the picture even more complete, we show that any Borsuk
graph is a good integrality gap instance for the (so called) Sherali-Adams LP system of
relaxations for Vertex Cover.

The (tight) integrality gap of the standard LP and SDP relaxations for Vertex Cover has
long been resolved [17]. Nevertheless, celebrated relaxations for a number of combinatorial
problems require strengthenings (addition of extra constraints) aiming to drop the integral-
ity gap. In that direction, a number of systematic procedures, known as Lift-and-Project
systems have been proposed to systematically improve the integrality gap. These systems
build strong hierarchies of either LP relaxations (as the Lovász-Schrijver and the Sherali-
Adams systems) or SDP relaxations (as the Lovász-Schrijver SDP, the Sherali-Adams SDP
and the Lasserre systems). Lift-and-Project systems can be thought of as being applied in
rounds (also called levels). The bigger the number of rounds used, the more accurate the
obtained relaxation is. In fact, if as many rounds as the number of variables are used, the
final relaxation is exact and no integrality gap exists. On the other hand the size of the
derived relaxation grows exponentially with the number of rounds, which implies that the
time one needs to solve it also grows. It is then natural to ask whether looking at a modest
number of rounds (say O(1) or log logn) will result in an algorithm with approximation
factor better than 2.

Identifying the limitations of relaxations derived by Lift-and-Project system has attracted
much attention and showing integrality gaps for the Sherali-Adams SDP and the Lasserre
systems stand as the most attractive subjects in this area of research due to a number of
reasons. Firstly, the best algorithms known for many combinatorial optimization problems

S. Benabbas, S. O. Chan, K. Georgiou, A. Magen 43

(and Vertex Cover in particular) are based on relaxations weaker than those derived
by a constant (say four) rounds of the Sherali-Adams SDP system which we study here,
e.g. [18, 23, 2, 21]. Lift-and-Project hierarchies have been also used recently in designing
approximation algorithms with a runtime-approximation ratio trade off, e.g. [11, 27, 10, 4,
22, 3, 19]. Finally, for some particular constraint satisfaction problems, and modulo the
Unique Games Conjecture, no approximation algorithm can perform better than the one
obtained by Sherali-Adams SDP of a constant number of rounds (see [28].) One can then
think of algorithms based on the Sherali-Adams SDP as an interesting model of computation.

In this work we study the limitations of strong relaxations for Vertex Cover in the
powerful Sherali-Adams SDP system. The performance of the same hierarchy has been stud-
ied for other combinatorial problems (see [29, 6, 7]), but its integrality gap for Vertex
Cover remained open, due to the hard constraints mentioned earlier. Our main result is
as follows.

I Theorem 1.1. For every ε > 0, the SDP derived by the level-6 Sherali-Adams SDP system
for Vertex Cover has integrality gap 2− ε.

Theorem 1.1 yields the first nontrivial Sherali-Adams SDP integrality gap for Vertex
Cover and in fact any problem with hard constraints. While tight integrality gaps for
weaker or incomparable systems were known, there were no good candidates for Sherali-
Adams SDP integrality gap solutions.In particular, while integrality gaps for the closely
related but weaker Sherali-Adams LP system for Vertex Cover were known [9], the solution
there does not satisfy the required positive semidefiniteness condition. As we explain below,
apart from the significance of our new SDP integrality gap, we also believe that our proofs
are interesting in their own right. In Section 3 we give a high level description of our ideas,
along with a detailed explanation of how our techniques are different from existing integrality
gap results.

On our way to prove the above theorem we need to define new solutions for Sherali-
Adams LP relaxations of Vertex Cover. As mentioned, one of our contributions is an
intuitive and geometric explanation of why this large family of LPs are fooled by a certain
family of graphs, the so-called Borsuk graphs. This yields a tight level-Ω(

√
logn/ log logn)

integrality gap for Sherali-Adams LP (see Theorem 4.4.) Other than being used in our proof
of Theorem 1.1, our solution is arguably simpler and more intuitive than the integrality gap
of [9] for the same system.1

The heart of the problem in showing integrality gaps for Sherali-Adams SDPs is that
the proposed solution needs to satisfy a strong positive-semidefiniteness condition. Toward
establishing Theorem 1.1, we show how to reduce this condition into a clean analytic state-
ment about a certain function parameterized by t. We are able to show that this analytic
statement holds up to t = 6, hence the level-6 Sherali-Adams SDP gap. We have strong
evidence (both theoretical and experimental) that the aforementioned analytic statement
holds for any constant value of t, which we explicitly state as a conjecture in Section 5.3.
To sum up, we have the following second theorem.

I Theorem 1.2. Assuming Conjecture 5.12, for every constant ε > 0 and t ∈ N, the SDP
derived by the level-t Sherali-Adams SDP system for Vertex Cover has integrality gap
2− ε.

For a brief discussion of the validity of Conjecture 5.12 see Remark 5.3.

1 Although it should be mentioned that their integrality gap applies to more rounds.

FSTTCS 2011

44 Tight Gaps for VC in the SA SDP Hierarchy

Known integrality gaps for Vertex Cover: Considerable effort has been invested
in strong lower bounds for various hierarchies for Vertex Cover. For LP hierarchies, [31]
shows an integrality gap of 2−ε for Ω(n) rounds of the Lovász-Schrijver system and [9] shows
the same integrality gap for the stronger Sherali-Adams system up to Ω(nδ) rounds (with δ
going to 0 together with ε.) Both results concern LP hierarchies, which are incomparable
to SDP relaxations. For SDP hierarchies, and for the Lovász-Schrijver SDP system which is
stronger than both the LS system and the canonical SDP formulation (but incomparable to
Sherali-Adams), [14] shows an integrality gap of 2− ε for Ω(

√
logn/ log logn) levels.

The integrality gap of two stronger hierarchies for Vertex Cover, on the other hand,
has long been open. The first is the Sherali-Adams SDP system which is stronger than the
LS system, and the subject of this paper. The second is the Lasserre system, for which no
tight integrality gap for Vertex Cover is known.2 If one is content with an integrality
gap less than 2, a 1.36 integrality gap for Ω(nδ) levels [33] and a 7/6 integrality gap for Ω(n)
levels [30] of the Lasserre system are known. We will compare our proof techniques with
previous ones at the end of Section 3.

2 Preliminaries

2.1 Borsuk Graphs, Frankl-Rödl Graphs and Tensoring
Our integrality gap instances are Frankl-Rödl graphs. These graphs are parameterized by
an integer m which is considered growing and a real parameter 0 < γ < 1.

I Definition 2.1. (Frankl-Rödl graphs) The Frankl-Rödl graph Gmγ is the graph with vertices
{−1, 1}m where two vertices i, j ∈ {−1, 1}m are adjacent iff dH(i, j) = (1− γ)m.

Frankl-Rödl graphs exhibit an interesting “extremal” combinatorial property. While Gm0
is a perfect matching and thus has a vertex cover of size half the number of its vertices, a
beautiful theorem by Frankl and Rödl states that for slightly larger γ, any vertex cover of
Gmγ is very large. The fact that such a small geometric perturbation results in a drastic
change in the vertex cover size has led to the use of Frankl-Rödl graphs as tight integrality
gap instances in a series of results [17, 8, 14, 15, 16].

I Theorem 2.2 ([14]; slight modification of Theorem 1.4 of [13]). Let m be an integer and
let γ = Θ(

√
logm/m) be a sufficiently small number so that γm is an even integer. Then

any vertex cover of Gmγ contains at least a 1− o(1) fraction of the vertices.

An important tool in proving strong integrality gaps is tensoring of vectors. Recall
that for u ∈ Rn and v ∈ Rm their tensor product u ⊗ v ∈ Rnm is a vector indexed by
ordered pairs from [n] × [m] taking value uivj at coordinate (i, j). For any polynomial
P (x) = c1x

t1 + . . . + cqx
tq with nonnegative coefficients consider the function TP mapping

a vector u ∈ Rn to the vector TP (u) = (√c1u⊗t1 , . . . ,√cqu⊗tq) ∈ R
∑

i
nti , where u⊗d is

the vector obtained by tensoring u with itself d times. Polynomial tensoring can be used
to manipulate inner products in the sense that TP (u) · TP (v) = P (u · v); it was used as an
ingredient in many integrality gap results such as [17, 8, 14, 15].

We often think of the vertices of the Frankl-Rödl graphs as (scaled and) embedded on
the unit sphere Sm−1. In this sense the Frankl-Rödl graphs are subgraphs of the infinite
Borsuk graphs.

2 In fact there are only a few combinatorial problems for which tight Lasserre integrality gaps are known.
(see [30] and [33] for some notable exceptions.)

S. Benabbas, S. O. Chan, K. Georgiou, A. Magen 45

I Definition 2.3. (Borsuk graphs) The Borsuk graph Bmδ is an infinite graph with vertex
set Sm−1. Two vertices x,y are adjacent if they are nearly antipodal, i.e. ‖x + y‖ ≤ 2

√
δ.

2.2 Strong relaxations for Vertex Cover
In this subsection we give a brief high level description of the Sherali-Adams SDP system
applied to the Vertex Cover problem. This high level description should be enough to
understand the high level of our results. The interested reader can find a rigorous definition
in the full version of the paper or [32].

The starting point of the Sherali-Adams SDP for Vertex Cover is the following simple
LP relaxation of Vertex Cover. Assume that G = (V,E) is the input graph.

min
∑
i∈V

xi, s.t. ∀ij ∈ E xi + xj ≥ 1, ∀i ∈ V xi ∈ [0, 1] (1)

Here xi is the indicator variable of vertex i being part of a vertex cover. Since in the
LP relaxation (1) xi assumes any value in [0, 1], we may think of xi as encoding a local
distribution D({i}) of 0-1 assignments for the elements in {i}. The Sherali-Adams LP system
strengthens this relaxation by introducing variables to encode the joint status of a subset of
vertices U with respect to the vertex cover, for all subsets up to a certain size. In particular,
the Sherali-Adams LP system of level t, seen below, is a Linear Program with the following
variables. If U ⊂ V is any subset of the vertices of size at most t, the program will have
real-valued variables to specify a distribution D(U) over the subsets of U . Furthermore, the
program will have two kinds of constraints. The first kind (similar to the one in (1)) ensure
that any subset of U that is assigned a positive probability covers all the edges inside U ,
i.e. the distribution D(U) is over vertex covers of U . The second kind of constraints ensure
that the marginals of the distributions for U1 ⊆ U are consistent on U1, i.e. any event that
only depends on the vertices of U1 has the same probability according to D(U1) and D(U).
The objective value of the program is the sum over all vertices v, of the probability that v
is in the local vertex covers (which is well defined as D(U)’s are consistent for all U 3 v.)
That is, fix a U 3 v, the contribution of v to the objective function is, PS∼D(U)[v ∈ S].
Summarizing we have the following relaxations,

I Definition 2.4 (Level-t Sherali-Adams LP relaxation of Vertex Cover). Let P(U) denote
the powerset of U .

min
∑
i∈V PS∼D({i})[i ∈ S]

s.t. PS∼D({i,j})[i 6∈ S, j 6∈ S] = 0 ∀ij ∈ E (Edge constraints)
PS∼D(U1)[S = T] = PS∼D(U)[S ∩ U1 = T] ∀T ⊆ U1 ⊆ U ⊆ V, |U | ≤ t
D(U) is a distribution on P(U) ∀U ⊆ V, |U | ≤ t

(2)

I Definition 2.5 (Level-t Sherali-Adams SDP relaxation of Vertex Cover). The Sherali-
Adams SDP relaxation is the Sherali-Adams LP relaxation plus the following semi-definiteness
constraint. DefineM1 to be an (n+1)× (n+1) matrix whose rows and columns are indexed
by ∅, {1} , . . . , {n} as follows and add the following semi-definiteness condition.

mI,J = P
S∼D(I∪J)

[I ∪ J ⊆ S] M1 = [mI,J](n+1)×(n+1) � 0. (3)

In other words, one makes a matrix whose first row and column and diagonal are the “sin-
gleton probabilities”, i.e., the probabilities of each vertex being in a set sampled according

FSTTCS 2011

46 Tight Gaps for VC in the SA SDP Hierarchy

to the local distribution, while the rest of the matrix is filled with the “doubleton probabil-
ities”, i.e., the probabilities that pairs of vertices are in a set sampled according to the local
distribution together.

It is not hard to see that any integral solution of (1) gives rise to a solution to the
Sherali-Adams SDP relaxation of any level. It is also not hard to see that the optimum of
the Sherali-Adams SDP relaxation can be found in time polynomial in nt. While the above is
not the original definition of Sherali-Adams hierarchy it is equivalent. The reader can see the
original definition as well as the formal theorem stating the equivalence in the full version
of the paper.

3 Outline of Our Method and Comparison to Previous Work

By Theorem 2.2, for γ =
√

logm/m, Gmγ has no vertex cover smaller than 2m(1− o(1)). A
tight integrality gap therefore calls for a solution in the system of objective value at most
2m(1/2 + ε), for a small constant ε > 0.

Consider the following experiment used to define our solution. A geometric way to
obtain a distribution of vertex covers would be to embed Gmγ on the unit sphere and take a
sufficiently large spherical cap centered at a random point on the sphere. Of course, given
the Frankl-Rödl theorem mentioned above, in doing so we have not achieved much since
we are defining a global distribution of vertex covers, and thus its expected size has to be
at least 2m(1 − o(1)). However, it is useful to understand why these vertex covers are big
from a geometric point of view: the heightof the spherical cap must be at least 1 +√γ (as
opposed to 1 for a half-sphere.) Now concentration of measure on the sphere implies that
because √γm = ω(1) the area of such a cap is a 1 − o(1) fraction of the whole sphere. So
the probability that any vertex of the graph is in the cap is 1 − o(1), which is very large.
Had it been the case that √γm = o(1) concentration of measure would imply that the area
of the cap is 1/2 + o(1) of that of the sphere and we would have had a small vertex cover.

The main idea is that one only needs to define probabilities for small sets (up to size t
if the goal is to show integrality gaps for level-t Sherali-Adams LP relaxations.) So one can
first embed the points in such a small set in a small dimensional sphere and then repeat
the above experiment to define a random vertex cover. The spherical caps that are required
in order to cover the edges in these sets have the same height, but now, due to the lower
dimension, their area is greatly reduced! Specifically, if the original set has at most t points,
the experiment can be performed in a t-dimensional sphere and if

√
γt = o(1), the probability

of any vertex participating in the vertex cover will be no more than 1/2+o(1). In particular,
t = o(

√
m/ logm) would suffice.

It is critical, of course, that the obtained distributions are consistent. But this is “built-
in” in this experiment. Indeed, due to spherical symmetry, the probability that a set of
points on a t dimensional sphere belong to a random cap of a fixed radius depends only
on t, the radius of the cap and the pairwise Euclidean distances of the points in the set.
Interestingly this construction works for any graph with vector chromatic number 2 + o(1).
In other words, if G is an n vertex graph that can be embedded into the unit sphere so that
the end points of any edge are almost antipodes, then there is a sufficiently “low-level” (but
non-trivial) Sherali-Adams solution of value (1/2 + o(1))n.

Unfortunately, we cannot show that the above solution satisfies the extra constraints
imposed by the SA SDP system. Instead we change our solution in several ways to attain
positive semidefiniteness. These changes are somewhat technical and we avoid discussing
them in detail here. At a high level the changes are (i) we add a small probability of

S. Benabbas, S. O. Chan, K. Georgiou, A. Magen 47

picking the whole graph as the vertex cover. (ii) We apply a transformation of the canonical
embedding of the cube in the sphere that ensures that the farthest pairs of vertices are
precisely the edges, and also that the inner products have a bias to being positive (as
opposed to the canonical embedding in which the average inner product is 0.)

To get some insight into the rationale of these modifications, first note that the matrix
whose positive definiteness we need to prove happens to be highly symmetric. For such
symmetric matrices a necessary condition for positive semi-definiteness is that the average
entry is at least as large as the square of the diagonal entries. Manipulation (i) above is
precisely the tool we need to ensure this condition, and has no adverse effect otherwise. The
second transformation is useful although not clearly necessary. We can, however, argue that
without a transformation of this nature, a good SDP solution is possible also for a graphs
in which edges connect vertices that are at least as far as m(1−γ) (rather than exactly that
distance). The existence of solutions for such dense graphs seems intuitively questionable.
Last, boosting the typical inner product can be shown to considerably boost the Taylor
coefficients of a certain function which we need to show only has positive Taylor coefficients.
The later is a condition to which we reduce the positive-semidefiniteness of our LP solution.

Comparison to Previous Work: There are more than half a dozen different integrality
gap constructions for Vertex Cover in different Lift-and-Project systems known. Among
these the most relevant to our work is [9]. In [9], Charikar, et al. obtain a Sherali-Adams
solution that is based on embedding the vertices of the graph in the sphere. The similarity
with our work is that Charikar et al. take a special case of caps, i.e. half-spheres, in order to
determine probabilities. Consistency of these distribution is, just as in our case, guaranteed
by the fact that these probabilities are intrinsic to the local distances of the point-set in
question. However, the reason that these distributions behave differently than a global
distribution (which is essential for an integrality gap construction) is completely different
than ours. It is easy to see that when the caps in the construction are half spheres, the
dimension does not play a role at all. However, in [9] there is no global embedding of the
points in the sphere but rather only a local one. In contrast, our distributions can be defined
for all dimensions, however as we mentioned we must keep the dimension reasonably small
in order to guarantee small objective value. Another big difference pertains to the different
instances. While our construction may very well be the one (or close to the one) that will
give a Lasserre integrality-gap bound, the instances of [9] have no substantial integrality gap
even for the standard SDP. Thus their result cannot be extended to the stronger Lasserre or
Sherali-Adams SDP hierarchies.

It is also important to put our work in context with the sequence of results dealing with
SDP integrality gaps of Vertex-Cover [17, 8, 14, 15, 16]. In these works the solution can
be thought of as an approximation to a very simple set: a dimension cut, that is a face of
the cube. This set is not a vertex cover, but in some geometric sense is close to one. The
SDP solutions are essentially averaging of such dimension-cuts with some carefully crafted
perturbations. Using the same language, the solution we present is based on Hamming balls
of radius m/2 (i.e. translations of the majority function) rather than dimension-cuts (i.e.
dictatorship functions). The perturbation we apply to make such a solution valid is simply
the small increase in the radius of the Hamming balls. Another distinction is that while
all previous results use tensoring to construct their solutions we mainly use it to certify its
positive semidefiniteness. In other words, our solutions are defined geometrically and then
tensoring is used to give an alternative view which helps to show they have the required
positive semidefiniteness.

FSTTCS 2011

48 Tight Gaps for VC in the SA SDP Hierarchy

4 Fooling LPs derived by the Sherali-Adams System

4.1 Local Distributions of Vertex Covers for Borsuk Graphs
In this section we study relaxation (2) for discrete subgraphs of Bmγ on n vertices. In
particular, for every set U ⊆ [n] we define a distribution of vertex covers that are locally
consistent.

The family of distributions we are looking for arises from the following experiments. Fix
a discrete subgraph G = (V,E) of Bmδ on n vertices for which we want to construct a level t
Sherali-Adams LP solution with small objective value. Given that G = (V,E) is a subgraph
of Bmδ we can think of its vertices as points on Sm−1 and in particular talk about their
Euclidean distances. The following experiment defines the local distributions.

Experiment Local-Global

The input is any I ⊆ V , of size at most t, and some
√
δ > 0.

The result of the experiment is a distribution D(I) of 0/1 assignments on I.
(a) Embed the I-induced subgraph of G into St−1 preserving all pairwise Euclidean

distances.
(b) In St−1 consider the complement C of a random spherical cap of height 1−

√
δ.

(c) Vertices of I are assigned 1 if they are in the cap C, otherwise they are assigned 0.

Notice that step (a) is possible because |I| ≤ t.

I Lemma 4.1. For every finite subgraph of Bmδ on n vertices, the family of distributions
D(I), I ∈ P [n]

t , is a valid solution of (2), i.e. a family of locally consistent distributions of
vertex covers.

Proof. The second constraint of (2), i.e. local consistency, follows from the following simple
geometric fact: the probability distribution D(I) only depends on the pairwise Euclidean
distances of vertices in I and the parameter t. Given this simple observation it is not hard
to see that D(U1) is just the marginal of D(U) when U1 ⊆ U .

It therefore remains to argue that D(I) is a distribution of vertex covers, i.e. the first
constraint of (2). To that end, we need to show that in the Experiment Local-Global, two
adjacent vertices cannot be at the same time outside the random cap C. This is true simply
because the cap is big enough. In particular, for any two vertices i, j outside the cap if zi, zj
are their vectors and w is the vector corresponding to the tip of the cap, w · zi,w · zj >

√
δ

which implies ‖zi+zj‖ = ‖w‖ ‖(zi+zj)‖ ≥ w · (zi+zj) > 2
√
δ, where the penult inequality

is Cauchy-Schwarz. Since G is a subgraph of Bmγ , we conclude that ij cannot be en edge. J

All that remains is to show that the objective value of (2) for our solution is indeed
small. In fact, we can show a stronger statement, not only is the objective value n/2 + o(n)
but each vertex roughly contributes 1/2 to the objective value. In particular we can show
the following lemma.

I Lemma 4.2. For any fixed z ∈ St−1, we have Pw∈St−1 [w · z ≤ η] ≤ 1
2 + η

√
π
8 (t+ 1),

when w is distributed uniformly on St−1. Consequently, for any vertex i ∈ I of the graph G
(subgraph of Bmδ), we have PS∼D(I)[i ∈ S] ≤ 1

2 +
√
δπ(t+ 1)/8.

The following theorems follow from Lemma 4.2. The proofs can be found in the full
version.

S. Benabbas, S. O. Chan, K. Georgiou, A. Magen 49

I Theorem 4.3. Let G be a finite subgraph of Bmδ on n vertices. Then the level-
(

2ε2

π
1
δ − 1

)
Sherali-Adams relaxation (2) for vertex cover has objective value at most (1/2 + ε)n for G.

I Theorem 4.4. For every ε, there are graphs on n vertices such that the level-Ω(logn
log logn)

LP derived by the Sherali-Adams system for Vertex Cover has integrality gap 2− ε.

5 Fooling SDPs derived by the Sherali-Adams System

5.1 Preliminary Observations for the Sherali-Adams SDP Solution
Let y be a Sherali-Adams solution of the LP (2), namely yI = PS∼D(I)[I ⊆ S]. Then y
uniquely determines the matrix M1 = M1(y) in (3). In order to establish a Sherali-Adams
SDP integrality gap, we need to show thatM1(y) is positive-semidefinite for an appropriately
chosen y.

It is convenient to denote byM ′1(y) the principal submatrixM1(y) indexed by nonempty
sets. Note that for the solution we introduced in the previous section, all y{i} attain the

same value, say yR. In other words, M1(y) =
(

1 1yR
1T yR M ′1(y)

)
, where 1 denotes the all

1 vector of appropriate size. We leave the proof of the following fact for the full version.

I Fact 5.1. Suppose that 1 is an eigenvector for M ′1(y). Then M1(y) � 0 iff M ′1(y) � 0 and
for some j ∈ V , avgi∈V y{i,j} ≥ y2

R.

The next Lemma establishes a sufficient condition for solutions fooling SDP relaxations
for Borsuk graphs. The proof uses the standard tool of tensoring introduced in Section 2.1.

I Lemma 5.2. Let y be a level-t Sherali-Adams solution for Vertex Cover for a Borsuk
graph with vector representation ui and suppose that the value y{i,j} can be expressed as
f(ui · uj). If the Taylor expansion of f(x) has no negative coefficients, then M ′1(y) � 0.

Proof. Consider the Taylor expansion of f(x) =
∑∞
i=0 aix

i, where ai ≥ 0. We map ui ∈
Sm−1 to an infinite dimensional space as follows ui 7→ Tf (ui). Then the vectors Tf (ui)
constitute the Cholesky decomposition of M ′1(y), and therefore M ′1(y) � 0. J

Now we examine the Sherali-Adams solution of some special case that will be instructive
for our general argument. Consider some n vertex subgraph G = (V,E) of Bmρ2 with vector
representation zi ∈ Sm−1. Suppose also that edges ij ∈ E appear exactly when zi · zj =
−1 + 2ρ2, and that for all other pairs i, j ∈ V we have zi · zj ≥ −1 + 2ρ2. Run Experiment
Local-Global with parameters t = 2 and δ = ρ2 to define the level-2 Sherali-Adams solution
y

yI = P
w∈S1

[w · zi ≤ ρ, ∀i ∈ I] (4)

for all I of size at most 2, where w is distributed uniformly on the circle.

I Claim 5.3. The values y{i,j} depend on the inner product x = zi · zj in the following way:
(a) if 2ρ2 ≥ x+ 1, y{i,j} = 1− 2θρ

π , (b) if 2ρ2 ≤ x+ 1, y{i,j} = 1− θρ
π ; where θx = arccos(x).

In particular, when zi · zj = 1, y{i,j} = 1− θρ
π .

The next fact is motivated by the condition of Lemma 5.2.

I Fact 5.4. If ρ ∈ [0, 1], the Taylor expansion of the function 1 − θρ
π −

θx
2π has no negative

coefficient.

FSTTCS 2011

50 Tight Gaps for VC in the SA SDP Hierarchy

We leave the proofs of Claim 5.3 and Fact 5.4 for the full version.
Note that if we start with a configuration of vectors zi for which zi · zj ≥ −1 + 2ρ2

for all pairs i, j ∈ V , then the value y{i,j} will be described as a function on the inner
product zi · zj = x, and this function on x will have Taylor expansion with nonnegative
coefficients. Unfortunately, for our Sherali-Adams solution of the previous sections this is
not the case. We establish this extra condition in Section 5.2, making sure that M ′1(y) is
positive semidefinite. Proving that the matrix M1(y) is positive semidefinite will require
one extra simple argument, which is self evident from fact 5.1.

5.2 An Easy level-2 Sherali-Adams SDP Solution
In this section we apply the techniques developed in Section 5.1 to show a tight integrality gap
for Vertex Cover in the level-2 Sherali-Adams SDP system. This serves as an instructive
example for higher levels whose proof are a smooth generalization of the arguments below.
We will show,

I Theorem 5.5. For any ε > 0, there exist δ > 0 and sufficiently big m, such that the
level-2 Sherali-Adams SDP system for Vertex Cover on Gmδ has objective value at most
2m(1/2 + ε).

As the theorem states, we start with the Frankl-Rödl graph Gmδ = (V,E), which is a subset
of Bmδ , with vector representation ui. Our goal is to define y in the context of Theorem 4.3,
so as the matrixM1(y) to be positive semidefinite. Our Sherali-Adams solution as it appears
in Theorem 4.3 does not satisfy the constraint M1(y) � 0, for reasons that will be clear
shortly. For this, we need to apply the transformation ui 7→ zi := (

√
ζ,
√

1− ζ TP (ui)),
for some appropriate tensoring polynomial P (x), and some ζ > 0 (that is allowed to be a
function of (m, δ)). We will use the following fact, first proved by Charikar [8].
I Fact 5.6. There exist a polynomial P (x), with nonnegative coefficients and P (1) = 1,
such that for all x ∈ [−1, 1], we have P (x) ≥ P (−1 + 2δ) = −1 + 2δ0, for some δ0 = Θ(δ).
Moreover, for every constant c > 0 and for every x ∈ (−c/

√
m, c/

√
m), we have |P (x)| =

O(
√

1/m).
We use the polynomial P of Fact 5.6 to map the vectors ui to the new vectors zi. Note

that with this transformation, for an edge ij ∈ E we have zi · zj = ζ + (1− ζ)P (−1 + 2δ) =
ζ + (1 − ζ)(−1 + 2δ0) = −1 + 2 (ζ(1− δ0) + δ0) . If we denote

√
ζ(1− δ0) + δ0 by ρ, then

the above transformation maps Gmδ to Gm′ρ2 , where m′ is the degree of the polynomial P .
We are therefore eligible to run Experiment Local-Global with parameters t = 2 and ρ2 on
the vectors zi = (

√
ζ,
√

1− ζ TP (ui)). Then Lemma 4.1 implies that y as defined in (4) is
a level-2 Sherali-Adams solution (the parameters δ, ζ will be fixed later). Next we show that
for a slightly perturbed y we have that M1(y) is positive semidefinite.

First we observe that the context of Section 5.1 is relevant to the current configuration of
vectors zi and to our graph instances, since zi ·zj ≥ −1+2ρ2. If ui ·uj = x, then the value of
y{i,j} is exactly g(ζ+(1−ζ)P (x)), where g(x) = 1− θρ

π −
arccos(x)

2π . By Fact 5.4 we know that
the function g(x) has Taylor expansion with nonnegative coefficients. Since ζ + (1− ζ)P (x)
is a polynomial with nonnegative coefficients, it follows that g(ζ + (1− ζ)P (x)) has Taylor
Expansion with nonnegative coefficients. Hence, we can apply Lemma 5.2 to obtain that

I Lemma 5.7. The matrix M ′1(y) is positive semidefinite.

In what follows we describe a way to extend the positive semidefiniteness of M ′1(y) to
that of M1(y). In fact what we will show is general and holds for any level t (where t is the

S. Benabbas, S. O. Chan, K. Georgiou, A. Magen 51

Sherali-Adams level which solution y was engineered for). Since the entries of M ′1(y) are a
function of the inner product of the corresponding vectors of the hypercube, it follows that
the all 1 vector is an eigenvector for M ′1(y). By Fact 5.1 it follows that we need to show
that avgi∈V y{i,j} − y2

{i} ≥ 0. It turns out that this is not the case, but we can establish a
weaker condition (described here in terms of a general sphere dimension D).

I Lemma 5.8. There exist c > 0 (not depending on m, ρ), such that avgi∈V y{i,j} − y2
{i} ≥

−cDρ.

We omit the proof of this lemma from this extended abstract. A rough estimate that suffices
is that whenever two points have positive inner product, the probability that both are in a
random cap is at least 1/4. It can be shown that due to the affine transformation, all but
exponentially small fraction of the pairs will have positive inner products, hence we get that
the average of y{i,j} is at least 1/4− o(1). On the other hand, from Section 4 we know that
y{i} ≤ 1/2 +O(Dρ).

Boosting: It remains to show how to "boost" the solution to move from the relaxed
condition to the exact, and necessary one. The idea is simple. Consider a ridiculously waste-
ful integral solution to Vertex Cover, namely the solution that takes all vertices. Clearly, if
we take a convex combination of this solution with the existing one we still get a Sherali-
Adams solution. If the weight of the integral solution is some small number ξ > 0 then
the objective value increases by no more than ξ/2 which can be absorbed for arguments
to go through as long as ξ ≤ ε. Owing to the strict convexity of the quadratic function,
however, this simple perturbation does allow to improve the bound on averages as required
by Fact 5.1. This observation is made precise in the following Lemma whose proof can be
found in the full version.

I Lemma 5.9. Let y′ be the matrix y′ = (1− ξ)y+ ξJ where J represents the all 1 solution.
Also let s = y{i} and s′ = y′{i}}. Then avgi,jy′{i,j} − s′2 = Ω(ξ).

We are now ready to formally prove Theorem 5.5.

Proof. (of Theorem 5.5) We start with the n-vertex Frankl-Rödl graph Gmδ , with δ =
Θ(logn

log logn) so as to satisfy the conditions of Theorem 2.2. We use the polynomial of Fact 5.6
to obtain the vectors zi = (

√
ζ,
√

1− ζ TP (ui)), with ζ = δ0 (where δ0 = Θ(δ) by Fact 5.6).
We set ρ =

√
ζ(1− δ0) + δ0 =

√
Θ(ζ), and we run the Experiment Local-Global on the

vectors zi with parameters t = 2 and ρ2, to obtain the vector y. By Lemma 4.1, we have
that y as defined in (4) is a level-2 Sherali-Adams solution. Note that since δ = o(1) we
conclude from Lemma 4.2 that y{i} = 1/2 + Θ(δ).

Next we define y′ as (1−ξ)y+ξJ . We already argued thatM ′1(y′) is positive semidefinite.
By the above discussion (and Lemma 5.9) we conclude that avgi,jy′{i,j} − y′

2
{i} ≥ 0. We

can therefore use Fact 5.1 to conclude that M(y′) � 0. The last thing to note is that the
contribution of every vertex in the objective value is 1/2 +O(δ) J

5.3 The Level-(t + 2) Sherali-Adams SDP Tight Integrality Gap
For the level-(t+ 2) SDP, we start with the n-vertex Frankl-Rödl graphs Gmδ , n = 2m with
vector representation ui. The value of δ is chosen so as to satisfy Theorem 2.2, namely
δ = Θ(

√
logm/m). As in Section 5.2 we apply to ui two transformations; one using the

tensoring polynomial of Fact 5.6 and one affine transformation. Then we use the resulting
vectors zi = (

√
ζ,
√

1− ζ TP (ui)) to define a level-(t + 2) Sherali-Adams solution that we
denote by y. Our construction of y will have a parameter ρ to be set later.

FSTTCS 2011

52 Tight Gaps for VC in the SA SDP Hierarchy

Our goal is to meet the conditions of Fact 5.1. Namely, the first thing to ensure is that
M ′1(y) is positive semidefinite. In this direction, from Lemma 5.2 it suffices to show that
the Taylor expansion of the function that describes the value of y{i,j}, when ui ·uj = u, has
Taylor expansion with nonnegative coefficients. Given that this function at 0 will always
represent some probability, the problem is equivalent to showing that the first derivative
of this function has such a good Taylor expansion. Our transformation on the vectors
ui can be thought as mapping their inner product u first to x = P (u), and second x to
κζ(x) = ζ + (1− ζ)x. Under this notation, we can show the following lemma that involves
a number of technical calculations. The proof can be found in the full version of the paper.

I Lemma 5.10. The derivative of the functional description of y{i,j} is

Dζ(x) := −(arccos(κζ(x)))′(1− 2ρ2

1 + κζ(x))t/2.

Therefore, to conclude that M ′1(y) � 0 it suffices to show the next technical lemma. The
proof requires arguments along the lines of that of Claim 5.7 and will appear in the full
version.

I Lemma 5.11. Set t = 4 and ρ2 ∈ [ζ, ζ + ζ3]. Then for sufficiently small ζ, the function
Dζ(x) as it reads in Lemma 5.10 has Taylor expansion with nonnegative coefficients.

Now we are ready to prove Theorem 1.1. First we obtain a level-(t+2) Sherali-Adams so-
lution from the vectors zi = (

√
ζ,
√

1− ζ TP (ui)) (the reader may think of t = 4). We need
to set ζ = 3

√
δ0, where δ0 = (1 + min(P (x))/2. Since the rounding parameter we need is

ρ =
√
ζ(1− δ0) + δ0, it is easy to see that ρ2 = ζ + ζ3 − ζ4. It follows by Lemma 5.11 that

the matrix M ′1(y) is positive semidefinite.
Now call c the constant for which avgi∈V y{i,j} − y2

{i} ≥ −ctρ
2. We also know that

if tρ2 is no more than a small constant ε/10, then y{i} ≤ 1/2 + ε. Then define y′ =
(1 − 4cε)y + (4cε)1. As we did for the level-2 Sherali-Adams SDP solution, the vector y′ is
a level-(t+ 2) Sherali-Adams solution. Moreover, the matrix M ′1(y′) is positive semidefinite,
and avgi∈V y′{i,j}− y′

2
{i} ≥ 0. All conditions of Fact 5.1 are satisfied implying that M1(y′) is

positive semidefinite. Finally, note that the contribution of the singletons is no more than
1/2 + Θ(ctρ2). Hence, if we start with tρ2 = o(1), the contribution of the singletons remains
1/2 + o(1). On the other hand, choosing δ = Θ(

√
logm/m) results in graphs Gmδ with no

vertex cover smaller than n− o(n).
The maximum value of t in Lemma 5.11 dictates the limitation on the level of our

integrality gap. In particular we have the following conjecture and the proof of Theorem 1.2
is straightforward.
I Conjecture 5.12. Set t be any even integer and ρ2 ∈ [ζ, ζ + ζ3]. Then for sufficiently small
ζ, the function Dζ(x) as it reads in Lemma 5.10 has Taylor expansion with nonnegative
coefficients.

I Theorem 5.13. Assuming Conjecture 5.12, for every constants ε > 0 and t, the level-t
SDP derived by the Sherali-Adams SDP system for Vertex Cover has integrality gap 2− ε.

I Remark. [On the validity of Conjecture 5.12] Evidence for the validity of Conjec-
ture 5.12 is both experimental and theoretical. In particular, some relatively simple argu-
ments can show the following two statements: (a) For every N0 > 0 there exist small enough
ζ > 0, such that the first N0 Taylor coefficients of Dζ(x) are positive, (b) For every ζ > 0,
there exist N0 > 0 such that all but the first N0 Taylor coefficients of Dζ(x) are positive.
While these partial results are not enough to imply Sherali-Adams SDP lowerbounds, they
do seem to indicate that Conjecture 5.12 is true.

S. Benabbas, S. O. Chan, K. Georgiou, A. Magen 53

Discussion

We presented tight integrality gaps for level-6 Sherali-Adams SDP for Vertex Cover and
how if a certain analytical conjecture is proved they can be extended to any constant number
of rounds. Along the way we also gave an intuitive and geometric proof of tight Sherali-
Adams LP integrality gaps for the same problem. While these LP integrality gaps apply to
less rounds than [9] they remain highly nontrivial, yet significantly simplified.

For large t, proving Conjecture 5.12 seems challenging. We leave it as an open problem.
Another open problem is to extend the ideas in this paper to construct tight Lasserre gaps
for Vertex Cover and Unique Games, thus giving the strongest evidence that Unique Games
cannot be solved with SDP hierarchies.

Acknowledgements: The authors wish to thank Toniann Pitassi for many helpful
discussions and comments on an earlier version of the paper. The authors are also grateful
to the anonymous reviewers for suggestions on how to improve the presentation.

References
1 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for Unique

Games and related problems. In FOCS’10. IEEE Computer Society, 2010.
2 Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings

and graph partitioning. J. ACM, 56(2):1–37, 2009.
3 Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming

hierarchies via global correlation. In FOCS’11, 2011. To appear.
4 Mohammad Hossein Bateni, Moses Charikar, and Venkatesan Guruswami. MaxMin allo-

cation via degree lower-bounded arborescences. In STOC’09, pages 543–552. ACM Press,
2009.

5 Siavosh Benabbas, Siu On Chan, Konstantinos Georgiou, and Avner Magen. The Sherali-
Adams system applied to Vertex Cover: Why Borsuk graphs fool strong LPs and some
tight Integrality Gaps for SDPs. ECCC, 17:169, 2011. Revision 2.

6 Siavosh Benabbas, Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. SDP gaps
from pairwise independence. http://www.cs.toronto.edu/∼siavosh/pdf/pairwise-full-1.pdf,
2010.

7 Siavosh Benabbas and Avner Magen. Extending SDP integrality gaps to Sherali-Adams
with applications to Quadratic Programming and MaxCutGain. In IPCO’10, pages 299–
312. Springer, 2010.

8 Moses Charikar. On semidefinite programming relaxations for graph coloring and Vertex
Cover. In SODA’02, pages 616–620. ACM Press, 2002.

9 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Integrality gaps for
Sherali-Adams relaxations. In STOC’09, pages 283–292. ACM Press, 2009.

10 Eden Chlamtac and Gyanit Singh. Improved approximation guarantees through higher
levels of SDP hierarchies. In APPROX’08, pages 49–62. Springer-Verlag, 2008.

11 Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. Linear programming relax-
ations of Max Cut. In SODA’07, pages 53–61. ACM Press, 2007.

12 Irit Dinur and Shmuel Safra. On the hardness of approximating minimum Vertex Cover.
Annals of Mathematics, 162(1):439–486, 2005.

13 Peter Frankl and Vojtech Rödl. Forbidden intersections. Trans. Amer. Math. Soc.,
300(1):259–286, 1987.

14 Konstantinos Georgiou, Avner Magen, Toniann Pitassi, and Iannis Tourlakis. Integrality
gaps of 2 − o(1) for Vertex Cover SDPs in the Lovász-Schrijver hierarchy. In FOCS’07,
pages 702–712. IEEE Computer Society, 2007.

FSTTCS 2011

54 Tight Gaps for VC in the SA SDP Hierarchy

15 Konstantinos Georgiou, Avner Magen, and Iannis Tourlakis. Vertex Cover resists SDPs
tightened by local hypermetric inequalities. In IPCO’08, pages 140–153. Springer, 2008.

16 Konstantinos Georgiou, Avner Magen, and Iannis Tourlakis. On the tightening of the
standard SDP for Vertex Cover with `1 inequalities. In FSTTCS’09, pages 203–214. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2009.

17 Michel X. Goemans and Jon Kleinberg. The Lovász theta function and a semidefinite pro-
gramming relaxation of Vertex Cover. SIAM J. Discrete Math., 11(2):196–204 (electronic),
1998.

18 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for Max-
imum Cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995.

19 Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher eigenvalues, and
approximation schemes for quadratic integer programming with PSD objectives. CoRR,
abs/1104.4746, 2011.

20 Hamed Hatami, Avner Magen, and Evangelos Markakis. Integrality gaps of semidefinite
programs for Vertex Cover and relations to `1 embeddability of negative type metrics.
SIAM J. Discret. Math., 23:178–194, December 2008.

21 George Karakostas. A better approximation ratio for the Vertex Cover problem. ACM
Trans. Algorithms, 5(4):1–8, 2009.

22 Anna R. Karlin, Claire Mathieu, and C. Thach Nguyen. Integrality gaps of linear and
semi-definite programming relaxations for knapsack. In IPCO’11, pages 301–314. Springer-
Verlag, 2011.

23 Howard Karloff and Uri Zwick. A 7/8-approximation algorithm for MAX 3SAT? In
FOCS’07, pages 406–415. IEEE Computer Society, 1997.

24 Subhash Khot. On the power of unique 2-prover 1-round games. In STOC’02, pages
767–775. ACM Press, 2002.

25 Subhash Khot. On the Unique Games Conjecture (Invited Survey). In CCC’10, pages
99–121. IEEE Computer Society, 2010.

26 Subhash Khot and Nisheeth K. Vishnoi. The unique games conjecture, integrality gap for
cut problems and embeddability of negative type metrics into l1. In FOCS’05, pages 53–62.
IEEE Computer Society, 2005.

27 Avner Magen and Mohammad Moharrami. Robust algorithms for maximum independent
set on minor-free graphs based on the Sherali-Adams hierarchy. In APPROX’09, pages
258–271. Springer, 2009.

28 Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
STOC’08, pages 245–254. ACM Press, 2008.

29 Prasad Raghavendra and David Steurer. Integrality gaps for strong SDP relaxations of
Unique Games. In FOCS’09, pages 575–585. IEEE Computer Society, 2009.

30 Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In FOCS’08,
pages 593–602. IEEE Computer Society, 2008.

31 Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. A linear round lower bound
for Lovász-Schrijver SDP relaxations of Vertex Cover. In CCC’07, pages 205–216. IEEE
Computer Society, 2007.

32 Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM J. Discrete
Math., 3(3):411–430, 1990.

33 Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In STOC’09, pages
303–312. ACM Press, 2009.

34 Sundar Vishwanathan. On hard instances of approximate Vertex Cover. ACM Trans.
Algorithms, 5(1):Art. 7, 6, 2009.

Applications of Discrepancy Theory in
Multiobjective Approximation
Christian Glaßer, Christian Reitwießner, and Maximilian Witek

Julius-Maximilians-Universität Würzburg
Institut für Informatik
Lehrstuhl für Theoretische Informatik
Am Hubland, 97074 Würzburg, Germany
{glasser,reitwiessner,witek}@informatik.uni-wuerzburg.de

Abstract
We apply a multi-color extension of the Beck-Fiala theorem to show that the multiobjective
maximum traveling salesman problem is randomized 1/2-approximable on directed graphs and
randomized 2/3-approximable on undirected graphs. Using the same technique we show that the
multiobjective maximum satisfiabilty problem is 1/2-approximable.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Discrepancy Theory, Multiobjective Optimization, Satisfiability, Travel-
ing Salesman

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.55

1 Introduction

We study multiobjective variants of the traveling salesman problem and the satisfiability
problem.

The k-objective maximum traveling salesman problem: Given is a directed / undirected
complete graph with edge weights from Nk. Find a Hamiltonian cycle of maximum
weight.
The k-objective maximum weighted satisfiability problem: Given is a Boolean formula in
conjunctive normal form and for each clause a non-negative weight in Nk. Find a truth
assignment that maximizes the sum of the weights of all satisfied clauses.

In general we cannot expect to find a single solution that is optimal with respect to all
objectives. Instead we are interested in the Pareto set which consists of all optimal solutions
in the sense that there is no solution that is at least as good in all objectives and better in at
least one objective. Typically, the Pareto set has exponential size, and this particularly holds
for the traveling salesman and the satisfiability problems considered here. We are hence
interested in computing an approximation of the Pareto set.

A popular strategy for approximating single-objective traveling salesman and single-
objective satisfiability is to compute two or more alternatives out of which one chooses the
best one:

For each cycle in a maximum cycle cover of a graph, remove the edge with the lowest
weight, and connect the remaining paths to a Hamiltonian cycle.
For some formula, take an arbitrary truth assignment and its complementary truth
assignment, and return the one with the highest weight of satisfied clauses.

However, in the presence of multiple objectives, these alternatives can be incomparable and
hence we need an argument that allows to appropriately combine incomparable alternatives.

© C. Glaßer, C. Reitwießner, and M. Witek;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 55–65

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.55
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

56 Applications of Discrepancy Theory in Multiobjective Approximation

While previous work focused on problem-specific properties to construct solutions of
good quality, we show that the Beck-Fiala theorem [3] from discrepancy theory and its
multi-color extension due to Doerr and Srivastav [5] provide a general and simple way
to combine alternatives appropriately. Its application leads to simplified and improved
approximation algorithms for the k-objective maximum traveling salesman problem on
directed and undirected graphs and the k-objective maximum weighted satisfiability problem.

2 Preliminaries

2.1 Multiobjective Optimization

Let k ≥ 1 and consider some k-objective maximization problem O that consists of a set of
instances I, a set of solutions S(x) for each instance x ∈ I, and a function w assigning a
k-dimensional weight w(x, s) ∈ Nk to each solution s ∈ S(x) depending also on the instance
x ∈ I. If the instance x is clear from the context, we also write w(s) = w(x, s). The
components of w are written as wi. For weights a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ Nk we
write a ≥ b if ai ≥ bi for all i.

Let x ∈ I. The Pareto set of x, the set of all optimal solutions, is the set {s ∈ S(x) |
¬∃s′ ∈ S(x) (w(x, s′) ≥ w(x, s) and w(x, s′) 6= w(x, s))}. For solutions s, s′ ∈ S(x) and
α < 1 we say s is α-approximated by s′ if wi(s′) ≥ α ·wi(s) for all i. We call a set of solutions
α-approximate Pareto set of x if every solution s ∈ S(x) (or equivalently, every solution from
the Pareto set) is α-approximated by some s′ contained in the set.

We say that some algorithm is an α-approximation algorithm for O if it runs in polynomial
time and returns an α-approximate Pareto set of x for all inputs x ∈ I. We call it randomized
if it is allowed to fail with probability at most 1/2. An algorithm is a PTAS (polynomial-time
approximation scheme) for O, if on input x and 0 < ε < 1 it computes a (1− ε)-approximate
Pareto set of x and for each fixed ε, its runtime is polynomial in the length of x. If there is a
single polynomial in 1/ε + length(x) that bounds the algorithm’s runtime, we call it FPTAS
(fully polynomial-time approximation scheme). The randomized variants are called PRAS
(polynomial-time randomized approximation scheme) and FPRAS (fully polynomial-time
randomized approximation scheme).

2.2 Graph Prerequisites

An Nk-labeled directed (undirected) graph is a tuple G = (V,E,w), where V is some finite set
of vertices, E ⊆ V × V (E ⊆

(
V
2
)
) is a set of directed (undirected) edges, and w : E → Nk

is a k-dimensional weight function. If E = (V × V) \ {(i, i) | i ∈ V } (E =
(
V
2
)
) then G is

called complete. We denote the i-th component of w by wi and extend w to sets of edges
by taking the sum over the weights of all edges in the set. A cycle (of length m ≥ 1) in G
is an alternating sequence of vertices and edges v0, e1, v1, . . . em, vm, where vi ∈ V , ej ∈ E,
ej = (vj−1, vj) (ej = {vj−1, vj}) for all 0 ≤ i ≤ m and 1 ≤ j ≤ m, neither the sequence of
vertices v0, v1, . . . , vm−1 nor the sequence of edges e1, . . . , em contains any repetition, and
vm = v0. A cycle in G is called Hamiltonian if it visits every vertex in G. A set of cycles
in G is called cycle cover if for every vertex v ∈ V it contains exactly one cycle that visits
v. For simplicity we interpret cycles and cycle covers as sets of edges and can thus (using
the above mentioned extension of w to sets of edges) write w(C) for the (multidimensional)
weight of a cycle cover C of G.

C. Glaßer, C. Reitwießner, and M. Witek 57

2.3 Approximating Cycle Covers
We will consider approximation algorithms for the multiobjective traveling salesman problem
using a multiobjective version of the maximum cycle cover problem. For directed input
graphs we have the following problem definition.

k-Objective Maximum Directed Edge-Fixed c-Cycle Cover (k-c-MaxDCCF)
Instance: Nk-labeled complete directed graph (V,E,w) and F ⊆ E
Solution: Cycle cover C ⊆ E with at least c edges per cycle and F ⊆ C
Weight: w(C)

For undirected input graphs we analogously define the k-objective maximum undirected
edge-fixed c-cycle cover problem (k-c-MaxUCCF, for short). Let k-c-MaxUCC (k-c-
MaxDCC) denote the problems we obtain from k-c-MaxDCCF (k-c-MaxUCCF) if we
require F = ∅. Using this notation we obtain the usual cycle cover problems k-MaxDCC
as k-0-MaxDCC and k-MaxUCC as k-0-MaxUCC.

Manthey and Ram [14] show by a reduction to matching that there is an FPRAS for
k-objective minimum cycle cover problems. The same technique can be used to show that
there are FPRAS for k-MaxDCC and k-MaxUCC [12]. We show that there are FPRAS for
k-2-MaxDCCF and k-3-MaxUCCF by a reduction to k-MaxDCC and k-MaxUCC.

I Theorem 1. For every k ≥ 1, k-2-MaxDCCF and k-3-MaxUCCF admit an FPRAS.

Proof. For every l ≥ 1, let l-MaxDCC-Approx (l-MaxUCC-Approx) denote the FPRAS for
l-MaxDCC (l-MaxUCC). We begin with the directed case.

Let k ≥ 1. On input of the Nk-labeled complete directed graph G = (V,E,w) and F ⊆ E,
let G′ = (V,E,w′), where w′ : E → Nk+1 such that for all e ∈ E,

w′i(e) = wi(e) for 1 ≤ i ≤ k and w′k+1(e) =
{

1 if e ∈ F
0 otherwise.

For ε > 0, apply (k+1)-MaxDCC-Approx to G′ with approximation ratio ε′ = min{ε, 1/(r+1)},
where r := #F and return the obtained set of cycle covers that contain all edges from F .

Let C be some (arbitrary) cycle cover with F ⊆ C. If no such cycle cover exists, we
are done. Otherwise, we have w′k+1(C) = r, and with probability at least 1/2 the FPRAS
must have returned some cycle cover C ′ that ε′-approximates C. By ε′ ≤ 1/(r+1) we have
w′k+1(C ′) ≥ (1 − ε′) · w′k+1(C) ≥ (1 − 1/(r+1)) · r = r − r/(r+1) > r − 1 and hence F ⊆ C ′.
Moreover, by ε′ ≤ ε we have wi(C ′) = w′i(C ′) ≥ (1−ε′)·w′i(C) ≥ (1−ε)·w′i(C) = (1−ε)·wi(C)
for all 1 ≤ i ≤ k. Since an arbitrary cycle in a complete directed graph has length at least
two, the assertion is proved.

The proof for the undirected case is very similar, as we call (k + 1)-MaxUCC-Approx
instead. Since in a complete undirected graph every cycle has length at least three, the
assertion follows. J

2.4 Boolean Formulas
We consider formulas over a finite set of propositional variables V , where a literal is a
propositional variable v ∈ V or its negation v, a clause is a finite, nonempty set of literals,
and a formula in conjunctive normal form (CNF, for short) is a finite set of clauses. A truth
assignment is a mapping I : V → {0, 1}. For some v ∈ V , we say that I satisfies the literal v
if I(v) = 1, and I satisfies the literal v if I(v) = 0. We further say that I satisfies the clause
C and write I(C) = 1 if there is some literal l ∈ C that is satisfied by I.

FSTTCS 2011

58 Applications of Discrepancy Theory in Multiobjective Approximation

3 Multi-Color Discrepancy

Suppose we have a list of items with (single-objective) weights and want to find a subset of
these items with about half of the total weight. The exact version of this problem is of course
the NP-complete problem Partition [7], and hence it is unlikely that an exact solution
can be found in polynomial time. If we allow a deviation in the order of the largest weight,
this problem can be solved in polynomial time, though. Surprisingly, this is still true if the
weights are not single numbers but vectors of numbers, which follows from a classical result
in discrepancy theory known as the Beck-Fiala theorem [3]. It is important to note that the
allowed deviation is independent of the number of vectors since this enables us to use this
result in multiobjective approximation for balancing out multiple objectives at the same time
with an error that does not depend on the input size.

In the Beck-Fiala theorem and the task discussed above, we have to decide for each item
to either include it or not. In some situations in multiobjective optimization, though, a more
general problem needs to be solved: There is a constant number of weight vectors for each
item, out of which we have to choose exactly one. Doerr and Srivastav [5] showed that the
Beck-Fiala theorem generalizes to this so-called multi-color setting with almost the same
deviation. Their proof implicitly shows that this choice can be computed in polynomial time.

For a vector x ∈ Qm let ||x||∞ = maxi |xi|, and for a matrix A ∈ Qm×n let ||A||1 =
maxj

∑
i |aij |. For c ≥ 2, n ≥ 1 let Mc,n = {x ∈ (Q ∩ [0, 1])cn |

∑c−1
k=0 xcb−k = 1 for all

b ∈ {1, . . . , n}} and Mc,n = Mc,n ∩ {0, 1}cn.

I Theorem 2. (Doerr, Srivastav [5]) There is a polynomial-time algorithm that on input
of some A ∈ Qm×cn, m,n ∈ N, c ≥ 2 and p ∈ Mc,n finds a coloring χ ∈ Mc,n such that
||A(p− χ)||∞ ≤ 2||A||1.

I Corollary 3. There is a polynomial-time algorithm that on input of a set of vectors
vj,r ∈ Qm for 1 ≤ j ≤ n, 1 ≤ r ≤ c computes a coloring χ : {1, . . . , n} → {1, . . . , c} such that
for each 1 ≤ i ≤ m it holds that∣∣∣∣∣∣1c

n∑
j=1

c∑
r=1

vj,ri −
n∑
j=1

v
j,χ(j)
i

∣∣∣∣∣∣ ≤ 2mmax
j,r
|vj,ri |.

Proof. The result is obvious for c = 1. For c ≥ 2, we use Theorem 2. Because the error
bound is different for each row, we need to scale the rows of the vectors. Let δi = maxj,r |vj,ri |
for 1 ≤ i ≤ m. Let A = (ai,j′) ∈ Qm×cn where ai,(c(j−1)+r) = 1

δi
vj,ri (if δi = 0, set it to 0)

and p ∈ Qcn such that pi = 1
c for all 1 ≤ i ≤ cn. We obtain a coloring χ ∈ {0, 1}cn such that

for each 1 ≤ j ≤ n there is exactly one 1 ≤ r ≤ c such that χc(j−1)+r = 1 and it holds that
||A(p− χ)||∞ ≤ 2||A||1. Note that because of the scaling, the largest entry in A is 1 and thus
we have ||A||1 ≤ m. Define χ′ : {1, . . . , n} → {1, . . . , c} by χ′(j) = r ⇐⇒ χc(j−1)+r = 1.
For each 1 ≤ i ≤ m we obtain

2mδi ≥ 2||δiA||1 ≥ |(δiA(p− χ))i|

=

∣∣∣∣∣∣
cn∑
j′=1

δiaij′(pj′ − χj′)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

c∑
r=1

1
c
vj,ri −

n∑
j=1

v
j,χ′(j)
i

∣∣∣∣∣∣ .
J

C. Glaßer, C. Reitwießner, and M. Witek 59

4 Approximating Multiobjective Maximum Traveling Salesman

4.1 Definition
Given some complete Nk-labeled graph as input, our goal is to find a Hamiltonian cycle
of maximum weight. For directed graphs this problem is called k-objective maximum
asymmetric traveling salesman (k-MaxATSP), while for undirected graphs it is called k-
objective maximum symmetric traveling salesman (k-MaxSTSP). Below we give the formal
definition of k-MaxATSP, the problem k-MaxSTSP is defined analogously.

k-Objective Maximum Asymmetric Traveling Salesman (k-MaxATSP)
Instance: Nk-labeled directed complete graph (V,E,w)
Solution: Hamiltonian cycle C
Weight: w(C)

4.2 Previous Work
In 1979, Fisher, Nemhauser and Wolsey [6] gave a 1/2-approximation algorithm for single-
objective maximum asymmetric traveling salesman (1-MaxATSP) by removing the lightest
edge from each cycle of a maximum cycle cover and connecting the remaining paths to a
Hamiltonian cycle. Since undirected cycles always contain at least three edges, this also
showed that single-objective maximum symmetric traveling salesman (1-MaxSTSP) is 2/3-
approximable. Since then, many improvements were achieved, and currently, the best known
approximation ratios of 2/3 for 1-MaxATSP and 7/9 for 1-MaxSTSP are due to Kaplan et al.
[9] and Paluch, Mucha and Madry [15].

Most single-objective approximation algorithms do not directly translate to the case of
multiple objectives, and hence we need more sophisticated algorithms. For k-MaxATSP and
k-MaxSTSP, where k ≥ 2, the currently best known approximation algorithms are due to
Manthey, who showed a randomized (1/2−ε)-approximation of k-MaxATSP and a randomized
(2/3 − ε)-approximation of k-MaxSTSP [12]. Recently, Manthey also gave a deterministic
(1/2k − ε)-approximation of k-MaxSTSP and a deterministic (1/(4k−2)− ε)-approximation of
k-MaxATSP [13].

4.3 Our Results
We show that k-MaxATSP is randomized 1/2-approximable and k-MaxSTSP is randomized
2/3-approximable using the following idea. We choose a suitable number l depending only
on k and try all sets of at most l edges F using brute force. For each such F we apply the
FPRAS for k-2-MaxDCCF (k-3-MaxUCCF), which exists by Theorem 1, fixing the edges
in F . For all cycle covers thus obtained, we select two (three) edges from each cycle and
compute a 2-coloring (3-coloring) of the cycles with low discrepancy with regard to the weight
vectors of the selected edges. Using this coloring, we remove exactly one edge from each
cycle and connect the remaining simple paths to a single cycle in an arbitrary way. Since
the coloring has low discrepancy, we only remove about one half (one third) of the weight in
each objective. The introduced error is absorbed by choosing suitable heavy edges F at the
beginning. The described procedure generally works for arbitrary c-cycle covers.

I Lemma 4. Let c ≥ 2 and k ≥ 1. If there exists an FPRAS for k-c-MaxDCCF (k-c-
MaxUCCF, resp.), then the algorithm Alg-k-MaxTSP computes a randomized (1 − 1/c)-
approximation for k-MaxATSP (k-MaxSTSP, resp.).

FSTTCS 2011

60 Applications of Discrepancy Theory in Multiobjective Approximation

Algorithm: Alg-k-MaxTSP(V,E,w) with parameter c ≥ 2
Input :Nk-labeled directed/undirected complete graph G = (V,E,w)
Output : set of Hamiltonian cycles of G

1 foreach FH , FL ⊆ E with #FH ≤ 3 c k2, #FL ≤ c#FH do
2 let δ ∈ Nk with δi = max{n ∈ N | there are 3 c k edges e ∈ FH with wi(e) ≥ n};
3 foreach e ∈ E \ FH do
4 if w(e) 6≤ δ then set w(e) = 0 for the current iteration of line 1;
5 compute (1− 1/#V)-approx. S of k-c-MaxDCCF / k-c-MaxUCCF on (G,FH ∪ FL);
6 foreach cycle cover S ∈ S do
7 let C1, . . . , Cr denote the cycles in S;
8 if for each i ∈ {1, . . . , r}, Ci \ FH contains a path of length c then
9 foreach i ∈ {1, . . . , r} do choose path ei,1, . . . , ei,c ∈ Ci \ FH arbitrarily;

10 compute some coloring χ : {1, . . . , r} → {1, . . . , c} such that
r∑
i=1

w(ei,χ(i)) ≤ 2k · δ + 1
c

r∑
i=1

c∑
j=1

w(ei,j)

and remove the edges {ei,χ(i) | 1 ≤ i ≤ r} from S;
11 output the remaining edges, arbitrarily connected to a Hamiltonian cycle;

Proof. Let k ≥ 1, c ≥ 2, and G = (V,E,w) be some Nk-labeled (directed or undirected)
input graph with m = #V sufficiently large.

We will first argue that the algorithm terminates in time polynomial in the length of G.
Since there are only polynomially many subsets FH , FL ⊆ E with cardinality bounded by a
constant, the loop in line 1 is executed polynomially often. In each iteration the FPRAS
on G = (V,E,w) and FH ∪ FL ⊆ E terminates in time polynomial in the length of G
and FH ∪ FE , which means that the set S contains only polynomially many cycle covers.
Hence, for each iteration of the loop in line 1, the loop in line 6 is also executed at most
polynomially many times, and overall we have polynomially many nested iterations. In
each nested iteration where each cycle of the cycle cover contains a path as required, we
compute a coloring of {1, . . . , r} with low discrepancy. By Corollary 3 this can be done in
polynomial time. Observe that all further steps require at most polynomial time, and hence
the algorithm terminates after polynomially many steps.

Next we argue that the algorithm will succeed with probability at least 1/2. Observe
that the only randomized parts of the algorithm are the calls to the randomized cycle cover
approximation algorithm in line 5. Using amplification we can assume that the probability
that all the calls to this algorithm succeed is at least 1/2.

It remains to show that if the algorithm Alg-k-MaxTSP succeeds, it outputs some (1−1/c)-
approximate set of Hamiltonian cycles. Hence, for the remainder of the proof, let us assume
that the algorithm and hence all calls to the internal FPRAS succeed. Furthermore, let
R ⊆ E be some Hamiltonian cycle of G. We will argue that there is some iteration where
the algorithm outputs an (1− 1/c)-approximation of R.

For each 1 ≤ i ≤ k, let FH,i ⊆ R be some set of 3 c k heaviest edges of R in the i-th
component, breaking ties arbitrarily. Let FH =

⋃k
i=1 FH,i. We define FL ⊆ R such that

FL ∩ FH = ∅ and each edge in FH is part of a path in FL ∪ FH that contains c edges from
FL. This is always possible as long as R is large enough. We now have #FH ≤ 3 c k2 and
#FL ≤ c#FH . Hence in line 1 there will be some iteration that chooses FH and FL. We fix

C. Glaßer, C. Reitwießner, and M. Witek 61

this iteration for the remainder of the proof.
Let δ ∈ Nk as defined in line 2 and observe that δi = min{wi(e) | e ∈ FH,i} for all i,

which means that for all edges e ∈ R \ FH we have w(e) ≤ δ. Hence the loop in line 3 sets
the weights of all edges e ∈ E \R that do not fulfill w(e) ≤ δ to zero, and these are the only
weights that are modified. In particular, this does not affect edges in R, hence w(R) remains
unchanged. Note that since we do not increase the weight of any edge and do not change the
weight of the edges in R, it suffices to show that the algorithm computes an approximation
with respect to the changed weights.

Next we obtain a (1−1/#V)-approximate set S of c-cycle covers of G that contain FH ∪FL.
Since R is a c-cycle cover of G with FH ∪ FL ⊆ R, there must be some c-cycle cover S ∈ S
with FH ∪ FL ⊆ S that (1 − 1/#V)-approximates R. Hence in line 6 there will be some
iteration that chooses this S. Again we fix this iteration for the remainder of the proof.

As in line 7, let C1, . . . , Cr denote the cycles in S. Note that each cycle contains at
least c edges. Since each edge in FH is part of a path in FH ∪ FL with at least c edges
from FL, we even know that each cycle contains at least c edges not from FH and thus the
condition in line 8 is fulfilled. Let these edges ei,j be defined as in the algorithm. Note that
since ei,j /∈ FH we have w(ei,j) ≤ δ for all i, j, because the weight function was changed
accordingly.

In line 10 we compute some χ : {1, . . . , r} → {1, . . . , c} such that
r∑
i=1

w(ei,χ(i)) ≤ 2 k · δ + 1
c

r∑
i=1

c∑
j=1

w(ei,j) ≤ 2 k · δ + 1
c
· w(S \ FH).

Recall that by Corollary 3 such a coloring exists and can be computed in polynomial time.
Removing the chosen edges breaks the cycles into simple paths, which can be arbitrarily
connected to a Hamiltonian cycle R′. For the following estimation note that δ ≤ w(FH)

3 c k and
w(FH) ≥ 3 c k

m w(R) and recall that m = #V = #R.

w(R′) ≥ w(S)−
r∑
i=1

w(ei,χ(i)) ≥ w(S)− 2 k · δ − 1
c
· w(S \ FH)

=
(

1− 1
c

)
w(S) + 1

c
w(FH)− 2 k · δ ≥

(
1− 1

c

)
w(S) + 1

3 cw(FH)

≥
(

1− 1
c

)(
1− 1

m

)
w(R) + k

m
w(R) ≥

(
1− 1

c

)
w(R)

This proves the assertion. J

It is known that 1-c-MaxDCC is APX-hard for all c ≥ 3 [4] and that 1-c-MaxUCC is
APX-hard for c ≥ 5 [11]. This means that, unless P = NP, there is no PTAS for these
problems (and especially not for the variants with fixed edges). Furthermore, the existence
of an FPRAS or PRAS for these problems implies NP = RP and thus a collapse of the
polynomial-time hierarchy, which is seen as follows.

If an APX-hard problem has a PRAS, then all problems in APX have a PRAS and
hence MAX-3SAT has one. There exists an ε > 0 and a polynomial-time computable f
mapping CNF formulas to 3-CNF formulas such that if x ∈ SAT, then f(x) ∈ 3SAT; and
if x /∈ SAT, then there is no assignment satisfying more than a fraction of 1 − ε of f(x)’s
clauses [1, Theorem 10.1]. The PRAS for MAX-3SAT allows us to compute probabilistically
a (1 − ε/2)-approximation for f(x) which in turn tells us whether or not x ∈ SAT. Since
this procedure has no false negatives we get RP = NP, which implies a collapse of the
polynomial-time hierarchy [10, 17].

FSTTCS 2011

62 Applications of Discrepancy Theory in Multiobjective Approximation

So it seems unlikely that there is a PRAS for 1-c-MaxDCC where c ≥ 3 and 1-c-MaxUCC
where c ≥ 5. However, this does not necessarily mean that the above algorithm is useless for
parameters c ≥ 3 in the directed and c ≥ 5 in the undirected case: The algorithm could still
benefit from a constant-factor approximation for k-c-MaxUCCF or k-c-MaxDCCF. A simple
change in the estimation shows that if the cycle cover algorithm has an approximation ratio
of α, the above algorithm provides an approximation with ratio α(1− 1/c).

I Theorem 5. Let k ≥ 1.
1. k-MaxATSP is randomized 1/2-approximable.
2. k-MaxSTSP is randomized 2/3-approximable.

Proof. We combine Theorem 1 and Lemma 4. J

5 Approximating Multiobjective Maximum Satisfiability

5.1 Definition
Given a formula in CNF and a function that maps each clause to a k-objective weight, our
goal is to find truth assignments that maximize the sum of the weights of all satisfied clauses.
The formal definition is as follows.

k-Objective Maximum Weighted Satisfiability (k-MaxSAT)
Instance: Formula H in CNF over a set of variables V , weight function w : H → Nk
Solution: Truth assignment I : V → {0, 1}
Weight: Sum of the weights of all clauses satisfied by I, i.e., w(I) =

∑
C∈H
I(C)=1

w(C)

5.2 Previous Work
The first approximation algorithm for maximum satisfiability is due to Johnson [8], whose
greedy algorithm showed that the single-objective 1-MaxSAT problem is 1/2-approximable.
Further improvements on the approximation ratio followed, and the currently best known
approximation ratio of 0.7846 for 1-MaxSAT is due to Asano and Williamson [2].

Only little is known about k-MaxSAT for k ≥ 2. Santana et. al. [16] apply genetic
algorithms to a version of the problem that is equivalent to k-MaxSAT with polynomially
bounded weights. To our knowledge, the approximability of k-MaxSAT for k ≥ 2 has not
been investigated so far.

5.3 Our Results
We show that k-MaxSAT is 1/2-approximable mainly by transferring the idea that for any
truth assignment, the assignment itself or its complementary assignment satisfies at least
one half of all clauses to multidimensional objective functions. We choose some suitable
parameter l ∈ N depending only on the number of objectives. For a given formula in CNF
we try all possible partial truth assignments for each set of at most l variables using brute
force and extend each partial assignment to a full assignment in the following way: For each
remaining variable v we compute two vectors roughly representing the weight gained by the
two possible assignments for v. We then compute a 2-coloring of those weight vectors with
low discrepancy which completes the partial assignment to a truth assignment whose weight
is at least one half of the total weight of the remaining satisfiable clauses minus some error.

C. Glaßer, C. Reitwießner, and M. Witek 63

This error can be compensated by choosing l large enough such that the partial assignment
already contributes a large enough weight. This results in a 1/2-approximation for k-MaxSAT.

For a set of clausesH and a variable v letH[v = 1] = {C ∈ H | v ∈ C} be the set of clauses
that are satisfied if this variable is assigned one, and analogously H[v = 0] = {C ∈ H | v ∈ C}
be the set of clauses that are satisfied if this variable is assigned zero. This notation is
extended to sets of variables V by H[V = i] =

⋃
v∈V H[v = i] for i = 0, 1.

Algorithm: Alg-k-MaxSAT(H,w)
Input : Formula H in CNF over the variables V = {v1, . . . , vm}, k-objective weight

function w : H → Nk
Output : Set of truth assignments I : V → {0, 1}

1 foreach disjoint V 0, V 1 ⊆ V with #(V 0 ∪ V 1) ≤ 4k2 do
2 G := H \ (H[V 0 = 0] ∪H[V 1 = 1]);
3 V̂ (1−i) := {v ∈ V \ (V 0 ∪ V 1) | 4k · w(G[v = i]) 6≤ w(H \G)}, i = 0, 1;
4 if V̂ 0 ∩ V̂ 1 = ∅ then
5 V ′ := V \ (V 0 ∪ V 1 ∪ V̂ 0 ∪ V̂ 1), L′ := V ′ ∪ {v | v ∈ V ′};
6 G′ := (G[V ′ = 0] ∪G[V ′ = 1]) \ (G[V̂ 0 = 0] ∪G[V̂ 1 = 1]);
7 for vj ∈ V ′ let xj,i =

∑
{ w(C)

#(C∩L′) | C ∈ G
′[vj = i]} for i = 0, 1;

8 compute some coloring χ : V ′ → {0, 1} such that∑
vj∈V ′

xj,χ(j) ≥ 1
2
∑
vj∈V ′

(xj,0 + xj,1)− 2kδ

where δr = max{xj,ir | vj ∈ V ′, i ∈ {0, 1}};
9 let I(v) := i for v ∈ V i ∪ V̂ i ∪ χ−1({i}), i = 0, 1;

10 output I

I Theorem 6. k-MaxSAT is 1/2-approximable for any k ≥ 1.

Proof. We show that this approximation is realized by Alg-k-MaxSAT. First note that this
algorithm runs in polynomial time since k is constant and the coloring in line 8 can be
computed in polynomial time using Corollary 3. For the correctness, let (H,w) be the input
where H is a formula over the variables V = {v1, . . . , vm} and w : H → Nk is the k-objective
weight function. Let Io : V → {0, 1} be an optimal truth assignment. We show that there
is a loop iteration of Alg-k-MaxSAT(H,w) that outputs a truth assignment I such that
w(I) ≥ w(Io)/2.

We first note that there are sets V 0 and V 1 with a bounded cardinality of at most 4k2

that define a partial truth assignment that contributes a large weight.

I Claim 7. There are sets V i ⊆ I−1
o ({i}), i = 0, 1 with #(V 0 ∪ V 1) ≤ 4k2 such that for

G = H \ (H[V 0 = 0] ∪H[V 1 = 1]) and any v ∈ V \ (V 0 ∪ V 1) it holds that

w(G[v = Io(v)]) ≤ 1
4kw(H \G). (1)

Proof Sketch. The set V 0 ∪ V 1 is obtained by iteratively choosing variables such that (one
component of) the weight of the remaining clauses that get satisfied if the variable is set to
its value under Io is high, while the components are chosen in a round-robin fashion. Since
V 0 ∪ V 1 contains the 4k most “influential” variables per objective, none of the remaining
variables can have high “influence” on the remaining clauses, because otherwise one of them
would have been chosen to belong to V 0 ∪ V 1. J

FSTTCS 2011

64 Applications of Discrepancy Theory in Multiobjective Approximation

We choose the iteration of the algorithm where V 0 and V 1 equal the sets whose existence
is guaranteed by Claim 7. In the following, we use the variables as they are defined in the
algorithm. Observe that by the claim it holds that Io(v) = i for all v ∈ V̂ i for i = 0, 1 and
thus V̂ 0 ∩ V̂ 1 = ∅. Note that∑

vj∈V ′

xj,0 + xj,1 =
∑
vj∈V ′

∑
i∈{0,1}

∑
C∈G′[vj=i]

w(C)
#(C ∩ L′)

=
∑
C∈G′

#(C ∩ L′) w(C)
#(C ∩ L′)

= w(G′).

Furthermore, for all vj ∈ V ′ and i = 0, 1, we have the bound xj,i ≤ w(G′[vj = i]) ≤ w(G[vj =
i]) ≤ 1

4kw(H \ G) because of the definition of V ′ and V̂ (1−i). By Corollary 3, we find a
coloring χ : V ′ → {0, 1} such that for each 1 ≤ i ≤ k it holds that∣∣∣∣∣∣12

∑
vj∈V ′

1∑
r=0

xj,ri −
∑
vj∈V ′

x
j,χ(vj)
i

∣∣∣∣∣∣ ≤ 2kmax
j,r
|xj,ri | ≤ 2k 1

4kwi(H \G) = 1
2wi(H \G)

and hence∑
vj∈V ′

xj,χ(vj) ≥ 1
2
∑
vj∈V ′

(xj,0 + xj,1)− 1
2w(H \G) = 1

2(w(G′)− w(H \G)).

For I being the truth assignment generated in this iteration it holds that

w({C ∈ G′ | I(C) = 1}) ≥
∑
vj∈V ′

xj,χ(vj) ≥ 1
2(w(G′)− w(H \G)). (2)

Furthermore, since I and Io coincide on V \ V ′, we have

w({C ∈ H \G′ | I(C) = 1}) = w({C ∈ H \G′ | Io(C) = 1}) (3)
≥ w({C ∈ H \G | Io(C) = 1})
= w({H \G}). (4)

Thus we finally obtain

w(I) = w({C ∈ H \G′ | I(C) = 1}) + w({C ∈ G′ | I(C) = 1})
(2)
≥ w({C ∈ H \G′ | I(C) = 1}) + 1

2 (w(G′)− w(H \G))
(3)= w({C ∈ H \G′ | Io(C) = 1}) + 1

2 (w(G′)− w(H \G))
(4)
≥ 1

2w({C ∈ H \G′ | Io(C) = 1}) + 1
2w(G′)

≥ 1
2w(Io). J

References
1 S. Arora and C. Lund. Hardness of approximations. In D. Hochbaum, editor, Approximation

Algorithms for NP-hard Problems. PWS Publishing Company, Boston, 1997.
2 T. Asano and D. P. Williamson. Improved approximation algorithms for MAX SAT. Jour-

nal of Algorithms, 42(1):173–202, 2002.

C. Glaßer, C. Reitwießner, and M. Witek 65

3 J. Beck and T. Fiala. "Integer-Making" Theorems. Discrete Applied Mathematics, 3(1):1–8,
1981.

4 M. Bläser and B. Manthey. Approximating maximum weight cycle covers in directed graphs
with weights zero and one. Algorithmica, 42(2):121–139, 2005.

5 B. Doerr and A. Srivastav. Multicolour discrepancies. Combinatorics, Probability & Com-
puting, 12(4):365–399, 2003.

6 M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for finding
a maximum weight Hamiltonian circuit. Operations Research, 27(4):799–809, 1979.

7 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

8 D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer
System Sciences, 9(3):256–278, 1974.

9 H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation algorithms
for asymmetric TSP by decomposing directed regular multigraphs. Journal of the ACM,
52(4):602–626, 2005.

10 C. Lautemann. BPP and the polynomial hierarchy. Information Processing Letters, 17:215–
217, 1983.

11 B. Manthey. On approximating restricted cycle covers. SIAM J. Comput., 38(1):181–206,
2008.

12 B. Manthey. On approximating multi-criteria TSP. In S. Albers and J.-Y. Marion, editors,
26th Intern. Symposium on Theoretical Aspects of Computer Science, STACS 2009, pages
637–648. Dagstuhl Research Online Publication Server, 2009.

13 B. Manthey. Deterministic algorithms for multi-criteria TSP. In Proceedings of the Inter-
national Conference on Theory and Applications of Models of Computation, volume 6648
of Lecture Notes in Computer Science, pages 264–275. Springer Verlag, 2011.

14 B. Manthey and L. S. Ram. Approximation algorithms for multi-criteria traveling salesman
problems. Algorithmica, 53(1):69–88, 2009.

15 K. Paluch, M. Mucha, and A. Madry. A 7/9 - approximation algorithm for the maximum
traveling salesman problem. In I. Dinur, K. Jansen, J. Naor, and J. Rolim, editors, Proceed-
ings of APPROX/RANDOM, volume 5687 of Lecture Notes in Computer Science, pages
298–311. Springer Berlin / Heidelberg, 2009.

16 R. Santana, C. Bielza, J. A. Lozano, and P. Larrañaga. Mining probabilistic models learned
by EDAs in the optimization of multi-objective problems. In GECCO ’09: Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation, pages 445–452,
New York, NY, USA, 2009. ACM.

17 M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th
Symposium on Theory of Computing, pages 330–335, 1983.

FSTTCS 2011

Quasi-Weak Cost Automata: A New Variant of
Weakness ∗

Denis Kuperberg1 and Michael Vanden Boom2

1 LIAFA/CNRS/Université Paris 7, Denis Diderot, France
denis.kuperberg@liafa.jussieu.fr

2 Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD, England
michael.vandenboom@cs.ox.ac.uk

Abstract
Cost automata have a finite set of counters which can be manipulated on each transition but
do not affect control flow. Based on the evolution of the counter values, these automata define
functions from a domain like words or trees to N ∪ {∞}, modulo an equivalence relation which
ignores exact values but preserves boundedness properties. These automata have been studied
by Colcombet et al. as part of a “theory of regular cost functions”, an extension of the theory of
regular languages which retains robust equivalences, closure properties, and decidability like the
classical theory.

We extend this theory by introducing quasi-weak cost automata. Unlike traditional weak
automata which have a hard-coded bound on the number of alternations between accepting and
rejecting states, quasi-weak automata bound the alternations using the counter values (which
can vary across runs). We show that these automata are strictly more expressive than weak
cost automata over infinite trees. The main result is a Rabin-style characterization theorem:
a function is quasi-weak definable if and only if it is definable using two dual forms of non-
deterministic Büchi cost automata. This yields a new decidability result for cost functions over
infinite trees.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Automata, infinite trees, cost functions, weak

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.66

1 Introduction

Cost automata are finite-state machines enriched with counters which can be manipulated
on each transition but cannot be used to affect control flow. Based on the evolution of
the counter values, these automata define functions from some domain (like words or trees
over a finite alphabet) to N ∪ {∞}, modulo an equivalence relation ≈ which ignores exact
values but preserves boundedness properties. By only considering the functions up to ≈,
the resulting “theory of regular cost functions” retains many of the equivalences, closure
properties, and decidability results of the theory of regular languages [3]. It extends the
classical theory since we can identify each language with its characteristic function mapping
structures in the language to 0 and everything else to ∞; it is a strict extension since cost
automata can count some behaviour within the input structure.

∗ The research leading to these results has received funding from ANR 2010 BLAN 0202 02 FREC and the
European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 259454.

© Denis Kuperberg and Michael Vanden Boom;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 66–77

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.66
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D. Kuperberg and M. Vanden Boom 67

The development of this theory was motivated by problems which can be reduced to
questions of boundedness. For instance, Hashiguchi [7] and later Kirsten [8] used distance
and nested-distance desert automata (special forms of cost automata) to prove the decidab-
ility of the “star-height problem”: given a regular language L of finite words and a natural
number n, is there some regular expression (using concatenation, union, and Kleene star) for
L which uses at most n nestings of Kleene-star operations? Colcombet and Löding [4] have
used a similar approach over finite trees. The theory of regular cost functions over finite
words [3] and finite trees [6] can be viewed as a unifying framework for these problems.

It is desirable to extend the theory to infinite trees. For instance, the “parity-index
problem” asks: given a regular language L of infinite trees and i < j, is there a parity
automaton using only priorities {i, i+1, . . . , j}? This is known to be decidable in some special
cases (e.g. for deterministic languages [11]), but a general decision procedure is not known.
However, Colcombet and Löding [5] have reduced the parity-index problem to another open
problem, namely the decidability of ≈ for regular cost functions over infinite trees.

Weak cost automata (recently studied in [13]) are a natural starting point in this line of
research on regular cost functions over infinite trees. In the classical setting, weak automata
are a restricted form of alternating Büchi automata which have a fixed bound on the number
of alternations between accepting and rejecting states across all runs. They were introduced
in [10] to characterize the languages definable in weak monadic second-order logic (WMSO),
a variant of MSO in which second-order quantifiers are interpreted over finite sets. Prior
to this work, Rabin [12] had given an interesting characterization using non-deterministic
automata, showing that a language is weakly definable if and only if the language and its
complement are non-deterministic Büchi recognizable.

These notions of weakness have received considerable attention because the weakly defin-
able languages are expressive (e.g. they capture CTL), but still admit efficient model-
checking [9]. Indeed, in order to improve the efficiency in some model-checking scen-
arios, Kupferman and Vardi [9] adapted Rabin’s work and provided a quadratic translation
between non-deterministic Büchi automata and the corresponding weak automaton.

In [13], weak cost automata were shown equivalent to “cost WMSO”, in analogy to the
classical theory. However, the question of a Rabin-style characterization based on non-
deterministic automata remained open and prompted this work.

1.1 Contributions
We continue the study of regular cost functions over infinite trees by introducing a variant
of weakness which we call “quasi-weakness”. Unlike traditional weak automata which have
a hard-coded bound on the number of alternations between accepting and rejecting states,
quasi-weak automata bound the alternations using counter values (which can vary across
runs). We show that quasi-weak cost automata are strictly more expressive than weak cost
automata over infinite trees.

Although there is no notion of complement for a function, there are two dual semantics
(B and S) used to define cost functions. We show that quasi-weak B-automata can be
simulated by non-deterministic B-Büchi and S-Büchi automata. Combined with results
from [13], this implies the decidability of f ≈ g when f, g are cost functions defined by
quasi-weak B-automata. Consequently, this work extends the class of cost functions over
infinite trees for which ≈ is known to be decidable. We also provide a non-trivial extension
of Kupferman and Vardi’s construction [9] to translate equivalent non-deterministic B-Büchi
and S-Büchi automata to an equivalent quasi-weak B-automaton (where the equivalence in
each case is up to ≈). This provides a Rabin-style characterization of the functions definable

FSTTCS 2011

68 Quasi-Weak Cost Automata: A New Variant of Weakness

using quasi-weak B-automata and marks an interesting departure from the classical theory.
The construction relies on analyzing a composed run of a B-Büchi automaton and S-

Büchi automaton. To aid in this analysis, we use BS-automata and introduce a correspond-
ing BS-equivalence relation u which can be used to compare cost automata which define not
one but two functions (one based on the B-counters and one on the S-counters). Although
the B- and S-counter actions in such a composed run can be independent, we show that
it is possible to effectively construct an equivalent (up to u) BS-automaton in which the
actions are more structured (namely, the counters are “hierarchical” so they can be totally
ordered and manipulating a higher counter resets all lower counters). We believe this may
be a useful technique in other situations which require both counter types.

1.2 Organization

We define cost automata on infinite trees in Sect. 2, with semantics based on two-player
infinite games. We also introduce the new quasi-weak cost automata and compare to the
more traditional weak cost automata. In Sect. 3, we consider automata with both counter
types and show how they can be made hierarchical. Finally, in Sect. 4, we describe the other
components of the main result, a Rabin-style characterization for quasi-weak cost automata.
We conclude with some open questions in Sect. 5.

1.3 Notations

We write N for the set of non-negative integers and N∞ for the set N ∪ {∞}, ordered by
0 < 1 < · · · <∞. If i ≤ j are integers, [i, j] denotes the set {i, i+ 1, . . . , j}. We fix a finite
alphabet A. The set of finite (respectively, infinite) words over A is A∗ (respectively, Aω)
and the empty word is ε. For notational simplicity we work only with infinite binary trees.
Let T = {0, 1}∗ be the unlabelled infinite binary tree. A branch in T is a word π ∈ {0, 1}ω.
The set TA of complete A-labelled binary trees is composed of mappings t : T → A.

Non-decreasing functions N→ N will be denoted by letters α, β, . . . , and will be extended
to N∞ by α(∞) =∞. We call these correction functions.

2 Cost Automata

2.1 Cost Functions

Let E be any set, and FE be the set of functions : E → N∞. For f, g ∈ FE and α a correction
function, we write f 4α g if f ≤ α◦g (or if we are comparing single values n,m ∈ N, n 4α m
if n ≤ α(m)). We write f ≈α g if f 4α g and g 4α f . Finally, f ≈ g (respectively, f 4 g)
if f ≈α g (respectively, f 4α g) for some α. The idea is that the boundedness relation ≈
does not pay attention to exact values, but does preserve the existence of bounds. Remark
that f 64 g if and only if there exists a set D ⊆ E such that g is bounded on D but f is
unbounded on D.

A cost function over E is an equivalence class of FE/≈. In practice, a cost function
(denoted f, g, . . .) will be represented by one of its elements in FE . In this paper, E will
usually be TA. The functions defined by automata will always be considered as cost functions,
i.e. only considered up to ≈.

D. Kuperberg and M. Vanden Boom 69

2.2 B- and S-Valuations
Cost automata define functions from TA to N∞. The valuation is based on both classical
acceptance conditions (in this paper, Büchi acceptance) and a finite set of counters Γ.

A counter γ is initially assigned value 0 and can be incremented i, reset r to 0, checked
c, or left unchanged ε. Given an infinite word uγ over the alphabet {ε, i, r, c}, we define a
set C(uγ) ⊆ N which collects the checked values of γ. In the case of a finite set of counters
Γ and a word u over {ε, i, r, c}Γ, C(u) :=

⋃
γ∈Γ C(prγ(u)) (prγ(u) is the γ-projection of u).

We will separate counters into two types: B-counters, which accept as atomic actions the
set B = {ε, ic, r}, and S-counters, with atomic actions S = {ε, i, r, cr}. Given B-counters
ΓB and u ∈ (BΓB)ω, the B-valuation is valB(u) := supC(u); likewise, given S-counters ΓS
and u ∈ (SΓS)ω, the S-valuation is valS(u) := inf C(u). By convention, inf ∅ = ∞ and
sup ∅ = 0. For instance valB((ic)ω) = ∞, valB((icr)ω) = 1, valS(i100criεicr(r)ω) = 2,
and valS(iω) =∞ because the counter is never checked.

In all cases, if the set of counters Γ is [1, k], an action ν is called hierarchical if there
is some i ∈ [1, k] such the action ν performs ε on all counters j > i, and r on all counters
j < i. It means that performing an increment or a reset on counter i resets all counters j
below it.

Cost automata are named B-, S-, or BS-automata depending on the type(s) of counters
used. They are hierarchical (written, e.g. hB-automata) if only hierarchical actions are used.

2.3 B- and S-Automata on Infinite Trees
An alternating B-Büchi automaton A = 〈Q,A, q0, F,ΓB , δ〉 on infinite trees has a finite set
of states Q, alphabet A, initial state q0 ∈ Q, accepting states F , finite set ΓB of B-counters,
and transition function δ : Q×A→ B+({0, 1}×BΓB×Q), where B+({0, 1}×BΓB×Q) is the
set of positive boolean combinations, written as a disjunction of conjunctions of elements
(d, ν, q) ∈ {0, 1} × BΓB × Q. Alternating S-Büchi automata are defined in the same way,
replacing B-counters by S-counters and B with S.

We view running a B-automaton (resp. S-automaton) A on an input tree t as a game
(A, t) between two players : Eve is in charge of the disjunctive choices and tries to minimize
(resp. maximize) counter values while satisfying the Büchi condition, and Adam is in charge
of the conjunctive choices and tries to maximize (resp. minimize) counter values or show the
Büchi condition is not satisfied. Because the transition function is given as a disjunction of
conjunctions, we can consider that at each position, Eve first chooses a disjunct, and then
Adam chooses a single tuple (d, ν, q) in this disjunct.

A play of A on input t is a sequence q0, (d1, ν1, q1), (d2, ν2, q2), . . . compatible with t and
δ, i.e. q0 is initial, and for all i ∈ N, (di+1, νi+1, qi+1) appears in δ(qi, t(d1 . . . di)).

A strategy for Eve (resp. Adam) in the game (A, t) is a function that fixes the next choice
of Eve (resp. Adam), based on the history of the play (resp. the history of the play and Eve’s
choice of disjunct). A strategy is finite-memory if the number of memory states needed for
the player to choose the next move is finite. A strategy is positional if no memory at all is
needed: the player only needs to know the current position. Notice that choosing a strategy
for Eve and a strategy for Adam fixes a play in (A, t). We say a play π is compatible with a
strategy σ for Eve if there is some strategy σ′ for Adam such that σ and σ′ yield the play π.

A play π is accepting if there is q ∈ F appearing infinitely often in π (i.e. π satisfies
the Büchi acceptance condition). Given a play π from a B-automaton A, the value of
π is val(π) := valB(hB(π)) if π is accepting, and val(π) = ∞ otherwise (where hB is
the projection of π to the B-actions). This yields the maximum checked counter value if

FSTTCS 2011

70 Quasi-Weak Cost Automata: A New Variant of Weakness

the play is accepting, and ∞ otherwise. We assign a value to a strategy σ for Eve by
val(σ) := sup {val(π) : π is compatible with σ}. The value of A over a tree t is [[A]]B(t) :=
inf {val(σ) : σ is a strategy for Eve in the game (A, t)}.

Likewise, in an S-automaton A′, we define val(π) := valS(hS(π)) if π is accepting, and
0 otherwise (where hS is the projection to the S-actions). Once again, counter actions are
only considered if the play is accepting (this time the minimum checked value is used), and
0 is assigned to rejecting plays. Then val(σ) := inf {val(π) : π is compatible with σ}, and
[[A′]]S(t) := sup {val(σ) : σ is a strategy for Eve in the game (A′, t)}.

We consider [[A]]B and [[A′]]S as cost functions, so we always work modulo the cost
function equivalence ≈. If it is clear what semantic the automaton uses we will omit the
subscript and write just [[A]] or [[A′]]. If f ≈ [[A]] then we say A recognizes the cost function f .

If for all (q, a) ∈ Q × A, δ(q, a) is of the form
∨
i(0, νi, qi) ∧ (1, ν′i, q′i) , then we say the

automaton is non-deterministic. We define a run to be the set of possible plays compatible
with some fixed strategy of Eve. Since the only choices of Adam are in the branching, a run
labels the entire binary tree with states, and choosing a branch yields a unique play of the
automaton. A run is accepting if all of its plays are accepting (that is, if it is accepting on
all branches). A value is assigned to a run of a B-automaton (resp. S-automaton) by taking
the supremum (resp. infimum) of the values across all branches.

Finally, a cost automaton A = 〈Q,A, q0, F,Γ, δ〉 is weak if the state-set Q can be parti-
tioned into Q1, . . . , Qk satisfying:

for all i and for all q, q′ ∈ Qi, q ∈ F if and only if q′ ∈ F ;
if some (d, ν, q) appears in some δ(p, a) with p ∈ Qi and q ∈ Qj , then j ≤ i.

This means there is a fixed bound k on the number of alternations between accepting and
rejecting states, so any accepting play must stabilize in an accepting partition.

2.3.1 Examples
Let A = {a, b, c} and let f be the cost function over A-labelled trees where f(t) =∞ if there
is a branch with only finitely many b’s, and f(t) = sup {|π|a : π is a branch of t} otherwise,
where |π|a denotes the number of a’s in π.

We define a non-deterministic B-Büchi automaton U and a non-deterministic S-Büchi
automaton U ′, together with a weak automaton B, such that f ≈ [[U]] ≈ [[U ′]] ≈ [[B]].

The principle of U is to simultaneously count a’s and check for infinitely many b’s by
running the following deterministic B-automaton on every branch. We write a : ν to denote
that on input a, the counter action is ν; accepting states are denoted by double circles.

a : ic
c : ε

b : ε

b : ε
a : ic
c : ε

On the other hand, U ′ = 〈{pa, pb, qb,>} ,A, {pa, pb} , {qb,>} , {γ} , δ〉 tries to find a
branch π with either a lot of a’s (state pa), or only finitely many b’s (state pb), in or-
der to witness a high value for f (∞ in the second case). For simplicity, we allow here two
initial states, but this does not add expressive power to the model. The state qb is used
when Eve has guessed the position of the last b, and still needs to prove that there are no
more b on π, and > is used when the remainder of the branch does not matter.

D. Kuperberg and M. Vanden Boom 71

The transition table δ for U ′ follows. Remark that U ′ is in fact a non-deterministic weak
S-automaton.

δ pa pb qb >
a ((0, i, pa) ∧ (1, ε,>)) ((0, pb) ∧ (1, ε,>)) ((0, ε, qb) ∧ (1, ε,>)) (0, ε,>) ∧ (1, ε,>)

∨((0, ε,>) ∧ (1, i, pa)) ∨((0, ε,>) ∧ (1, ε, pb)) ∨((0, ε,>) ∧ (1, ε, qb))
∨((0, cr,>) ∧ (1, ε,>)) ∨((0, ε, qb) ∧ (1, ε,>))
∨((0, ε,>) ∧ (1, cr,>)) ∨((0, ε,>) ∧ (1, ε, qb))

b ((0, ε, pa) ∧ (1, ε,>)) = δ(pb, a) false (0, ε,>) ∧ (1, ε,>)
∨((0, ε,>) ∧ (1, ε, pa)) (empty disjunction)
∨((0, cr,>) ∧ (1, ε,>))
∨((0, ε,>) ∧ (1, cr,>))

c = δ(pa, b) = δ(pb, a) = δ(qb, a) (0, ε,>) ∧ (1, ε,>)

Finally, B is designed such that Adam controls all of the choices: Adam selects a single
branch, and runs the following automaton on this branch (he controls the non-determinism):

q3 q2 q1

a : ic
b, c : ε

A : ε

a : ic
c : ε

b : ε

a : ic
b, c : ε

If there is a branch π with finitely many b’s, Adam can select π and stabilize in rejecting
state q2 by moving from q1 to q2 after the last b. This witnesses value ∞ for f . Otherwise,
Adam tries to select a branch which maximizes the number of a’s. The state-set can be
partitioned such that Qi = {qi} for i ∈ [1, 3].

2.4 Quasi-Weak B-Automata
We want to define an extension of weak B-automata, which preserves the property that
accepting plays must stabilize in accepting states. The idea of weak automata is to bound
the number of alternations between accepting and rejecting states by a hard bound.

Here we have another available tool to bound the number of such alternations: the
counters. We know that in a B-automaton, an accepting play of finite value n does at most
n increments between resets, but this number is not known a priori by the automaton. Thus,
if we guarantee there is correction function α such that in any play π of value n, α(n) is
greater than the number of alternations between accepting and rejecting states in π, then
we know that any play of finite value must stabilize in accepting states. Otherwise, infinitely
many alternations would give value ∞ to the cost function computed by the automaton.

Thus we define quasi-weak automata in the following way:

I Definition 1. An alternating B-Buchi automaton is quasi-weak if there is a correction
function α such that in any play of A of value n <∞, the number of alternations between
accepting and rejecting states is smaller than α(n).

In particular, any weak automaton A is quasi-weak since we can take α(n) = k for all n,
where k is the number of partitions of A. We can also give a structural characterization.

I Proposition 2. An alternating B-Büchi automaton is quasi-weak if and only if in any
reachable cycle containing both accepting and rejecting states, some counter is incremented
but not reset.

We say a cost function is quasi-weak if it is recognized by some quasi-weak B-automaton.

FSTTCS 2011

72 Quasi-Weak Cost Automata: A New Variant of Weakness

I Proposition 3. There exists a cost function over infinite trees which is recognized by a non-
deterministic quasi-weak B-automaton, but not by any weak B-automaton. Consequently,
quasi-weak B-automata are strictly more expressive than weak B-automata.

Proof. (Sketch) The idea is to build an explicit cost function f , and for each n ∈ N an infinite
tree tn which includes labels that dictate which player controls each position in the game
(this is inspired by [1]). These trees are designed such that any alternating B-automaton
recognizing f is forced to do Θ(n) alternations between accepting and rejecting states on
tn. This shows f cannot be computed by a weak B-automaton. On the other hand, we give
an explicit non-deterministic quasi-weak B-automaton for f . J

3 BS-Automata

We usually work with cost automata with only one type of counter, B or S. In the next
section, however, we compose runs from B-Büchi and S-Büchi automata and consequently
must work with both counter types simultaneously. We capture this in a non-deterministic
BS-Büchi automaton A = 〈Q,A, q0, FB , FS ,ΓB ,ΓS ,∆〉. Such an automaton defines func-
tions [[A]]B and [[A]]S as expected (by restricting to one of the counter types).

Let A and A′ be the following non-deterministic BS-automata on infinite words over
A := {a, b, c}, each with one B- and one S-counter. We write a : (d, d′) if on input a, the
output is action d (resp. d′) for the B (resp. S) counter. We omit self-loops c : (ε, ε).

a : (ε, cr)

a : (ε, i)

b : (ic, ε)

a : (ε, r)

b : (ic, r)

a : (ε, cr)

a : (ε, i)

b : (ic, r)

a : (ε, r)

b : (ic, r)

These automata are very similar. For instance, [[A]]B = [[A′]]B = | · |b. The key difference
is A′ is hierarchical, with the B-counter above the S-counter. Formally, the counters ΓB]ΓS
are globally numbered [1, k] (for k = |ΓB |+ |ΓS |) and for any action on BΓB × SΓS there is
some i ∈ [1, k] such that ε is performed on all counters j > i and r on all counters j < i.

Notice that we have [[A]]S ≈ | · |a (if there are a finite number of a’s, then the best run
of A moves to the accepting state when reading the final a; otherwise, for every n, there is
an accepting run of A such that the S-counter has value n). In A′, however, the B-counter
is higher than the S-counter so A′ forces a reset of the S-counter when a b is read in the
initial state. Since there is no a priori bound on the number of b’s in the input, this means
[[A′]]S 6≈ [[A]]S . However, for any fixed m and any u such that [[A]]B(u) ≤ m, the S-value of
A on u is ≈βm

-equivalent to A′ on u with βm(n) = n(m+ 1).
This motivates a new equivalence relation u which we call BS-equivalence. We define

A u A′ to hold if there is a correction function α such that (i) [[A]]B ≈α [[A′]]B and (ii)
for any m, there is a correction function βm such that the S-values of A and A′ are ≈βm-
equivalent when restricted to inputs with B-values at most α(m). Although it is technical,
this definition captures the notion that two BS-Büchi automata behave in a similar fashion
(as in the example above).

It turns out that given any BS-automaton like A, there is an hBS-automaton A′ sat-
isfying A u A′. Moreover, this translation can be done effectively by transducers which
read an infinite word of non-hierarchical counter actions and output hierarchical counter

D. Kuperberg and M. Vanden Boom 73

actions. This is in analogy to the deterministic transducer which can be used to translate a
Muller condition to a parity condition in the classical setting, or the transducer defined in
[6] which translates B-actions to hierarchical B-actions. A similar idea is also used in [2] for
automata with both B- and S-counters but in a setting where only boolean properties about
boundedness and unboundedness are considered (unlike the quantitative setting here).

I Theorem 4. For all sets ΓB ,ΓS of counters, there exists effectively a history-deterministic
hBS-automaton H(ΓB ,ΓS) on infinite words over B|ΓB |×S|ΓS | with H(ΓB ,ΓS) u G(ΓB ,ΓS)
where G(ΓB ,ΓS) is the BS-automaton which copies the counter actions from the input.

The transducer H(ΓB ,ΓS) has the same set of B counters, but extra copies of the S-
counters. The principle of the automaton is to split the input word into sequences of S-
actions from {i, ε}∗ which are between resets of the B-counters. It uses one copy of the
S-counter to count the number of S-increments within each sequence, and another copy to
count the sequences with at least one S-increment. If the S-value is high compared to the
B-value, then the transducer will also have a high S-value, obtained from one of the copies.

These transducers are history-deterministic, a weakening of traditional determinism [3].
The entire history of the input and the current state are required to determine the next
transition (rather than just the current state and input letter). Because the choice of the
transition depends only on the past, for any two input words the automaton can find good
moves which do not conflict on any common prefix. This means these automata (like de-
terministic automata) compose well with alternating automata and games: they can be
simulated on each play in a game while preserving the value up to ≈ or u (see [3] for more
information).

This means that we can use the transducers to transform arbitrary BS-automata over
words or trees into hierarchical BS-automata which are easier to work with.

4 Characterization of Quasi-Weak Cost Automata

In this section we prove a Rabin-style characterization for quasi-weak B-automata:

I Theorem 5. A cost function f over infinite trees is recognizable by some quasi-weak
B-automaton B if and only if there is a non-deterministic B-Büchi automaton U and non-
deterministic S-Büchi automaton U ′ such that f ≈ [[U]]B ≈ [[U ′]]S.

The first direction is described in Lemmas 6 and 7 in Section 4.1. The other direction is
described in Sections 4.2–4.4, culminating in Theorem 10.

4.1 Simulation
We start by showing that a quasi-weak B-automaton (in fact, any alternating B-Büchi
automaton) A can be simulated by a non-deterministic B-Büchi version.

I Lemma 6. Given an alternating B-automaton B, a non-deterministic B-Büchi automaton
U can be effectively constructed such that [[B]]B ≈ [[U]]B.

Proof. (Sketch) In a B-Büchi game, the value of a strategy is the max over all plays com-
patible with it. Hence, we first show there is a history-deterministic B-Büchi automaton
Dmax recognizing max-play(wτσ) = sup{val(π) : π is compatible with σ and stays on τ} on
words wτσ which describe the set of plays from a strategy σ which stay on a branch τ .

On input t, the non-deterministic B-Büchi U guesses a tree tσ (an annotated version of
t over an extended alphabet), checks that the annotations describe a valid finite-memory

FSTTCS 2011

74 Quasi-Weak Cost Automata: A New Variant of Weakness

strategy σ in (B, t), and simulates Dmax on each branch in tσ in order to calculate the value
of the strategy (possible since Dmax is history-deterministic). Because non-determinism
resolves into taking an infimum, U calculates the infimum over the values of all finite-memory
strategies in (B, t). Although finite-memory strategies might not achieve the optimal value,
they do achieve an ≈-equivalent value in B-Büchi games by [13]. Hence, [[B]] ≈ [[U]]. J

Proving that B can be simulated by a non-deterministic S-Büchi automaton U ′ is more
technical and uses the fact that B is quasi-weak.

I Lemma 7. Given a quasi-weak B-automaton B, a non-deterministic S-Büchi automaton
U ′ can be effectively constructed such that [[B]]B ≈ [[U ′]]S.

Proof. (Sketch) The automaton U ′ can no longer guess a strategy in (B, t), since the value of
(B, t) is the infimum over all strategies and non-determinism in an S-automaton resolves into
taking a supremum. Instead, we consider a dual game (B, t) where the roles of the players
are reversed so Eve tries to maximize the B-value across all strategies. We show there is
a history-deterministic S-Büchi automaton Dmin which computes the minimum value of a
set of plays from such a game, and show these games admit finite-memory strategies. The
S-Büchi automaton U ′ guesses a finite-memory strategy in such a game and then simulates
Dmin on each branch of the tree annotated with this strategy in order to compute its value.

J

These simulation lemmas and [13, Lemma 1] imply a new decidability result (extending
the class of cost functions over infinite trees for which decidability of ≈ is known).

I Corollary 8. If f, g are cost functions over infinite trees which are given by quasi-weak
B-automata then it is decidable whether or not f 4 g.

4.2 Construction from Kupferman and Vardi

We now turn to the other direction of Theorem 5. The corresponding classical result states
that given non-deterministic Büchi automata U and U ′ such that L(U) is the complement
of L(U ′), there is a weak automaton A such that L(A) = L(U) [9].

The proofs in [12, 9] begin with an analysis of composed runs of U and U ′. Let m :=
|Q| · |Q′|. A frontier E is a set of nodes of t such that for any branch π of t, E ∩ π is a
singleton. Kupferman and Vardi [9] define a trap for U and U ′ to be a strictly increasing
sequence of frontiers E0 = {ε} , E1 . . . , Em such that there exists a tree t, a run R of U
on t, and a run R′ of U ′ on t satisfying the following properties: for all 0 ≤ i < m and
for all branches π in t, there exists x, x′ ∈ [eπi , eπi+1) such that R(x) ∈ F and R′(x′) ∈ F ′
where eπ0 < · · · < eπm is the set of nodes from E0, . . . , Em induced by π. The set of positions
[eπi , eπi+1) can be viewed as a block, and each block in a trap witnesses an accepting state
from U and U ′.

This is called a trap because L(U ′) is the complement of L(U), but a trap implies
L(U) ∩ L(U ′) 6= ∅ (using a pumping argument on blocks). The weak automaton A has Eve
(resp. Adam) select a run of U (resp. U ′). The acceptance condition requires that any time
an accepting state from U ′ is seen, an accepting state from U is eventually seen. Because of
the trap condition, these accepting blocks only need to be counted up to m times (so A is
weak).

D. Kuperberg and M. Vanden Boom 75

4.3 Cost Traps
Now let U = 〈QU ,A, qU0 , FUB ,ΓUB ,∆U 〉 (respectively, U ′ = 〈QU ′ ,A, qU ′

0 , FU
′

S ,ΓU ′

S ,∆U ′〉) be a
non-deterministic B-Büchi (respectively, S-Büchi) automaton such that [[U]]B ≈ [[U ′]]S . Our
goal is to construct a quasi-weak B-automaton B which is equivalent to U .

We want to extend the classical case to cost functions, so we seek a notion of “cost
trap”, which will imply a contradiction with [[U]]B ≈ [[U ′]]S . More specifically, we want
a notion of blocks and traps which will witness a bounded B-value from U on some set
of trees but an unbounded S-value for U ′ on the same set (showing [[U ′]]S 64 [[U]]B). The
definition of a block when using arbitrary B- and S-counter actions coming from U and
U ′ would be very intricate because it would have to deal with the interaction of the B-
and S-actions. In order to avoid this, we switch to working with a non-deterministic hBS-
Büchi automaton A = 〈QA,A, qA0 , FB , FS ,ΓB ,ΓS , δA〉 which is BS-equivalent to U × U ′ =
〈QU ×QU ′ ,A, (qU0 , qU

′

0), FUB , FU
′

S ,ΓUB ,ΓU
′

S ,∆U×U ′〉 but uses hierarchical counters.
A block based on hierarchical BS-actions from A has accepting states from both FB and

FS (corresponding to accepting states for U and U ′), but it also has a reset for B-counter γ
if γ is incremented in that block (in order to ensure pumping does not inflate the B-value).
The number of blocks required is also increased to m := (|QA| + 2)|ΓS |+1 for technical
reasons.

A cost trap for A is a frontier Em and for every branch π up to Em a strictly increasing
set of nodes eπ0 < · · · < eπm ∈ Em such that there exists a tree t and a run R of A on t with
valS(R) > |QA| satisfying the following properties: for all 0 ≤ i < m and for all branches π,
[eπi , eπi+1) is a block; if branches π1 and π2 share some prefix up to position y and x < y is
the first position with eπ1

i = x and eπ2
i 6= x then eπ2

i > y (i.e. pumping blocks from π2 does
not damage blocks from π1).

A pumping argument shows a cost trap implies U and U ′ are not equivalent.

I Proposition 9. Let U (respectively, U ′) be non-deterministic B-Büchi (respectively, S-
Büchi). Let A u U × U ′ be a non-deterministic hBS-automaton. If there exists a cost trap
for A, then [[U ′]] 64 [[U]].

4.4 Construction of Quasi-Weak B-Automaton B
Given U and U ′ with [[U]]B ≈ [[U ′]]S , we can effectively build a quasi-weak B-automaton B
which on an input tree t,

simulates in parallel U (driven by Eve) and U ′ (driven by Adam) over t;
runs the hBS-transducer H(ΓUB ,ΓU

′

S) over the composed actions from U and U ′;
analyzes the output of this transducer together with the accepting states of U and U ′,
keeping track of blocks (see below);
outputs the B-actions of U .

The key difference from the classical case is in the block counting. In [9], the block number
only increases and it suffices to count up to a fixed bound. Since each block contains at most
2 alternations between accepting and rejecting states, this results in a weak automaton.

Here, we also have to forbid in any block the presence of an increment for some counter
γ without a reset for γ. However, it may be the case that on a branch of a run of U some
counter is incremented but is never reset. So the automaton B may start counting blocks
only to have to restart the counting if an increment is seen which does not have a later reset.
But this means that any decrease in the block number corresponds to an increase in the

FSTTCS 2011

76 Quasi-Weak Cost Automata: A New Variant of Weakness

cost of the play. Hence, the bound on the number of alternations depends on the value of
the automaton, which is exactly the property of a quasi-weak automaton.

The idea for the proof that [[B]]B ≈ [[U]]B ≈ [[U ′]]S is that if U accepts some t with low
value, then it gives Eve a strategy of the same value in (B, t). On the other hand, assuming
(for the sake of contradiction) that Eve has a low-value strategy in (B, t) but U actually
assigns t a high value results in a cost trap, which is absurd. Hence, we get the main result:

I Theorem 10. If there is a non-deterministic B-Büchi automaton U and non-deterministic
S-Büchi automaton U ′ such that [[U]]B ≈ [[U ′]]S, then we can effectively construct a quasi-
weak alternating B-automaton B such that [[B]]B ≈ [[U]]B ≈ [[U ′]]S.

We remark that when restricted to languages, this corresponds to the result from [9] since
(i) if there are non-deterministic Büchi automata U and U ′ (without counters) recognizing
a language and its complement, respectively, then [[U]]B = [[U ′]]S and (ii) quasi-weak and
weak automata coincide when the automata have no counters.

5 Conclusion

We have introduced quasi-weak cost automata as a variant of weak automata which uses
the counters to bound the number of alternations between accepting and rejecting states.
We have shown quasi-weak cost automata are strictly more expressive than weak cost auto-
mata over infinite trees. Moreover, it is the quasi-weak class of automata, rather than
the more traditional weak cost automata, which admits a Rabin-style characterization with
non-deterministic B-Büchi and S-Büchi automata. The question of a characterization for
weak cost automata over infinite trees remains open (it would likely involve some further
restrictions on the actions of the counters in the non-deterministic B-Büchi and S-Büchi
automata).

Combined with results from [13], our Rabin-style characterization of quasi-weak auto-
mata implies the decidability of f 4 g and f ≈ g when f, g are defined by quasi-weak B-
automata. Consequently, this work extends the class of cost functions over infinite trees
for which ≈ is known to be decidable. Deciding 4 and ≈ for all regular cost functions over
infinite trees remains a challenging open problem which would imply (by [5]) the decidability
of the parity-index problem.

Finally, it was known from [13] that weak cost automata and cost WMSO are equivalent.
The logic side of quasi-weak cost automata remains to be explored in future work.

Acknowledgements We are grateful to Thomas Colcombet for having made this joint work
possible, and for many helpful discussions.

References
1 André Arnold and Damian Niwinski. Continuous separation of game languages. Fundam.

Inform., 81(1-3):19–28, 2007.
2 Mikolaj Bojanczyk and Thomas Colcombet. Bounds in ω-regularity. In LICS, pages 285–

296. IEEE Computer Society, 2006.
3 Thomas Colcombet. The Theory of Stabilisation Monoids and Regular Cost Functions. In

ICALP (2), volume 5556 of LNCS, pages 139–150. Springer, 2009.
4 Thomas Colcombet and Christof Löding. The nesting-depth of disjunctive mu-calculus. In

Michael Kaminski and Simone Martini, editors, CSL, volume 5213 of LNCS, pages 416–430.
Springer, 2008.

D. Kuperberg and M. Vanden Boom 77

5 Thomas Colcombet and Christof Löding. The non-deterministic Mostowski hierarchy and
distance-parity automata. In Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (2), volume 5126
of LNCS, pages 398–409. Springer, 2008.

6 Thomas Colcombet and Christof Löding. Regular cost functions over finite trees. In LICS,
pages 70–79. IEEE Computer Society, 2010.

7 Kosaburo Hashiguchi. Limitedness theorem on finite automata with distance functions. J.
Comput. Syst. Sci., 24(2):233–244, 1982.

8 Daniel Kirsten. Distance desert automata and the star height problem. RAIRO - Theoretical
Informatics and Applications, 39(3):455–509, 2005.

9 Orna Kupferman and Moshe Y. Vardi. The weakness of self-complementation. In Christoph
Meinel and Sophie Tison, editors, STACS, volume 1563 of LNCS, pages 455–466. Springer,
1999.

10 David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Alternating automata. The weak
monadic theory of the tree, and its complexity. In Laurent Kott, editor, ICALP, volume
226 of LNCS, pages 275–283. Springer, 1986.

11 Damian Niwinski and Igor Walukiewicz. Deciding nondeterministic hierarchy of determin-
istic tree automata. Electr. Notes Theor. Comput. Sci., 123:195–208, 2005.

12 Michael O. Rabin. Weakly definable relations and special automata. In Mathematical
Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pages
1–23. North-Holland, Amsterdam, 1970.

13 Michael Vanden Boom. Weak cost monadic logic over infinite trees. In Filip Murlak and
Piotr Sankowski, editors, MFCS, volume 6907 of Lecture Notes in Computer Science, pages
580–591. Springer, 2011.

FSTTCS 2011

Using non-convex approximations for efficient
analysis of timed automata
Frédéric Herbreteau1, Dileep Kini2, B. Srivathsan1, and
Igor Walukiewicz1

1 Université de Bordeaux, IPB, CNRS, LaBRI UMR5800
2 Indian Institute of Technology Bombay, Department of Computer Science and

Engineering

Abstract
The reachability problem for timed automata asks if there exists a path from an initial state to
a target state. The standard solution to this problem involves computing the zone graph of the
automaton, which in principle could be infinite. In order to make the graph finite, zones are
approximated using an extrapolation operator. For reasons of efficiency in current algorithms
extrapolation of a zone is always a zone; and in particular it is convex.

In this paper, we propose to solve the reachability problem without such extrapolation oper-
ators. To ensure termination, we provide an efficient algorithm to check if a zone is included in
the so called region closure of another. Although theoretically better, closure cannot be used in
the standard algorithm since a closure of a zone may not be convex.

An additional benefit of the proposed approach is that it permits to calculate approximating
parameters on-the-fly during exploration of the zone graph, as opposed to the current methods
which do it by a static analysis of the automaton prior to the exploration. This allows for further
improvements in the algorithm. Promising experimental results are presented.

1998 ACM Subject Classification D.2.4 Software/Program Verification; F.3.1 Specifying and
Verifying and Reasoning about Programs; F.4.1 Mathematical Logic

Keywords and phrases Timed Automata; Model-checking; Non-convex abstraction; On-the-fly
abstraction

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.78

1 Introduction

Timed automata [1] are obtained from finite automata by adding clocks that can be reset
and whose values can be compared with constants. The crucial property of timed automata
is that their reachability problem is decidable: one can check if a given target state is
reachable from the initial state. Reachability algorithms are at the core of verification tools
like Uppaal [4] or RED [16], and are used in industrial case studies [11, 6]. The standard
solution constructs a search tree whose nodes are approximations of zones. In this paper
we give an efficient algorithm for checking if a zone is included in an approximation of
another zone. This enables a reachability algorithm to work with search trees whose nodes
are just unapproximated zones. This has numerous advantages: one can use non-convex
approximations, and one can compute approximating parameters on the fly.

The first solution to the reachability problem has used regions, which are equivalence
classes of clock valuations. Subsequent research has shown that the region abstraction is
very inefficient and an other method using zones instead of regions has been proposed. This

© Frédéric Herbreteau, Dileep Kini, B. Srivathsan, and Igor Walukiewicz;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 78–89

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.78
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz 79

can be implemented efficiently using DBMs [10] and is used at present in almost all timed-
verification tools. The number of reachable zones can be infinite, so one needs an abstraction
operator to get a finite approximation. The simplest is to approximate a zone with the set
of regions it intersects, the so called closure of a zone. Unfortunately, the closure may
not always be convex and no efficient representation of closures is known. For this reason
implementations use another convex approximation that is also based on (refined) regions.

We propose a new algorithm for the reachability problem using closures of zones. To this
effect we provide an efficient algorithm for checking whether a zone is included in a closure
of another zone. In consequence we can work with non-convex approximations without a
need to store them explicitly.

Thresholds for approximations are very important for efficient implementation. Good
thresholds give substantial gains in time and space. The simplest approach is to take as a
threshold the maximal constant appearing in a transition of the automaton. A considerable
gain in efficiency can be obtained by analyzing the graph of the automaton and calculating
thresholds specific for each clock and state of the automaton [2]. An even more efficient
approach is the so called LU-approximation that distinguishes between upper and lower
bounds [3]. This is the method used in the current implementation of UPPAAL. We show
that we can accommodate closure on top of the LU-approximation at no extra cost.

Since our algorithm never stores approximations, we can compute thresholds on-the-fly.
This means that our computation of thresholds does not take into account unreachable
states. In consequence in some cases we get much better LU-thresholds than those obtained
by static analysis. This happens in particular in a very common context of analysis of
parallel compositions of timed automata.

Related work
The topic of this paper is approximation of zones and efficient handling of them. We show
that it is possible to use non-convex approximations and that it can be done efficiently.
In particular, we improve on state of the art approximations [3]. Every forward algorithm
needs approximations, so our work can apply to tools like RED or UPPAAL.

Recent work [15] reports on backward analysis approach using general linear constraints.
This approach does not use approximations and relies on SMT solver to simplify the con-
straints. Comparing forward and backward methods would require a substantial test suite,
and is not the subject of this paper.

Organization of the paper
The next section presents the basic notions and recalls some of their properties. Section 3
describes the new algorithm for efficient inclusion test between a zone and a closure of
another zone. The algorithm constructing the search tree and calculating approximations
on-the-fly is presented in Section 4. Some results obtained with a prototype implementation
are presented in the last section. All missing proofs are presented in the full version of the
paper [13].

2 Preliminaries

2.1 Timed automata and the reachability problem
Let X be a set of clocks, i.e., variables that range over R≥0, the set of non-negative real
numbers. A clock constraint is a conjunction of constraints x#c for x ∈ X, # ∈ {<,≤,=

FSTTCS 2011

80 Using non-convex approximations for efficient analysis of timed automata

,≥, >} and c ∈ N, e.g. (x ≤ 3 ∧ y > 0). Let Φ(X) denote the set of clock constraints over
clock variables X. A clock valuation over X is a function ν : X → R≥0. We denote RX≥0
the set of clock valuations over X, and 0 the valuation that associates 0 to every clock in
X. We write ν � φ when ν satisfies φ ∈ Φ(X), i.e. when every constraint in φ holds after
replacing every x by ν(x). For δ ∈ R≥0, let ν + δ be the valuation that associates ν(x) + δ

to every clock x. For R ⊆ X, let [R]ν be the valuation that sets x to 0 if x ∈ R, and that
sets x to ν(x) otherwise.

A Timed Automaton (TA) is a tuple A = (Q, q0, X, T,Acc) where Q is a finite set of
states, q0 ∈ Q is the initial state, X is a finite set of clocks, Acc ⊆ Q is a set of accepting
states, and T ⊆ Q × Φ(X) × 2X × Q is a finite set of transitions (q, g, R, q′) where g is a
guard, and R is the set of clocks that are reset on the transition. An example of a TA is
depicted in Figure 1. The class of TA we consider is commonly known as diagonal-free TA
since clock comparisons like x − y ≤ 1 are disallowed. Notice that since we are interested
in state reachability, considering timed automata without state invariants does not entail
any loss of generality. Indeed, state invariants can be added to guards, then removed, while
preserving state reachability.

A configuration of A is a pair (q, ν) ∈ Q × RX≥0; (q0,0) is the initial configuration. We
write (q, ν) δ,t−→ (q′, ν′) if there exists δ ∈ R≥0 and a transition t = (q, g, R, q′) in A such
that ν + δ � g, and ν′ = [R]ν. Then (q′, ν′) is called a successor of (q, ν). A run of
A is a finite sequence of transitions: (q0, ν0) δ0,t0−−−→ (q1, ν1) δ1,t1−−−→ · · · (qn, νn) starting from
(q0, ν0) = (q0,0).

A run is accepting if it ends in a configuration (qn, νn) with qn ∈ Acc. The reachability
problem is to decide whether a given automaton has an accepting run. This problem is
known to be Pspace-complete [1, 8].

2.2 Symbolic semantics for timed automata
The reachability problem is solved using so-called symbolic semantics. It considers sets of
(uncountably many) valuations instead of valuations separately. A zone is a set of valuations
defined by a conjunction of two kinds of constraints: comparison of difference between two
clocks with an integer like x−y#c, or comparison of a single clock with an integer like x#c,
where # ∈ {<,≤,=,≥, >} and c ∈ N. For instance (x − y ≥ 1) ∧ (y < 2) is a zone. The
transition relation on valuations is transferred to zones as follows. We have (q, Z) t−→ (q′, Z ′)
if Z ′ is the set of valuations ν′ such that (q, ν) δ,t−→ (q′, ν′) for some ν ∈ Z and δ ∈ R≥0. The
node (q′, Z ′) is called a successor of (q, Z). It can be checked that if Z is a zone, then Z ′ is
also a zone.

The zone graph of A, denoted ZG(A), has nodes of the form (q, Z) with initial node
(q0, {0}), and edges defined as above. Immediately from the definition of ZG(A) we infer
that A has an accepting run iff there is a node (q, Z) reachable in ZG(A) with q ∈ Acc.

Now, every node (q, Z) has finitely many successors: at most one successor of (q, Z) per
transition in A. Still a reachability algorithm may not terminate as the number of reachable
nodes in ZG(A) may not be finite [9]. The next step is thus to define an abstract semantics
of A as a finite graph. The basic idea is to define a finite partition of the set of valuations
RX≥0. Then, instead of considering nodes (q, S) with set of valuations S (e.g. zones Z), one
considers a union of the parts of RX≥0 that intersect S. This gives the finite abstraction.

Let us consider a bound function associating to each clock x of A a bound αx ∈ N. A
region [1] with respect to α is the set of valuations specified as follows:
1. for each clock x ∈ X, one constraint from the set:

F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz 81

q0 q1 q2 q3
x ≤ 5

y ≥ 5, x := 0
x ≤ 14, y := 0

y ≥ 106

Figure 1 Timed automaton A.

{x = c | c = 0, . . . , αx} ∪ {c− 1 < x < c | c = 1, . . . , αx} ∪ {x > αx}

2. for each pair of clocks x, y having interval constraints: c− 1 < x < c and d− 1 < y < d,
it is specified if fract(x) is less than, equal to or greater than fract(y).

It can be checked that the set of regions is a finite partition of RX≥0.
The closure abstraction of a set of valuations S, denoted Closureα(S), is the union of

the regions that intersect S [7]. A simulation graph, denoted SGα(A), has nodes of the
form (q, S) where q is a state of A and S ⊆ RX≥0 is a set of valuations. The initial node of
SGα(A) is (q0, {0}). There is an edge (q, S) t−→ (q′,Closureα(S′)) in SGα(A) iff S′ is the set
of valuations ν′ such that (q, ν) δ,t−→ (q′, ν′) for some ν ∈ S and δ ∈ R≥0. Notice that the
reachable part of SGα(A) is finite since the number of regions is finite.

The definition of the graph SGα(A) is parametrized by a bound function α. It is well-
known that if we take αA associating to each clock x the maximal integer c such that x#c
appears in some guard of A then SGα(A) preserves the reachability properties.

I Theorem 1. [7] A has an accepting run iff there is a reachable node (q, S) in SGα(A)
with q ∈ Acc and αA ≤ α.

For efficiency it is important to have a good bound function α. The nodes of SGα(A)
are unions of regions. Hence the size of SGα(A) depends on the number of regions which is
O
(
|X|!.2|X|.

∏
x∈X(2.αx + 2)

)
[1]. It follows that smaller values for α yield a coarser, hence

smaller, symbolic graph SGα(A). Note that current implementations do not use closure but
some convex under-approximation of it that makes the graph even bigger.

It has been observed in [2] that instead of considering a global bound function αA for
all states in A, one can use different functions in each state of the automaton. Consider for
instance the automaton A in Figure 1. Looking at the guards, we get that αx = 14 and
αy = 106. Yet, a closer look at the automaton reveals that in the state q2 it is enough to
take the bound αy(q2) = 5. This observation from [2] points out that one can often get
very big gains by associating a bound function α(q) to each state q in A that is later used
for the abstraction of nodes of the form (q,Closureα(q)(S)). In op. cit. an algorithm for
inferring bounds based on static analysis of the structure of the automaton is proposed. In
Section 4.2 we will show how to calculate these bounds on-the-fly during the exploration of
the automaton’s state space.

3 Efficient testing of inclusion in a closure of a zone

The tests of the form Z ⊆ Closureα(Z ′) will be at the core of the new algorithm we propose.
This is an important difference with respect to the standard algorithm that makes the tests
of the form Z ⊆ Z ′. The latter tests are done in O(|X|2) time, where |X| is the number of
clocks. We present in this section a simple algorithm that can do the tests Z ⊆ Closureα(Z ′)
at the same complexity with neither the need to represent nor to compute the closure.

FSTTCS 2011

82 Using non-convex approximations for efficient analysis of timed automata

We start by examining the question as to how one decides if a region R intersects a zone
Z. The important point is that it is enough to verify that the projection on every pair of
variables is nonempty. This is the cornerstone for the efficient inclusion testing algorithm
that even extends to LU-approximations.

3.1 When is R ∩ Z empty
It will be very convenient to represent zones by distance graphs. Such a graph has clocks
as vertices, with an additional special clock x0 representing constant 0. For readability, we
will often write 0 instead of x0. Between every two vertices there is an edge with a weight
of the form (4, c) where c ∈ Z ∪ {∞} and 4 is either ≤ or <. An edge x 4c−→ y represents
a constraint y − x 4 c: or in words, the distance from x to y is bounded by c. Let [[G]] be
the set of valuations of clock variables satisfying all the constraints given by the edges of G
with the restriction that the value of x0 is 0.

An arithmetic over the weights (4, c) can be defined as follows [5].
Equality (41, c1) = (42, c2) if c1 = c2 and 41=42.
Addition (41, c1) + (42, c2) = (4, c1 + c2) where 4=< iff either 41 or 42 is <.
Minus −(4, c) = (4,−c).
Order (41, c1) < (42, c2) if either c1 < c2 or (c1 = c2 and 41=< and 42=≤).
Floor b(<, c)c = (≤, c− 1) and b(≤, c)c = (≤, c).
This arithmetic lets us talk about the weight of a path as a weight of the sum of its edges.
A cycle in a distance graph G is said to be negative if the sum of the weights of its edges is
at most (<, 0); otherwise the cycle is positive. The following useful proposition is folklore.

I Proposition 2. A distance graph G has only positive cycles iff [[G]] 6= ∅.

A distance graph is in canonical form if the weight of the edge from x to y is the lower
bound of the weights of paths from x to y. A distance graph of a region R, denoted GR, is
the canonical graph representing all the constraints defining R. Similarly GZ for a zone Z.

We can now state a necessary and sufficient condition for the intersection R ∩ Z to be
empty in terms of cycles in distance graphs. We denote by Rxy the weight of the edge
x

4xycxy−−−−−→ y in the canonical distance graph representing R. Similarly for Z.

I Proposition 3. Let R be a region and let Z be a zone. The intersection R ∩ Z is empty
iff there exist variables x, y such that Zyx +Rxy ≤ (<, 0).

A variant of this fact has been proven as an intermediate step of Proposition 2 in [7].

3.2 Efficient inclusion testing
Our goal is to efficiently perform the test Z ⊆ Closure(Z ′) for two zones Z and Z ′. We are
aiming at O(|X|2) complexity, since this is the complexity of current algorithms used for
checking inclusion of two zones. Proposition 3 can be used to efficiently test the inclusion
R ⊆ Closure(Z ′). It remains to understand what are the regions intersecting the zone Z
and then to consider all possible cases. The next lemma basically says that every consistent
instantiation of an edge in GZ leads to a region intersecting Z.

I Lemma 4. Let G be a distance graph in canonical form, with all cycles positive. Let x, y
be two variables, and let x 4xycxy−→ y and y 4yxcyx−→ x be edges in G. For every d ∈ R such that
d 4xy cxy and −d 4yx cyx there exists a valuation v ∈ [[G]] with v(y)− v(x) = d.

F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz 83

Thanks to this lemma it is enough to look at edges of GZ one by one to see what regions
we can get. This insight is used to get the desired efficient inclusion test

I Theorem 5. Let Z,Z ′ be zones. Then, Z * Closureα(Z ′) iff there exist variables x, y,
both different from x0, such that one of the following conditions hold:
1. Z ′0x < Z0x and Z ′0x ≤ (≤, αx), or
2. Z ′x0 < Zx0 and Zx0 ≥ (≤,−αx), or
3. Zx0 ≥ (≤,−αx) and Z ′xy < Zxy and Z ′xy ≤ (≤, αy) + bZx0c.

Comparison with the algorithm for Z ⊆ Z ′

Given two zones Z and Z ′, the procedure for checking Z ⊆ Z ′ works on two graphs GZ
and GZ′ that are in canonical form. This form reduces the inclusion test to comparing the
edges of the graphs one by one. Note that our algorithm for Z ⊆ Closureα(Z ′) does not
do worse. It works on GZ and GZ′ too. The edge by edge checks are only marginally more
complicated. The overall procedure is still O(|X|2).

3.3 Handling LU-approximation
In [3] the authors propose to distinguish between maximal constants used in upper and lower
bounds comparisons: for each clock x, Lx ∈ N ∪ {−∞} represents the maximal constant c
such that there exists a constraint x > c or x ≥ c in a guard of a transition in the automaton;
dually, Ux ∈ N ∪ {−∞} represents the maximal constant c such that there is a constraint
x < c or x ≤ c in a guard of a transition. If such a c does not exist, then it is considered
to be −∞. They have introduced an extrapolation operator Extra+

LU (Z) that takes into
account this information. This is probably the best presently known convex abstraction of
zones.

We now explain how to extend our inclusion test to handle LU approximation, namely
given Z and Z ′ how to directly check Z ⊆ Closureα(Extra+

LU (Z ′)) efficiently. Observe that
for each x, the maximal constant αx is the maximum of Lx and Ux. In the sequel, this is
denoted Z ⊆ Closure+

LU (Z ′). For this we need to understand first when a region intersecting
Z intersects Extra+

LU (Z ′). Therefore, we study the conditions that a region R should satisfy
if it intersects Extra+

LU (Z) for a zone Z.
We recall the definition given in [3] that has originally been presented using difference

bound matrices (DBM). In a DBM (cij ,≺i,j) stands for xi− xj ≺i,j ci,j . In the language of
distance graphs, this corresponds to an edge xj

≺i,jci,j−→ xi; hence to Zji in our notation. Let
Z+ denote Extra+

LU (Z) and GZ+ its distance graph. We have:

Z+
xy =

(<,∞) if Zxy > (≤, Ly)
(<,∞) if − Zy0 > (≤, Ly)
(<,∞) if − Zx0 > (≤, Ux), y 6= 0
(<,−Ux) if − Zx0 > (≤, Ux), y = 0
Zxy otherwise.

(1)

From this definition it will be important for us to note that GZ+ is GZ with some weights
put to (<,∞) and some weights on the edges to x0 put to (<,−Ux). Note that Extra+

LU (Z ′)
is not in the canonical form. If we put Extra+

LU (Z ′) into the canonical form then we could
just use Theorem 5. We cannot afford to do this since canonization can take cubic time
[5]. The following theorem implies that we can do the test without canonizing Extra+

LU (Z ′).
Hence we can get a simple quadratic test also in this case.

FSTTCS 2011

84 Using non-convex approximations for efficient analysis of timed automata

I Theorem 6. Let Z,Z ′ be zones. Let Z ′+ denote Extra+
LU (Z ′) obtained from Z ′ using

Equation 1 for each edge. Note that Z ′+ is not necessarily in canonical form. Then, we get
that Z * Closureα(Z ′+) iff there exist variables x, y different form x0 such that one of the
following conditions hold:
1. Z ′+0x < Z0x and Z ′+0x ≤ (≤, αx), or
2. Z ′+x0 < Zx0 and Zx0 ≥ (≤,−αx), or
3. Zx0 ≥ (≤,−αx) and Z ′+xy < Zxy and Z ′+xy ≤ (≤, αy) + bZx0c.

4 A New Algorithm for Reachability

Our goal is to decide if a final state of a given timed automaton is reachable. We do it by
computing a finite prefix of the reachability tree of the zone graph ZG(A) that is sufficient
to solve the reachability problem. Finiteness is ensured by not exploring a node (q, Z) if
there exists a (q, Z ′) such that Z ⊆ Closureα(Z ′), for a suitable α. We will first describe a
simple algorithm based on the closure and then we will address the issue of finding tighter
bounds for the clock values.

4.1 The basic algorithm
Given a timed automaton A we first calculate the bound function αA as described just
before Theorem 1. Each node in the tree that we compute is of the form (q, Z), where q is a
state of the automaton, and Z is an unapproximated zone. The root node is (q0, Z0), which
is the initial node of ZG(A). The algorithm performs a depth first search: at a node (q, Z),
a transition t = (q, g, r, q′) not yet considered for exploration is picked and the successor
(q′, Z ′) is computed where (q, Z) t−→ (q′, Z ′) in ZG(A). If q′ is a final state and Z ′ is not
empty then the algorithm terminates. Otherwise the search continues from (q′, Z ′) unless
there is already a node (q′, Z ′′) with Z ′ ⊆ ClosureαA(Z ′′) in the current tree.

The correctness of the algorithm is straightforward. It follows from the fact that if
Z ′ ⊆ ClosureαA(Z ′′) then all the states reachable from (q′, Z ′) are reachable from (q′, Z ′′)
and hence it is not necessary to explore the tree from (q′, Z ′). Termination of the algorithm
is ensured since there are finitely many sets of the form ClosureαA(Z). Indeed, the algorithm
will construct a prefix of the reachability tree of SGα(A) as described in Theorem 1.

The above algorithm does not use the classical extrapolation operator named Extra+
M

in [3] and Extra+
α hereafter, but the coarser Closureα operator [7]. This is possible since the

algorithm does not need to represent Closureα(Z), which is in general not a zone. Instead of
storing Closureα(Z) the algorithm just stores Z and performs tests Z ⊆ Closureα(Z ′) each
time it is needed (in contrast to Algorithm 2 in [7]). This is as efficient as testing Z ⊆ Z ′

thanks to the algorithm presented in the previous section.
Since Closureα is a coarser abstraction, this simple algorithm already covers some of the

optimizations of the standard algorithm. For example the Extra+
α (Z) abstraction proposed

in [3] is subsumed since Extra+
α (Z) ⊆ Closureα(Z) for any zone Z [7, 3]. Other important

optimizations of the standard algorithm concern finer computation of bounding functions
α. We now show that the structure of the proposed algorithm allows to improve this too.

4.2 Computing clock bounds on-the-fly
We can improve on the idea of Behrmann et al. [2] of computing a bound function αq for
each state q. We will compute these bounding functions on-the-fly and they will depend also
on a zone and not just a state. An obvious gain is that we will never consider constraints

F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz 85

Algorithm 1 Reachability algorithm with
on-the-fly bound computation and non-convex
abstraction.

1 function main():
2 push((q0, Z0, α0), stack)
3 while (stack 6= ∅) do
4 (q, Z, α) := top(stack); pop(stack)
5 explore(q, Z, α)
6 resolve()
7 return "empty"
8
9 function explore(q, Z, α):

10 if (q is accepting)
11 exit "not empty"
12 if (∃ (q, Z′, α′) nontentative
13 and s.t. Z ⊆ Closureα′ (Z′))
14 mark (q, Z, α) tentative wrt (q, Z′, α′)
15 α := α′; propagate(parent(q, Z, α))
16 else
17 propagate(q, Z, α)
18 for each (qs, Zs, αs) in children(q, Z, α) do

19 if (Zs 6= ∅)
20 explore(qs, Zs, αs)
21
22 function resolve():
23 for each (q, Z, α) tentative wrt (q, Z′, α′) do
24 if (Z 6⊆ Closureα′ (Z′))
25 mark (q, Z, α) nontentative
26 α := −∞; propagate(parent(q, Z, α))
27 push((q, Z, α), stack)
28
29 function propagate(q, Z, α):
30 α := max

(q,Z,α)
g;R−−→(q′,Z′,α′)

maxedge(g,R, α′)

31 if (α has changed)
32 for each (qt, Zt, αt) tentative wrt (q, Z, α) do
33 αt := α; propagate(parent(qt, Zt, αt))
34 if ((q, Z, α) 6= (q0, Z0, α0))
35 propagate(parent(q, Z, α))
36
37 function maxedge(g,R, α):
38 let αR = λx. if x ∈ R then −∞ else α(x)
39 let αg = λx. if x#c in g then c else −∞
40 return (λx. max(αR(x), αg(x)))

coming from unreachable transitions. We comment more on advantages of this approach in
Section 5.

Our modified algorithm is given in Figure 1. It computes a tree whose nodes are triples
(q, Z, α) where (q, Z) is a node of ZG(A) and α is a bound function. Each node (q, Z, α) has
as many child nodes (qs, Zs, αs) as there are successors (qs, Zs) of (q, Z) in ZG(A). Notice
that this includes successors with an empty zone Zs, which are however not further unfolded.
These nodes must be included for correctness of our constant propagation procedure. By
default bound functions map each clock to −∞. They are later updated as explained below.
Each node is further marked either tentative or nontentative. The leaf nodes (q, Z, α) of
the tree are either deadlock nodes (either there is no transition out of state q or Z is empty),
or tentative nodes. All the other nodes are marked nontentative.

Our algorithm starts from the root node (q0, Z0, α0), consisting of the initial state, initial
zone, and the function mapping each clock to −∞. It repeatedly alternates an exploration
and a resolution phase as described below.

Exploration phase
Before exploring a node n = (q, Z, α) the function explore checks if q is accepting and Z
is not empty; if it is so then A has an accepting run. Otherwise the algorithm checks if
there exists a nontentative node n′ = (q′, Z ′, α′) in the current tree such that q = q′ and
Z ⊆ Closureα′(Z ′). If yes, n becomes a tentative node and its exploration is temporarily
stopped as each state reachable from n is also reachable from n′. If none of these holds, the
successors of the node are explored. The exploration terminates since Closureα has a finite
range.

When the exploration algorithm gets to a new node, it propagates the bounds from this
node to all its predecessors. The goal of these propagations is to maintain the following
invariant. For every node n = (q, Z, α):
1. if n is nontentative, then α is the maximum of the αs from all successor nodes (qs, Zs, αs)

of n (taking into account guards and resets as made precise in the function maxedge);
2. if n is tentative with respect to (q′, Z ′, α′), then α is equal to α′.
The result of propagation is analogous to the inequalities seen in the static guard analysis [2],
however now applied to the zone graph, on-the-fly. Hence, the bounds associated to each

FSTTCS 2011

86 Using non-convex approximations for efficient analysis of timed automata

node (q, Z, α) never exceed those that are computed by the static guard analysis.
A delicate point about this procedure is handling of tentative nodes. When a node n is

marked tentative, we have α = α′. However the value of α′ may be updated when the tree
is further explored. Thus each time we update the bounds function of a node, it is not only
propagated upward in the tree but also to the nodes that are tentative with respect to n′.

This algorithm terminates as the bound functions in each node never decrease and are
bounded. From the invariants above, we get that in every node, α is a solution to the
equations in [2] applied on ZG(A).

It could seem that the algorithm will be forced to do a high number of propagations of
bounds. The experiments reported in Section 5 show that the present very simple approach
to bound propagation is good enough. Since we propagate the bounds as soon as they are
modified, most of the time, the value of α does not change in line 30 of function propagate.
In general, bounds are only propagated on very short distances in the tree, mostly along one
single edge. For this reason we do not concentrate on optimizing the function propagate. In
the implementation we use the presented function augmented with a minor “optimization”
that avoids calculating maximum over all successors in line 30 when it is not needed.

Resolution phase
Finally, as the bounds may have changed since n has been marked tentative, the function
resolve checks for the consistency of tentative nodes. If Z ⊆ Closureα′(Z ′) is not true
anymore, n needs to be explored. Hence it is viewed as a new node: the bounds are set to
−∞ and n is pushed on the stack for further consideration in the function main. Setting
α to −∞ is safe as α will be computed and propagated when n is explored. We perform
also a small optimization and propagate this bound upward, thereby making some bounds
decrease.

The resolution phase may provide new nodes to be explored. The algorithm terminates
when this is not the case, that is when all tentative nodes remain tentative. We can then
conclude that no accepting state is reachable.

I Theorem 7. An accepting state is reachable in ZG(A) iff the algorithm reaches a node
with an accepting state and a non-empty zone.

4.3 Handling LU approximations
Recall that Extra+

LU (Z) approximation used two bounds: Lx and Ux for each clock x. In
our algorithm we can easily propagate LU bounds instead of just maximal bounds. We can
also replace the test Z ⊆ Closureα′(Z ′) by Z ⊆ Closureα′(Extra+

L′U ′(Z ′)), where L′ and U ′
are the bounds calculated for (q′, Z ′) and α′x = max(L′x, U ′x) for every clock x. As discussed
in Section 3.3, this test can be done efficiently too. The proof of correctness of the resulting
algorithm is only slightly more complicated.

5 Experimental results

We have implemented the algorithm from Figure 1, and have tested it on classical bench-
marks. The results are presented in Table 1, along with a comparison to UPPAAL and
our implementation of UPPAAL’s core algorithm that uses the Extra+

LU extrapolation [3]
and computes bounds by static analysis [2]. Since we have not considered symmetry reduc-
tion [12] in our tool, we have not used it in UPPAAL either.

F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz 87

Table 1 Experimental results: number of visited nodes and running time with a timeout (T.O.)
of 60 seconds. Experiments done on a MacBook with 2.4GHz Intel Core Duo processor and 2GB
of memory running MacOS X 10.6.7.

Model Our algorithm UPPAAL’s algorithm UPPAAL 4.1.3 (-n4 -C -o1)
nodes s. nodes s. nodes s.

A1 2 0.00 10003 0.07 10003 0.07
A2 7 0.00 3999 0.60 2003 0.01
A3 3 0.00 10004 0.37 10004 0.32

CSMA/CD7 5031 0.32 5923 0.27 − T.O.
CSMA/CD8 16588 1.36 19017 1.08 − T.O.
CSMA/CD9 54439 6.01 60783 4.19 − T.O.
FDDI10 459 0.02 525 0.06 12049 2.43
FDDI20 1719 0.29 2045 0.78 − T.O.
FDDI30 3779 1.29 4565 4.50 − T.O.
Fischer7 7737 0.42 20021 0.53 18374 0.35
Fischer8 25080 1.55 91506 2.48 85438 1.53
Fischer9 81035 5.90 420627 12.54 398685 8.95
Fischer10 − T.O. − T.O. 1827009 53.44

The comparison to UPPAAL is not meaningful for the CSMA/CD and the FDDI proto-
cols. Indeed, UPPAAL runs out of time even if we significantly increase the time allowed;
switching to breadth-first search has not helped either. We suspect that this is due to the or-
der in which UPPAAL takes the transitions in the automaton. For this reason in columns 4
and 5, we provide results from our own implementation of UPPAAL’s algorithm that takes
transitions in the same order as the implementation of our algorithm. Although RED also
uses approximations, it is even more difficult to draw a meaningful comparison with it, since
it uses symbolic state representation unlike UPPAAL or our tool. Since this paper is about
approximation methods, and not tool comparison, we leave more extensive comparisons as
further work.

The results show that our algorithm provides important gains. Analyzing the results
more closely we could see that both the use of closure, and on-the-fly computation of bounds
are important. In Fischer’s protocol our algorithm visits much less nodes. In the FDDI
protocol with n processes, the DBMs are rather big square matrices of order 3n+ 2. Never-
theless our inclusion test based on Closure is significantly better in the running time. The
CSMA/CD case shows that the cost of bounds propagation does not always counterbalance
the gains. However the overhead is not very high either. We comment further on the results
below.

The first improvement comes from the computation of the maximal bounds used for the
abstraction as demonstrated by the examples A2 (Figure 2), Fischer and CSMA/CD that
correspond to three different situations. In the A2 example, the transition that yields the
big bound 104 on y in q0 is not reachable from any (q0, Z), hence we just get the lower bound
20 on y in (q0, Z), and a subsequent gain in performance.

The automaton A1 in Figure 2 illustrates the gain on the CSMA/CD protocol. The
transition from q0 to q1 is disabled as it must synchronize on letter a!. The static analysis
algorithm [2] ignores this fact, hence it associates bound 104 to y in q0. Since our algorithm
computes the bounds on-the-fly, y is associated the bound 10 in every node (q0, Z). We
observe that UPPAAL’s algorithm visits 10003 nodes on ZG(A1) whereas our algorithm
only visits 2 nodes. The same situation occurs in the CSMA/CD example. However despite
the improvement in the number of nodes (roughly 10%) the cost of computing the bounds
impacts the running time negatively.

The gains that we observe in the analysis of the Fischer’s protocol are explained by the
automaton A3 in Figure 2. A3 has a bounded integer variable n that is initialized to 0.

FSTTCS 2011

88 Using non-convex approximations for efficient analysis of timed automata

Z

Z′

αx

αy

x

y

0
Z : x− y ≥ 1
Z′ : x > αx

A1
a!

q2

q1

q0

x<=1
x:=0
x==1

y<=10

y>=10000

A2 x:=0 x:=0

q0 y>=20 && x==2

y==10000

x==1x==5

q1

q3 q2

A3

n==10&&y>=10000

n==10&&y<=200

x:=0

x<=1

x==1
y<=10

q1q0 q2

Figure 2 Examples explaining gains obtained with the algorithm.

Hence, the transitions from q0 to q2, and from q1 to q2, that check if n is equal to 10 are
disabled. This is ignored by the static analysis algorithm that associates the bound 104 to
clock y in q0. Our algorithm however associates the bound 10 to y in every node (q0, Z).
We observe that UPPAAL’s algorithm visits 10004 nodes whereas our algorithm only visits
3 nodes. A similar situation occurs in the Fischer’s protocol. We include the last row to
underline that our implementation is not as mature as UPPAAL. We strongly think that
UPPAAL could benefit from methods presented here.

The second kind of improvement comes from the Closureα abstraction that particularly
improves the analysis of the Fischer’s and the FDDI protocols. The situation observed on
the FDDI protocol is explained in Figure 2. For the zone Z in the figure, by definition
Extra+

LU (Z) = Z, and in consequence Z ′ 6⊆ Z. However, Z ′ ⊆ Closureα(Z). On FDDI and
Fischer’s protocols, our algorithm performs better due to the non-convex approximation.

6 Conclusions

We have proposed a new algorithm for checking reachability properties of timed automata.
The algorithm has two sources of improvement that are quite independent: the use of the
Closureα operator, and the computation of bound functions on-the-fly.

Apart from immediate gains presented in Table 1, we think that our approach opens
some new perspectives on analysis of timed systems. We show that the use of non-convex
approximations can be efficient. We have used very simple approximations, but it may be
well the case that there are more sophisticated approximations to be discovered. The struc-
ture of our algorithm permits to calculate bounding constants on the fly. One should note
that standard benchmarks are very well understood and very well modeled. In particular
they have no “superfluous” constraints or clocks. However in not-so-clean models coming
from systems in practice one can expect the on-the-fly approach to be even more beneficial.

There are numerous directions for further research. One of them is to find other approxi-
mation operators. Methods for constraint propagation also deserve a closer look. We believe
that our approximations methods are compatible with partial order reductions [12, 14]. We
hope that the two techniques can benefit from each other.

References
1 R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
2 G. Behrmann, P. Bouyer, E. Fleury, and K. G. Larsen. Static guard analysis in timed

automata verification. In TACAS, volume 2619 of LNCS, pages 254–270. Springer, 2003.

F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz 89

3 G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelanek. Lower and upper bounds in
zone-based abstractions of timed automata. Int. Journal on Software Tools for Technology
Transfer, 8(3):204–215, 2006.

4 G. Behrmann, A. David, K. G Larsen, J. Haakansson, P. Pettersson, W. Yi, and M. Hen-
driks. UPPAAL 4.0. In QEST’06, pages 125–126, 2006.

5 J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. Lectures on
Concurrency and Petri Nets, pages 87–124, 2004.

6 B. Bérard, B. Bouyer, and A. Petit. Analysing the PGM protocol with UPPAAL. Int.
Journal of Production Research, 42(14):2773–2791, 2004.

7 P. Bouyer. Forward analysis of updatable timed automata. Form. Methods in Syst. Des.,
24(3):281–320, 2004.

8 C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-time
systems. Form. Methods Syst. Des., 1(4):385–415, 1992.

9 C. Daws and S. Tripakis. Model checking of real-time reachability properties using abstrac-
tions. In TACAS’98, volume 1384 of LNCS, pages 313–329. Springer, 1998.

10 D. Dill. Timing assumptions and verification of finite-state concurrent systems. In
AVMFSS, volume 407 of LNCS, pages 197–212. Springer, 1989.

11 K. Havelund, A. Skou, K. Larsen, and K. Lund. Formal modeling and analysis of an
audio/video protocol: An industrial case study using UPPAAL. In RTSS, pages 2–13,
1997.

12 M. Hendriks, G. Behrmann, K. G. Larsen, P. Niebert, and F. Vaandrager. Adding symmetry
reduction to UPPAAL. In Int. Workshop on Formal Modeling and Analysis of Timed
Systems, volume 2791 of LNCS, pages 46–59. Springer, 2004.

13 F. Herbreteau, D. Kini, B. Srivathsan, and I. Walukiewicz. Using non-convex approx-
imations for efficient analysis of timed automata. http://hal.archives-ouvertes.fr/inria-
00559902/en/, 2011. Extended version with proofs.

14 J. Malinowski and P. Niebert. SAT based bounded model checking with partial order
semantics for timed automata. In TACAS, volume 6015 of LNCS, pages 405–419, 2010.

15 G. Morbé, F. Pigorsch, and C. Scholl. Fully symbolic model checking for timed automata.
In CAV’11, volume 6806 of LNCS, pages 616–632. Springer, 2011.

16 Farn Wang. Efficient verification of timed automata with BDD-like data structures. Int.
J. on Software Tools for Technology Transfer, 6:77–97, 2004.

FSTTCS 2011

Shrinking Timed Automata
Ocan Sankur, Patricia Bouyer, and Nicolas Markey

LSV, CNRS and ENS Cachan, France
{sankur,bouyer,markey}@lsv.ens-cachan.fr

Abstract
We define and study a new approach to the implementability of timed automata, where the
semantics is perturbed by imprecisions and finite frequency of the hardware. In order to circum-
vent these effects, we introduce parametric shrinking of clock constraints, which corresponds to
tightening these. We propose symbolic procedures to decide the existence of (and then compute)
parameters under which the shrunk version of a given timed automaton is non-blocking and can
time-abstract simulate the exact semantics. We then define an implementation semantics for
timed automata with a digital clock and positive reaction times, and show that for shrinkable
timed automata, non-blockingness and time-abstract simulation are preserved in implementation.

1998 ACM Subject Classification D.2.4 Software/Program Verification; F.1.1 Specifying and
Verifying and Reasoning about Programs

Keywords and phrases timed automata, implementability, robustness

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.90

1 Introduction

Timed automata [3] are a well-established model in real-time system design. They offer
an automata-theoretic framework to design, verify and synthesize systems with timing
constraints. The theory behind timed automata has been extensively studied and mature
model-checking tools are available. However, this model makes unrealistic assumptions on
the system, such as the perfect continuity of clocks and instantaneous reaction times, which
are not preserved in implementation even in digital hardware with arbitrary finite precisions.
Often, the synchrony hypothesis allows one to ignore this issue and greatly simplifies the
design phase [7]. However, the synchrony hypothesis still needs to be formally validated
once the design phase is over. In fact, perturbations on clocks, either imprecisions or clock
drifts, however small they may be, may yield extra qualitative behaviours in some timed
systems [22, 14]; positive reaction times can also disable desired behaviours [11, 1].

This raises the question of implementability, i.e., whether the model can be implemented
on physical machines, preserving (the properties of) its exact semantics. In order to model
the behaviour of implementations of timed automata, and validate the synchrony hypothesis,
De Wulf et al. introduced the program semantics for timed automata, which defines the
behaviour of a timed automaton on a simple micro-processor with a digital clock [15]. This
semantics is a bit jagged, and the enlarged semantics has been proposed as a convenient
over-approximation: it models imprecisions by relaxing all guards, turning clock constraints
of the form x ∈ [a, b] into x ∈ [a−∆, b+ ∆] for some positive parameter ∆. Robust model
checking, which consists in deciding the existence of a value for ∆ under which a property is
satisfied in the enlarged semantics, has been proven decidable for safety properties [14], and
for richer linear-time properties [9, 10]. In this framework, the implementation (the program

Partly supported by project ImpRo (ANR-2010-BLAN-0317) of the French National Agency for Research.

© O. Sankur, P. Bouyer, and N. Markey;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 90–102

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

{sankur,bouyer,markey}@lsv.ens-cachan.fr
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.90
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

O. Sankur, P. Bouyer, and N. Markey 91

semantics) always has more behaviours than the abstract model (the exact semantics), due to
the relaxation of the timing constraints, and robust model-checking only ensures correctness
for properties preserved by timed simulation.

We adopt the following approach: instead of checking properties on the enlarged semantics
of a given timed automaton A, we look for a new timed automaton B whose semantics would
correspond to the (exact) semantics of A. To circumvent the effect of the imprecisions, our
idea is to construct B by shrinking the guards of A, which is the opposite to enlargement,
so that all behaviours of B under enlargement are included in those of A. The timed
automaton B constructed in this manner preserves in particular all universal properties (like
linear-time properties) proven (say, by model-checking) for A. This also means that all timing
requirements satisfied by A, such as critical deadlines, are strictly respected by B. However,
such a transformation may remove too many behaviours and even introduce deadlocks in B.
The preservation of the desired behaviours in B is the problem we are interested in.

A timed automaton A is said shrinkable if it can be shrunk into a timed automaton
that is non-blocking, and/or can time-abstract-simulate A. We do not restrict to one single
shrinking parameter, but to one parameter per atomic clock constraint in the automaton.
We give algorithms to decide the existence of these shrinking parameters, and compute
the least parameters when they exist. We show that shrinkability w.r.t. non-blockingness
can be checked in PSPACE, shrinkability w.r.t. simulation in EXPTIME, and shrinkability
(w.r.t. both requirements) in EXPTIME, by symbolic procedures manipulating difference
bound matrices.

As a second result, we define an implementation semantics of timed automata executed
by a digital system with a digital clock. Our semantics is similar to the program semantics
of [15] but it is valid under slightly different assumptions. We study the relations between
the exact semantics and the implementation semantics, and prove additional properties
besides the one given in [15]. We show that when a timed automaton A is shrinkable,
say to a timed automaton B, then the implementation semantics of B is non-blocking and
time-abstract-simulates the exact semantics of A. Thus, our framework allows not only to
obtain an implementation that contains no more behaviour than the abstract model but also
to ensure non-blockingness and time-abstract similarity. This provides a precise motivation
for the shrinkability problem: shrinkability is a sufficient condition for the correctness of the
implementation semantics.

Finally, notice that shrinkability is also an interesting property by itself, since it asks
whether the given automaton is vulnerable to infinitesimal shrinkings (which can be due
to imprecisions). Zeno behaviours and other different convergence phenomena [11] are also
naturally excluded in shrunk systems (see Section 3.2).

2 Preliminaries

A timed transition system (TTS) is a tuple (S, s0,Σ,→), where S is the set of states, s0 ∈ S
the initial state, Σ a finite alphabet, and → ⊆ S× (Σ×R≥0)×S the transitions. Transitions
are labelled by σ(T), with T ∈ R≥0 the timestamp of action σ ∈ Σ. In all TTSs we consider,
the timestamps of consecutive actions are assumed to be nondecreasing. A TTS (S, s0,Σ,→)
is non-blocking if for any transition s1

σ(T)−−−→ s2, there exist σ′ ∈ Σ, T ′ ≥ T and s3 ∈ S
such that s2

σ′(T ′)−−−−→ s3. Notice that, in this definition, we do not require s1 to be reachable
from s0.

I Definition 1. Let S = (S, s0,Σ,→) be a TTS. A relation R ⊆ S × S is a timed (resp.

FSTTCS 2011

92 Shrinking Timed Automata

time-abstract) simulation if for all (s1, s2) ∈ R, if s1
σ(T)−−−→ s′1 for some (σ, T) ∈ Σ × R≥0,

then s2
σ(T)−−−→ s′2 (resp. s2

σ(T ′)−−−→ s′2 for some T ′ ∈ R≥0) for some s′2 with (s′1, s′2) ∈ R.
A state s2 timed-simulates (resp. time-abstract-simulates) a state s1 if there exists a timed
(resp. time-abstract) simulation R such that (s1, s2) ∈ R. In that case, we write s1 v s2
(resp. s1 vt.a. s2).

Given two TTSs S and T , we write S v T if the initial state of T timed-simulates that of S
in their disjoint union. We write S vt.a. T in case of an time-abstract simulation. For any
state s of S, we write ta-simT (s) for the set of states of T that time-abstract simulate s.
This set is called the (time-abstract) simulator set of s in T .

Given a finite set of clocks C, we call valuations the elements of RC≥0. For a subset R ⊆ C,
a real number α ∈ R≥0 and a valuation v, we write v[R← α] for the valuation defined by
v[R ← α](x) = v(x) for x ∈ C \ R and v[R ← α](x) = α for x ∈ R. Given d ∈ R≥0, the
valuation v + d is defined by (v + d)(x) = v(x) + d for all x ∈ C. We extend these operations
to sets of valuations in the obvious way.

Let Q∞ = Q ∪ {−∞,∞}. An atomic clock constraint is a formula of the form k ≤ x ≤ l
or k ≤ x − y ≤ l where x, y ∈ C and k, l ∈ Q∞. A guard is a conjunction of atomic clock
constraints. We denote by ΦC the set of guards on the clock set C. We define the enlargement
of atomic clock constraints by δ ∈ Q as follows: for x, y ∈ C and k, l ∈ Q>0, we let
〈k ≤ x− y〉δ = k − δ ≤ x− y, 〈x− y ≤ l〉δ = x− y ≤ l + δ.

(and similarly for 〈k ≤ x〉δ and 〈x ≤ l〉δ). The enlargement of a guard g, denoted by 〈g〉δ, is
obtained by enlarging all its atomic clock constraints. Notice that δ can be negative here;
this operation is then called shrinking. A valuation v satisfies a guard g, denoted v |= g, if
all constraints are satisfied when each x ∈ C is replaced by v(x). We denote by JgK the set of
valuations that satisfy g. We will write v |=δ g to mean v |= 〈g〉δ.

I Definition 2. A timed automaton A is a tuple (L, l0, C,Σ, E), with finite sets L of locations,
C of clocks, Σ of labels, E ⊆ L× ΦC × Σ× 2C × L of edges, with l0 ∈ L the initial location.
An edge e = (l, g, σ,R, l′) is also written as l g,σ,R−−−→ l′. Guard g is called the guard of e.

For any timed automaton A, let (gi)i∈I denote the vector of all atomic clock constraints
used in its guards. Given a vector of rational numbers δ = (δi)i∈I , we define Aδ as the timed
automaton obtained from A by replacing gi with 〈gi〉δi . For any ∆ ∈ Q, A∆ will denote the
timed automaton where all guards are enlarged by ∆.

I Definition 3. The semantics of a timed automaton A = (L, l0, C,Σ, E) is a TTS over
alphabet Σ, denoted JAK, whose state space is L × RC≥0 × R≥0. The initial state is
(l0, 0, 0), where 0 denotes the valuation where all clocks have value 0. There is a trans-
ition (l, v, T) σ(T+τ)−−−−−→ (l′, v′, T + τ), for any edge l g,σ,R−−−→ l′ and τ ≥ 0, such that v + τ |= g

and v′ = (v + τ)[R← 0].

We assume familiarity with the usual notions of region equivalence and region automaton, and
refer to [3] for definitions. The important property used here is that time-abstract-simulating
a timed automaton is equivalent to (time-abstract-)simulating its region automaton.

O. Sankur, P. Bouyer, and N. Markey 93

3 Shrinkability

3.1 Robustness and Shrinking
Robust model-checking, that is, the analysis of timed automata under clock imprecisions
have been studied in [22, 14, 9, 10, 21, 23]. It is shown in [15] how this framework allows
one to validate the synchrony hypothesis, that is, prove that the semantics is preserved in
a physical implementation with imprecisions. See [22, 14] for examples of timed automata
that are not robust: their behaviours change in presence of the slightest positive guard
enlargement. In a recent work [8], we defined transformations that provide, for any given
timed automaton A, a timed automaton A′ such that A and A′∆ are ε-bisimilar, that is,
there is a timed bisimulation in which the differences in delays are bounded by ε at each
step. The advantage of that approach is that it works for all timed automata, and that we
obtain an ε-bisimilar enlarged timed automaton, for any desired ε > 0. However, the timed
behaviour of the resulting automaton may not be included in the abstract model; it is only
preserved approximately. Also, the size of A′ is exponential, and we do not make the link
with an implementation semantics.

We now define shrinking of timed automata and show how it provides an alternative way
to construct robust systems. Our method provides a construction of the same size as the
initial automaton, and whose timed behaviour is always included in the abstract model. Our
algorithms then allow to decide whether further properties, such as non-blockingness and
time-abstract similarity, can be satisfied. In order to circumvent the effect of the imprecisions,
we propose to shrink any guard of the form “x ∈ [a, b]” into “x ∈ [a+ δ, b− δ]” for some δ > 0,
so that under a small enlargement parameter ∆ > 0, we have [a+ δ −∆, b− δ + ∆] ⊆ [a, b];
in other terms, the satisfaction of the enlarged guard implies the satisfaction of the original
guard. Formally, we will consider the shrunk timed automaton A−kδ where k = (ki)i∈I ∈ NI>0
and δ > 0. Clearly, if ∆ < maxi∈I(ki) · δ, A−kδ+∆ does not contain more behaviours than
A; in fact JA−kδ+∆K v JAK.

Shrinking is a natural idea when one is interested in the preservation of strict timing
constraints, such as critical deadlines. However, shrinking may remove too many behaviours
and the resulting automaton may even become blocking. We are interested in deciding
the existence of shrinking parameters k and δ, and in their computation, for which the
shrunk timed automaton is non-blocking and/or is able to time-abstract simulate the original
automaton. We will see in Section 6 that when the shrunk automaton satisfies these properties,
these are preserved in a concrete implementation semantics.

I Definition 4. A timed automaton A is shrinkable if there exists k ∈ NI>0 and δ0 ∈ Q>0
such that for all 0 ≤ δ ≤ δ0,

JA−kδK is non-blocking,
JAK vt.a. JA−kδK, with the following additional technical requirement: for each region
(l, r) of R(A), there is a guard g and a vector h of non-negative integers such that for all
0 ≤ δ ≤ δ0, the simulator set of (l, r) in JA−kδK equals J〈g〉−hδK.

We say that A is shrinkable w.r.t. non-blockingness (resp. w.r.t. simulation) if only the first
(resp. second) condition holds. The above k and δ0 are shrinking parameters for A.

We define shrinkability “for all 0 ≤ δ ≤ δ0”, so if an automaton is shrinkable, we require
it to remain correct when imprecisions are reduced, that is when δ is chosen smaller. In fact,
the shrunk automaton can be seen as an approximation of the initial automaton, and we
would like to be able to obtain arbitrarily close correct approximations by only adjusting δ.

FSTTCS 2011

94 Shrinking Timed Automata

This requirement is also related to the property called “faster-is-better” [2, 15]. Notice also
that when a timed automaton is shrinkable w.r.t. simulation, then we require that for all
small enough δ, each simulator set can be expressed as shrinkings 〈g〉−hδ where h is the
same for all δ (that is, parameters h are uniform). Then, when we adjust the parameter δ,
the expressions of the simulator sets do not change. This is desirable for instance when one
needs to use these constraints in the system.

3.2 Shrinking as a Remedy to Unrealistic Behaviour

Shrinkability also excludes unrealistic timing constraints, such as Zeno behaviours. In fact,
for any timed automaton A, consider the automaton A′ obtained from A by adding a new
clock u, the constraint u ≥ 0 and the reset u := 0 at every edge. Clearly, A and A′ are
isomorphic. If automaton A′ is shrinkable, then A does not need Zeno strategies to satisfy
the properties proven for the exact semantics and preserved by time-abstract similarity (in
fact, each u ≥ 0 is shrunk to some u ≥ δi with δi > 0).

`1 `2

y≤1−δ1 ∧ 1+δ2≤x
x:=0

y≤1−δ3, y:=0

Figure 1 A shrunk timed automaton
that is blocking whenever δ2 > 0 or
δ3 > 0.

But unrealistic timing constraints are not limited to
Zeno behaviours. The automaton in Fig. 1 provides an
example of a timed automaton which is non-blocking
for δ1 = δ2 = δ3 = 0, and lets the time diverge but
it becomes blocking whenever δ2 > 0 or δ3 > 0, so
it is not shrinkable. A similar example was provided
in [11] but with equality constraints, so it is trivially
not shrinkable. In section 5, we give an example of a
shrinkable timed automaton (Fig. 3).

3.3 Decidability of Shrinkability

Our main result is the decidability of shrinkability:

I Theorem 5. Shrinkability w.r.t. non-blockingness can be decided in PSPACE, and in NP
if the number of outgoing transitions from each location is bounded. Shrinkability w.r.t.
simulation is decidable in EXPTIME. Finally, shrinkability is decidable in EXPTIME.

Moreover, we will show that when a given timed automaton is shrinkable, the least
shrinking parameters can be computed (see Section 5 for details). In the rest, we present
the proof of this result. We begin by defining parametric difference-bound matrices (DBMs)
and give tools for solving fixpoint equations on DBMs through max-plus equations. We then
explain how this can be used to decide shrinkability. In Section 6, we present a concrete
implementation semantics and prove that non-blockingness and simulation are preserved in
this semantics for all shrinkable timed automata.

4 Some algebraic tools

4.1 Parameterized Difference Bound Matrices

Difference bound matrices are data structures used to represent sets of clock valuations in
timed automata analysis [17]. Write C = {1, . . . , C}, and add an artificial clock of index 0,
that has constant value 0. We let C0 = C ∪ {0}. A difference bound matrix (DBM) over C0 is

O. Sankur, P. Bouyer, and N. Markey 95

an element ofMC+1(Q∞)1. Each M ∈MC+1(Q∞) defines a zone, that is, a convex subset
of RC≥0 defined by JMK = {v ∈ RC≥0 | ∀x, y ∈ C0,−My,x ≤ v(x)− v(y) ≤Mx,y}. Clearly, each
DBM can be equivalently described by a guard, and conversely. A DBM M is normalized
when for all x, y, z ∈ C0, it holds Mx,y ≤Mx,z +Mz,y. Any non-empty DBM can be made
normalized in polynomial time, by interpreting it as an adjacency matrix of a weighted graph
and computing all shortest paths between any two clocks.

We define several elementary operations on DBMs. Given a DBM M , we let Pretime(M)
be the normalized DBM that describes the time predecessors of JMK, i.e., JPretime(M)K =
{v ∈ RC≥0 | ∃t ∈ R≥0 s.t. v+ t ∈ JMK}. Given R ⊆ C, we let UnresetR(M) be the normalized
DBM that defines {v ∈ RC≥0 | v[R← 0] ∈ JMK}. For two DBMs M and N , we write M ∩N
for the normalized DBM describing JMK ∩ JNK. A function f : MC+1(Q∞)n →MC+1(Q∞)
(for some n > 0), is said elementary if it combines its arguments using elementary operations.
Efficient algorithms exist for computing these operations on DBMs [6, 12].

We extend standard DBMs in order to manipulate sets of states in shrunk timed automata.
We fix a tuple of parameters k = (ki)i∈I , which will take nonnegative integer values. The
max-plus polynomials over k, denoted by G(k), are generated by the grammar φ ::= l ∈
N | ki, i ∈ I | φ+ φ | max(φ, φ). For any max-plus polynomial φ and valuation ν : k −→ N,
we denote by φ[ν] the value of formula φ replacing each parameter k by ν(k). A (resp.
positive, parameterized) shrinking matrix is an element of MC+1(N) (resp. MC+1(N>0),
MC+1(G(k))). If P is a parameterized shrinking matrix (PSM) and ν is a valuation, the
shrinking matrix P [ν] is defined in a natural way. Note that our definition of PSM is different
from parametric DBMs considered for instance in [20], since we use max-plus polynomials
instead of linear expressions and only consider natural number valuations. In what follows,
we manipulate parameterized DBMs, also called shrunk DBMs, of the form M − δ · P , where
δ is a fresh parameter, and P is a PSM. If M is a DBM for guard g, the shrunk guard 〈g〉−δ
will be represented by the shrunk DBM M − 1 · δ, where matrix 1 has 0’s on the diagonal
and 1’s everywhere else.

Shrunk DBMs will be used as a data structure for manipulating the state space of shrunk
timed automata. The following lemma explains how elementary operations can be computed
on shrunk DBMs. In particular, it shows how shrinking parameters (i.e., the PSM) can be
propagated in a backward analysis while staying in the max-plus theory.

I Lemma 6. Let M,M1, . . . ,Mn be non-empty normalized DBMs and f : MC+1(Q∞)n →
MC+1(Q∞) be an elementary function with M = f(M1, . . . ,Mn). Let P1, . . . , Pn be matrices
in MC+1(G(k)). Then, we can compute P ′ ∈ MC+1(G(k)) s.t. for all ν : k → N, there
exists a (computable) δ0 > 0 s.t. M − δP ′[ν] = f(M1 − δP1[ν], . . . ,Mn − δPn[ν]) for all
0 ≤ δ < δ0. All these computations can be achieved in polynomial time, and in particular
P ′ has size polynomial in the size of P1, . . . , Pn and f . If the above property holds, we write
M − δP ′ = f(M1 − δP1, . . . ,Mn − δPn).

For solving the shrinkability problems, we will use fixpoint equations on shrunk DBMs
(see Section 5). As a prerequisite, we therefore first investigate max-plus equations, and then
give a general theorem for solving those equations.

1 Mn(X) is the set of n× n matrices with coefficients in X, where all diagonal coefficients are 0.

FSTTCS 2011

96 Shrinking Timed Automata

= Pretime

 ∩Unresety

Figure 2 Consider an edge ` g,σ,R−−−→ `′ in a timed automaton where g = 1 ≤ y ∧ 0 ≤ x− y and
R = {y}. For any pair of zones X,Y , the equation Y = Pretime(JgK∩Unresety(X)) expresses the fact
that X can be reached in one step starting from Y . Consider Y = J0 ≤ x, y ≤ 3∧0 ≤ x−y ≤ 2K, and
X = J1 ≤ x ≤ 4∧x− y ≤ 3K. In the figure, the union of dark gray and light gray areas illustrate this
equation while the dark gray areas illustrate the equation between shrunk zones. Let us assume that
we shrink g to g′ = 1+k1δ ≤ y∧k2δ ≤ x−y and X to X ′ = J1+k3δ ≤ x ≤ 4−k4δ∧x−y ≤ 3−k5δK,
for positive integers ki and δ > 0 small enough so that these sets are non-empty. Then, by Lemma 6,
we can compute the shrinking parameters for Y , so that the shrunk zone Y ′ satisfies the new equation
Y ′ = Pretime(Jg′K ∩Unresety(X ′)). We get:

Unresety(X ′) = J1 + k3δ ≤ x ≤ 3− k5δK,
Jg′K ∩Unresety(X ′) = J1 + max(k1 + k2, k3)δ ≤ x ≤ 3− k5δ

∧1 + k1δ ≤ y ≤ 3− (k2 + k5)δ
∧k2δ ≤ x− y ≤ 2− (k1 + k5)δK,

Y ′ = Pretime(Jg′K ∩Unresety(X ′)) = Jk2δ ≤ x ≤ 3− k5δ ∧ 0 ≤ y ≤ 3− (k2 + k4)δ
∧k2δ ≤ x− y ≤ 2− (k1 + k5)δK.

This equality holds for all 0 ≤ δ < min(1
k4−k5

, 2
max(k1+k2,k3)+k5

, 3
k2+k5

, 2
k1+k2+k5

, 2
k1−k2+k5

), where
a term is +∞ if the denominator is zero.

4.2 Max-plus equations

In PSMs, formal expressions using maximization and sum are manipulated. The set R≥0
endowed with these operations is called the max-plus algebra. There is a well-established
theory on solving equations in this algebra, with applications to discrete-event systems [5].

Let k1, . . . , kn, kn+1, . . . , kn+n′ be parameters, and φ1, . . . , φn be max-plus polynomials.
We will be interested in computing solutions of fixpoint equations of the following form:

ki = φi(k1, . . . , kn, kn+1, . . . , kn+n′), ∀1 ≤ i ≤ n. (E)
Notice that variables kn+1, . . . , kn+n′ only appear at the right hand side of the equation.
Equation (E) defines a non-linear equation (polynomials φi have arbitrary degrees). Although
Tarski’s Theorem [24] guarantees the existence of fixpoint solutions in N ∪ {∞}, we are
interested in finite solutions, i.e., solutions in N which is not a complete lattice.

I Theorem 7. For any equation of the form (E), the existence of a solution in N is decidable
in polynomial time in the size of the equation. Moreover, assume there is a solution in N in
which kn+1, . . . , kn+n′ take positive values; then given any fixed positive values vn+1, . . . , vn+n′ ,
Equation (E) with the additional constraints kn+i = vn+i for all 1 ≤ i ≤ n′ has a least
solution, computable in polynomial time.

The second point of Theorem 7 states that the existence of solutions with positive values for
the unconstrained variables does not depend on their exact values. These results rely on an
analysis of max-plus graphs, that we associate to max-plus equations.

O. Sankur, P. Bouyer, and N. Markey 97

4.3 Equations on shrunk DBMs
We now apply the previous results to solving equations on shrunk DBMs. We consider
fixpoint equations on DBMs of the form:

Mi = fi(M1, . . . ,Mn,Mn+1, . . . ,Mn+n′), ∀1 ≤ i ≤ n, (1)
where M1, . . . ,Mn+n′ are unknown normalized DBMs (Mn+1, . . . ,Mn+n′ are unconstrained)
and fi’s are elementary functions. We are interested in shrunk solutions defined as follows.

I Definition 8. Fix a solution (Mi)i of (1). A shrunk solution of (1) w.r.t. (Mi)i is a triple(
(Mi)i, (Qi)i, δ0

)
, where δ0 > 0 and Qi’s are shrinking matrices such that for all 0 ≤ δ ≤ δ0,

(Mi − δQi)i is a solution of (1). A shrunk solution is called the greatest shrunk solution if
(Qi)i are the least shrinking matrices which define a shrunk solution w.r.t. (Mi)i.

Assume that (1) has a solution and fix one, say (Mi)i. From Lemma 6, there exist matrices
(φi)1≤i≤n of max-plus polynomials s.t. for all shrinking matrices (Qi)i, there exists δ0 > 0
such that Mj − φj((Qi)i) · δ = fj((Mi −Qi · δ)i) for all 0 ≤ δ ≤ δ0 and all 1 ≤ j ≤ n. This
suggests that we study the following fixpoint equation on PSMs Pi’s, where each coefficient
is a fresh parameter and polynomials φi’s are those from Lemma 6 for these Pi’s:

Pi = φi(P1, . . . , Pn, Pn+1, . . . , Pn+n′), ∀1 ≤ i ≤ n. (2)
This is a max-plus equation (like (E)), whose size is polynomial in the size of (1). The
following lemma links the shrunk solutions of (1) with the solutions of (2).

I Lemma 9. Fix any solution (Mi)i of (1) and consider max-plus polynomial matrices
(φi)1≤i≤n as defined above. Then,

For all shrinking matrices (Qi)i, there exists δ0 > 0 s.t.
(
(Mi)i, (Qi)i, δ0

)
is a shrunk

solution of (1) if, and only if, (Qi)i is a solution of (2) in N.(
(Mi)i, (Qi)i, δ0) is the greatest shrunk solution of (1) iff (Qi)i is the least solution of (2).
If (2) has a solution (Qi)i where Qn+1, . . . , Qn+n′ have positive coefficients (except for
0 on the diagonal), then for any matrices Rn+1, . . . , Rn+n′ in MC+1(N>0), (2) with
the additional constraints Pn+i = Rn+i for all 1 ≤ i ≤ n′ has a least shrunk solution,
computable in polynomial time.

Notice that by Lemma 9, one can also decide the existence of a solution of (2), where
all Qn+1, . . . , Qn+n′ are positive shrinking matrices: it suffices to add to (2) the equalities
Qn+i = 1, where 1 is the matrix with 1’s everywhere except for 0’s on the diagonal.

5 Deciding shrinkability

We now apply the results we developed in previous sections to shrinkability. We fix a
non-blocking timed automaton A = (L, l0, C,Σ, E). We assume that all edges of A have
distinct labels, and identify edges with their labels. This is harmless for our purpose since
we compare an automaton to its shrinking that has the same structure. For any edge with
label σ ∈ Σ and guard gσ, let Gσ be the DBM that represents JgσK, and Rσ the reset set.

5.1 Shrinkability w.r.t. simulation.
Thanks to the hypothesis on distinct edge labels, the simulator sets of regions (l, r) in JAK
can be expressed by the following fixpoint equation:

JMl,rK =
⋂
σ∈Σ

⋂
(l,r)

σ==⇒(l′,r′)

Pretime(UnresetRσ (JMl′,r′K) ∩ JGσK), (3)

FSTTCS 2011

98 Shrinking Timed Automata

for all (l, r) ∈ R(A), where (Ml,r)l,r are the unknown DBMs. In the greatest solution,
each Ml,r represents the simulator set of region (l, r) in JAK. Consider the greatest solution
(Ml,r)l,r ∪ (Gσ)σ, where we see Gσ’s as a part of the solution. Let (l0,~0) denote the initial
state of R(A). Solving shrinkability means deciding whether (3) has a shrunk solution with
respect to (Ml,r)l,r ∪ (Gσ)σ, such that Ml0,~0 is shrunk to a zone that contains ~0 (since (l0,~0)
is the initial state of any shrinking of A). For any shrinking matrix Pl0,~0, it can be checked in
polynomial time whether ~0 belongs to JMl0,~0 − δPl0,~0K for sufficiently small δ. Now, if there
is a shrunk solution to (3), then for any positive shrinking matrices (Kσ)σ Lemma 9 provides
a (greatest) shrunk solution where the shrinking matrices for (Gσ)σ are fixed to (Kσ)σ.
In particular, shrinkability w.r.t. simulation does not depend on how much guards are
shrunk: either all positive integer vectors k witness the shrinkability of A (into A−kδ), or A
is not shrinkable w.r.t. simulation for any value of k.

The simulator sets Ml,r can be computed in exponential time ([18]), and Equation (3) has
size polynomial in the size of these sets. By Lemma 9, the overall complexity is in EXPTIME.

5.2 Shrinkability w.r.t. non-blockingness.
Since automaton A is non-blocking, (Gσ)σ satisfies the following equation.

∀σ ∈ Σ, JGσK ⊆
⋃

σ′:(σ,σ′)∈ΣE◦E

UnresetRσ (Pretime(JGσ′K)), (4)

where we let ΣE◦E = {(σ, σ′) | ∃l, l′, l′′ ∈ L, l σ−→ l′
σ′−→ l′′ ∈ E}, that is the set of pairs of

labels of consecutive transitions in A. We rewrite this equivalently as follows.
∀σ ∈ Σ, JGσK =

⋃
σ′:(σ,σ′)∈ΣE◦E

UnresetRσ (Pretime(JGσ′K)) ∩ JGσK, (5)

Now, A is shrinkable w.r.t. non-blockingness if, and only if, this equation has a shrunk
solution w.r.t. (Gσ)σ. We can unfortunately not directly use our general results on shrunk
solutions since our equation contains a union. We instead apply transformations to this
equation in order to remove the union. We start by rewriting the above equation as follows:

∀σ ∈ Σ, JGσK =
⋃

σ′:(σ,σ′)∈ΣE◦E

JMσ,σ′K, JMσ,σ′K = UnresetRσ (Pretime(JGσ′K))∩ JGσK.

(6)
Fix a solution (Gσ)σ ∪ (Mσ,σ′)σ,σ′ , which exists again by the non-blockingness assumption.
We solve the max-plus equation corresponding to the right part of (6) by Lemma 9, but we
will add to this equation some inequalities which “encode" the left part of (6). We use the
following technical lemma to choose these inequalities.

I Lemma 10. Let C1, . . . , Cb and D be normalized DBMs s.t. JDK =
⋃

1≤i≤bJCiK and
P1, . . . , Pb and Q shrinking matrices s.t. for some δ0 > 0, D − δQ and Ci − δPi are
normalized for all δ ∈ [0, δ0]. Then, one can decide the existence of (and then compute) some
δ1 > 0 s.t. JD − δQK = ∪1≤i≤bJCi − δPiK for all 0 < δ < min(δ0, δ1), in polynomial space
and in time O(|C0|2bp(|A|)), where p(·) is a polynomial.

Moreover, in this case, for all shrinking matrices Q′, P ′1, . . . , P ′b s.t. Qx,y ./ (Pi)x,y ⇔
Q′x,y ./ (P ′i)x,y and (Pi)x,y ./ (Pj)x,y ⇔ (P ′i)x,y ./ (P ′j)x,y for all i, j ∈ {1, . . . , b}, x, y ∈ C0
and ./ ∈ {<,=}, it holds JD − δQ′K = ∪1≤i≤bJCi − δP ′i K for all small enough δ > 0.

Note that checking equality between a zone and a union of zones is a difficult problem; some
heuristics were suggested in [13]. The second point of the lemma says that the satisfaction
of the left part of (6) by a shrunk solution only depends on the relative ordering of the

O. Sankur, P. Bouyer, and N. Markey 99

`1 `2 `3 `4
σ1,y≤1∧0≤u

y,u:=0

σ2,y≤1∧1≤x∧0≤u

x,u:=0

σ3,1≤y∧0≤u

y,u:=0

σ4,x,y,u:=0

Figure 3 A shrinkable timed automaton. One can in fact shrink guards gσi into g′σ1 = 3δ ≤
x ∧ y ≤ 1 − δ ∧ y − x ≤ 1 − 4δ ∧ f(δ), g′σ2 = 1 + δ ≤ x ∧ y ≤ 1 − 2δ ∧ 3δ ≤ x − y ∧ f(δ) and
g′σ3 = y ≤ 1− δ ∧ f(δ), where f(δ) = δ ≤ u ∧ y − u ≤ 1− 2δ, The resulting shrunk automaton can
be seen to be non-blocking and time-abstract similar to A for any δ ∈ [0, 1

4]. Notice how additional
constraints appear in the guards.

coefficients of the shrinking matrices. Therefore, we only need to guess the ordering between
all parameters (there is at least one if there exists a shrunk solution), and solve the right
part of (6) augmented with these guessed (in)equalities.

Formally, let Φ be the max-plus equation corresponding to the right part of (6), as given
by Lemma 9. Let k′ denote the set of all parameters that appear in Φ (there is one parameter
per element of each matrix Gσ and Mσ,σ′). Notice that k′ has size O

(
(|C0| · |L| · b)2), where

b is the maximal number of outgoing edges in A, and that Φ has size polynomial in the size
of A. Φ is a conjunction of equations k = φk(k′) for all k ∈ k′. For all pairs k, l ∈ k′, we
guess a relation among {<,=, >}, and define equation Φ′ by adding these relations to Φ.
This can be done, for the case k = l, by replacing the constraints on k and l respectively by
k = max(φk(k′), l) and l = max(φk(k′), k), and in the case k > l, by replacing the constraint
on k by k = max(φk(k′), l + 1). Notice that Φ′ is obtained from Φ in polynomial time and
with a polynomial number of guesses. We then solve Φ′ using Theorem 7. If we find a
solution, say (Pσ)σ ∪ (Pσ,σ′)σ,σ′ , we verify that JGσ− δPσK = ∪σ′JMσ,σ′ − δPσ,σ′K for small δ,
for all pairs (σ, σ′) ∈ ΣE◦E , in time O(|C0|2bp(|A|)) and in polynomial space by Lemma 10.
We accept if all verifications succeed and reject otherwise. If accepted, any solution provides
a shrunk solution of (6), by Lemma 9. Conversely, if there is a shrunk solution of (6), then,
Φ′ can be constructed for the guesses corresponding to this solution, and by Lemma 10, Φ′
has a solution. If b is fixed, this procedure is in NP. Otherwise, instead of making guesses, we
can deterministically try all possible guesses (the number of possible guesses is O(2(|C|·|L|·b)2)
and verify in polynomial space, so the procedure is then in PSPACE.

Finally, to decide shrinkability, one can first compute parameters k and δ0 for non-
blockingness, then check shrinkability w.r.t. simulation since the latter does not depend on
k and δ0. Figure 3 shows an example of a shrinkable timed automaton.

6 Implementation Semantics

In this section, we present an implementation semantics, which takes into account reaction
times and clock imprecisions. Our semantics corresponds to the execution of timed automata
by a digital system that has a single digital clock and nonzero reaction time. Our semantics
is closely related to the one studied in [15] with minor differences, but we prove additional
properties besides the one given there. We first define our semantics and state its properties,
then compare it with [15], and with other related work.

We describe a system which interacts, via sending and receiving signals, with a physical
environment (e.g. via sensors). We distinguish input and output actions, and define the
transitions of the system taking into account the imprecisions of the clock, the transmission
delay of signals and the reaction time of the system. When an event is generated at time T
by the environment, it is treated by the system at time T + ε, for some ε > 0 which will be

FSTTCS 2011

100 Shrinking Timed Automata

bounded but unpredictable. Similarly, when the environment receives a signal at time T ,
it must have been sent at some time T − ε. We assume that the system ignores any signal
that is received during the treatment of the previous signal; this reaction time will be also
bounded but unpredictable. We define the timestamps of both input and output actions
as the reaction times of the environment, since we are interested in the behaviour of the
environment controlled by a digital timed system.

The implementation semantics has three parameters: a) ∆c is the clock period, b) ∆r is
the maximum reaction time, following each action, c) ∆t is the maximum transmission delay
of signals between the system and the environment (ε above). We suppose the system has a
∆c-periodic clock, whose value, at any real time T , is bT c∆c

= maxk≥0{k∆c | k∆c ≤ T}.

I Definition 11. Let A = (L, `0, C,Σ, E) be a TA with Σ = Σin ∪ Σout, and ∆r,∆c,∆t > 0.
The implementation semantics JAKImpl is the TTS (SA, s0,Σ, E) in which states are tuples
(`, T, v, u0): ` is a location, T ∈ R≥0 the current real time, v ∈ RC≥0 the timestamp of the
latest reset for each clock, and u0 ∈ [0,∆r] the reaction time following the latest location
change. From any state (`, T, v, u0), for any edge ` σ,g,R−−−→ `′ and T ′ ≥ T , we let,

if σ ∈ Σin, (`, T, v, u0) σ(T ′)−−−→ (l′, T ′+ε, v[R← T ′+ε], u′0), whenever bT ′+εc∆c
−bvc∆c

|= g

and T ′ + ε ≥ T + u0, where (ε, u′0) ∈ [0,∆t]× [0,∆r] is chosen non-deterministically,
if σ ∈ Σout, (`, T, v, u0) σ(T ′)−−−→ (`′, T ′, v[R← T ′−ε], u′0), whenever bT ′−εc∆c

−bvc∆c
|= g,

ε < (T ′ − T), and T ′ − ε ≥ T + u0, where (ε, u′0) ∈ [0,∆t] × [0,∆r] is chosen non-
deterministically.

Notice that ε and u0 are bounded by known values but are unpredictable, so they cannot
be chosen by the system. We will consider scheduler functions ρ, which, depending on the
history of a given run, chooses (ε, u0) at each transition. For any scheduler ρ, we denote by
JAKImpl

ρ the implementation semantics, where (ε, u0) is given by ρ at each transition. We will
not formally define ρ here, but it can be done without difficulty.

The following proposition states the relation between the exact semantics and the
implementation semantics of timed automata. All properties hold under any scheduler ρ.
For any TTS T , let us write T ≥α, the TTS obtained from T where consecutive transitions
are separated by at least α time units.

I Proposition 12. Let A be a timed automaton s.t. JAK is non-blocking, and ∆r,∆c,∆t > 0.
Then, for any ∆ ≥ 2∆c + 4∆t + ∆r and scheduler ρ, JA∆KImpl

ρ is non-blocking and,
JAK≥2∆r+∆t v JA∆KImpl

ρ v JA∆+2∆c+4∆t
K.

Now, for any timed automaton A, consider A′ as defined in Section 3.2. We have
JA′−kδK v JA′−kδ+∆KImpl

ρ v JA′−kδ+∆′K v JA′K = JAK,

whenever ∆ ≥ 2∆c + 4∆t + ∆r, ∆′ = ∆ + 2∆c + 4∆t and δ ≥ max(2∆r + ∆t,∆′). In fact,
JA′−kδK

≥2∆r+∆t is equal to JA′−kδK whenever δ ≥ 2∆r + ∆t, and the rightmost simulation is
due to the fact that −kδ + ∆′ < 0. Thus, given appropriate parameters, the implementation
semantics of a shrunk automaton is always a refinement of the exact semantics of the original
automaton. Moreover, when A′ is shrinkable (say, with parameters kδ), then JA′−kδ+∆KImpl

ρ

is also non-blocking and JA′K vt.a. JA′−kδ+∆KImpl
ρ . Thus, the properties of shrinkable timed

automata are preserved in implementation.

6.1 Related Work
A similar semantics, called the program semantics, was defined in [15] and was proven to be
simulated by the enlarged semantics (as in the rightmost simulation in Proposition 12). Our

O. Sankur, P. Bouyer, and N. Markey 101

definition follows their ideas, but the main difference is that our semantics is not input-enabled,
that is, it can ignore signals during the treatment of another signal, and has no buffer. Both
assumptions are applicable to different platforms (see [4, 16] for examples of systems that
ignore any signal unless it is maintained long enough). Moreover, instead of detailing the
reception and the treatment of the signals in several steps, we rather define action transitions
taking a positive unpredictable amount of time, during which computations take place. This
allows us to model the unpredictability using schedulers and state our properties for any
scheduler. Note that two results in Proposition 12 are new compared to [15]: the leftmost
simulation and the preservation of non-blockingness. Another recent work considers the
behaviour of timed automata when actions have long execution times [1] but it assumes
perfect clocks. A different line of work considers the implementability of timed automata
extended with tasks but imprecisions and reaction times are not considered [19].

References
1 T. Abdellatif, J. Combaz, and J. Sifakis. Model-based implementation of real-time applic-

ations. In EMSOFT’10, p. 229–238, New York, NY, USA, 2010. ACM.
2 K. Altisen and S. Tripakis. Implementation of timed automata: An issue of semantics or

modeling? In FORMATS’05, LNCS 3829, p. 273–288. Springer, 2005.
3 R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
4 E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed automata and

digital circuits. In CONCUR’98, LNCS 1466, p. 470–484. Springer, 1998.
5 F. Baccelli et al. Synchronization and Linearity – An Algebra For Discrete Event Systems.

John Wiley & Sons, 1992.
6 J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In Lectures

on Concurrency and Petri Nets, LNCS 2098, p. 87–124. Springer, 2004.
7 G. Berry. The foundations of Esterel. In Proof, Language, and Interaction – Essays in

Honour of Robin Milner, p. 425–454. MIT Press, 2000.
8 P. Bouyer et al. Timed automata can always be made implementable. In CONCUR’11,

LNCS 6901, p. 76–91, Aachen, Germany, 2011. Springer.
9 P. Bouyer, N. Markey, and P.-A. Reynier. Robust model-checking of linear-time properties

in timed automata. In LATIN’06, LNCS 3887, p. 238–249. Springer, 2006.
10 P. Bouyer, N. Markey, and P.-A. Reynier. Robust analysis of timed automata via channel

machines. In FoSSaCS’08, LNCS 4962, p. 157–171. Springer, 2008.
11 F. Cassez, T. A. Henzinger, and J.-F. Raskin. A comparison of control problems for timed

and hybrid systems. In HSCC’02, LNCS 2289, p. 134–148. Springer, 2002.
12 P. Chamuczyński. Algorithms and data structures for parametric analysis of real time

systems. PhD thesis, University of Göttingen, Germany, 2009.
13 A. David et al. Model checking timed automata with priorities using DBM subtraction. In

FORMATS’06, LNCS 4202, p. 128–142. Springer, 2006.
14 M. De Wulf et al. Robust safety of timed automata. Formal Methods in System Design,

33(1-3):45–84, 2008.
15 M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From timed models to

timed implementations. Formal Aspects of Computing, 17(3):319–341, 2005.
16 H. Dierks. PLC-automata: a new class of implementable real-time automata. Theoretical

Computer Science, 253:61–93, 2001.
17 D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. In

AVMFSS’89, LNCS 407, p. 197–212. Springer, 1990.

FSTTCS 2011

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BLMST-concur11.pdf

102 Shrinking Timed Automata

18 M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on finite and
infinite graphs. In FOCS’95, p. 453–462, 1995.

19 T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-triggered language for
embedded programming. In EMSOFT’01, LNCS 2211, p. 166–184. Springer, 2001.

20 T. Hune et al. Linear parametric model checking of timed automata. In TACAS’01, LNCS
2031, p. 189–203. Springer, 2001.

21 R. Jaubert and P.-A. Reynier. Quantitative robustness analysis of flat timed automata. In
FOSSACS’11, LNCS 6604, p. 229–244. Springer, 2011.

22 A. Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems,
10(1-2):87–113, 2000.

23 O. Sankur. Untimed language preservation in timed systems. In MFCS’11, LNCS 6907,
p. 556–567, Warsaw, Poland, 2011. Springer.

24 A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955.

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/OS-mfcs11.pdf

The Quantitative Linear-Time–Branching-Time
Spectrum
Uli Fahrenberg1, Axel Legay1, and Claus Thrane2

1 INRIA/IRISA, Campus de Beaulieu, 35042 Rennes CEDEX, France
2 Department of Computer Science, Aalborg University, 9220 Aalborg Øst,

Denmark

Abstract
We present a distance-agnostic approach to quantitative verification. Taking as input an unspec-
ified distance on system traces, or executions, we develop a game-based framework which allows
us to define a spectrum of different interesting system distances corresponding to the given trace
distance. Thus we extend the classic linear-time–branching-time spectrum to a quantitative set-
ting, parametrized by trace distance. We also provide fixed-point characterizations of all system
distances, and we prove a general transfer principle which allows us to transfer counterexamples
from the qualitative to the quantitative setting, showing that all system distances are mutually
topologically inequivalent.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Quantitative verification, System distance, Distance hierarchy, Linear
time, Branching time

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.103

1 Introduction

For rigorous design and verification of embedded systems, both qualitative and quantitative
information and constraints have to be taken into account [16,18,20]. This applies to the
models considered, to the properties one wishes to be satisfied, and to the verification itself.
Hence the question asked in quantitative verification is not “Does the system satisfy the
requirements?”, but rather “To which extent does the system satisfy the requirements?”
Standard qualitative verification techniques are inherently fragile: either the requirements
are satisfied, or they are not, regardless of how close the actual system might come to the
specification. To overcome this lack of robustness, notions of distance between systems are
essential.

As pointed out in [16], qualitative and quantitative aspects of verification should be treated
orthogonally in any theory of quantitative verification (of course they can hardly be separated
in practice, but that is not of our concern here). The formalism we propose in this paper
addresses this orthogonality by modeling qualitative aspects using standard labeled transition
systems and expressing the quantitative aspects using trace distances, or distances on system
executions. Based on these ingredients, we develop a comprehensive theory of system
distances which generalizes the standard linear-time–branching-time spectrum [12,13, 24] to
a quantitative setting, see Figure 1.

Similarly to [3], our theory relies on Ehrenfeucht-Fraïssé games and allows for a more
refined analysis of systems. More precisely, our parametrized framework forms a hierarchy of
games, for each trace distance used in its instantiation. In the quantitative setting, using
games with real-valued outcomes, as opposed to discrete games, effectively allows us obtain

© U. Fahrenberg, A. Legay, and C. Thrane;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 103–114

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.103
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

104 The Quantitative Linear-Time–Branching-Time Spectrum

∞-nested trace equivalence

2-nested ready equivalence

3-nested trace inclusion

2-nested ready inclusion

2-nested trace equivalence
possible-futures equivalence

1-nested ready equivalence
ready equivalence

2-nested trace inclusion
possible-futures inclusion

1-nested ready inclusion
ready inclusion

1-nested trace equivalence
trace equivalence

1-nested trace inclusion
trace inclusion

∞-nested simulation equivalence
bisimulation

2-nested ready sim. equivalence

3-nested simulation

2-nested ready simulation

2-nested sim. equivalence

1-nested ready sim. equivalence
ready simulation equivalence

2-nested simulation

1-nested ready simulation
ready simulation

1-nested sim. equivalence
simulation equivalence

1-nested simulation
simulation

Figure 1 Parts of the quantitative linear-time–branching-time spectrum. The nodes are the
different system distances introduced in this paper, and an edge d1 −→ d2 indicates that d1(s, t) ≥
d2(s, t) for all states s, t, and that d1 and d2 are topologically inequivalent.

a continuous verdict on the relationship between systems, and hence to detect the difference
between minor and major discrepancies between systems.

Indeed the view of this paper is that in a theory of quantitative verification, the quantitative
aspects should be treated just as much as an input to a verification problem as the qualitative
aspects are. Hence it is of limited use to develop a theory pertaining only to some specific
quantitative measures like the ones in [1, 2, 4, 10,17,22, 23] and other papers which all treat
only a few specific ways of measuring distances; any theory of quantitative verification should
work just as well regardless of the way the engineers decide to measure differences between
system executions.

We take as input a labeled transition system and a trace distance; both are unspecified
except for some general characteristic properties. Based on this information and using the
theory of quantitative games, we lift most of the linear-time–branching-time spectrum of
van Glabbeek [24] to the quantitative setting, while the rest may be obtained in a similar
way using minor additional conditions as described in [3]. We show that all the distinct
equivalences in van Glabbeek’s spectrum correspond to topologically inequivalent distances
in the quantitative setting.

As our framework is independent of the chosen trace distance, we are essentially adding
a second, quantitative, dimension to the linear-time–branching-time spectrum. In this
terminology, the first dimension is the qualitative one which concerns the different linear and

U. Fahrenberg, A. Legay, and C. Thrane 105

branching ways of specifying qualitative constraints, and the second dimension bridges the
gap between the trivial van-Glabbeek spectrum in which everything is equivalent, and the
discrete spectrum in which everything is fragile.

The authors wish to thank Luca Aceto for some insightful comments on a previous version
of this paper. Note that due to space constraints, some proofs had to be omitted.

2 Traces, Trace Distances, and Transition Systems

In this paper, the set N of natural numbers includes 0; the set of positive natural numbers is
denoted by N+. For a finite non-empty sequence a = (a0, . . . , an), we write last(a) = an and
len(a) = n+1 for the length of a; for an infinite sequence a we let len(a) =∞. Concatenation
of finite sequences a and b is denoted a · b. We denote by ak = (ak, ak+1, . . .) and ai the
k-shift, and ith element respectively, of a (finite or infinite) sequence, and by ε the empty
sequence.

A function d : X × X → R≥0 ∪ {∞} on a set X is called a hemimetric if d(x, x) = 0
and d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X. If d is such that d(x, y) = 0 implies
x = y for all x, y ∈ X, it is called a quasimetric. Two hemimetrics d1 and d2 on a set X
are said to be topologically equivalent if the topologies on X generated by the open balls
Bi(x; r) = {y ∈ X | di(x, y) < r}, for i = 1, 2, x ∈ X, and r > 0, coincide. Topological
equivalence hence preserves topological notions such as convergence of sequences: If a
sequence (xj) of points in X converges in one hemimetric, then it also converges in the
other. As a consequence, topological equivalence of d1 and d2 implies that for all x, y ∈ X,
d1(x, y) = 0 if and only if d2(x, y) = 0.

Topological equivalence is the weakest of the common notions of equivalence for metrics;
it does not preserve metric properties such as distances or angles. We are hence mainly
interested in topological equivalence as a tool for showing negative properties; we will later
prove a number of results on topological inequivalence of metrics which imply that any other
reasonable metric equivalence also fails for these cases.

Throughout this paper we fix a set K of labels, and we let K∞ = K∗ ∪Kω denote the set
of finite and infinite traces (i.e. sequences) in K. A hemimetric dT : K∞×K∞ → R≥0∪{∞}
is called a trace distance if len(σ) 6= len(τ) implies dT (σ, τ) =∞. (Note that we hence apply
the asymmetric view on distances as e.g. in [4].)

A labeled transition system (LTS) is a pair (S, T) consisting of states S and transitions
T ⊆ S ×K× S. We often write s x−→ t to signify that (s, x, t) ∈ T . Given e = (s, x, t) ∈ T ,
we write src(e) = s, tgt(e) = t for the source and target of e. For a (finite or infinite) path π
in a LTS we denote by tr(π) ∈ K∞ the trace induced by π. For s ∈ S we denote by Pa(s)
the set of (finite or infinite) paths from s and by Tr(s) = {tr(π) | π ∈ Pa(s)} the set of traces
from s.

2.1 Examples of Trace Distances
We show here a number of trace distances with which our quantitative framework can be
instantiated. Note that each such distance gives rise to its own linear-time–branching-time
spectrum in the quantitative dimension.

Most of the trace distances one finds in the literature are defined by giving a distance on
labels in K and a method to combine these distances on individual symbols to a distance on
traces. Three general methods are used for this combination:

the point-wise trace distance: PWλ(d)(σ, τ) = supj λjd(σj , τj);
the accumulating trace distance: ACCλ(d)(σ, τ) =

∑
j λ

jd(σj , τj);
the limit-average trace distance: AVG(d)(σ, τ) = lim infj 1

j+1
∑j
i=0d(σi, τi).

FSTTCS 2011

106 The Quantitative Linear-Time–Branching-Time Spectrum

Here λ is a discounting factor with 0 < λ ≤ 1, and we assume that the involved traces have
equal length; otherwise any trace distance has value ∞. Note that all trace distances are
parametrized by the label distance d. The point-wise distance thus measures the (discounted)
greatest individual symbol distance in the traces, whereas accumulating and limit-average
distance accumulate these individual distances along the traces.

If the label distance d onK is the discrete distance given by ddisc(x, x) = 0 and ddisc(x, y) =
∞ for x 6= y, then all trace distances above agree, for any λ. This defines the discrete trace
distance dTdisc = PWλ(ddisc) = ACCλ(ddisc) = AVG(ddisc) given by dTdisc(σ, τ) = 0 if σj = τj
for all j, and ∞ otherwise. We will show below that for the discrete trace distance, our
quantitative linear-time–branching-time spectrum specializes to the qualitative one of [24].

If one lets d(x, x) = 0 and d(x, y) = 1 for x 6= y instead, then ACC1(d) is Hamming
distance [14] for finite traces, and ACCλ(d) with λ < 1 and AVG(d) are two sensible ways to
define Hamming distance also for infinite traces. PW1(d) is topologically equivalent to the
discrete distance — PW1(d)(σ, τ) = 1 if and only if dTdisc(σ, τ) =∞.

Point-wise and accumulating distances (for concrete instances of label distances d and
concrete instantiations of K) have been studied in a number of papers [1, 2, 4, 10,17,22,23].
PW1(d) is the point-wise distance from [4,6,10,17,22], and PWλ(d) for λ < 1 is the discounted
distance from [4, 5]. Accumulating distance ACCλ(d) has been studied in [10, 17, 22], and
AVG(d) e.g. in [1,2]. Both ACCλ(d) and AVG(d) are well-known from the theory of discounted
and mean-payoff games [9, 25].

All distances above were obtained from distances on individual symbols in K. A trace
distance for which this is not the case is the maximum-lead distance from [15,22] defined for
K ⊆ Σ×R. Writing x ∈ K as x = (x`, xw), it is given by

dT±(σ, τ) =
{

supj
∣∣∑j

i=0 σ
w
i −

∑j
i=0 τ

w
i

∣∣ if σ`j = τ `j for all j,
∞ otherwise.

As a last example of a trace distance we mention the Cantor distance given by dTC(σ, τ) =
(1 + inf{j | σj 6= τj})−1. Cantor distance hence measures the (inverse) length of the common
prefix of the sequences and has been used for verification e.g. in [7]. Both Hamming and
Cantor distance have applications in information theory and pattern matching.

We will return to our example trace distances in Section 5.2 to show how our framework
may be applied to yield concrete formulations of distances in the linear-time–branching-time
spectrum relative to these.

3 Quantitative Ehrenfeucht-Fraïssé Games

To lift the linear-time–branching-time spectrum to the quantitative setting, we define below
a quantitative Ehrenfeucht-Fraïssé game [8, 11] on a given LTS (S, T) which is similar to the
game hierarchy in [3] and the well-known bisimulation game of [21]. The intuition of the
game is as follows: The two players, with Player 1 starting the game, alternate to choose
transitions, or moves, in T , starting with transitions from given start states s and t and
continuing their choices from the targets of the transitions chosen in the previous step. At
each of his turns, Player 1 also makes a choice whether to choose a transition from the target
of his own previous choice, or from the target of his opponent’s previous choice (to “switch
paths”). We use a switch counter to keep track of how often Player 1 has chosen to switch
paths. Player 2 has then to respond with a transition from the remaining target. This
game is played for an infinite number of rounds, or until one player runs out of choices, thus

U. Fahrenberg, A. Legay, and C. Thrane 107

building two finite or infinite paths. The value of the game is then the trace distance of the
traces of these two paths.

A Player-1 configuration of the game is a tuple (π, ρ,m) ∈ Tn × Tn × N, for n ∈ N,
such that for all i ∈ {0, . . . , n − 2}, either src(πi+1) = tgt(πi) and src(ρi+1) = tgt(ρi), or
src(πi+1) = tgt(ρi) and src(ρi+1) = tgt(πi). Similarly, a Player-2 configuration is a tuple
(π, ρ,m) ∈ Tn+1 × Tn ×N such that for all i ∈ {0, . . . , n− 2}, either src(πi+1) = tgt(πi) and
src(ρi+1) = tgt(ρi), or src(πi+1) = tgt(ρi) and src(ρi+1) = tgt(πi); and src(πn) = tgt(πn−1)
or src(πn) = tgt(ρn−1). The set of all Player-i configurations is denoted Confi.

Intuitively, the configuration (π, ρ,m) keeps track of the history of the game; π stores
the choices of Player 1, ρ the choices of Player 2, and m is the switch counter. Hence π
and ρ are sequences of transitions in T which can be arranged by suitable swapping to form
two paths (π̄,ρ̄). How exactly these sequences are constructed is determined by a pair of
strategies which specify for each player which edge to play from any configuration.

A Player-1 strategy is hence a partial mapping θ1 : Conf1 → T × N such that for all
(π, ρ,m) ∈ Conf1 for which θ1(π, ρ,m) = (e′,m′) is defined,

src(e′) = tgt(last(π)) and m′ = m or m′ = m+ 1, or
src(e′) = tgt(last(ρ)) and m′ = m+ 1.

A Player-2 strategy is a partial mapping θ2 : Conf2 → T ×N such that for all (π · e, ρ,m) ∈
Conf2 for which θ2(π · e, ρ,m) = (e′,m′) is defined, m′ = m, and src(e′) = tgt(last(ρ)) if
src(e) = tgt(last(π)), src(e′) = tgt(last(π)) if src(e) = tgt(last(ρ)). The sets of Player-1 and
Player-2 strategies are denoted Θ1 and Θ2. Note that we only allow Player 1 to switch paths
if he also increases the switch counter.

We can now define what it means to update a configuration according to a strategy: For
θ1 ∈ Θ1 and (π, ρ,m) ∈ Conf1, updθ1(π, ρ,m) is defined if θ1(π, ρ,m) = (e′,m′) is defined,
and then updθ1(π, ρ,m) = (π · e′, ρ,m′). Similarly, for θ2 ∈ Θ2 and (π · e, ρ,m) ∈ Conf2,
updθ2(π · e, ρ,m) is defined if θ2(π · e, ρ,m) = (e′,m′) is defined, and then updθ2(π · e, ρ,m) =
(π · e, ρ · e′,m′).

A pair of states (s, t) ∈ S × S and a pair of strategies (θ1, θ2) ∈ Θ1 × Θ2 induc-
tively determine a sequence (πj , ρj ,mj) of configurations given by (π0, ρ0,m0) = (s, t, 0),
(π2j+1, ρ2j+1,m2j+1) = updθ1(π2j , ρ2j ,m2j) and (π2j , ρ2j ,m2j) = updθ2(π2j−1, ρ2j−1,m2j−1);
the sequence is understood to finish as soon as one of the updates is undefined.

The configurations in this sequence satisfy πj v πj+1, ρj v ρj+1 for all j, where v
denotes prefix ordering, hence the limits π = lim−→πj , ρ = lim−→ ρj exist (as potentially infinite
paths). By our conditions on configurations, the pair (π, ρ) in turn determines a pair (π̄, ρ̄)
of paths in S, as follows:

(π̄1, ρ̄1) =
{

(π1, ρ1) if src(π1) = s

(ρ1, π1) if src(π1) = t
(π̄j , ρ̄j) =

{
(πj , ρj) if src(πj) = tgt(π̄j−1)
(ρj , πj) if src(πj) = tgt(ρ̄j−1)

The outcome of the game when played from (s, t) according to a strategy pair (θ1, θ2)
is out(θ1, θ2)(s, t) = (π̄, ρ̄), and its utility is util(θ1, θ2)(s, t) = dT (tr(out(θ1, θ2)(s, t))) =
dT (tr(π̄), tr(ρ̄)), where dT is given as a parameter to the game. The objective of Player 1 in
the game is to maximize utility, whereas Player 2 wants to minimize it. Hence we define the
value of the game from (s, t) to be

v(s, t) = sup
θ1∈Θ1

inf
θ2∈Θ2

util(θ1, θ2)(s, t).

For a given subset Θ′1 ⊆ Θ1 we will write

v(Θ′1)(s, t) = sup
θ1∈Θ′

1

inf
θ2∈Θ2

util(θ1, θ2)(s, t),

FSTTCS 2011

108 The Quantitative Linear-Time–Branching-Time Spectrum

and if we need to emphasize dependency of the value on the given trace distance, we write
v(dT ,Θ′1). The following lemma states the immediate fact that if Player 1 has fewer strategies
available, the game value decreases.

I Lemma 1. For all Θ′1 ⊆ Θ′′1 ⊆ Θ1 and all s, t ∈ S, v(Θ′1)(s, t) ≤ v(Θ′′1)(s, t).

In the following we will need two technical conditions on strategies and on trace dis-
tances. We say that a strategy θ1 ∈ Θ1 is uniform if it holds for all configurations
(π, ρ,m), (π, ρ′,m), (π′, ρ,m) ∈ Conf1 that whenever θ1(π, ρ,m) = (e′,m′) is defined,

if src(e′) = tgt(π), then also θ1(π, ρ′,m) is defined, and
if src(e′) = tgt(ρ), then also θ1(π′, ρ,m) is defined.

Uniformity of strategies is used to combine paths built from different starting states in the
proof of Proposition 2 below. A subset Θ′1 ⊆ Θ1 is uniform if all strategies in Θ′1 are uniform;
the concrete strategy subsets we will consider in later sections will all be uniform.

We say that a trace distance dT is well-behaved if supθ1∈Θ1 infθ2∈Θ2 util(θ1, θ2)(s, t) =
infθ2∈Θ2 supθ1∈Θ1 util(θ1, θ2)(s, t) for all s, t ∈ S. This assumption is related to determinacy
of the quantitative path-building game, asserting that each pair of states has a value, and
ultimately to determinacy of Gale-Steward games [19]. Note that if it holds, then so does
the same equation with Θ1 replaced by any subset Θ′1 ⊆ Θ1.

We finish this section by showing that under certain conditions, the game value is
a distance, and that results concerning inequalities in the qualitative dimension can be
transfered to topological inequivalences in the quantitative setting. Say that a Player-1
strategy θ1 ∈ Θ1 is non-switching if it holds for all (π, ρ,m) for which θ1(π, ρ,m) = (e′,m′) is
defined that m = m′, and let Θ0

1 be the set of non-switching Player-1 strategies. The following
proposition shows that for any uniform strategy subset which contains all non-switching
strategies and any well-behaved trace distance, the value of our quantitative game is a
hemimetric.

I Proposition 2. If Θ′1 ⊆ Θ1 is uniform and Θ0
1 ⊆ Θ′1, and if dT is well-behaved, then v(Θ′1)

is a hemimetric on S.

Next we show a powerful transfer principle which allows us to generalize counterexamples
regarding the equivalences in the qualitative linear-time–branching-time spectrum [24] to the
qualitative setting. We will make use of this principle later to show that all distances we
introduce are topologically inequivalent.

I Theorem 3 (Transfer principle). Assume the LTS (S, T) to be finitely branching and
dT to be a well-behaved quasimetric, and let Θ′1,Θ′′1 ⊆ Θ1. If there exist s, t ∈ S for
which v(dTdisc,Θ′1)(s, t) = 0 and v(dTdisc,Θ′′1)(s, t) = ∞, then v(dT ,Θ′1) and v(dT ,Θ′′1) are
topologically inequivalent.

Proof. By v(dTdisc,Θ′1)(s, t) = 0, and as (S, T) is finitely branching, we know that for any
θ1 ∈ Θ′1 there exists θ2 ∈ Θ2 for which (π̄, ρ̄) = out(θ1, θ2)(s, t) satisfy tr(π̄) = tr(ρ̄), hence
also v(dT ,Θ′1)(s, t) = 0. Conversely, and as dT is a quasimetric, v(dT ,Θ′′1)(s, t) = 0 would
imply that also v(dTdisc,Θ′′1)(s, t) = 0, hence we must have v(dT ,Θ′′1)(s, t) 6= 0, entailing
topological inequivalence. J

4 The Distance Spectrum

In this section we introduce the distances depicted in Figure 1 and show their mutual
relationship. Note again that the results obtained here are independent of the particular

U. Fahrenberg, A. Legay, and C. Thrane 109

trace distance considered; in the terminology of the introduction we are developing a linear-
time–branching-time spectrum at every point of the quantitative dimension. In order to
capture the remaining equivalences in the original spectrum [24], we may easily adopt the
approach from [3] which imposes one of three extra conditions which Player 1 may choose to
invoke and thereby terminate the game.

Let (S, T ⊆ S ×K× S) be a LTS and dT : K∞ ×K∞ → R≥0 ∪ {∞} a trace distance.

4.1 Branching Distances
If the switching counter in the game introduced in Section 3 is unbounded, Player 1 can
choose at any move whether to prolong the previous choice or to switch paths, hence this
resembles the bisimulation game [21].

I Definition 4. The bisimulation distance between s and t is dbisim(s, t) = v(s, t).

Note again that bisimulation distance, and indeed all distances defined in this section,
are parametrized by the trace distance dT .

I Theorem 5. For dT = dTdisc the discrete trace distance, dbisimdisc (s, t) = 0 iff s and t are
bisimilar.

Proof. By discreteness of dTdisc, we have dbisimdisc (s, t) = 0 if and only if it holds that for all
θ1 ∈ Θ1 there exists θ2 ∈ Θ2 for which util(θ1, θ2)(s, t) = 0. Hence for each reachable Player-1
configuration (π, ρ,m) with θ1(π, ρ,m) = (e′,m′), we have θ2(π · e′, ρ,m′) = (e′′,m′) with
tr(e′) = tr(e′′), i.e. Player 2 matches the labels chosen by Player 1 precisely, implying that s
and t are bisimilar. The proof of the other direction is trivial. J

We can restrict the strategies available to Player 1 by allowing only a pre-defined finite
number of switches:

Θk-sim
1 = {θ1 ∈ Θ1 | if θ1(π, ρ,m) = (e′,m′) is defined, then m′ ≤ k − 1}

In the so-defined k-nested simulation game, Player 1 is only allowed to switch paths k − 1
times during the game. Note that Θ1-sim

1 = Θ0
1 is the set of non-switching strategies.

I Definition 6. The k-nested simulation distance from s to t, for k ∈ N+, is dk-sim(s, t) =
v(Θk-sim

1)(s, t). The k-nested simulation equivalence distance between s and t is dk-sim-eq(s, t) =
max(v(Θk-sim

1)(s, t), v(Θk-sim
1)(t, s)).

I Theorem 7. For dT = dTdisc the discrete trace distance,
dk-simdisc (s, t) = 0 iff there is a k-nested simulation from s to t,
dk-sim-eq
disc (s, t) = 0 iff there is a k-nested simulation equivalence between s and t.

Especially, d1-sim
disc corresponds to the usual simulation preorder, and d2-sim

disc to nested
simulation. Similarly, d1-sim-eq

disc is similarity, and d2-sim-eq
disc is nested similarity. The proof is

similar to the one of Theorem 5.

I Theorem 8. For all k, ` ∈ N+ with k < ` and all s, t ∈ S,

dk-sim-eq(s, t) ≤ d`-sim(s, t) ≤ d`-sim-eq(s, t) ≤ dbisim(s, t).

If the trace distance dT is a well-behaved quasimetric and the LTS (S, T) is finitely branching,
then all distances above are topologically inequivalent.

FSTTCS 2011

110 The Quantitative Linear-Time–Branching-Time Spectrum

Proof. The first part of the theorem follows from Θk-sim-eq
1 ⊆ Θ`-sim

1 ⊆ Θ`-sim-eq
1 ⊆ Θ1 and

Lemma 1. Topological inequivalence follows from Theorem 3 and the fact that for the
discrete relations corresponding to the distances above (obtained by letting dT = dTdisc), the
inequalities are strict [24]. J

As a variation of k-nested simulation, we can consider strategies which allow Player 1
to switch paths k times during the game, but after the last switch, he may only pose one
transition as a challenge, to which Player 2 must answer, and then the game finishes:

Θk-rsim
1 = {θ1 ∈ Θ1 | if θ1(π, ρ,m) is defined, then m ≤ k − 1}

I Definition 9. The k-nested ready simulation distance from s to t, for k ∈ N+, is
dk-rsim(s, t) = v(Θk-rsim

1)(s, t). The k-nested ready simulation equivalence distance between s
and t is dk-rsim-eq(s, t) = max(v1(Θk-rsim

1)(s, t), v1(Θk-rsim
1)(t, s)).

For the discrete case, only k = 1 seems to have been considered; the proof is again similar
to the one of Theorem 5.

I Theorem 10. For dT = dTdisc the discrete trace distance,
d1-rsim
disc (s, t) = 0 iff there is a ready simulation from s to t,
d1-rsim-eq
disc (s, t) = 0 iff s and t are ready simulation equivalent.

The next theorem finishes our work on the right half of Figure 1; its proof is similar to
the one of Theorem 8.

I Theorem 11. For all k, ` ∈ N+ with k < ` and all s, t ∈ S,

dk-sim(s, t) ≤ dk-rsim(s, t) ≤ d`-sim(s, t), dk-sim-eq(s, t) ≤ dk-rsim-eq(s, t) ≤ d`-sim-eq(s, t).

Additionally, dk-rsim and dk-sim-eq are incomparable, and also dk-rsim-eq and d(k+1)-sim are
incomparable. If the trace distance dT is a well-behaved quasimetric and the LTS (S, T) is
finitely branching, then all distances above are topologically inequivalent.

4.2 Linear Distances
Above we have introduced the distances in the right half of the quantitative linear-time–
branching-time spectrum in Figure 1 and shown the relations claimed in the diagram. To
develop the left half, we need the notion of blind strategies. For any subset Θ′1 ⊆ Θ1 we
define the set of blind Θ′1-strategies by

Θ̃′1 = {θ1 ∈ Θ′1 | ∀π, ρ, ρ′,m : θ1(π, ρ,m) = θ1(π, ρ′,m),
or θ1(π, ρ,m) = (e,m + 1) and tgt(last(ρ)) 6= tgt(last(ρ′))}.

Hence in such a blind strategy, either the edge chosen by Player 1 does not depend on the
choices of Player 2, or the switch counter is increased, in which case the Player-1 choice only
depends on the target of the last choice of Player 2. Now we can define, for s, t ∈ S and
k ∈ N+,

the ∞-nested trace equivalence distance: d∞-trace-eq(s, t) = v1(Θ̃1)(s, t),
the k-nested trace distance: dk-trace(s, t) = v1(Θ̃k-sim

1)(s, t),
the k-nested trace equivalence distance:

dk-trace-eq(s, t) = max(v1(Θ̃k-sim
1)(s, t), v1(Θ̃k-sim

1)(t, s)),
the k-nested ready distance: dk-ready(s, t) = v1(Θ̃k-rsim

1)(s, t), and

U. Fahrenberg, A. Legay, and C. Thrane 111

the k-nested ready equivalence distance:
dk-ready-eq(s, t) = max(v1(Θ̃k-rsim

1)(s, t), v1(Θ̃k-rsim
1)(t, s)).

Using the discrete trace distance, we recover the following standard relations [24].

I Theorem 12. For dT = dTdisc the discrete trace distance and s, t ∈ S we have
d1-trace
disc (s, t) = 0 iff there is a trace inclusion from s to t,
d1-trace-eq
disc (s, t) = 0 iff s and t are trace equivalent,
d2-trace
disc (s, t) = 0 iff there is a possible-futures inclusion from s to t,
d2-trace-eq
disc (s, t) = 0 iff s and t are possible-futures equivalent,
d1-ready
disc (s, t) = 0 iff there is a readiness inclusion from s to t,
d1-ready-eq
disc (s, t) = 0 iff s and t are ready equivalent.

The following theorem entails all relations in the left side of Figure 1; the right-to-left
arrows follow from the strategy set inclusions Θ̃′1 ⊆ Θ′1 for any Θ′1 ⊆ Θ1 and Lemma 1. As
with Theorems 8 and 11, the theorem follows by strategy set inclusion, Theorem 3, and
corresponding results for the discrete relations.

I Theorem 13. For all k, ` ∈ N+ with k < ` and s, t ∈ S,

dk-trace-eq(s, t) ≤ d`-trace(s, t) ≤ d`-trace-eq(s, t) ≤ d∞-trace-eq(s, t),
dk-trace(s, t) ≤ dk-ready(s, t) ≤ d`-trace(s, t),
dk-trace-eq(s, t) ≤ dk-ready-eq(s, t) ≤ d`-trace-eq(s, t).

Additionally, dk-ready and dk-trace-eq are incomparable, and also dk-ready-eq and d(k+1)-trace

are incomparable. If the trace distance dT is a well-behaved quasimetric and the LTS (S, T)
is finitely branching, then all distances above are topologically inequivalent.

5 Recursive Characterizations

Now we turn our attention to an important special case in which the given trace distance has
a specific recursive characterization; we show that, in this case, all distances in the spectrum
can be characterized as least fixed points. We will see in Section 5.2 that this can be applied
to all examples of trace distances mentioned in Section 2.1. Note that all theorems require
the LTS in question to be finitely branching; this is a standard assumption which goes back
to [21] and is also necessary in our case.

5.1 Fixed-Point Characterizations
Let L be a complete lattice with order v and bottom and top elements ⊥, >. Let f :
K
∞ × K∞ → L, g : L → R≥0 ∪ {∞}, F : K × K × L → L such that dT = g ◦ f , g is

monotone, F (x, y, ·) : L→ L is monotone for all x, y ∈ K, and

f(σ, τ) =

F (σ0, τ0, f(σ1, τ1)) if σ, τ 6= ε,

> if σ = ε, τ 6= ε or σ 6= ε, τ = ε,

⊥ if σ = τ = ε

(1)

for all σ, τ ∈ K∞.
We hence assume that dT has a recursive characterization (using F) on top of an arbitrary

lattice L which we introduce between K∞ and R≥0 ∪ {∞} to serve as a memory.

FSTTCS 2011

112 The Quantitative Linear-Time–Branching-Time Spectrum

I Theorem 14. The endofunction I on (N+ ∪ {∞})× {1, 2} → LS×S defined by

I(hm,p)(s, t) =

max

sup
s

x−→s′

inf
t

y−→t′
F (x, y, hm,1(s′, t′))

sup
t

y−→t′
inf
s

x−→s′

F (x, y, hm−1,2(s′, t′))
if m ≥ 2, p = 1

sup
s

x−→s′

inf
t

y−→t′
F (x, y, hm,1(s′, t′)) if m = 1, p = 1

max

sup
t

y−→t′
inf
s

x−→s′

F (x, y, hm,2(s′, t′))

sup
s

x−→s′

inf
t

y−→t′
F (x, y, hm−1,1(s′, t′))

if m ≥ 2, p = 2

sup
t

y−→t′
inf

st
x−→s′

F (x, y, hm,2(s′, t′)) if m = 1, p = 2

has a least fixed point h∗ : (N+ ∪ {∞}) × {1, 2} → LS×S, and if the LTS (S, T) is finitely
branching, then dk-sim = g ◦ h∗k,1, dk-sim-eq = g ◦max(h∗k,1, h∗k,2) for all k ∈ N+ ∪ {∞}.

Hence I iterates the function h over the branching structure of (S, T), computing all
nested branching distances at the same time. Note the specialization of this to simulation
distance, where we have the following fixed-point equation, using h∗1,1 = h1-sim:

h1-sim(s, t) = sup
s

x−→s′

inf
t

y−→t′
F (x, y, h1-sim(s′, t′))

An equally compact expression may be derived for bisimulation distance, and similar theorems
for all the other distances in the quantitative linear-time–branching-time spectrum can also
be derived.

The fixed-point characterizations above immediately lead to iterative algorithms for
computing the respective distances: to compute e.g. simulation distance, we can initialize
h1-sim(s, t) = 0 for all states s, t ∈ S and then iteratively apply the above equality. This
assumes the LTS (S, T) to be finitely branching and uses Kleene’s fixed-point theorem and
continuity of F . Note however that this computation is only guaranteed to converge to
simulation distance in finitely many steps in case the lattice LS×S is finite.

5.2 Recursive Characterizations for Example Distances
We show that the considerations in Section 5.1 apply to all the example distances we
introduced in Section 2.1. We apply Theorem 14 to derive fixed-point formulas for corre-
sponding simulation distances, but of course all other distances in the quantitative linear-
time–branching-time spectrum have similar characterizations.

Let d be a hemimetric on K, then for all σ, τ ∈ K∞ and 0 < λ ≤ 1,

ACCλ(d)(σ, τ) =

d(σ0, τ0) + λACCλ(d)(σ1, τ1)) if σ, τ 6= ε,

∞ if σ = ε, τ 6= ε or σ 6= ε, τ = ε,

0 if σ = τ = ε,

hence we can apply the iteration theorems with lattice L = R≥0 ∪ {∞}, g = id the identity
function, and the recursion function F given like the formulas above. Using Theorem 14 we
can e.g. derive the following fixed-point expression for simulation distance:

ACCλ(d)1-sim(s, t) = sup
s

x−→s′

inf
t

y−→t′
(d(x, y) + λACCλ(d)1-sim(s′, t′))

U. Fahrenberg, A. Legay, and C. Thrane 113

Similar considerations apply to the point-wise distances, with “+” replaced by “max”.
Incidentally, these are exactly the expressions introduced, in an ad-hoc manner, in [4, 10, 22].

Also note that if S is finite with |S| = n, then undiscounted point-wise distance PW1(d)
can only take on the finitely many values {d(x, y) | (s, x, s′), (t, y, t′) ∈ T}, hence the fixed-
point algorithm given by Kleene’s theorem converges in at most n2 steps. This algorithm is
used in [4,6,17]. For undiscounted accumulating distance ACC1(d), it can be shown [17] that
with D = max{d(x, y) | (s, x, s′), (t, y, t′) ∈ T}, distance is either infinite or bounded above
by 2n2D, hence also here the algorithm either converges in at most 2n2D steps or diverges.

For the limit-average distance AVG(d), we let L = (R≥0 ∪ {∞})N, g(h) = lim infj h(j),
and f(σ, τ)(j) = 1

j+1
∑j
i=0 d(σi, τi) the j-th average. The intuition is that L is used for

“remembering” how long in the traces we have progressed with the computation. With F
given by F (x, y, h)(n) = 1

n+1d(x, y) + n
n+1h(n− 1) it can be shown that (1) holds, giving the

following fixed-point expression for limit-average simulation distance:

h1-sim
n (s, t) = sup

s
x−→s′

inf
t

y−→t′

(1
n+1d(x, y) + n

n+1h
1-sim
n−1 (s′, t′)

)
For the maximum-lead distance, we let L = (R≥0 ∪ {∞})R, the lattice of mappings

from leads to maximum leads. Using the notation from Section 2.1, we let g(h) = h(0) and
f(σ, τ)(δ) = max(|δ|, supj |δ +

∑j
i=0 σ

w
i −

∑j
i=0 τ

w
j |) the maximum-lead distance between σ

and τ assuming that σ already has a lead of δ over τ . With F (x, y, h)(δ) = max(|δ + x−
y|, h(δ + x − y)) it can be shown that (1) holds, and then the fixed-point expression for
maximum-lead simulation distance becomes the one given in [15]:

h1-sim(δ)(s, t) = sup
s

x−→s′

inf
t

y−→t′
max(|δ + x− y|, h1-sim(s′, t′)(δ + x− y))

It can be shown [15] that for S finite with |S| = n and D = max{d(x, y) | (s, x, s′), (t, y, t′) ∈
T}, the iterative algorithm for computing maximum-lead distance either converges in at
most 2n2D steps or diverges.

Regarding Cantor distance, a useful recursive formulation is f(σ, τ)(n) = f(σ1, τ1)(n+ 1)
if σ0 = τ0 and n otherwise, which iteratively counts the number of matching symbols in σ
and τ . Here we use L = (R≥0 ∪ {∞})N, and g(h) = 1

h(0) ; note that the order on L has to be
reversed for g to be monotone. The fixed-point expression for Cantor simulation distance
becomes

h1-sim
n (s, t) = max(n, sup

s
x−→s′

inf
t

x−→t′
h1-sim
n+1 (s′, t′))

but as the order on L is reversed, the sup now means that Player 1 is trying to minimize this
expression, and Player 2 tries to maximize it. Hence Player 2 tries to find maximal matching
subtrees; the corresponding Cantor simulation equivalence distance between s and t hence is
the inverse of the maximum depth of matching subtrees under s and t.

References

1 Pavol Černý, Thomas A. Henzinger, and Arjun Radhakrishna. Simulation distances. In
CONCUR, volume 6269 of LNCS, pages 253–268. Springer, 2010.

2 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Transactions on Computational Logic, 11(4), 2010.

3 Xin Chen and Yuxin Deng. Game characterizations of process equivalences. In APLAS,
volume 5356 of LNCS, pages 107–121. Springer, 2008.

FSTTCS 2011

114 The Quantitative Linear-Time–Branching-Time Spectrum

4 Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and branching system metrics.
IEEE Transactions on Software Engineering, 35(2):258–273, 2009.

5 Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Discounting the future in
systems theory. In ICALP, volume 2719 of LNCS, pages 1022–1037. Springer, 2003.

6 Josée Desharnais, François Laviolette, and Mathieu Tracol. Approximate analysis of prob-
abilistic processes. In QEST, pages 264–273. IEEE Computer Society, 2008.

7 Laurent Doyen, Thomas A. Henzinger, Axel Legay, and Dejan Ničković. Robustness of
sequential circuits. In ACSD, pages 77–84. IEEE Computer Society, 2010.

8 Andrzej Ehrenfeucht. An application of games to the completeness problem for formalized
theories. Fundamenta Mathematicae, 49:129–141, 1961.

9 Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games. In-
ternational Journal of Game Theory, 8:109–113, 1979.

10 Uli Fahrenberg, Kim G. Larsen, and Claus Thrane. A quantitative characterization of
weighted Kripke structures in temporal logic. Computing and Informatics, 29(6+):1311–
1324, 2010.

11 Roland Fraïssé. Sur quelques classifications des systèmes de relations. Publications Scien-
tifiques de l’Université d’Alger, Série A, 1:35–182, 1954.

12 David de Frutos Escrig and Carlos Gregorio Rodríguez. (Bi)simulations up-to characterise
process semantics. Information and Computation, 207(2):146–170, 2009.

13 David de Frutos Escrig, Carlos Gregorio Rodríguez, and Miguel Palomino. On the unifica-
tion of process semantics: Equational semantics. In MFPS, volume 249 of ENTCS, pages
243–267. Elsevier, 2009.

14 Richard W. Hamming. Error detecting and error correcting codes. Bell System Technical
Journal, 29:147–160, 1950.

15 Thomas A. Henzinger, Rupak Majumdar, and Vinayak Prabhu. Quantifying similarities
between timed systems. In FORMATS, volume 3829 of LNCS, pages 226–241. Springer,
2005.

16 Thomas A. Henzinger and Joseph Sifakis. The embedded systems design challenge. In FM,
volume 4085 of LNCS, pages 1–15. Springer, 2006.

17 Kim G. Larsen, Uli Fahrenberg, and Claus Thrane. Metrics for weighted transition systems:
Axiomatization and complexity. Theoretical Computer Science, 412(28):3358–3369, 2011.

18 Edward A. Lee. Absolutely positively on time: What would it take? IEEE Computer,
38(7):85–87, 2005.

19 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
20 John A. Stankovic, Insup Lee, Aloysius K. Mok, and Raj Rajkumar. Opportunities and

obligations for physical computing systems. IEEE Computer, 38(11):23–31, 2005.
21 Colin Stirling. Modal and temporal logics for processes. In Banff Higher Order Workshop,

volume 1043 of LNCS, pages 149–237. Springer, 1995.
22 Claus Thrane, Uli Fahrenberg, and Kim G. Larsen. Quantitative analysis of weighted

transition systems. Journal of Logic and Algebraic Programming, 79(7):689–703, 2010.
23 Franck van Breugel. A behavioural pseudometric for metric labelled transition systems. In

CONCUR, volume 3653 of LNCS, pages 141–155. Springer, 2005.
24 Rob J. van Glabbeek. The linear time – branching time spectrum I. In Handbook of Process

Algebra, Chapter 1, pages 3–99. Elsevier, 2001.
25 Uri Zwick and Michael Paterson. The complexity of mean payoff games. In Computing and

Combinatorics, volume 959 of LNCS, pages 1–10. Springer, 1995.

Isomorphism testing of read-once functions and
polynomials
Raghavendra Rao B.V.1 and Jayalal Sarma M.N.2

1 Department of Computer Science, Saarland University
bvrr@cs.uni-saarland.de

2 Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India
jayalal@cse.iitm.ac.in

Abstract
In this paper, we study the isomorphism testing problem of formulas in the Boolean and arith-
metic settings. We show that isomorphism testing of Boolean formulas in which a variable is
read at most once (known as read-once formulas) is complete for log-space. In contrast, we ob-
serve that the problem becomes polynomial time equivalent to the graph isomorphism problem,
when the input formulas can be represented as OR of two or more monotone read-once formulas.
This classifies the complexity of the problem in terms of the number of reads, as read-3 formula
isomorphism problem is hard for coNP.

We address the polynomial isomorphism problem, a special case of polynomial equivalence
problem which in turn is important from a cryptographic perspective [19, 16]. As our main result,
we propose a deterministic polynomial time canonization scheme for polynomials computed by
constant-free read-once arithmetic formulas. In contrast, we show that when the arithmetic
formula is allowed to read a variable twice, this problem is as hard as the graph isomorphism
problem.

1998 ACM Subject Classification F.2.1 [Numerical Algorithms and Problems] – Computations
on polynomials, F.1.3 [Complexity Measures and Classes], F.2.3 [Tradeoffs between Complexity
Measures]

Keywords and phrases Computational Complexity, Boolean Isomorphism, Read Once Polyno-
mials

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.115

1 Introduction

Computational isomorphism problems between various mathematical structures has intrigu-
ing computational complexity (see [6] for a survey). An important example, the Graph
Isomorphism(GI) problem asks : given two graphs G1(V1, E1) and G2(V2, E2) decide if there
is a bijection σ : V1 → V2 such that (u, v) ∈ E1 ⇐⇒ (σ(u), σ(v)) ∈ E2. This study becomes
more important when the structures are computational models by themselves. Checking
equivalence between programs is undecidable in general, but has useful special cases with
respect to other computational models. We consider isomorphism testing of two important
computational structures: Boolean and arithmetic circuits.

A Boolean formula (also known as an expression) is a natural non-uniform model of
computing a Boolean function. The corresponding isomorphism question is to decide if the
given boolean functions (input as formulas) are equivalent via a bijective transformation of
the variables. This problem is known as the Formula isomorphism (FI for short) problem

© Raghavendra Rao B.V. and Jayalal Sarma M.N.;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 115–126

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.115
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

116 Isomorphism testing of read-once functions and polynomials

in the literature. In general FI is in ΣP2 (i.e. , the second level of the polynomial hierarchy),
and unlikely to be ΣP2 -hard unless the polynomial hierarchy collapses to the third level [2].
Goldsmith et al. [13] showed that FI for monotone formulas is as hard as general case. (See
also [7, 11] for more results on the structure of FI.) Though it can be easily seen that FI is
coNP-hard, an exact complexity characterization for FI is unknown to date.

This situation motivates one to look for special cases of FI that admit efficient algorithms.
The number of reads of each variable in the formula is a restriction. A formula φ is not
satisfiable if and only if it is isomorphic to the constant formula 0. By duplicating variables
and introducing appropriate equivalence clauses, it follows that even when the number of
reads is bounded by 3, FI(in CNF form) is coNP-hard.

We now address the intermediate cases; that is when the number of reads is bounded
by 1 and 2 respectively. The first case, also known as read-once formulas, is a model that
has received a lot of attention in the literature in various contexts, e.g.,[4] obtained efficient
learning algorithms for read-once formulas. We show:

I Theorem 1. Formula isomorphism for read-once formulas is complete for deterministic
logarithmic space.

However, the bound above seems to be tight. If we allow variables to be read twice, then
FI becomes GI-hard even in the most primitive case:

I Theorem 2. Isomorphism testing of OR of two monotone read-once DNF formulas is
complete for GI.

A natural analogue of the formula isomorphism question in the arithmetic world is about
polynomials : given two polynomials p(x1, x2, . . . , xn) and q(x1, x2, . . . , xn) decide if there is
a non-trivial permutation of the variables such that the polynomials are identical under the
permutation. We denote this problem by PI. We assume that polynomials are presented in
the form of arithmetic circuits in the non-black-box setting.

The polynomial isomorphism problem can also be seen as a special case of the well-
studied polynomial equivalence problem (PE for short), where given two polynomials
p(x1, x2, . . . , xn) and q(x1, x2, . . . , xn), decide if there is a non-singular matrix A ∈ Fn×n such
that q(X) = p(AX), where AX = (

∑
j A1,jxj , . . . ,

∑
j An,jxj). The equivalence problem

has survived intense efforts to give deterministic polynomial time algorithms (See [21, 16]).
The lack of progress was explained by a result in [1], which reduces graph isomorphism
problem to equivalence testing of cubic polynomials. The polynomial equivalence problem
is expected to be very challenging and there are cryptographic schemes which are based
on polynomial equivalence problems[19]. More recently Kayal [16, 15] developed efficient
randomized algorithms for equivalence testing for several special classes of polynomials.
Indeed, in the case of isomorphism problem, the matrix A is restricted to be a permutation
matrix. Our next result shows that this specialization does not really simplify the problem
when degree is 3, and in fact the polynomial isomorphism problem for a constant degree d
polynomial also reduces to that of degree 3 polynomials.

I Theorem 3. For any constant d, the polynomial isomorphism problem for degree d poly-
nomials is polynomial time many-one equivalent to testing isomorphism of degree-3 polyno-
mials, which in turn, is polynomial time many-one equivalent to GI.

This shows that the polynomial isomorphism problem is also likely to be hard even when
the polynomial is given explicitly listing down the monomials, and is harder than graph
isomorphism problem. In general, we show that the isomorphism problem of polynomials is
easier than the equivalence problem (over Z,Q,R,C).

R. Rao B.V. and J. Sarma M.N. 117

I Theorem 4. PI polynomial time many-one reduces to PE.

A naive algorithm for this problem would be to guess the permutation and then verify
whether the polynomials are the same under this permutation, which is an instance of the
well-studied polynomial identity testing and can be solved in coRP. Thus the isomorphism
testing problem is in MA. Indeed, the problem is also harder than the polynomial identity
testing problem, because a polynomial is isomorphic to a zero polynomial if and only if
it is identically zero. Thus, derandomizing the above MA algorithm in general to NP will
imply circuit lower bounds[14]. From the above discussion it also follows that polynomial
isomorphism problem is in NP if and only if polynomial identity testing is in NP. Also,
Thierauf [24] showed that if PI(over Q) is NP-hard then PH collapses to Σp2.

This motivates looking at special cases of polynomial isomorphism problem for making
progress. A read-once polynomial is a polynomial f(X) ∈ Z[x1, . . . , xn] that can be computed
by a read-once arithmetic formula. Read-once polynomials have been studied in various
contexts in the literature. Bshouty et. al [10] developed efficient learning algorithms for
read-once polynomials with membership and equivalence queries. (See also [8, 9].) More
recently, Shpilka and Volkovich [22, 23] developed deterministic black-box sub exponential
time algorithms for identity testing of read-once polynomials. In the non-black-box setting
they give a polynomial time algorithm. We show the following for the isomorphism problem
(which is harder than identity testing problem) as our main result.

I Theorem 5. Isomorphism testing for constant-free read-once polynomials can be done in
deterministic polynomial time.

We then extend this to the case of arbitrary coefficients but still constant-free (see The-
orem 14). As in the case of FI, we show that if we allow variables to be read twice then the
polynomial isomorphism problem becomes GI-hard(see Theorem 16.). The structure of the
rest of the paper is as follows. We introduce the basics and prove Theorem 4 in section 2.
We prove Theorem 1 and 2 in section 3, and the main Theorem 5 in section 4.

2 Preliminaries

All the complexity theory notions used in this paper are standard. For more details, reader
is referred to any standard complexity theory book. (See e.g., [5].)

A Boolean formula φ is a directed acyclic graph, where out-degree of every node is
bounded by 1, and the non-leaf nodes are labeled by {∨,∧,¬} and the leaf nodes are labels
by {x1, . . . , xn, 0, 1}, where x1, . . . , xn are Boolean variables. Without loss of generality, we
assume that φ has at most one node of out-degree zero, called the output gate of the formula.
Naturally, with every formula φ, we can associate a Boolean function fφ : {0, 1}n → {0, 1}
defined as the function computed at the output node of the formula. A Boolean circuit is a
generalization of formula wherein the out-degree of every node can be unbounded.

An arithmetic circuit C over a ring F, is a directed acyclic graph where the non-leaf nodes
are labeled by {+,×}, and the leaf nodes are labeled by {x1, . . . , xn}∪F, where x1, . . . , xn are
variables that take values from F, where F is a ring. In this paper we restrict our attention to
cases where F ∈ {Z,R,Q}. Naturally, we can associate a polynomial pg ∈ F[x1, . . . , xn] with
any gate g of the arithmetic circuit C. The polynomial computed by C is the polynomial
associated with the output gate of C. An arithmetic formula is an arithmetic circuit where
the out-degree of every node can be at most one.

A read-once formula (ROF for short), is a Boolean formula in which every variable xi
appears at most once as a leaf label, i.e. , every variable is read at most once. Similarly we

FSTTCS 2011

118 Isomorphism testing of read-once functions and polynomials

can define read-once arithmetic formulas, i.e. , arithmetic formulas where a variable appears
at most once. Polynomials computed by read-once arithmetic formulas are also known as
read-once polynomials (ROPs for short).

A constant-free read-once arithmetic formula is a read-once arithmetic formula, where
the only allowed leaf labels are xi or −xi. A constant-free ROP is a polynomial that can
be computed by constant-free read-once arithmetic formula. A general-constant-free ROP is
an ROP computed by arithmetic read-once formulas with the leaves labeled by aixi, where
ai ∈ Z \ {0}. For computational purposes, we assume that a constant-free ROP is given as
a constant-free read-once formula in the input.

Now we define some notations that are used in Section 4. Let C1, . . . , Ck denote a
collection of ordered tuples. Then sort(C1, . . . , Ck) denotes the lexicographic sorted list of
C1, . . . , Ck. For k > 0, Σk denotes the set of all permutations of a k element set. Let
S1, . . . , Sn ∈ {0, 1}, then parity(S1, . . . , Sn) 4= (

∑n
i=1 Si mod 2); and binary(S1, . . . Sn) 4=∑n

i=1 Si2n−i. For a ∈ Z \ {0}, sgn(a) = 1 if a < 0, and sgn(a) = 0 otherwise.

Isomorphism testing problems : We now define the problems we address in the paper.

Formula Isomorphism(FI): Given two Boolean formulas F1(x1, . . . , xn), and F2(x1, . . . , xn)
on n variables : X = {x1, . . . , xn}, test if there exists a permutation π ∈ Sn, such that the
functions computed by F1(x1, . . . , xn) and F2(xπ(1), . . . , xπ(n)) are the same.

Polynomial Isomorphism(PI): Given two polynomials P,Q ∈ F[x1, . . . , xn], test if there
exists a permutation π ∈ Sn such that P (x1, . . . , xn) = Q(xπ(1), . . . , xπ(n)). PId(F) denotes
the special case when P , and Q are of degree at most d. A notion related to isomorphism
is canonization. A canonical code for polynomials is a function C : F[x1, . . . , xn] → {0, 1}∗
such that C(f) = C(g) if and only if the polynomials f and g are isomorphic.

Polynomial Equivalence(PE): Given two polynomials P,Q ∈ F[x1, . . . , xn], test if there
is a non-singular matrix A = (ai,j) ∈ GL(n,F) such that the polynomials P (x1, . . . , xn) =
Q(y1, . . . , yn) where y1, . . . , yn are obtained by applying the linear transformation defined
by the row-vectors of A, i.e. , yi =

∑n
j=1 ai,jxj .

In general we assume that the input polynomials are given as arithmetic circuits. PEd

denotes the restriction of PE where the input polynomials are of degree d. (See [21] for a
detailed exposition on this problem). The following equivalence was proved in [21].

I Proposition 6 ([21, 20]). GI poly time many-one reduces to PE3.

In general, though PI is a special case of PE where A is restricted to be a permutation
matrix, it is unclear a priori whether PI is easier than PE. We give a reduction from PI to
PE over Z,Q,R, and C, this proves Theorem 4.

Proof of Theorem 4: Let f(X) and g(X) be the two polynomials given as an input
instance of PI, where X = {x1, . . . , xn}. Let d = max{deg(f), n}, m > max{2n, n+ d+ 4},
such that gcd(m− 2n, d+ n+ 4) = 1, and X ′ = X ∪ {y, z}. Define

f ′(X, y, z) 4= f(X) + yd+1x1 · · ·xn + zd+n+2(x1 + · · ·+ xn) + zd+n+4 + yd+1zm; and

g′(X, y, z) 4= g(X) + yd+1x1 · · ·xn + zd+n+2(x1 + · · ·+ xn) + zd+n+4 + yd+1zm

Suppose f(X) ∼= g(X), then clearly f ′(X ′) ∼= g′(X ′). Suppose f ′(X ′) = g′(A′X ′) for
some non-singular matrix A′. We claim that A′ has to be a permutation matrix. By the
degree conditions, A′ sends y to by , and z to cz, where cd+n+4 = 1, and bd+1cm = 1. Also

R. Rao B.V. and J. Sarma M.N. 119

note that y and z both have zero coefficients in A′xi for all i, by the unique factorization of
x1 · · ·xn. Similarly, for all i, A′xi cannot have two non-zero coefficients, again by the degrees
of y and z, and the unique factorization of x1 · · ·xn. The only possibility is, A′ could be
the product of a permutation matrix P and a diagonal matrix D with determinant equal
to 1. Let the i th entry in the diagonal D be λi. Then, zd+n+2A′xi will have coefficient
λic

d+n+2, but in the target polynomial f ′, it has coefficient 1, so λi = c2. This implies
bd+1c2n = 1, and hence cm−2n = 1. As gcd(m− 2n, d+ n+ 4) = 1, c = 1, and hence b = 1,
λi = 1 1 ≤ i ≤ n. Thus, f(X) ∼= g(X) if and only if the polynomials f ′(X ′) and g′(X ′)
are equivalent. Note that f ′(X ′) can be computed by a circuit of size s+ 4d+ 4n+m+ 9,
where s is the size of a circuit computing f(X). This completes the proof.

3 Isomorphism testing of Boolean read-once formulas

For a Boolean read-once formula φ, let G(φ) = (Vφ, Eφ) denote the formula graph of φ as
defined in [4], i.e. , Vφ = {x1, . . . , xn}, and Eφ = {(xi, xj) | LCA(xi, xj) is labeled ∧}, where
LCA(x, y) denotes the least common ancestor of the leaves labeled x and y in φ.

3.1 Logspace characterization : Proof of Theorem 1
Proof. We first argue the upper bound. We argue for the special case of monotone read-
once formulas. Let φ1 and φ2 be two minimal monotone read-once formulas. First observe
that G(φ1) ∼= G(φ2) ⇐⇒ φ1 ∼= φ2. Let F1 (resp. F2) be the minimum read-once formula
computing the same function as φ1 (resp. φ2) by merging consecutive gates of the same type
into one gate of larger fan-in. Construct two trees T1 and T2 from F1 and F2 respectively
as follows. We describe the construction for T1. Treat the formula F1 as a undirected tree
with ∧ gates colored as Red, ∨ gates colored as Blue and the leaf nodes colored as Green.
I Claim 1. G(φ1) ∼= G(φ2) ⇐⇒ T1 ∼= T2.
Assuming the claim, testing whether φ1 ∼= φ2 is equivalent to isomorphism testing of colored
trees. As the latter can be done in deterministic logarithmic space [18], it is enough to prove
the claim.

Proof of the claim. (⇒) Suppose G(φ1) ∼= G(φ2), and σ be such a bijection between the
vertices of G(φ1) and G(φ2). Fix the corresponding map between the leaves of T1 and T2.
For any two leaves x, y of T1, let LCA(x, y) denote the least common ancestor of x and y in
T1. Colors and degrees of LCA(x, y) and LCA(σ(x), σ(y)) are the same. (This follows from
the property of the graphs G(φ1) and G(φ2).) So σ induces a color-preserving isomorphism
between T1 and T2.

(⇐) Let σ be a color preserving isomorphism between T1 and T2. Let π denote the
corresponding bijection between the leaves of T1 and T2 induced by σ. It is sufficient to
argue that G(φ1) = π(G(φ2)). Consider two variables x and y. As color(LCA(x, y)) =
color(LCA(π(x), π(y))), we have (x, y) ∈ E(G(φ1)) ⇐⇒ (π(x), π(y)) ∈ E(G2). This com-
pletes the proof of the Claim. J

The argument above can be extended to the non-monotone case by coloring the leaves of
Tf (resp. Tg) that correspond to positive literals as yellow, and those corresponding to
negative literals as red.

Now we argue the L-hardness. We reduce directed forest reachability (which is known to
be L-complete[12]) to FI. Given the instance (G, s, t) of directed forest reachability where
the task is to check if there is a directed path from s to t, we construct the formula(F) as

FSTTCS 2011

120 Isomorphism testing of read-once functions and polynomials

follows. Ignore the incoming edges to s and outgoing edges from t. Replace s with a variable
x and label every other leaf node with the constant 1. Replace all intermediate nodes by ∧
gates. Label t as the output node. Since G is a directed forest, F will be a formula and is
a read-once formula by construction. Moreover, F will evaluate to x (and hence isomorphic
to the trivial formula x) if and only if there is a directed path from s to t. J

3.2 Larger Number of Reads : Proof of Theorem 2
Naturally, one could hope to extend theorem 1 to boolean formulas that read a variable at
most a constant number of times. Surprisingly, it turns out that if the input formulas are
represented as OR of two monotone read-once formulas, then isomorphism testing becomes
GI hard.

I Lemma 7. GI polynomial time many-one reduces to testing isomorphism of OR of two
monotone read-once formulas given in DNF form.

Proof. The reduction is from GI for bipartite graphs which is as hard as the general GI[17].
For a simple undirected bipartite graph G = (U, V,E), define a formula φ(G) on variables
{xe | e ∈ E} as follows. For every v ∈ U ∪ V , φ(G) contains the term xe1 ∧ xe2 ∧ . . . ∧ xe`
as a minterm, where e1, e2, . . . , e` are the edges that are incident on v in G. i.e. ,

φG =
∨

v∈U∪V

∧
e incident on v

xe =
(∨
u∈U

∧
e incident on u

xe
)
∨
(∨
v∈V

∧
e incident on v

xe
)

(1)

So φ(G) can be written as an OR of two monotone read-once formulas. , G1 ∼= G2 ⇐⇒
φ(G′1) ∼= φ(G′2). This concludes the proof. J

Observe that a monotone boolean formula φ given in DNF form, can also be represented
as a bipartite graph with vertices of one side corresponding to variables of φ and the terms of
φ as vertices on the other side, edge relations is defined with respect to inclusion. Combined
with Lemma 7, this proves Theorem 2.

4 Isomorphism testing of Read-once polynomials

As starting point, observe that the deterministic polynomial identity testing algorithm for
read-once formulas [22] gives an NP upper bound for isomorphism testing of read-once
polynomials. A natural question is to see if the NP upper bound above can be improved to
a polynomial time algorithm. In the following, we provide a polynomial time algorithm for
the isomorphism testing of certain special classes of read-once polynomials. We begin with
the toy case of monotone read-once polynomials f such that f(0) = 0.

I Lemma 8. Isomorphism testing of monotone read-once polynomials that can be computed
by monotone read-once arithmetic formulas with leaves labeled from {x1, . . . , xn}, can be
done in deterministic logarithmic space.

Proof. Let f be a monotone read-once polynomial computed by a monotone read-once
formula φf . Without loss of generality assume that φf is in the minimal form, i.e., inputs
of a × gate are either + gates or variables and that of a + gate are either × gates or
variables. Let Gf = (Vf , Ef) be the undirected graph with Vf = {x1, . . . , xn} and Ef =
{(xi, xj) | LCAφf (xj , xj) is a × gate}. By the definition of Gf , a monomial M =

∏k
j=1 xij

has coefficient 1 in f if and only if the vertices xi1 , . . . , xik form a maximal clique in Gf .
Let Tf denote the underlying (undirected) tree of φf , where a node corresponding to a +
gate is colored blue and that corresponding to a × gate is colored red.

R. Rao B.V. and J. Sarma M.N. 121

Let f and g be two monotone read-once formulas as above. Clearly, f ∼= g ⇐⇒ Gf ∼=
Gg. Now we show that Gf ∼= Gg if and only if Tf is isomorphic to Tg as a colored tree.

Suppose Tf ∼= Tg via a bijection π between the vertices of Tf and Tg. Let σ be the
bijection between the leaves of Tg and Tf induced by π. Then ∀i 6= j, LCAφf (xi, xj) is a ×
gate if and only if LCAφg (xσ(i), xσ(j)) is a × gate. So σ defines an isomorphism between Gf
and Gg.

For the converse direction, suppose f ∼= g. The proof is by induction on the structure of
f and g. The base case is when f and g are single variables, in which case the claim follows.
There are two cases:

Case 1: f and g can be written uniquely as f = f1 + . . . + fk, g = g1 + . . . + gk, where
f ′is and g′is cannot be written as sum of two or more variable disjoint monotone ROP’s.
Then, f ∼= g if and only if there is a permutation σ ∈ Σk such that fi ∼= gσ(i) ⇐⇒ Gfi

∼=
Ggσ(i) ⇐⇒ Tfi

∼= Tgσ(j) , where the last equivalence is available from induction. So, Tf ∼= Tg.
Case 2: f = f1× . . .×fk and g = g1× . . .× gk, where f ′is and g′is cannot be decomposed

into products of two or more variable disjoint ROPs. Then, f ∼= g implies there is a
permutation σ ∈ Σk such that fi ∼= gσ(i). By induction. This implies Tfi ∼= Tgσ(i) , which in
turn implies Tf ∼= Tg. Now the algorithm is obvious: given f and g, compute Tf , and Tg.
Then test if Tf ∼= Tg, using the log-space algorithm for testing isomorphism for trees [18]. J

Our goal now is to extend Lemma 8 to the case of non-monotone read-once polynomials.
Consider a constant-free read-once formula, i.e. , a read-once formula where a leaf is labeled
from {−xi, xi} for some i. An obvious approach would be to use Lemma 8 with an additional
coloring of -ve terms. Then the two representations: f = f1 × f2 × . . . × fk, and g =
(−f1)× (−f2)× f3× . . .× fk will give rise to two non-isomorphic trees whereas f and g are
identical polynomials.

We overcome this by building a canonical code for general constant-free read-once poly-
nomials along the lines of the well-known tree canonization algorithm [3]. Recall that a
canonical code for a polynomial is an object that is unique for every isomorphism class.
Also, note that efficient computation of canonical code for a class of polynomials implies
efficient algorithm for isomorphism testing for that class, though the converse may not be
true in general. For ease of exposition, we give details for the case of constant-free ROPs.
We first observe some simple structural properties of constant-free read-once polynomials
that serves as a foundation for our construction of canonization.

I Proposition 9. A constant-free read-once polynomial f 6= 0 has the following recursive
structure:

f = aixi, where a ∈ {−1, 1}; or
f is of Type-1, i.e., f(X) = f1(X1)+f2(X2)+ . . .+fk(Xk) for a unique k ≥ 2, where f ′is
are constant-free variable disjoint read-once polynomials and X = X1]X2] . . .]Xk.
Also, fi cannot be written as a sum of two or more variable disjoint constant-free ROPs;
or
f is of Type-2, i.e, f(X) = f1(X1)× f2(X2)× . . .× ft(Xt) for a unique t ≥ 2, where f ′is
are constant-free variable disjoint read-once polynomials and X = X1] X2] . . .] Xt.
Also, fi cannot be written as a product of two or more constant-free variable disjoint
ROPs.

The following structural characterization of constant-free ROPs follows from Proposition 9.

I Lemma 10. (a) If f , g are constant-free ROPs of Type-1, i.e. , f = f1 + . . . + fk, g =
g1 + . . . + gk, where fis and gis are constant-free ROPs of Type-2. Then, f ∼= g ⇐⇒
∃σ ∈ Σk fi ∼= gσ(i).

FSTTCS 2011

122 Isomorphism testing of read-once functions and polynomials

(b) If f and g are constant-free ROPs of Type-2, i.e. , f = f1×. . .×fk, and g = g1×. . .×gk,
where fis and gis are constant-free ROPs of Type-1. Then,

f ∼= g ⇐⇒
{
∃σ ∈ Σk, and a1, . . . , ak ∈ {−1, 1} such that fi ∼= aσ(i)gσ(i)
and parity(a1, . . . , ak) = 0.

}
Proof. For (a), suppose f = f1+. . .+fk, and g = g1+. . .+gk. As fis (resp. gis) are variable
disjoint, there is no cancellation of monomials of fis in f , i.e. , every monomial appearing in
fi also appears in f with the same coefficient as in fi. Since each of the fi’s (and gi’s) cannot
be written as a sum of two or more variable disjoint constant-free ROPs we have (a). For (b),
note that converse direction is clear as f1, ..., fk are variable disjoint. Suppose f ∼= g, via a
permutation σ of the variables. Then, σ(f) = σ(f1)×σ(f2)× . . .×σ(fk) = g1×g2× . . .×gk.
Then, as σ(f1), . . . , σ(fk) are variable disjoint, there is a π ∈ Σk such that σ(fi) = gπ(i) or
σ(fi) = −gπ(i), and {i | σ(fi) = −gπ(i)} is even. J

A canonization for constant-free ROPs
Combining Lemma 10 with the standard canonization for trees [3], we propose a polynomial
time canonization scheme for constant-free read-once polynomials.

We start with an informal description of code. As a toy example consider a linear
polynomial f with coefficients in {−1, 1}. Let Nf be the number of variables with -ve
coefficients and Pf be those with +ve coefficients. Clearly, a linear polynomial g is isomorphic
to f if and only if Pg = Pf and Ng = Nf . So, Pf , and Nf are the canonical values of f that
are invariant under permutation of variables. Similarly, if f =

∏k
i=1 aixi with ai ∈ {−1, 1},

then any g =
∏k
i=1 bixi is isomorphic to f if and only if the parity of the number of negative

coefficients of g is equal to that of f . So, the number of variables, and the parity of the
number of -ve coefficients would be an invariant set for f under permutations of variables.

By Lemma 10, if f is of Type-1, i.e. ,f = f1 + . . . + fk, then any constant-free ROP
isomorphic to f , will look like a permutation of fis. So, a canonization of f would be a sorted
ordering of those for fis. If f is of Type-2, i.e. ,f = f1 × . . .× fk, then, the canonization of
f should be invariant when an even number of fis are multiplied by −1. We handle these
constraints by building the canonization for f , denoted by code(f) in a bottom-up fashion
depending on the structure of the constant-free read-once arithmetic formula computing f .

For a constant-free read-once formula f , code(f) is a quadruple (C,P,N, S), where C is a
string, P,N ∈ N, and S ∈ {0, 1}. Here C stores information about the read-once polynomials
computed by the sub-formulas at the root gate of the arithmetic formula computing f . The
values of P,N , and S depend on the type of f (as in Proposition 9). If f is of Type-1,
then S = 0, and N intuitively represents the number of “negative” polynomials fi, and
P = k−N . When f is of Type-2, P = N = 0, and S in some sense represents the parity of
the number of “negative” polynomials in f1, . . . , fk, where f = f1 × · · · × fk. Here the term
“negative” is used in a tentative sense.

Now we formally define code via induction based on the structure of f as given by
Proposition 9. Abusing the notation we use the symbol ∅ also to denote empty string.

We consider the following four base cases:
base case 1: f = xi, then code(f) = (∅, 0, 1, 0).
base case 2: f = −xi, then code(f) = (∅, 1, 0, 0).
base case 3: f =

∑k
i=1 aixi, for some k > 2, and ai ∈ {−1, 1}. Let Ci = code(aixi). Let

i1, . . . , ik be such that Ci1 , . . . , Cik represents the lexicographical sorting of C1, . . . , Ck.
Let Si = sgn(ai). Let N = binary(Si1 , . . . , Sik), and P = binary(S̄i1 , . . . , S̄ik). Then

code(f) 4= ((〈∅, 0, 1〉, k times. . . 〈∅, 0, 1〉), N, P, 0)

R. Rao B.V. and J. Sarma M.N. 123

base case 4: f =
∏k
i=1 aixi, ai ∈ {−1, 1}. Let S = 1, if the number of −1’s in a1, . . . , ak is

odd, and S = 0 otherwise. Define

code(f) 4= ((〈∅, 0, 1〉, k times. . . 〈∅, 0, 1〉), 0, 0, S)

Inductively, assume that, code(g) = (C,N, P, 0) for a constant-free ROP g of Type-1 on at
most n − 1 variables, and code(g) = (C, 0, 0, S) for a constant-free ROP g of Type-2 in at
most n − 1 variables. Consider a constant-free ROP f on n variables. By Proposition 9,
there are two cases
Type 1: Let f = f1 + f2 + . . . fk, where f1, . . . , fk are constant-free ROPs of Type-2. By

induction, suppose code(fi) = (Ci, 0, 0, Si). If fi = axji for some 1 ≤ ji ≤ n, and
a ∈ {−1, 1} then we need to take code(fi) = (〈∅, 0, 1〉, 0, 0, sgn(a)). Let 〈Ci1 , . . . , Cik〉 =
sort(C1, . . . , Ck), N = binary(Si1 , . . . , Sik), and P = binary(S̄i1 , . . . , S̄ik). Then,

code(f) 4= (〈Ci1 , . . . , Cik〉, N, P, 0) (2)
Type 2: f = f1×f2×. . .×fk, where f1, . . . , fk are constant-free ROPs of Type-1. By induc-

tion, suppose code(fi) = (Ci, Ni, Pi, 0). Let N ′i = min{Ni, Pi}, and P ′i = max{Ni, Pi}.
Let C̃i = 〈Ci, N ′i , P ′i 〉 and 〈C̃i1 , . . . , C̃ik〉 be the lexicographically sorted sequence of C̃i’s,
S = |{i | N ′i 6= Ni}| mod 2. Then,

code(f) = (〈C̃i1 , . . . , C̃ik〉, 0, 0, S) (3)

The following lemma describes some of the properties of the function code.

I Lemma 11. (a) Let f1, . . . , fk be constant-free ROPs of Type-1, a1, . . . , ak, b1, . . . , bk ∈
{−1, 1}. Then

code(
k∏
i=1

aifi) = code(
k∏
i=1

bifi) ⇐⇒ parity(sgn(a1), . . . , sgn(ak)) =

parity(sgn(b1), . . . , sgn(bk)).

(b) code(−
∏k
i=1 fi) = (C, 0, 0, S̄), where code(

∏k
i=1 fi) = (C, 0, 0, S).

(c) Let f1, . . . , fk be ROPs of Type-2 and suppose code(
∑k
i=1 fi) = (C,N, P, 0). Then

code(−
∑k
i=1 fi) = (C,P,N, 0).

Proof. Proof is by induction on the number of variables in the constant-free read-once
formula f . We consider two base cases. Let f =

∏k
i=1 xk. Then by base case 4 in the

definition of code,

code(−f) =
(
(〈∅, 1, 0〉, . . . , 〈∅, 0, 1〉), 0, 0, S̄

)
(a), (b) follow immediately now, and (c) is not relevant for this case. The second base case
is when f =

∑
i aixi. Note that only (c) is relevant here. Then −f =

∑
i−aixi, and hence

code(−f) = (C,P,N, 0), where code(f) = (C,N, P, 0). This proves (c) for the second base
case.

Inductively suppose that statements (a)-(c) hold for all constant-free ROPs on n′ ≤ n−1
variables. Let f be a constant-free ROP of Type-2 on n variables, i.e. , f =

∏k
i=1 fi, where

fis are constant-free ROPs of Type-1. Then, for a = (a1, . . . , ak) ∈ {−1, 1}k, fa =
∏k
i=1 aifi

is also a constant-free ROP of Type-2 on n variables. Suppose code(fi) = (Ci, Ni, Pi, 0) for
1 ≤ i ≤ k, then by (3),

code(f) = ((〈C1, N
′
1, P

′
1〉, . . . , 〈C1, N

′
k, P

′
k〉), 0, 0, S).

FSTTCS 2011

124 Isomorphism testing of read-once functions and polynomials

By (c) of the induction hypothesis, we have code(−fi) = (Ci, Pi, Ni, 0). Then, applying the
construction given by (3),

code(fa) = (sort(〈C1, N
′
1, P

′
1〉, . . . , 〈Ck, N ′k, P ′k〉), 0, 0, Sa)

with Sa = S, if parity(sgn(a1), . . . , sgn(ak)) = 0, and Sa = S̄ otherwise. This proves (a) and
(b).

To prove (c), suppose f is a constant-free ROP of Type-1 on n variables, i.e., f =
∑k
i=1 fi.

Suppose code(fi) = (Ci, 0, 0, Si), and 〈C1, . . . , Ck〉 be the lexicographically sorted order of
Ci’s, without loss of generality. Then, by the definition of code given in (2), code(f) =
((C1, . . . , Ck), N, P, 0), where N = binary(S1, . . . , Sk), and P = binary(S̄1, . . . , S̄k). Applying
induction hypothesis (b) on fi, code(−fi) = (Ci, 0, 0, S̄i). As −f =

∑k
i=1−fi, by (2) and

the induction hypothesis, we have

code(f) = (〈C1, . . . , Ck〉, Ñ , P̃ , 0) where
Ñ = binary(S̄1, . . . , S̄k) and
P̃ = binary(S1, . . . , Sk)

This implies P = Ñ , and N = P̃ , and hence (c) follows. J

Using these properties we prove that code is indeed a canonization for constant-free ROPs.

I Lemma 12. Let f , and g be two constant-free ROPs. Then, f ∼= g ⇐⇒ code(f) =
code(g)

Proof. Proof is by induction on the structure and number of variables in f and g. For base
Case, f = ±xi,

∑k
i=1 aixi, or

∏k
i=1 aixi, where ai ∈ {−1, 1}. By examining the four base

cases in the definition of code, the Lemma follows for these cases. For the induction step,
we consider two cases depending on whether f is of Type-1 or Type-2.

Type 1: Let f = f1 + . . . + fk and g = g1 + . . . + gk. First suppose f ∼= g via a
bijection φ between the variables of f and g. As fi’s are variable disjoint, there exists
a σ ∈ Σk such that φ(fi) = gσ(i), and hence fi ∼= gσ(i), and by induction hypothesis,
we have code(fi) = code(gσ(i)) = (Ci, 0, 0, Si). By (2), we can conclude that code(f) =
code(g). For the converse direction, suppose that code(f) = code(g). Let code(f) =
(〈C1, . . . , Ck〉, binary(S1 . . . Sk), binary(S̄1, . . . , S̄k), 0) = code(g). Then by the structure of
code(g) as in (2), we conclude code(fi) = (Ci, 0, 0, Si) = code(gi) =⇒ fi ∼= gi (by induction
hypothesis). Then, we have g ∼= f by Lemma 10.

Type 2: Let f = f1×f2×. . . fk and g = g1×g2×. . .×gk. Let code(f) = (C, 0, 0, S), and
code(g) = (D, 0, 0, R), where C = (〈C1, N

′
1, P

′
1〉, . . . , 〈Ck, N ′k, P ′k〉), and D = (〈D1, L

′
1,M

′
1〉,

. . . , 〈Dk, L
′
k,M

′
k〉). Suppose code(g) = code(f). Then, by the definition of code, and

Lemma 11, we have ∀i ∈ [k], either code(fi) = code(gi) or code(fi) = code(−gi), and
hence either fi ∼= gi or fi ∼= −gi. As S = R, |{i | code(fi) = code(−gi)}| must be even.
Then by Lemma 10, we have f ∼= g. For the converse direction, suppose f ∼= g. Then by
Lemma 10, there is a σ ∈ Σk, and a1, . . . , ak ∈ {−1, 1} with parity(sgn(a1), . . . , sgn(ak)) = 0
such that fi ∼= aigσ(i), and hence code(fi) = code(aigσ(i)). Then, by the definition of
code, we have code(

∏k
i=1 fi) = code(

∏k
i=1 aigσ(i)). As parity(sgn(a1), . . . , sgn(ak)) = 0, by

Lemma 11, code(
∏k
i=1 aigσ(i)) = code(

∏k
i=1 gi), which completes the proof. J

I Theorem 13. Isomorphism testing of constant-free read-once polynomials can be done in
time polynomial in the number of variables in the input formulas.

R. Rao B.V. and J. Sarma M.N. 125

Proof. Given Lemma 12, the algorithm is obvious: on input f and g, compute code(f) and
code(g), then check if code(f) = code(g). Given f as an arithmetic constant-free read-once
formula, code(f) can be computed in time polynomial in the size of the input formula. As
size of code(.) as a collection of sets is at most the size of the input formula, we can test if
code(f) = code(g) in time linear in the size of the input formulas f and g. J

Extension to constant-free ROPs with arbitrary coefficients: The function code
defined for constant-free ROPs can be extended to include constant-free ROPs where leaf
nodes are labeled with aixi, where ai ∈ Z. We denote this extension by general-constant-
free ROPs. There is one main bottleneck for general-constant-free ROPs of Type-2: suppose
f = f1×· · ·×fk, and if a1 is the GCD of coefficients of f1, then f = (f1/a1)(a1f2)×· · ·×fk.
So, a canonical code has to be invariant under taking out GCD of the coefficients of some of
the fi’s and multiplying out these values among the remaining fj ’s, provided the polynomial
remains general-read-once. This can be achieved by explicitly carrying the GCD of the
coefficients. For the sake of notational convenience, we denote the canonical function for
general-constant-free ROPs by code′. For a general-constant-free ROP f , we define code′(f)
as a quintuple (C,N, P, S, α), where C is a string, N,P, α ∈ N, S ∈ {0, 1}. The values C,
P , N , and S have the same meaning as in the definition of code, and α is the GCD of the
coefficients of f . We generalize the properties of code (details are skipped) to show:

I Theorem 14. Isomorphism testing of general-constant-free ROPs can be done in P.

Extension to Pre-processed ROPs: Motivated by [23], we extend Theorem 14 to the case
of pre-processed constant-free ROPs. (See [23] for more on pre-processed ROPs). In a pre-
processed constant-free ROP, a leaf labeled by variable xi computes an arbitrary univariate
polynomial fi(xi) with coefficients from Z. By providing an efficient way of canonically
encoding the univariate polynomials that appear at the leaves, we obtain the following:

I Theorem 15. Canonization of a pre-processed general constant-free ROP can be done in
time polynomial in the number of variables and the degree of the univariate polynomials at
the leaves.

5 Polynomials with higher reads

As a natural extension, one could ask if the canonization procedure presented in the previous
section can be extended to arithmetic formulas that read a variable at most twice. However,
as in the case of Boolean formulas, it turns out that allowing variables twice makes the
problem as hard as GI. In fact, even for the most primitive classes of Read-2 polynomials
1) Sum of two depth two monotone ROPs and, 2) Read-2 polynomials given in the ΠΣ
form, isomorphism testing is complete for GI. It is already known that PI is harder than
GI[24, 16]). We provide a different reduction that optimizes the number of reads. We skip
some details here.

I Theorem 16. GI polynomial time many-one reduces to testing isomorphism of two poly-
nomials when both of the polynomials are given in one of the following representations:

(a) Sum of two monotone read-once depth-2 arithmetic formulas with a + gate at the top.
(b) Read-2 monotone arithmetic formulas of depth two, with a × gate at the top.

Hardness of PI for the above special cases also forces one to ask whether the hardness
given by Proposition 16 extends to the polynomial equivalence (PE) problem. Though we
do not know the exact answer, we observe that PE for read-4 polynomials is hard for GI.
I Proposition 17. PE for the case of read-4 polynomials is hard for GI, for F ∈ {Z,Q,R}.

FSTTCS 2011

126 Isomorphism testing of read-once functions and polynomials

References
1 M. Agrawal and N. Saxena. Equivalence of f-algebras and cubic forms. In STACS, pages

115–126, 2006.
2 M. Agrawal and T. Thierauf. The Formula Isomorphism Problem. SIAM J. Comput.,

30(3):990–1009, 2000.
3 A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesly, 1974.
4 D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with queries.

J. ACM, 40:185–210, January 1993.
5 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge

University Press, 2009.
6 V. Arvind and J. Torán. Isomorphism testing: Perspective and open problems. Bulletin of

the EATCS, 86:66–84, 2005.
7 B. Borchert, D. Ranjan, and F. Stephan. On the complexity of some classical equivalence

relations on boolean functions. Theory of Computing Systems, 31(6):679–693, 1998.
8 D. Bshouty and N. H. Bshouty. On learning arithmetic read-once formulas with exponen-

tiation (extended abstract). In COLT, pages 311–317, 1994.
9 N. H. Bshouty and R. Cleve. Interpolating arithmetic read-once formulas in parallel. SIAM

J. Comput., 27(2):401–413, 1998.
10 N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning arithmetic read-once formulas.

SIAM J. Comput., 24(4):706–735, 1995.
11 P. Clote and E. Kranakis. Boolean functions, invariance groups, and parallel complexity.

SIAM J. Comput., 20(3):553–590, 1991.
12 S. A. Cook and P. McKenzie. Problems complete for L. Jl. of Algorithms, 8:385–394, 1987.
13 J. Goldsmith, M. Hagen, and M. Mundhenk. Complexity of dnf minimization and isomor-

phism testing for monotone formulas. Inf. Comput., 206(6):760–775, 2008.
14 V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving

circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.
15 N. Kayal. Affine projections of polynomials. ECCC-Report TR11-061, 2011.
16 N. Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem.

In SODA. SIAM, 2011.
17 J. Köbler, U. Schöning, and J. Torán. The graph isomorphism problem: its structural

complexity. Birkhauser Verlag, Basel, Switzerland, Switzerland, 1993.
18 S. Lindell. A logspace algorithm for tree canonization (extended abstract). In STOC, pages

400–404, 1992.
19 J. Patarin. Hidden fields equations (hfe) and isomorphisms of polynomials (ip): Two new

families of asymmetric algorithms. In EUROCRYPT’96, pages 33–48, 1996.
20 B. V. R. Rao and J. M. N. Sarma. On the complexity of matroid isomorphism problems.

In CSR, pages 286–298, 2009.
21 N. Saxena. Morphisms of Rings and Applications to Complexity. PhD thesis, Department

of Computer Science, Indian Institute of Technology, Kanpur, India, 2006.
22 A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In STOC, pages

507–516, 2008.
23 A. Shpilka and I. Volkovich. Improved polynomial identity testing for read-once formulas.

In APPROX-RANDOM, pages 700–713, 2009.
24 T. Thierauf. The isomorphism problem for read-once branching programs and arithmetic

circuits. Chicago J. Theor. Comput. Sci., 1998, 1998.

The Limited Power of Powering:
Polynomial Identity Testing and a Depth-four
Lower Bound for the Permanent
Bruno Grenet1, Pascal Koiran1, Natacha Portier∗1, and
Yann Strozecki2

1 LIP, UMR 5668, ÉNS de Lyon – CNRS – UCBL – INRIA
École Normale Supérieure de Lyon, Université de Lyon
[Bruno.Grenet,Pascal.Koiran,Natacha.Portier]@ens-lyon.fr

2 Équipe de Logique Mathématique, Université Paris VII
Strozecki@logique.jussieu.fr

Abstract
Polynomial identity testing and arithmetic circuit lower bounds are two central questions in
algebraic complexity theory. It is an intriguing fact that these questions are actually related. One
of the authors of the present paper has recently proposed a “real τ -conjecture” which is inspired
by this connection. The real τ -conjecture states that the number of real roots of a sum of products
of sparse univariate polynomials should be polynomially bounded. It implies a superpolynomial
lower bound on the size of arithmetic circuits computing the permanent polynomial.

In this paper we show that the real τ -conjecture holds true for a restricted class of sums of
products of sparse polynomials. This result yields lower bounds for a restricted class of depth-4
circuits: we show that polynomial size circuits from this class cannot compute the permanent, and
we also give a deterministic polynomial identity testing algorithm for the same class of circuits.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, I.1
Symbolic and Algebraic Manipulation

Keywords and phrases Algebraic Complexity, Sparse Polynomials, Descartes’ Rule of Signs,
Lower Bound for the Permanent, Polynomial Identity Testing

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.127

1 Introduction

The τ -conjecture [18, 19] states that a univariate polynomial with integer coefficients defined
by an arithmetic circuit has a number of integer roots polynomial in the size of the circuit.
A real version of this conjecture was recently presented in [14]. The real τ -conjecture states
that the number of real roots of a sum of products of sparse univariate polynomials should
be polynomially bounded as a function of the size of the corresponding expression. More
precisely, consider a polynomial of the form

f(X) =
k∑
i=1

m∏
j=1

fij(X),

∗ This material is based on work supported in part by the European Community under contract PIOF-
GA-2009-236197 of the 7th PCRD.
This work was done while the authors were visiting the University of Toronto.

© B. Grenet, P. Koiran, N. Portier, and Y. Strozecki;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 127–139

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

[Bruno.Grenet,Pascal.Koiran,Natacha.Portier]@ens-lyon.fr
Strozecki@logique.jussieu.fr
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.127
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

128 The Limited Power of Powering

where fij ∈ R[X] has at most t monomials. The conjecture asserts that the number of
real roots of f is bounded by a polynomial function of kmt. It was shown in [14] that this
conjecture implies a superpolynomial lower bound on the arithmetic circuit complexity of
the permanent polynomial (a central goal of algebraic complexity theory ever since Valiant’s
seminal work [20]). In this paper we show that the conjecture holds true in a special case.
We focus on the case where the number of distinct sparse polynomials is small (but each
polynomial may be repeated many times). We therefore consider expressions of the form

k∑
i=1

m∏
j=1

f
αij

j (X). (1)

We obtain a O(tm(2k−1−1)) upper bound on the number of real roots of such a polynomial,
where t is the maximum number of monomials in the fj ’s. In particular, the bound is
polynomial in t when the “top fan-in” k and the number m of sparse polynomials in the
expression are both constant. Note also that the bound is independent of the magnitude of
the integers αij .

From this upper bound we obtain a lower bound on the complexity of the permanent for
a restricted class of arithmetic circuits. The circuits that we consider are again of form (1),
but now X should be interpreted as the tuple of inputs to the circuit rather than as a single
real variable. Roughly speaking, we show a superpolynomial lower bound on the complexity
of the permanent in the case where k and m are again fixed. More precisely, we show that
a circuit of form (1) cannot compute the permanent as long as the sparsity of the fj ’s is
polynomially bounded. Note that this is a lower bound for a restricted class of depth-4
circuits: The output gate at depth 4 has fan-in bounded by the constant k, and the gates at
depth 2 are only allowed to compute a constant (m) number of distinct polynomials fj .

Our third main result is a deterministic identity testing algorithm, again for polynomials
of the same form. When k and m are fixed, we can test if the polynomial in (1) is identically
equal to 0 in time polynomial in t and in maxij αij . Note that if k, m and the exponents αij
are all bounded by a constant then the number of monomials in such a polynomial is tO(1)

and our three main results become trivial. These results are therefore interesting only in the
case where the αij may be large, and can be interpreted as limits on the power of powering.

1.1 Connection to Previous Work
The idea of deriving lower bounds on arithmetic circuit complexity from upper bounds on
the number of real roots goes back at least to a 1976 paper by Borodin and Cook [6]. Their
results were independently improved by Grigoriev and Risler (see [8], chapter 12). For a
long time, it seemed that the lower bounds that can be obtained by this method had to
be rather small since the number of real roots of a polynomial can be exponential in its
arithmetic circuit size. Nevertheless, as explained above it was recently shown in [14] that
superpolynomial lower bounds on the complexity of the permanent on general arithmetic
circuits can be derived from a suitable upper bound on the number of roots of sums of
products of sparse polynomials. This is related to the fact that for low degree polynomials,
arithmetic circuits of depth 4 are almost equivalent to general arithmetic circuits [3, 13].

The study of polynomial identity testing (PIT) also has a long history. The Schwartz-
Zippel lemma [17] yields a randomized algorithm for PIT. A connection between deterministic
PIT and arithmetic circuit lower bounds was pointed out as early as 1980 by Heintz and
Schnorr [11], but a more in-depth study of this connection began only much later [12]. The
recent literature contains deterministic PIT algorithms for various restricted models (see

B. Grenet, P. Koiran, N. Portier, and Y. Strozecki 129

e.g. the two surveys [2, 16]). These algorithms are either black-box, i.e. the algorithm can
only test the circuit for zero on inputs of its own choosing, or non-black-box in which case
the algorithm has access to the structure of the circuit. One model which is similar to ours
was recently studied in [5]. It follows from Theorem 1 in [5] that there is a polynomial time
deterministic black-box PIT algorithm for polynomials of the form (1) if, instead of bounding
k and m as in our algorithm, we bound the transcendence degree r of the polynomials fj .
Obviously we have r ≤ m, so from this point of view their result is more general.1 On the
other hand their running time is polynomial in the degree of the fj , whereas we can handle
polynomials of exponential degree in polynomial time. Furthermore they not provide any
lower bound result for the permanent. (Note that the bound that is deduced from their
black-box PIT algorithm using the technique of [1] only applies to polynomial families with
coefficients in PSPACE and not to the permanent family.)

1.2 Our approach
The proof of our bound on the number of real roots has the same high-level structure as that
of Descartes’ rule of signs.

I Proposition 1. A univariate polynomial f ∈ R[X] with t ≥ 1 monomials has at most t− 1
positive real roots.

The number of negative roots of f is also bounded by t− 1 (consider f(−X)), hence there
are at most 2t− 1 real roots (including 0). There is also a refined version of Proposition 1
where the number of monomials t is replaced by the number of sign changes in the sequence
of coefficients of f . The cruder version will be sufficient for our purposes.

We briefly recall an inductive proof of Proposition 1. For t = 1, there is no non-zero root.
For t > 1, let aαXα be the monomial of lowest degree. We can assume that α = 0 (if not,
we can divide f by Xα since this operation does not change the number of positive roots).
Consider now the derivative f ′. It has t− 1 monomials, and at most t− 2 positive real roots
by induction hypothesis. Moreover, by Rolle’s theorem there is a positive root of f ′ between
2 consecutive positive roots of f . We conclude that f has at most (t− 2) + 1 = t− 1 positive
roots.

In (1) we have a sum of k terms instead of t monomials, but the basic strategy remains
the same: we divide by the first term and take the derivative. This has the effect of removing
a term, but it also has the effect (unlike Descartes’ rule) of increasing the complexity of the
remaining k − 1 terms. This results in a larger bound (and a longer proof).

From this upper bound we obtain our permanent lower bound by applying the proof
method which was put forward in [14]. More precisely, assume that the permanent has
an efficient representation of the form (1). We show that the same must be true for the
univariate polynomial

∏2n

i=1(X − i) using a result of Bürgisser [7]. This yields a contradiction
with our upper bound on the number of real roots.

Our third result is a polynomial identity testing algorithm. Using a standard substitution
technique, we can assume that the polynomials fj in (1) are univariate. We note that the
resulting fj may be of exponential degree even if the original multivariate fj are of low
degree. The construction of hitting sets is a classical approach to deterministic identity
testing. Recall that a hitting set for a class F of polynomials is a set of points H such that
for any non-identically zero polynomial f ∈ F we have a point x ∈ H such that f(x) 6= 0.

1 As pointed out by the authors of [5], their result already seems nontrivial for a constant m.

FSTTCS 2011

130 The Limited Power of Powering

Clearly, a hitting set yields a black-box identity testing algorithm (it is not hard to see
that the converse is also true). Moreover, for any class F of univariate polynomials, an
upper bound z(F) on the number of real roots of each non-zero polynomial in F yields a
hitting set (any set of z(F) + 1 real numbers will do). From our upper bound result we
therefore have polynomial size hitting sets for polynomials of the form (1) when k and m
are fixed. Unfortunately, the resulting black-box algorithm does not run in polynomial time:
evaluating a polynomial at a point of the hitting set may not be feasible in polynomial time
since (as explained above) the fj may be of very high degree. We therefore use a different
strategy. Roughly speaking, we “run” the proof of our upper bound theorem on an input of
form (1). This requires explicit knowledge of this representation, and the resulting algorithm
is non-black-box. As explained in Section 1.1, for the case where the fj are low-degree
multivariate polynomials an efficient black-box algorithm was recently given in [5].

Organization of the paper. In Section 2 we prove an upper bound on the number of real
roots of polynomials of the form (1), see Theorems 10 and 11 at the end of the section.
In fact, we obtain an upper bound for a more general class of polynomials which we call
SPS(k,m, t, h). This generalization is needed for the inductive proof to go through. From
this upper bound, we derive in Section 3 a lower bound on the computational power of
(multivariate) circuits of the same form. We give in Section 4 a deterministic identity testing
algorithm, again for polynomials of form (1).

2 The real roots of a sum of products of sparse polynomials

2.1 Definitions
In this section, we define precisely the polynomials we are working with. We then explain
how to transform those polynomials in a way which reduces the number of terms but does
not increase too much the number of roots. This method has some similarities with the proof
of Lemma 2 in [15] and it leads to a bound on the number of roots of the polynomials we
study.

We say that a polynomial is t-sparse if it has at most t monomials.

I Definition 2. Let SPS(k,m, t, h) denote the class of polynomials φ ∈ R[X] defined by

φ(X) =
k∑
i=1

gi(X)
m∏
j=1

f
αij

j (X)

where
g1, . . . , gk are h-sparse polynomials over R;
f1, . . . , fm are t-sparse non-zero polynomials over R;
α11, . . . , αkm are non-negative integers.

We define Pi =
∏m
j=1 f

αij

j and Ti = giPi for all i. We also define π =
∏m
j=1 fj . Finally,

we define SPS(k,m, t) as the subclass of SPS(k,m, t, h) in which all the gi are equal to the
constant 1.

Note that SPS(k,m, t) is just the class of polynomials of form (1), and is included in
SPS(k,m, t, 1). We want to give a bound for the number of real roots of the polynomials
in this class, and more generally in SPS(k,m, t, h). To this end, from a polynomial φ ∈
SPS(k,m, t, h), we build in Lemma 4 a new polynomial φ̃ ∈ SPS(k − 1,m, t, h̃) for some h̃
such that a bound on the number of real roots of φ̃ yields a bound for φ. We first give a

B. Grenet, P. Koiran, N. Portier, and Y. Strozecki 131

bound for the number of roots of the polynomials in SPS(2,m, t). The proof in this case
contains the main ingredients of the general case with less technicalities.

I Proposition 3. Let φ =
∏m
j=1 f

α1j

j +
∏m
j=1 f

α2j

j ∈ SPS(2,m, t). Then φ has at most kmt
real roots.

Proof. Let ψ = φ/
∏
j f

α1j

j = 1 +
∏m
j=1 f

α2j−α1j

j . Then

ψ′ =
m∏
j=1

f
α2j−α1j−1
j ×

m∑
j=1

(α2j − α1j)f ′j
∏
l 6=j

fl.

Since each fj is t-sparse, the polynomial
∑m
j=1(α2j − α1j)f ′j

∏
l 6=j fl has at most mtm

monomials. Therefore, its number of real roots is at most 2mtm − 1 (by Descartes’ rule of
signs). The number of roots and poles of the rational function

∏m
j=1 f

α2j−α1j−1
j is at most

2m(t− 1), the total number of roots of the fj ’s. Therefore, the number of roots and poles of
ψ′ is at most 2mtm − 1 + 2m(t − 1). Now, between two consecutive roots of the rational
function ψ, there exists a root or a pole of ψ′, so there ψ has at most 2m(tm + t− 1) roots.
Since the number of roots of φ is bounded by the sum of the number of roots of ψ and∏
j f

α1j

j , φ has at most 2m(tm + t− 1) + 2m(t− 1) real roots. J

We now turn to the general case.

I Lemma 4. Let φ ∈ SPS(k,m, t, h). If g1 is not identically zero, let ψ = φ/T1 and
φ̃ = g1T1πψ

′; otherwise let φ̃ = φ. Then there exists h̃ such that φ̃ ∈ SPS(k − 1,m, t, h̃).

Proof. If g1 is identically zero, the theorem holds with h̃ = h. Assume now that g1 is not
identically zero. Then

ψ(X) = φ(X)/T1(X) = 1 + 1
T1(X) ·

k∑
i=2

Ti(X)

and

ψ′ =
∑k
i=2 (T1T

′
i − T ′1Ti)

T 2
1

.

Notice that T ′i = g′iPi + giP
′
i and

P ′i =
m∑
j=1

αijf
′
jf
αij−1
j ·

∏
l 6=j

fαil

l = Pi ·
m∑
j=1

αijf
′
j/fj .

Therefore

ψ′ = 1
T 2

1
·
k∑
i=2

(g1P1g
′
iPi + g1P1giP

′
i − g′1P1giPi − g1P

′
1giPi)

= 1
T 2

1
·
k∑
i=2

(g1g
′
iP1Pi + g1giP1Pi

∑
j

αijf
′
j/fj

− g′1giP1Pi − g1giP1Pi
∑
j

α1jf
′
j/fj)

= 1
g1T1

·
k∑
i=2

Pi

g1g
′
i − g′1gi + g1gi

∑
j

(αij − α1j)f ′j/fj

 .

FSTTCS 2011

132 The Limited Power of Powering

We now multiply ψ′ by π =
∏
j fj and get

πψ′ = 1
g1T1

·
k∑
i=2

Pi

π · (g1g
′
i − g′1gi) + g1gi

∑
j

(αij − α1j)f ′j
∏
l 6=j

fl

 .

Thus g1T1πψ
′ is a polynomial of the class SPS(k − 1,m, t, h̃) for some h̃. Let us write

φ̃ = g1T1πψ
′ =

k∑
i=2

Pig̃i.

The integer h̃ denotes the maximum number of monomials in g̃i for 2 ≤ i ≤ k. J

I Definition 5. Let (φn)1≤n≤k be the sequence defined by φ1 = φ and for n ≥ 1, φn+1 = φ̃n.
Let also, for 1 ≤ i ≤ k, (g(n)

i)1≤n≤i be such that for 1 ≤ n ≤ k,

φn =
k∑
i=n

g
(n)
i

m∏
j=1

f
αij

j .

We also define the sequence (hn)1≤n≤k by h1 = 1 and hn+1 = h̃n. That is, each g
(n)
i is

hn-sparse.

2.2 A generalization of Descartes’ rule
In Definition 5 we defined a sequence of polynomials (φn) and a sequence of integers (hn). In
this section we first prove that the number of real roots of φn is bounded by the number of
real roots of φn+1 up to a multiplicative constant. Then, we give an upper bound on hn and
we combine these ingredients to obtain a bound on the number of real roots of a polynomial
in SPS(k,m, t). This bound (in Theorem 10 at the end of the section) is polynomial in t.

We denote by r(P) the number of distinct real roots of a rational function P . In order to
obtain a bound on r(φ) from a bound on r(φ̃), we need the following lemma.

I Lemma 6. Let P ∈ SPS(1,m, t, h). If P is not identically zero then

r(P) ≤ 2h+ 2m(t− 1)− 1.

Proof. By definition, P = g ·
∏
j f

αj

j . The number of non-zero real roots of P is therefore
bounded by the sum of the number of non-zero real roots of g and of the fj ’s. Since g is
h-sparse, we know from Descartes’ rule that is has at most 2(h − 1) non-zero real roots.
Likewise, each fj has at most 2(t−1) real roots. As a result, P has at most 2(h−1)+2m(t−1)
non-zero real roots. Since 0 can also be a root, we add 1 to this bound to obtain the final
result. J

I Lemma 7. Let φ ∈ SPS(k,m, t, h). Then

r(φ) ≤ r(φ̃) + 4h+ 4m(t− 1)− 1.

Proof. If g1 is zero in the definition of φ, then φ̃ = φ which proves the lemma.
Recall from the proof of Lemma 4 the notation ψ = φ/T1. If g1 is not identically zero, by

definition we have φ̃ = g1T1πψ
′, so the number r(φ̃) of real roots of the polynomial φ̃ is an

upper bound on the number of real roots of ψ′.

B. Grenet, P. Koiran, N. Portier, and Y. Strozecki 133

Since φ = T1ψ, we have r(φ) ≤ r(T1) + r(ψ). Moreover, between two consecutive roots of
the rational function ψ, we have a root of ψ′ or a root of the denominator T1. As a result,
r(ψ) ≤ r(ψ′) + r(T1) + 1. It follows that r(φ) ≤ r(ψ′) + 2r(T1) + 1 ≤ r(φ̃) + 2r(T1) + 1.
Moreover, the polynomial T1 = g1 ·

∏
j f

α1j

j is in SPS(1,m, t, h). Thus by Lemma 6, T1 has
at most 2h+ 2m(t− 1)− 1 real roots. We conclude that φ has at most

r(φ̃) + 2 · (2h+ 2m(t− 1)− 1) + 1 = r(φ̃) + 4h+ 4m(t− 1)− 1

real roots. J

I Proposition 8. Let φ ∈ SPS(k,m, t, 1). Then

r(φ) ≤ 2hk + 4
k−1∑
i=1

hi + 2m(2k − 1)(t− 1)− k.

Proof. Lemma 7 gives the following recurrence:

r(φn) ≤ r(φn+1) + 4hn + 4m(t− 1)− 1.

Thus, we get

r(φ) ≤ r(φk) + 4
k−1∑
i=1

hi + (k − 1)(4m(t− 1)− 1). (2)

Since φk ∈ SPS(1,m, t, hk), Lemma 6 bounds its number of real roots:

r(φk) ≤ 2hk + 2m(t− 1)− 1. (3)

The bound is a combination of (2) and (3). J

Proposition 8 shows that in order to bound r(φ), we need a bound on hn.

I Proposition 9. For all n, hn is bounded by ((m+ 2)tm)2n−1−1.

Proof. As showed in the proof of Lemma 4, φ̃ =
∑k
i=2 g̃iPi where each g̃i is h̃-sparse. More

precisely,

g̃i = (g1g
′
i − g′1gi)

m∏
j=1

fj + g1gi

m∑
j=1

(αij − α1j)f ′j
∏
l 6=j

fl.

Thus g̃i is a sum of (m+ 2) terms, and each term is a product of m t-sparse polynomials by
two h-sparse polynomials. Thus h̃ ≤ (m+ 2)tmh2.

This gives the following recurrence relation on hn:{
h1 = 1
hn+1 ≤ (m+ 2)tmh2

n

Therefore, hn ≤ ((m+ 2)tm)2n−1−1. J

Now, we combine Propositions 8 and 9 to obtain our first bound on the number of roots
of a polynomial in SPS(k,m, t).

I Theorem 10. Let φ ∈ SPS(k,m, t): we have φ =
∑k
i=1
∏m
j=1 f

αij

j where for all i and j, fj
is t-sparse and αij ≥ 0. Then r(φ) ≤ C × ((m+ 2)tm)2k−1−1 for some universal constant C.

FSTTCS 2011

134 The Limited Power of Powering

The bound for h̃, the number of monomials in the polynomials g(n)
i , can actually be

improved. This automatically sharpens the bound we give for the number of real roots of a
polynomial in SPS(k,m, t).

I Theorem 11. Let φ ∈ SPS(k,m, t). Then φ has at most

C ×
[
e×

(
1 + tm

2k−1 − 1

)]2k−1−1

real roots, where C is a universal constant.

The proofs of these two theorems can be found in the full version of this paper [10,
Theorem 1 and 2].

3 Lower bounds

In this section we introduce a subclass mSPS(k,m) of the class of “easy to compute” mul-
tivariate polynomial families, and we use the results of Section 2.2 to show that it does
not contain the permanent family. The polynomials in a mSPS(k,m) family have the same
structure as the univariate polynomials in the class SPS(k,m, t) from Definition 2. In this
section, polynomial families are denoted by their general term in brackets: The polynomial
Pn is the n-th polynomial of the family (Pn). When there is no ambiguity on the number of
variables, we denote by ~X the tuple of variables of a polynomial Pn. The definition uses the
notion of constant-free circuit: An arithmetic circuit is said constant-free if the only constant
input is −1 (or equivalently are of polynomially bounded bitsize).

I Definition 12. We say that a sequence of polynomials (Pn) is in mSPS(k,m) if there is a
polynomial Q such that for all n:

(i) Pn depends on at most Q(n) variables.
(ii) Pn(~X) =

∑k
i=1
∏m
j=1 f

αij

jn (~X)
(iii) The bitsize of αij is bounded by Q(n).
(iv) For all 1 ≤ j ≤ m, the polynomial fjn has a constant-free circuit of size Q(n) and is

Q(n)-sparse.

I Remark. If (Pn) ∈ mSPS(k,m) then each Pn has a constant-free circuit of size polynomial in
n. Indeed from the constant-free circuits of the polynomials fjn we can build a constant-free
circuit for Pn. We have to take the αij-th power of fjn, which can be done with a circuit
of size polynomial in the bitsize of αij thanks to fast exponentiation. The size of the final
circuit is up to a constant the sum of the sizes of these powering circuits and of the circuits
giving fjn, which is thus polynomial in n.

I Definition 13. The Pochhammer-Wilkinson polynomial of order 2n is defined by

PWn =
2n∏
i=1

(X − i).

I Definition 14. The Permanent over n2 variables is defined by PERn =
∑
σ∈Σn

n∏
i=1

Xiσ(i)

where Σn is the set of permutations of {1, . . . , n}.

B. Grenet, P. Koiran, N. Portier, and Y. Strozecki 135

We now give a lower bound on the Permanent, using its completeness for VNP [20], a
result of Bürgisser on the Pochhammer-Wilkinson polynomials [7] and our bound on the
roots of the polynomials in SPS(k,m, t). We refer to Bürgisser’s book [9] for the definition
and properties of VNP.

I Theorem 15. The family of polynomials (PERn) is not in mSPS(k,m) for any fixed k
and m, i.e., there is no representation of the permanent family of the form

PERn(~X) =
k∑
i=1

m∏
j=1

f
αij

jn (~X)

where k and m are constant and the bitsize of the αij, the sparsity of the polynomials fjn
and their constant-free arithmetic circuit complexity are all bounded by a polynomial function
Q(n).

Proof. Assume by contradiction that (PERn) ∈ mSPS(k,m). By the previous remark, this
implies that PERn can be computed by polynomial size constant-free arithmetic circuits.
As in the proofs of Theorem 4.1 and 1.2 in [7], it follows from this property that there is a
family (Gn(X0, . . . , Xn)) in VNP such that

PWn(X) = Gn(X20
, X21

, . . . , X2n

). (4)

Since the permanent is complete for VNP, we have a polynomial h such that

PERh(n)(z1, . . . , zh(n)2) = Gn(X0, . . . , Xn) (5)

where the zi’s are either variables of Gn or constants. By hypothesis (PERn) ∈ mSPS(k,m).
Let Q be the corresponding polynomial from Definition 12. From this definition and from (4)
and (5) we have

PWn(X) =
k∑
i=1

m∏
j=1

fjn(X)αij

where fjn(X) is Q(h(n))-sparse. This shows that the polynomial PWn is in SPS(k,m,R(n))
where R(n) = Q(h(n)).

We have proved in Theorem 10 that polynomials in SPS(k,m,R(n)) have at most
r(n) = C × ((m + 2)R(n))m)2k−1−1 real roots. On the other hand, by construction the
polynomial PWn has 2n roots, which is larger than r(n) for all large enough n. This yields a
contradiction and completes the proof of the theorem. J

Theorem 15 gives a lower bound for a restricted class of depth-4 circuits: The top fan-in
is bounded by k, and the gates at depth 2 compute only m distinct polynomials fj . Yet, each
fj can be duplicated an exponential number of times so that the gates at depth 3 have an
unbounded fan-in. Therefore, the lower bound holds for a class of exponential-size depth-4
circuits. Note that the result is already non trivial for polynomial-size depth-4 circuits of
this kind.

I Remark. It is possible to relax condition (iv) in Definition 12. We can replace it by the
less restrictive condition:

(iv’) the polynomial fjn is Q(n)-sparse,

FSTTCS 2011

136 The Limited Power of Powering

i.e., we allow polynomials fjn with arbitrary complex coefficients. Theorem 15 still applies
to this larger version of the class mSPS(k,m), but for the proof to go through we need to
assume the Generalized Riemann Hypothesis. The only change is at the beginning of the
proof: Assuming that the permanent family belongs to the (redefined) class mSPS(k,m), we
can conclude that this family can be computed by polynomial size arithmetic circuits with
arbitrary constants. To see this, note that any non-multilinear monomial in any fjn can be
deleted since it cannot contribute to the final result (the permanent is multilinear). And
since fjn is sparse, there is a polynomial size arithmetic circuit with arbitrary constants to
compute its multilinear monomials. The remainder of the proof is essentially unchanged.
But to deal with arithmetic circuits with arbitrary constants (from the complex field) instead
of constant-free arithmetic circuits, we shall use Corollary 4.2 of [7] instead of Theorems 1.2
and 4.1. This means that we have to assume GRH as in this corollary. It is an intriguing
question whether this assumption can be removed from Corollary 4.2 of [7] and from this
lower bound result.

4 Polynomial Identity Testing

This section is devoted to a proof that Identity Testing can be done in deterministic polynomial
time on the polynomials studied in the previous sections. Recall from Definition 5 that for
φ =

∑k
i=1 Pi ∈ SPS(k,m, t), (φn) is defined by φn =

∑k
i=n g

(n)
i Pi.

I Lemma 16. Let φ ∈ SPS(k,m, t) and (φn) as in Definition 5. Then for l < k, φl ≡ 0 if
and only if φl+1 ≡ 0 and φl has a smaller degree than g(l)

l Pl.

Proof. If for all i, g(l)
i is identically zero, then the lemma holds. If there is at least one which

is not identically zero, assume that it is g(l)
l up to a reindexing of the terms.

Let Tl = g
(l)
l Pl, recall that φl+1 = glTlπ(φl/Tl)′. If φl ≡ 0, then φl+1 ≡ 0. Moreover, we

have assumed that Tl 6≡ 0 and it is thus of larger degree than φl which is identically 0.
Assume now that φl+1 ≡ 0, that is glTlπ(φl/Tl)′ ≡ 0. By hypothesis, Tl and π are not

identically zero, therefore (φl/Tl)′ ≡ 0. Thus there is λ ∈ R such that φl = λTl. Since by
hypothesis φl and Tl have different degrees, λ = 0 and φl ≡ 0. J

To solve PIT, we will need to explicitly compute the sequence of polynomials φl. Thus, the
algorithm is not black-box: it must have access to a representation of the input polynomial
under form (1).

I Theorem 17. Let k andm be two integers and φ ∈ SPS(k,m, t): we have φ =
∑k
i=1
∏m
j=1 f

αij

j

where for all i and j, fj is t-sparse and αij ≥ 0. Then one can test if φ is identically zero in
time polynomial in t, in the size of the sparse representation of the fj’s and in the αij’s.

Proof. Let (φn) be the sequence defined from φ as in Definition 5. Lemma 16 implies that φ
is identically zero if and only if φk is identically zero and that for all l < k, φl =

∑k
i=l g

(l)
i Pi

has a strictly smaller degree than g(l)
l Pl.

First, one computes the sparse polynomials g(l)
i for all i and l as sums of monomials. It

is done in time polynomial in the size of the fj ’s since k and m are fixed. We can then verify
if φk is identically zero.

We now want to test for each l if the degrees of g(l)
l Pl and of φl differ. First remark

that we know the highest degree monomial of g(l)
i for i ≥ l since we have computed all the

g
(l)
i ’s. One can also compute the highest degree monomial of each Pi in time polynomial
in the αij ’s (not their bitsize) and the size of the fj ’s. We have thus computed the degree

B. Grenet, P. Koiran, N. Portier, and Y. Strozecki 137

of g(l)
i Pi for all i and l and we reorder them so that g(l)

l Pl is of highest degree amongst
them. Let S denote the sum of the highest degree monomial of g(l)

i Pi for i ≥ l that we have
computed. Since the degree of g(l)

l Pl is maximum, we have deg(φl) < deg(g(l)
l Pl) if and only

if deg(S) < deg(g(l)
l Pl) and we can test the latter condition since we have computed these

polynomials explicitly. J

This algorithm is polynomial in the αij ’s, though ideally we would like it to be polynomial
in their bitsize.

I Proposition 18. Assume that we have access to an oracle which decides whether

k∑
i=1

m∏
j=1

a
αij

ij = 0. (6)

Let φ =
∑k
i=1
∏m
j=1 f

αij

j as in Theorem 17. Then one can decide deterministically whether
φ is identically zero in time polynomial in the sparsity of the fj’s and in the bitsize of the
aij’s and αij’s.

Proof. The only dependency in the αij ’s in the proof of Theorem 17 is the computation of
the coefficient of the highest degree monomials of the g(l)

i Pi. With the oracle for (6), we skip
this step and achieve a polynomial dependency in the bitsize of the αij ’s. J

A direct computation of the constant on the left-hand side of (6) is not possible since
it involves numbers of exponential bitsize (the exponents αij are given in binary notation).
The test to 0 can be made by computing modulo random primes, but this is ruled out since
we want a deterministic algorithm. Note also that this test is a PIT problem for polynomials
in SPS(k,m, t) where the fj ’s are constant polynomials. For general arithmetic circuits, it is
likewise known that PIT reduces to the case of circuits without any variable occurrence ([4],
Proposition 2.2).

The polynomial identity test from Theorem 17 can also be applied to the class of
multivariate polynomial families mSPS(k,m) introduced in the previous section. Indeed, let
P (X1, . . . , Xn) =

∑
i

∏
j f

αij

j belongs to some mSPS(k,m) family, and suppose we know a
bound d on its degree. We turn P into a univariate polynomial Q by the classical substitution
(sometimes attributed to Kronecker) Xi 7→ X(d+1)i . We write Q(X) =

∑
i

∏
j g

αij

j , where
each univariate polynomial gj is the image of fj by the substitution. It is a folklore result
that P ≡ 0 if and only if Q ≡ 0, thus we can apply the PIT algorithm of Theorem 17 on Q.

Let s be the size of the representation of P , meaning that P depends on at most s
variables, the fj ’s have a constant-free circuit of size at most s and are s-sparse, and the αij
are at most equal to s. (Note that we do not bound their bitsizes but their values as it is
needed for our PIT algorithm.) Then the degree of the fj ’s is at most 2s, and d ≤ 2poly(s)

where poly(s) denotes some polynomial function of s. The gj ’s therefore have a degree at
most 2spoly(s) × 2s = 2spoly(s)+s. This proves that Q satisfies the hypothesis of Theorem 17.

5 Conclusion

We have shown that the real τ -conjecture from [14] holds true for a restricted class of
polynomials, and from this result we have obtained an identity testing algorithm and a
lower bound for the permanent. Other simple cases of the conjecture remain open. In the
general case, we can expand a sum of product of sparse polynomials as a sum of at most
ktm monomials. There are therefore at most 2ktm − 1 real roots. As pointed out in [14], the

FSTTCS 2011

138 The Limited Power of Powering

case k = 2 is already open: is there a polynomial bound on the number of real roots in this
case? Even simpler versions of this question are open. For instance, we can ask whether the
number of real roots of an expression of the form f1 · · · fm + 1 is polynomial in m and t. A
bare bones version of this problem was pointed out by Arkadev Chattopadhyay (personal
communication): taking m = 2, we can ask what is the maximum number of real roots of
an expression of the form f1f2 + 1. Expansion as a sum of monomials yields a O(t2) upper
bound, but for all we know the true bound could be O(t).

References
1 M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings of the

25th conference of the Foundations of Software Technology and Theoretical Computer Sci-
ence, pages 92–105. Springer, 2005.

2 M. Agrawal and R. Saptharishi. Classifying Polynomials and Identity Testing. In Current
Trends in Science, pages 149–162. Indian Academy of Sciences, 2009.

3 M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science, pages 67–75,
2008.

4 E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. Bro-Miltersen. On the complexity
of numerical analysis. SIAM Journal on Computing, 38(5):1987–2006, 2009. Conference
version in CCC 2006.

5 M. Beecken, J. Mittmann, and N. Saxena. Algebraic independence and blackbox identity
testing. Proceedings of the 38th International Colloquium on Automata, Languages and
Programming, 2011. Arxiv preprint arXiv:1102.2789.

6 A. Borodin and S. Cook. On the number additions to compute specific polynomials. SIAM
Journal on Computing, 5(1):146–157, 1976.

7 P. Bürgisser. On defining integers and proving arithmetic circuit lower bounds. Computa-
tional Complexity, 18(1):81–103, 2009.

8 P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory. Springer,
1997.

9 P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Algorithms
and Computation in Mathematics. Springer, 2000.

10 B. Grenet, P. Koiran, N. Portier, and Y. Strozecki. The Limited Power of Powering:
Polynomial Identity Testing and a Depth-four Lower Bound for the Permanent. Manuscript,
2011. http://arxiv.org/abs/1107.1434.

11 J. Heintz and C.-P. Schnorr. Testing polynomials which are easy to compute. In Logic and
Algorithmic (an International Symposium held in honour of Ernst Specker), pages 237–254.
Monographie no 30 de L’Enseignement Mathématique, 1982. Preliminary version in Proc.
12th ACM Symposium on Theory of Computing, pages 262-272, 1980.

12 V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1):1–46, 2004.

13 P. Koiran. Arithmetic circuits: the chasm at depth four gets wider. Arxiv preprint
arXiv:1006.4700, 2010.

14 P. Koiran. Shallow circuits with high-powered inputs. Proceedings of the Second Symposium
on Innovations in Computer Science, 2011.

15 T.Y. Li, J.M. Rojas, and X. Wang. Counting real connected components of trinomial curve
intersections and m-nomial hypersurfaces. Discrete and computational geometry, 30(3):379–
414, 2003.

16 N. Saxena. Progress on Polynomial Identity Testing. Bull. EATCS, 99:49–79, 2009.

http://arxiv.org/abs/1107.1434

B. Grenet, P. Koiran, N. Portier, and Y. Strozecki 139

17 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomials identities.
Journal of the ACM, 27:701–717, 1980.

18 M. Shub and S. Smale. On the intractability of Hilbert’s Nullstellensatz and an algebraic
version of “P=NP". Duke Mathematical Journal, 81(1):47–54, 1995.

19 S. Smale. Mathematical problems for the next century. The Mathematical Intelligencer,
20(2):7–15, 1998.

20 L.G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual ACM
Symposium on Theory of Computing, pages 249–261, 1979.

FSTTCS 2011

Petri Net Reachability Graphs: Decidability Status
of FO Properties
Philippe Darondeau1, Stéphane Demri2, Roland Meyer3, and
Christophe Morvan4

1 IRISA/INRIA, Campus de Beaulieu, Rennes, France
philippe.darondeau@inria.fr

2 LSV, ENS Cachan, CNRS, INRIA, France Stephane.Demri@lsv.ens-cachan.fr
3 University of Kaiserslautern, Germany meyer@cs.uni-kl.de
4 Université Paris-Est, Marne-La-Vallée, France

christophe.morvan@univ-paris-est.fr

Abstract
We investigate the decidability and complexity status of model-checking problems on unlabelled
reachability graphs of Petri nets by considering first-order, modal and pattern-based languages
without labels on transitions or atomic propositions on markings. We consider several parameters
to separate decidable problems from undecidable ones. Not only are we able to provide precise
borders and a systematic analysis, but we also demonstrate the robustness of our proof techniques.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, F.4.1 Mathematical Logic, D.2.4 Software/Program Verification

Keywords and phrases Petri nets, First order logic, Reachability graph

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.140

1 Introduction

Decision problems for Petri nets. Much effort has been dedicated to decision problems
about Petri nets such as reachability or equivalence, or model checking logical fragments.
Reachability is decidable [20] but this is a hard problem. Language equality is, by con-
trast, undecidable for labelled Petri nets [11, 1]. Many important problems have received
decision procedures, e.g., boundedness [16], deadlock-freeness and liveness [10] (by reduction
to reachability), semilinearity [12], etc. Hack’s thesis [10] provides a comprehensive overview
of problems equivalent to reachability. Hack showed that equality of reachability sets of two
Petri nets with identical places is undecidable [11]. As our main contribution, we link this
result to first-order logic expressing properties of general Petri net reachability graphs.
Our motivations. For Petri nets, model checking CTL formulae with atomic propositions
expressing that a place contains at least one token is known to be undecidable [7]. This result
carries over to all fragments of CTL containing the modalities EF or AF. Model checking
CTL without atomic propositions but with next-time modalities indexed by action labels is
undecidable too [7]. In contrast, LTL model-checking over VASS is ExpSpace-complete [9]
(atomic propositions are control states). These negative results do not compromise the
search for decidable fragments of first-order logic that describe only purely graph-theoreti-
cally the reachability graphs. Our intention is to deliberately discard edge labels and atomic
propositions on markings. As an example, we consider the structure (Nn,−→) derived from
a Petri net N with n places such that M −→M ′ iff M evolves to M ′ by firing a transition of
N . Since (Nn,−→,=) is an automatic structure, its first-order theory is decidable, see e.g. [5].

© P. Darondeau, S. Demri, R. Meyer, and C. Morvan;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 140–151

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.140
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Darondeau, S. Demri, R. Meyer, and C. Morvan 141

However, it is unclear what happens if we consider the first-order theory of −→ over the
more interesting structure (Reach(N),−→). Here, Reach(N) denotes the set of all markings
reachable from the initial marking of N . This paper investigates this question and therefore
investigates the decidability status of first-order logic with a bit of MSO (via quantification
over reachable markings) on Nn, sharing with [21] a common motivation. We study prop-
erties of the Petri net reachability graph that are purely graph-theoretical; they do not refer
to tokens or transition labels and they are mostly local in that they can often be expressed
in terms of −→ instead of its transitive closure. For instance, this contrasts with logics in [3]
that state quantitative properties on markings and transitions, and evaluate formulae on
runs.
Our contributions. We investigate the model-checking problem over structures of the
form (Reach(N),−→, ∗−→) generated from Petri nets N with first-order languages including
predicate symbols for −→ and/or ∗−→. As it is a classical fragment of first-order logic, we
also consider the modal language ML(�,�−1) with forward and backward modalities. To
conclude the study, we consider an alternative framework where the structures are reach-
ability sets, subsets of Nn when the underlying net has n places. For these structures, we
study satisfiability of properties defined by patterns. Patterns are bounded n-dimensional
sets of points that are colored black, white, or grey to mean “reachable”, “non-reachable”,
or “don’t care”, respectively. Let us mention prominent features of our investigation. (1)
Undecidability proofs are obtained by reduction from the equality problem (or the inclusion
problem) between reachability sets defined by Petri nets, shown undecidable in [11]. We
demonstrate that our proof schema is robust and can be adapted to numerous formalisms
specifying local properties as in first-order logic. (2) To determine the cause of undecidab-
ility, we investigate logical fragments. At the same time, we strive for maximally expressive
decidable fragments. (3) For decidable problems, we assess the computational complex-
ity — either relative to standard complexity classes or by establishing a reduction from
the reachability problem for Petri nets. Our main findings are as follows: Model-checking
(Reach(N),−→) [resp. (Reach(N), ∗−→), (Reach(N), +−→)] is undecidable for the appropriate
first-order language with one binary predicate symbol. Undecidability is also shown for the
positive fragment of FO(−→), the forward fragment of FO(−→) and FO(−→) augmented with
∗−→ even if the reachability sets are effectively semilinear. We prove that model-checking
the existential fragment of FO(−→) is decidable, but as hard as the reachability problem for
Petri nets. As far as ML(�,�−1) is concerned, the global model-checking on (Reach(N),−→)
is undecidable but it becomes decidable when restricted to ML(�) (even if extended with
Presburger-definable predicates on markings); the latter problem is also as hard as the reach-
ability problem for Petri nets. The satisfiability of properties defined by bounded patterns
is undecidable.

2 Preliminaries

We recall basics on Petri nets and semilinear sets; we introduce Petri net reachability graphs
as first-order structures. We define first-order logic and modal logic interpreted on these
graphs. Finally, we present decidability results about model-checking problems.

2.1 Petri nets
A Petri net is a bi-partite graph N = (P, T, F,M0), where P and T are finite disjoint sets
of places and transitions, and F : (P × T) ∪ (T × P) → N. A marking of N is a function
M : P → N. M0 is the initial marking of N . A transition t ∈ T is enabled at a marking

FSTTCS 2011

142 Petri Nets Reachability Graphs: FO Properties

M , written M [t〉, if M(p) ≥ F (p, t) for all places p ∈ P . If t is enabled at M then it can
be fired. This leads to the marking M ′ defined by M ′(p) = M(p) + F (t, p)−F (p, t) for all
p ∈ P , in notation: M [t〉M ′. The definitions are extended to transition sequences s ∈ T ∗
in the expected way. A marking M ′ is reachable from a marking M if M [s〉M ′ for some
s ∈ T ∗. A transition t is in self-loop with a place p iff F (p, t) = F (t, p) > 0. A transition
is neutral if it has null effect on all places. The reachability set Reach(N) of N is the set of
all markings that are reachable from the initial marking.

I Theorem 2.1. (I) [20] Given a Petri net N and two markings M and M ′, it is decidable
whetherM ′ is reachable fromM . (II) [11] Given two Petri nets N and N ′, it is not decidable
whether Reach(N) = Reach(N ′) [resp. Reach(N) ⊆ Reach(N ′)].

A Petri net N induces several standard structures. The unlabelled reachability graph of N is
the structure URG(N) = (D, init,−→, ∗−→, +−→,=) where D = Reach(N), init = {M0}, and −→
is the binary relation on D defined by M −→M ′ if M [t〉M ′ for some t ∈ T . The relations ∗−→
and +−→ are the iterative and strictly iterative closures of −→, respectively. The reachability
graph RG(N) of N is (Reach(N),−→). The unlabelled transition graph of N is the structure
UG(N) = (D, init,−→, ∗−→, +−→,=) with D = NP . Note that reachability of markings is not
taken into account in UG(N). In the sequel, by default card(P) = n and we identify NP

and Nn. We also call 1-loop an edge M −→M ′ with M = M ′.
Semilinear subsets of Nn form an effective Boolean algebra and they coincide with sets
definable in Presburger arithmetic (decidable first-order theory of natural numbers with ad-
dition). Hence, herein we use equally semilinearity or definability in Presburger arithmetic.
Note that in [8], Ginsburg and Spanier gave an effective correspondence between semilinear
subsets and subsets of Nn definable in Presburger arithmetic.We know that given a Petri
net N and a semilinear set E ⊆ N|P | one can decide whether Reach(N)∩E 6= ∅ [11, L. 4.3].

2.2 First-order languages

We introduce a first-order logic FO with atomic predicates x −→ y, x ∗−→ y, x +−→ y and init(x).
Formulae in FO are defined by x −→ y | x ∗−→ y | x +−→ y | init(x) | x = y | ¬ϕ |
ϕ ∧ ϕ | ∃ x ϕ | ∀ x ϕ. Given a set P of predicate symbols from the above signature,
we denote the restriction of FO to the predicates in P by FO(P). Formulae are interpreted
either on URG(N) or on UG(N). Observe that FO on UG(N) enables, using init and
reachability predicates, to relativize formulae to URG(N). We omit the standard definition
of the satisfaction relation U ,v |= ϕ with U a structure (URG(N), RG(N) or UG(N)) and
v a valuation of the free variables in ϕ. Typically, ∀ x ϕ holds true whenever the formula
ϕ holds true for all elements (markings) of the considered structure. Sentences are closed
formulae, i.e. without free variables. If U |= ϕ then U is called a model of ϕ.

In the sequel, we consider several model-checking problems. The model-checking problem
MCURG(FO) [resp. MCUG(FO)] is stated as follows: given a Petri net N and a sentence
ϕ ∈ FO, does URG(N) |= ϕ [resp. UG(N) |= ϕ] ? The logics FO(P) induce restricted model
checking problems MCURG(FO(P)) and MCUG(FO(P)), respectively. Formulae in FO can
express standard structural properties, like deadlock-freeness (∀ x ∃y x −→ y) or cyclicity
(∀x∀y x ∗−→ y ⇒ y ∗−→ x). Semilinear sets and relations are known to be automatic (may be
generated by finite synchronous automata [5]). In particular, it means that (Nn,−→,=) is
automatic. By [5], (?) MCS(FO) is decidable for each automatic structure S. Proposition 2.2
below, consequence of (?), is our current state of knowledge.

P. Darondeau, S. Demri, R. Meyer, and C. Morvan 143

I Proposition 2.2. (I) MCUG(FO(−→,=)) is decidable. (II) Let C be a class of Petri nets
N for which the restriction on Reach(N) of the reachability relation x ∗−→ y is effectively
semilinear. Then, MCURG(FO) restricted to C is decidable. (III) Let C be a class of Petri
nets N for which Reach(N) is effectively semilinear. Then, MCURG(FO(−→,=)) restricted
to C is decidable.

Here are some classes of Petri nets for which the reachability relation ∗−→ is effectively
semilinear: cyclic Petri nets [2], communication-free Petri nets [6], vector addition systems
with states of dimension 2 [18], single-path Petri nets [14], etc.

Note that given ϕ in FO(−→,=), one can effectively build a Presburger formula that
characterizes exactly the valuations satisfying ϕ in UG(N). However, having Nn as a domain
does not always guarantee decidability, see the undecidability result in [21, Theorem 2] about
a structure with domain Nn but equipped with successor relations for each dimension and
with regularity constraints on them.

2.3 Standard first-order fragments: modal languages
By moving along edges, modal languages provide a local view for graph structures. Note the
constrast to first-order logic in which one quantifies over any element of the structure. Ap-
plications of modal languages include modelling temporal and epistemic reasoning, and they
are central for designing logical specification languages. The modal language ML(�,�−1)
(or simply ML) defined below has no propositional variable (like Hennessy-Milner modal
logic) and no label on modal operators. This allows us to interpret modal formulae on
directed graphs of the form (Reach(N),−→). The modal formulae in ML are defined by the
grammar ⊥ | > | ¬ϕ | ϕ ∧ ψ | �ϕ | �−1ϕ. We write ML(�) to denote the restriction
of ML to � and we use the standard abbreviations ♦ϕ def= ¬�¬ϕ and ♦−1ϕ

def= ¬�−1¬ϕ. We
interpret modal formulae on directed graphs (Reach(N),−→). We provide the definition of
the satisfaction relation |= relatively to an arbitrary directed graphM = (W,R) and w ∈W
(clauses for Boolean connectives and logical constants are omitted):
? M, w |= �ϕ def⇔ for every w′ ∈W such that (w,w′) ∈ R, we haveM, w′ |= ϕ.
? M, w |= �−1ϕ

def⇔ for every w′ ∈W such that (w′, w) ∈ R, we haveM, w′ |= ϕ.
Model-checking problem MCURG(ML) is the following: given a Petri net N and ϕ ∈ ML,
does (Reach(N),−→),M0 |= ϕ? Let MCURG(ML(�)) denote MCURG(ML) restricted to
ML(�).
I Proposition 2.3. MCURG(ML(�)) is decidable and PSpace-complete.

Adding �−1 to ML(�), often does not change the computational complexity of model
checking, see e.g. [4]. When it comes to Petri net reachability graphs RG(N), adding �−1

preserves decidability but at the cost of performing reachability checks. With a hardness
result in Section 3.4, we argue that such checks cannot be avoided.
I Proposition 2.4. MCURG(ML(�,�−1)) is decidable.

We introduce another decision problem about ML that is related to MCURG(FO(−→)).
The validity problem VALURG(ML), is stated as follows: given a Petri net N and ϕ ∈ ML,
does (Reach(N),−→),M |= ϕ for every marking M ∈ Reach(N) ? As observed earlier,
formulae from ML(�,�−1) can be viewed as first-order formulae in FO(−→). Therefore,
using modal languages in specifications is a way to consider fragments of FO(−→). Indeed,
given ϕ in ML(�,�−1), one can compute in linear time a first-order formula ϕ′ with only two
individual variables (see e.g. [4]) that satisfies: for every Petri net N we have RG(N) |= ϕ′

iff RG(N),M |= ϕ for every M in Reach(N). Hence, the validity problem VALURG(ML)
appears as a natural counterpart to MCURG(FO(−→)).

FSTTCS 2011

144 Petri Nets Reachability Graphs: FO Properties

3 Structural Properties of Unlabelled Net Reachability Graphs

We study the decidability status of model checking unlabelled reachability graphs of Petri
nets against the first-order and modal logics defined in the previous section.

3.1 A proof schema for the undecidability of FO(−→)
To establish undecidability of MCURG(FO(−→)), we provide a reduction of the equality prob-
lem for reachability sets, see Theorem 2.1(II). Given two Petri nets N1 and N2 with the same
places, we build N and ϕ in FO(−→) such that Reach(N1) = Reach(N2) iff RG(N) |= ϕ.
Interestingly, ϕ shall be independent of N1 and N2.

N1 M ′
0 N2

M1 M2M	 M` Mr

t1
c t2

c

t1
end t2

end

t1
` t1

dl t2
dl

tsl

Figure 3.1 Reachability graph of N

In N , the nets N1 and N2 to be compared for equality of reachability sets share all places
except two added control places p1 and p2 (set in self-loop with the respective transitions of
N1 and N2). The Petri net N has one more extra place p initially marked. Two concurrent
transitions t1c and t2c compete to consume the initial token and mark either p1 and all
places marked in the initial configuration of N1 or p2 and all places marked in the initial
configuration of N2 (see Figure 3.1). The first step in the execution of N implements an
arbitrary choice between simulating N1 or N2.

Once the simulation of N1 or N2 has started, it may be stopped at any time. This is
done by two transitions t1end and t2end that move the control token from p1 or p2 to a new
control place p′1 or p′2, thus leading to the marking M1 or M2 shown in Figure 3.1. After
this, the token count on the places of N1 and N2 is not changed any more. Moving the
token to p′1 or p′2 switches control to reporting subnets N ′1 or N ′2 that behave as indicated
in Figure 3.1 starting from markings M1 and M2.

By just emptying the control place p′1 or p′2, N ′1 and N ′2 may forget the index 1 or 2 of
the net N1 or N2 that was simulated and enter a deadlock marking M , that reflects the last
marking of N1 or N2 in the simulation. For this purpose, N is provided with two transitions
t1dl and t2dl (in Figure 3.1, M is denoted M` and Mr indicating whether it emerged from the
simulation of N1 (left) or N2 (right)). Reach(N1) = Reach(N2) iff every simulation result
or deadlock marking M can be obtained from N1 and N2. But inspecting M in isolation
does not reveal whether it stemmed from N1 or N2.

Deadlock markings (M) and their immediate predecessor markings (M1 and/or M2) are
easily characterized by first-order formulae. In order to express in FO(−→) that every simu-
lation result M has exactly two direct ancestor markings M1 and M2 (such that M1[t1dl〉M
and M2[t2dl〉M), it is necessary that the behaviours of N ′1 and N ′2 from M1 or M2 can be
distinguished by FO(−→) formulae. For this purpose, one gives to N ′1 but not to N ′2 the
possibility to avoid the deadlock state M` = M by firing from M1 a special transition t1`
that leads to a marking (M) with a 1-loop t	 (no new deadlock is introduced thus). In N ,
t1` competes with t1dl to move the token from the control place p′1 to another control place

P. Darondeau, S. Demri, R. Meyer, and C. Morvan 145

p	, controlling the 1-loop t	. In this way, the formula ϕ`(x) def= ∃ y (x −→ y ∧ y −→ y) holds
in markings M1 and does not hold in markings M2.

A formula ϕ expressing thatN1 andN2 have equal reachability sets is then: ∀ z (¬∃z′ z→
z′) ⇒ (∃z1 z1 → z ∧ ϕ`(z1)) ∧ (∃z2 z2 → z ∧ ¬ϕ`(z2)) . The formula ϕ requires that for
any simulation result M , both logical experiments witnessing for N1 and N2 succeed. It is
important to observe that the only deadlock markings of N are the markings reached by
the transitions t1dl and t2dl. Lemma 3.1 below, based on this remark, shows that the formula
ϕ expresses in fact the equality of the reachability sets of N1 and N2.

The strength of the construction stems from the combination of two ideas. A Petri net
can (i) store choices over arbitrary long histories and (ii) reveal this propagated information
by finite back and forth experiments determining local structures characterised by first-order
formulae. The experiments consist here of one backward transition, reconstructing the initial
choice, and some forward transitions checking the presence of a 1-loop.

I Lemma 3.1. Reach(N1) = Reach(N2) if and only if RG(N) |= ϕ.

For the implication from left to right, consider a deadlock marking M . M is only reachable
via t1dl or t2dl, say M ′1[t1dl〉M . Then marking M ′1 satisfies ϕ` and stems from a marking
M1[t1end〉M ′1 of N1. The hypothesis on equal reachability sets then yields a marking M2 of
N2 that leads by transition t2end to a marking M ′2 satisfying ¬ϕ` as required.

In turn, if ϕ holds, then we prove two inclusions. To show Reach(N1) ⊆ Reach(N2),
consider marking M1 reachable via sequence s1 in N1. In N , the marking can be prolonged
to a deadlock M with M ′0[t1c〉M1

0 [s1〉M1[t1end〉M ′1[t1dl〉M . Here, M ′1 satisfies ϕ`. But ϕ yields
another predecessor M ′2 of M with M ′2 6= M ′1. To avoid the 1-loop, it has to result from a
sequence M ′0[t2c〉M2

0 [s2〉M2[t2end〉M ′2[t2dl〉M . It is readily checked that M1 and M2 coincide
up to the token on the control place. This means M1 ∈ Reach(N2) as required.

By recycling variables in ϕ above, we get a sharp result that marks the undecidability
border of model checking against FO(−→) by two variables. Model checking FO(−→) restricted
to a one variable is decidable.

I Theorem 3.2. There exists a formula ϕ in FO(−→) with two individual variables such that
MCURG(FO(−→)) restricted to ϕ is undecidable.

The above undecidability result can be further sharpened since it is shown in [15] that the
undecidability of the equality problem holds already for Petri nets with 5 unbounded places.

3.2 Robustness of the proof schema
Based on the previous proof schema, we present undecidability results for subproblems of
MCURG(FO(−→)). We consider the positive fragment, the forward fragment, the restriction
when the direction of edges is omitted, and ML(�,�−1). Let λ(x, x′) def= (x −→ x′)∨ (x′ −→ x).
Expressing properties about RG(N) in FO(λ) amounts to getting rid of the direction of
edges of this graph. Despite this weakening, undecidability is still present. To instantiate the
above argumentation, we have to identify deadlock markings and analyse their environment.
In FO(λ), we augment markings encountered during the simulation by 3-cycles. Then, the
absence of 3-cycles and an environment without such cycles characterises deadlock markings.

I Proposition 3.3. MCURG(FO(λ)) is undecidable.

Proposition 3.4 below is proved by adapting the construction depicted in Figure 3.1.

I Proposition 3.4. VALURG(ML(�,�−1)) is undecidable.

FSTTCS 2011

146 Petri Nets Reachability Graphs: FO Properties

This undecidability result is tight (see Section 3.3). Translating formulae in ML(�,�−1) to
FO(−→) with two individual variables gives another evidence that MCURG(FO(−→)) with two
variables is undecidable. Although VALURG(ML(�,�−1)) and MCURG(FO(−→)) are unde-
cidable, we have identified decidable fragments of modal logic in Section 2.3. By analogy,
one may expect to find decidable fragments of first-order logic. We prove that this is not the
case. We consider here positive FO(−→) and forward FO(−→). In a positive formula, atomic
propositions occur only under the scope of an even number of negations. Let FO+(P) denote
the positive fragment of FO(P). A forward formula is a formula in which every occurrence
x −→ y is in the scope of a quantifier sequence of the form Q1 x . . . Q2 y where x is bound
before y. Let FOf (P) denote the forward fragment of FO(P).
I Proposition 3.5. MCURG(FO+(−→)) is undecidable.
I Proposition 3.6. MCURG(FOf (−→)) is undecidable.

While forward formulae can well identify the deadlock markings used in the proof schema,
the difficulty is in the description of the local environment witnessing the simulation results.

3.3 Taming undecidability with fragments
In this section, we present the restrictions of FO(−→) that we found to have decidable model
checking or validity problems. We write ∃FO for the fragment of FO whose formulae use
only existential quantification when written in prenex normal form.
I Proposition 3.7. MCURG(∃FO(−→,=)) is decidable.
Decidability of MCURG(∃FO(−→,=)) is obtained by checking the existence of reachable mark-
ings satisfying Presburger constraints. As a corollary, MCURG(FO(−→,=)) restricted to
Boolean combinations of existential formulae is decidable, and so is the subgraph isomorph-
ism problem as follows: given a finite directed graph G and a Petri net N , is there a subgraph
of (Reach(N),−→) isomorphic to G? Section 3.2 proves that VALURG(ML(�,�−1)) is un-
decidable. To our surprise, and in contrast to the negative result on model checking the
forward fragment of FO, this undecidability depends on the backward modality, see Propos-
ition 3.8 below (it can be extended to allow labels on edges). We write PAML(�) to denote
the extension of ML(�) by allowing as atomic formulae quantifier-free Presburger formulae
about the number of tokens in places.
I Proposition 3.8. The validity problem VALURG(PAML(�)) is decidable.
Decidability mainly holds because (non-)satisfaction of formulae in PAML(�) requires the
existence of finite tree-like patterns and if the root is in Reach(N), so are all its nodes (unlike
with ML(�,�−1)).

3.4 On the hardness of the decidable problems
Some of our decision procedures call subroutines for solving reachability in Petri nets. As this
problem is not known to be primitive recursive, we provide here some complexity-theoretic
justification for these costly invocations: we reduce the reachability problem for Petri nets
to the decidable problems MCURG(ML(�,�−1)) and to MCURG(∃FO(−→)). Besides reach-
ability, we gave decision procedures that exploit the semilinearity of reachability sets or
relations (see e.g. Proposition 2.2), but already for bounded Petri nets, MCURG(FO(−→)) is
of high complexity.
I Proposition 3.9. MCURG(FO(−→)) restricted to bounded Petri nets is decidable but this
problem has nonprimitive recursive complexity.

P. Darondeau, S. Demri, R. Meyer, and C. Morvan 147

N

M1

M2

M0

M ′
w

Mw

t0

tstop

ttry

twin

Figure 3.2 Reachability graph in the hardness proof of ML(�,�−1)-model checking

I Proposition 3.10. There is a logarithmic-space reduction from the reachability problem
for Petri nets to MCURG(ML(�,�−1)).
We reduce reachability of marking M2 from marking M1 in a Petri net N to an instance
of MCURG(ML(�,�−1)) for a larger net N . The idea is to introduce a marking Mw (see
Figure 3.2) such that the existence of a path to Mw of length greater than 1 witnesses for
the existence of some path fromM1 andM2 in RG(N). To reachMw by an ML formula, we
place it close to the new initial marking. We sketch the argumentation. The inital marking
M0 of N contains a single marked place pi on which compete two transitions ttry and t0.
Transition ttry moves the unique token from pi to another place pw and thus produces the
marking Mw where no other place is marked. Transition t0 loads M1 in the places of N and
moves the control token from pi to another control place pc set in self-loop with all transitions
of N . This starts the simulation of N fromM1. The simulation may be interrupted whenever
it reaches a marking of N greater than or equal to M2. Then, transition tstop consumes M2
from the places of N and moves the control token from pc to a place pw′ . The control token
is finally moved from pw′ to pw by firing twin. Mw is reached, after firing tstop twin, iff M2
is reached. Therefore M2 is reachable from M1 iff Mw is reachable from M1 (its restriction
to places of N equals M1). This is equivalent to stating that Mw has a predecessor different
from M0. The shape of the reachability graph enables to formulate the latter as a local
property in ML(�,�−1): ϕ := ♦(� ⊥ ∧ ♦−1♦−1>). Without loss of generality, we can
assume that M1 is no deadlock and M2 6= M1. Formula ϕ requires that M0 has a deadlock
successor and has an incoming path of length two. That the successor is a deadlock means
it is not M1 but Mw obtained by firing ttry. The path from M0 to Mw is of length one and
M0 has no predecessor. So the path of length two to Mw is not via ttry but stems from twin.
This means Mw is reachable from M1, which means M2 is reachable from M1 in N .

The proof of Proposition 3.10 can be adapted to ∃FO(−→) for which we also have shown
decidability of the model-checking by reduction to the reachability problem for Petri nets.
I Proposition 3.11. There is a logarithmic-space reduction from the reachability problem
for Petri nets to MCURG(∃FO(−→)).

4 FO with Reachability Predicates

We consider several first-order languages with reachability relations ∗−→ or +−→, mainly without
the one-step relation −→. Undecidability does not follow from Theorem 3.2 since we may
exclude −→. Nonetheless we follow the same proof schema. Besides, we distinguish the case
when reachability sets are semilinear leading to a surprising undecidability result (Proposi-
tion 4.4). Finally, we show that MCUG(FO(−→, ∗−→)) is undecidable too.

4.1 FO with reachability relations
The decidability status of MCURG(FO(+−→)) is not directly dependent upon the decidability
status of MCURG(FO(−→)). Still we are able to adapt the construction of Section 3.1 but

FSTTCS 2011

148 Petri Nets Reachability Graphs: FO Properties

using now a formula ϕ in FO(+−→). The Petri net N is the one depicted on Figure 3.1. The
formula ϕ is defined as follows: ϕ def= ∀ z dl(z) ⇒ (∃ z1 (z1

+−→ z) ∧ ϕ2(z1)) ∧ (∃ z2 (z2
+−→

z) ∧ ψ2(z2)) where dl(z) def= ¬∃z′ z +−→ z′, sl(y) def= y +−→ y ∧ ∀w [y +−→ w ⇒ w +−→ y], ϕ2(z) def=
[∃ y z +−→ y∧sl(y)]∧ [∀y z +−→ y⇒ (sl(y) ∨ dl(y))], and ψ2(z) def= [∃y z +−→ y∧∀y z +−→ y⇒ dl(y)].
One can show that Reach(N1) = Reach(N2) iff RG(N) |= ϕ.

I Proposition 4.1. MCURG(FO(+−→)) is undecidable. Furthermore this results holds for
the fixed formula ϕ defined earlier.

In order to prove undecidability of MCURG(FO(∗−→)) we have to adapt our usual proof
schema, since, in contrast with FO(+−→), we are no longer able to identify 1-loops.
I Proposition 4.2. MCURG(FO(∗−→)) is undecidable.

Even though MCUG(FO(−→,=)) is decidable (see Proposition 2.2), replacing −→ by ∗−→
and adding init leads to undecidability.

I Corollary 4.3. MCUG(FO(init, ∗−→)) is undecidable.

Indeed, MCURG(FO(∗−→)) reduces to MCUG(FO(init, ∗−→)) by relativization: URG(N) |=
ϕ iff UG(N) |= ∃x0 init(x0) ∧ f(ϕ) where ϕ and f(ϕ) are in FO(∗−→), f is homomorphic for
Boolean connectives and f(∀ x ψ) def= ∀ x (x0

∗−→ x)⇒ f(ψ).

4.2 When semilinearity enters into the play
We saw that MCURG(FO(−→,=)) restricted to Petri nets with effectively semilinear reach-
ability sets is decidable (see Proposition 2.2), but it is unclear what happens if the relation
∗−→ is added. We establish that MCURG(FO(−→, ∗−→)) restricted to Petri nets with semilinear
reachability sets is undecidable, by a reduction from MCURG(FO(−→)). Given a Petri net N
and a sentence ϕ ∈ FO(−→), we reduce the truth of ϕ in RG(N) to the truth of a formula ϕ
in RG(N) with a semilinear reachability set. The Petri net N is defined from N by adding
the new places p0, p1 and p2; each transition from N is in self-loop with p1. Moreover, we
add a new set of transitions that are in self-loop with p2 and that consist in adding or re-
moving tokens from the original places of N (thus modifying its content arbitrarily). These
transitions form a subnet denoted by Br. Three other transitions are added; see Figure 4.1
for a schematic representation of N (initial marking M ′0 of N restricted to places in N is
M0 with M ′0(p0) = M ′0(p1) = 1 and M ′0(p2) = 0). Our intention is to enforce Reach(N) to
be semilinear while being able to identify a subset from Reach(N) that is in bijection with
Reach(N); this is a way to drown Reach(N) into Reach(N). Indeed, Reach(N) contains
all the markings such that the sum of p1 and p2 is 1 and p0 is at most 1. Moreover, if the
transition t is fired first, then the subsequently reachable markings are precisely those of N ;
RG(N) embeds isomorphically into RG(N). Until t is fired, one may always come back to
M ′0, using the brownian subnet Br, but this is impossible afterwards.
I Proposition 4.4. MCURG(FO(−→, ∗−→)) restricted to Petri nets with semilinear reachab-
ility sets is undecidable.

Proof. In a first stage, we use init although this predicate cannot be expressed in FO(−→, ∗−→).
Let ϕ be the formula ∃ x0 x1 init(x0)∧x0 −→ x1∧¬(x1

∗−→ x0)∧f(ϕ) where f(·) is homomorphic
for Boolean connectives and f(∀ x ψ) def= ∀ x (x1

∗−→ x) ⇒ f(ψ) (relativization). In ϕ, x0 is
interpreted as the initial marking, and x1 is interpreted as a successor of x0 from which x0
cannot be reached again. This may only happen by firing t fromM ′0. Now the relativization
of every other variable to x1 in ϕ ensures that RG(N) |= ϕ iff RG(N) |= ϕ. To remove

P. Darondeau, S. Demri, R. Meyer, and C. Morvan 149

p0

p1

p2t

N

Br

Shared places

Figure 4.1 Petri net N

init, we construct a Petri net N ′ similar to N . N ′ has an extra place p′0, initially marked
with one token, and a new transition that consumes this token and produces two tokens
in p0 and p1, which were initially empty. By construction, the initial marking of N ′ is the
sole marking in RG(N ′) with no incoming edge and one outgoing edge. We use the formula
ϕ′ = ∃ x′0 x0 x1 (¬∃ y y −→ x′0) ∧ x′0 −→ x0 ∧ x0 −→ x1 ∧ (¬x1

∗−→ x0) ∧ f(ϕ). For the same
reasons as above, RG(N) |= ϕ iff RG(N ′) |= ϕ′. J

4.3 The reachability relation and the structure UG

Corollary 4.3 states a first undecidable result for UG. In this section we examine two other
cases where the model checking of formulas in FO(−→, ∗−→) are undecidable for this structure.
I Proposition 4.5. MCUG(FO(−→, ∗−→)) is undecidable.
Proposition 4.5 holds even when the reachable set of the net is effectively semilinear.
I Proposition 4.6. MCUG(FO(−→, ∗−→)) is undecidable for classes of Petri nets having an
effective semilinear reachability set.
In this section we have examined several first-order sublanguages involving the reachability
predicate. We obtained undecidability results, even when the reachable markings form a
semilinear set, and even when UG(N) is considered instead of URG(N)

5 Pattern Matching Problem

In this section, we do not consider the reachability graphs of Petri nets but their reachability
sets (Reach(N)), plain subsets of Nn where n is the number of places of the net. In [17] the
author characterizes such sets as almost-semilinear sets, a global property. On the opposite,
we focus here on the shape of local neighborhoods by determining the existence of markings
in Nn whose surrounding satisfies a specific pattern of reachable and non-reachable positions.

Using such patterns, one may check for instance whether there exist two reachable mark-
ings that differ only on a fixed place and by exactly one token.

A pattern P is defined as a map [0, N1] × · · · × [0, Nn] → {{◦}, {•}, {◦, •}} (values
’unreachable’, ’reachable’, ’dontcare’). A constrained position for P is an element of [0, N1]×
· · ·×[0, Nn] with P-image different from {◦, •}. Observe that patterns have the full dimension
of the state space of the net. Each Petri net N with n (ordered) places induces a map
fN : Nn → {{◦}, {•}} such that fN (M) = {•} iff M ∈ Reach(N). Given a Petri net N , a
pattern P is matched by the net N at a point ~v ∈ Nn if, for all ~a ∈ [0, N1] × · · · × [0, Nn],
fN (~v + ~a) ⊆ P(~a). A pattern P is matched by a Petri net N if it is matched by N at
some point ~v ∈ Nn (that may not be a reachable marking). The Pattern Matching Problem
(PMP) is defined as follows: given a Petri net N and a pattern P, is P matched by N?

FSTTCS 2011

150 Petri Nets Reachability Graphs: FO Properties

Table 1 Summary

Problem] Arbitrary Effectively semilinear Reach(N)
MC](FO(−→)) URG UNDEC (Theo. 3.2) DEC

UG DEC DEC
MC](FO(+−→)) URG UNDEC (Prop. 4.1) open
MC](FO(∗−→)) URG UNDEC (Prop. 4.2) open

MC](FO(−→,
∗−→)) URG UNDEC UNDEC (Prop. 4.4)

UG UNDEC (Prop. 4.5) UNDEC (Prop. 4.6)
MC](FO+(−→)) URG UNDEC (Prop. 3.5) DEC
MC](FOf (−→)) URG UNDEC (Prop. 3.6) DEC

MC](∃FO(−→, =)) URG DEC (Prop. 3.7) DEC
MC](FO(−→, =)) UG DEC (Prop. 2.2) DEC

MC](ML(�)) URG PSpace-complete PSpace-complete
MC](ML(�,�−1)) URG DEC (Prop. 2.4) DEC
VAL](ML(�,�−1)) URG UNDEC (Prop. 3.4) DEC
VAL](PAML(�)) URG DEC (Prop. 3.8) DEC

PMP Nn UNDEC (Proposition 5.1) DEC (Proposition 5.1)

I Proposition 5.1. (1) Let C be a class of Petri nets with effectively semilinear reachability
sets. Then, PMP restricted to Petri nets in C is decidable. (2) PMP restricted to patterns
with at most two constrained positions is undecidable.

Proposition 5.1(1) follows from the semilinearity of the set of marking satisfying patterns. To
prove (2) we embed the reachable sets of two nets into two hyperplanes. Then these sets do
not match iff there are two markings one reachable, the other not which may be encoded into
a pattern. We use, here, a pattern with 2 adjacent, reachable and non-reachable, positions.
It seems uneasy to prove this result using patterns having a single kind of constraints.

6 Concluding Remarks

We investigated mainly the model-checking problem over unlabelled reachability graphs of
Petri nets with FO(−→). The robustness of our main undecidability proof has been tested
against standard fragments of FO(−→), modal fragments, patterns and against the additional
assumption that reachability sets are effectively semilinear. Table 1 provides a summary of
the main results (observe that whenever the reachability relation is effectively semilinear,
each problem is decidable). Results in bold are proved in the paper, whereas unbold ones are
their consequences. Despite the quantity of results, a few rules of thumb can be synthesized:
(1) undecidability of MC(FO(−→)) is robust for several fragments of FO(−→); (2) decidability
results with simple restrictions such as considering bounded Petri nets or ∃FO(−→) lead to
computationally difficult problems (see Section 3.4); (3) the above points are still relevant
for modal languages and patterns. Let us conclude by mentioning possible continuations of
this work. Firstly, our taxonomy of results is partially incomplete.

New directions can also be followed. First, one could check geometrical properties of the
reachability set Reach(N), e.g., the existence of an homogeneous ball around some reachable
marking. Second, one could ask decidability questions about infinite unfoldings of nets in
place of net reachability graphs. Such unfoldings may be shaped as trees if they may be
local event structures [13]. With tree-unfoldings, labelling arcs (or nodes) is required if one
wants to be able to express non-trivial properties, but then markings can be encoded to trees
in which each arc represents one token being removed from a place identifies by the label
of the arc. With event structure unfoldings, labelling an event e by a (sufficiently large)

P. Darondeau, S. Demri, R. Meyer, and C. Morvan 151

number k may always be simulated by adding k events triggered by e and in direct conflict
with one another. In both cases, for obtaining decidable fragments of FO, one must avoid
introducing any relation that would allow comparing for isomorphism two subtrees of two
substructures triggered by two different events (like t1dl and t2dl in Fig. 3.1). The situation
is different with regular trace event structures, although the substructure triggered by an
event is characterized here by the label of this event. The decidability of FO over regular
trace event structures has indeed been shown in [19]. However, regular trace event structures
model safe Petri nets, whereas the model checking questions studied in this paper bear upon
general and thus unbounded Petri nets.
Acknowledgments: We would like to thank the anonymous referees for helpful remarks
and suggestions.

References
1 T. Araki and T. Kasami. Some decision problems related to the reachability problem for

Petri nets. TCS, 3:85–104, 1976.
2 T. Araki and T. Kasami. Decidability problems on the strong connectivity of Petri net

reachability sets. TCS, 4:99–119, 1977.
3 M. F. Atig and P. Habermehl. On Yen’s path logic for Petri nets. International Journal

of Foundations of Computer Science, 22(4):783–799, 2011.
4 P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. CUP, 2001.
5 A. Blumensath and E. Grädel. Automatic structures. In LICS’00, pages 51–62, 2000.
6 J. Esparza. Petri nets, commutative context-free grammars, and basic parallel processes.

Fundamenta Informaticae, 31(13):13–26, 1997.
7 J. Esparza. Decidability and complexity of Petri net problems — an introduction. In

Advances in Petri Nets 1998, volume 1491 of LNCS, pages 374–428. Springer, 1998.
8 S. Ginsburg and E. Spanier. Semigroups, Presburger formulas, and languages. Pacific

Journal of Mathematics, 16:285–296, 1966.
9 P. Habermehl. On the complexity of the linear-time mu-calculus for Petri nets. In IC-

ATPN’97, volume 1248 of LNCS, pages 102–116. Springer, 1997.
10 M. Hack. Decidability Questions for Petri nets. PhD thesis, MIT, 1975.
11 M. Hack. The equality problem for vector addition systems is undecidable. TCS, 2:77–96,

1976.
12 D. Hauschildt. Semilinearity of the reachability set is decidable for Petri nets. Technical

Report FBI-HH-B-146/90, University of Hamburg, 1990.
13 P. W. Hoogers, H. C. M. Kleijn, and P. S. Thiagarajan. An event structure semantics for

general Petri nets. TCS, 153:129–170, 1993.
14 R. Howell, P. Jančar, and L. Rosier. Completeness results for single-path Petri nets. I &

C, 106(2):253–265, 1993.
15 P. Jančar. Undecidability of bisimilarity for Petri nets and some related problems. TCS,

148:281–301, 1995.
16 R. M. Karp and R. E. Miller. Parallel program schemata. JCSS, 3:147–195, 1969.
17 J. Leroux. Vector Addition System Reachability Problem (A Short Self-Contained Proof).

In POPL’11, pages 307–316, 2011.
18 J. Leroux and G. Sutre. On Flatness for 2-Dimensional Vector Addition Systems with

States. In CONCUR’04, volume 3170 of LNCS, pages 402–416. Springer, 2004.
19 P. Madhusudan. Model-checking trace event structures. In LICS’03, pages 371–380, 2003.
20 E. Mayr. An algorithm for the general Petri net reachability problem. SIAM Journal of

Computing, 13(3):441–460, 1984.
21 S. Schulz. First-order logic with reachability predicates on infinite systems. In

FST&TCS’10, pages 493–504. LIPICS, 2010.

FSTTCS 2011

Approximating Petri Net Reachability Along
Context-free Traces
Mohamed Faouzi Atig1 and Pierre Ganty2

1 Uppsala University, Sweden
mohamed_faouzi.atig@it.uu.se

2 IMDEA Software Institute, Spain
pierre.ganty@imdea.org

Abstract
We investigate the problem asking whether the intersection of a context-free language (CFL) and a
Petri net language (PNL) (with reachability as acceptance condition) is empty. Our contribution
to solve this long-standing problem which relates, for instance, to the reachability analysis of
recursive programs over unbounded data domain, is to identify a class of CFLs called the finite-
index CFLs for which the problem is decidable. The k-index approximation of a CFL can be
obtained by discarding all the words that cannot be derived within a budget k on the number of
occurrences of non-terminals. A finite-index CFL is thus a CFL which coincides with its k-index
approximation for some k. We decide whether the intersection of a finite-index CFL and a PNL is
empty by reducing it to the reachability problem of Petri nets with weak inhibitor arcs, a class of
systems with infinitely many states for which reachability is known to be decidable. Conversely,
we show that the reachability problem for a Petri net with weak inhibitor arcs reduces to the
emptiness problem of a finite-index CFL intersected with a PNL.

1998 ACM Subject Classification D.2.4 Software Engineering /Program Verification

Keywords and phrases Petri nets, Context-free Grammars, Reachability Problem

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.152

1 Introduction

Automated verification of infinite-state systems, for instance programs with (recursive) pro-
cedures and integer variables, is an important and a highly challenging problem. Pushdown
automata (or equivalently context-free grammars) have been proposed as an adequate form-
alism to model procedural programs. However pushdown automata require finiteness of the
data domain which is typically obtained by abstracting the program’s data, for instance,
using the predicate abstraction techniques [3, 9]. In many cases, reasoning over finite ab-
stract domains leads to too coarse an analysis and is therefore not precise. To palliate this
problem, it is natural to model a procedural program with integer variables as a pushdown
automaton manipulating counters. In general, pushdown automata with counters are Turing
powerful which implies that basic decision problems are undecidable (this is true even for
the case finite-state automata with counters).

Therefore one has to look for restrictions on the model which retain sufficient express-
iveness while allowing basic properties like reachability to be algorithmically verified. One
such restriction is to forbid the test of a counter and a constant for equality. In fact, for-
bidding test for equality implies the decidability of the reachability problem for the case of
finite-state automata with counters (i.e. Petri nets [13, 15]).

© M. F. Atig and P. Ganty;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 152–163

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.152
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. F. Atig and P. Ganty 153

The verification problem for pushdown automata with (restricted) counters boils down to
check whether a context-free language (CFL) and a Petri net language (PNL) (with reachabil-
ity as acceptance condition) are disjoint or not. We denote this last problem PNL∩CFL ?= ∅.

The decidability of PNL∩CFL ?= ∅ is open and lies at the very edge of our comprehension
of infinite-state systems. We see two breakthroughs contributing to this question. First,
determining the emptiness of a PNL was known to be decidable as early as the eighties.
Then, in 2008, Reinhardt [15] lifted this result to an extension of PN with inhibitor arcs
(that allow to test if a counter equals 0) which must satisfy some additional topological
conditions. By imposing a topology on the tests for zero, Reinhardt prevents his model to
acquire Turing powerful capabilities. We call his model PNW and their languages PNWL.

Our contribution to the decidability of PNL∩CFL ?= ∅ comes under the form of a partial
answer which is better understood in terms of underapproximation. In fact, given a PNL
L1 and a language L of a context-free grammar, we under-approximate L by a subset L′
which is obtained by discarding from L all the words that cannot be derived within a given
budget k ∈ N on the number of non-terminal symbols. (In fact, the subset L′ contains any
word of L that can be generated by a derivation of the context-free grammar that contains
at most k non-terminal symbols at each derivation step.) We show how to compute L′
by annotating the variables of the context-free grammar for L with an allowance. What is
particularly appealing is that the coverage of L increases with the allowance. Approximations
induced by allowances are non-trivial: every regular or linear language is captured exactly
with an allowance of 1, L′ coincides with L when the allowance is unbounded, and under
commutativity of concatenation L′ coincides with L for some allowance k ∈ N.

We call finite-index CFL, or fiCFL for short, a context-free language where each of its
words can be derived within a given budget. In this paper, we prove the decidability of
PNL ∩ fiCFL ?= ∅ by reducing it to the emptiness problem of PNWL. We also prove the
converse reduction; showing those two problems are equivalent. Hence, we offer a whole new
perspective on the emptiness problem for PNWL and PNL ∩ CFL.

To conclude the introduction let us mention the recent result of [2] which builds on [13]
to give an alternative proof of Reinhardt’s result (PNW reachability is decidable) for the
particular case where one counter only can be tested for zero.

2 Preliminaries

2.1 Context-Free Languages
An alphabet Σ is a finite non-empty set of symbols. A word w over an alphabet Σ is a finite
sequence of symbols of Σ where the empty sequence is denoted ε. We write Σ∗ for the set
of words over Σ. Let L ⊆ Σ∗, L defines a language.

A context-free grammar (CFG) G is a tuple (X ,Σ,P) where X is a finite non-empty
set of variables (non-terminal letters), Σ is an alphabet of terminal letters, and P ⊆

(
X ×

(X 2 ∪ Σ ∪ {ε})
)
is a finite set of productions (the production (X,w) may also be denoted

by X → w). For every production p = (X,w) ∈ P, we use head(p) to denote the variable
X. Observe that the form of the productions is restricted, but it has been shown in [12]
that every CFG can be transformed, in polynomial time, into an equivalent grammar of this
form.

Given two strings u, v ∈ (Σ∪X)∗ we define the relation u⇒ v, if there exists a production
(X,w) ∈ P and some words y, z ∈ (Σ ∪ X)∗ such that u = yXz and v = ywz. We use ⇒∗
for the reflexive transitive closure of ⇒. Given X ∈ X , we define the language LG(X), or

FSTTCS 2011

154 Approximating Petri Net Reachability Along Context-free Traces

simply L(X) when G is clear form the context, as {w ∈ Σ∗ | X ⇒∗ w}. A language L is
context-free (CFL) if there exists a CFG G = (X ,Σ,P) and A ∈ X such that L = LG(A).

2.2 Finite-index Approximation of Context-Free Languages
Let k ∈ N, G = (X ,Σ,P) be a CFG and A ∈ X . A derivation from A given by A = α0 ⇒
α1 ⇒ · · · ⇒ αn is k-index bounded if for every i ∈ {0, . . . , n} at most k symbols of αi are
variables. We denote by L(k)(A) the subset of L(A) such that for every w ∈ L(k)(A) there
exists a k-index bounded derivation A⇒∗ w. We call L(k)(A) the k-index approximation of
L(A) or more generically we say that L(k)(A) is a finite-index approximation of L(A).1

Let us now give some known properties of finite-index approximations. Clearly
limk→∞ L(k)(A) = L(A). Moreover, let L be a regular or linear language2, then there exists
a CFG G′, and a variable A′ of G′ such that L(A′) = L = L(1)(A′). Also Luker showed in
[14] that if L(A) ⊆ L(w∗1 · · ·w∗n) for some wi ∈ Σ∗, then L(k)(A) = L(A) for some k ∈ N.
More recently, [6, 8] showed some form of completeness for finite-index approximation when
commutativity of concatenation is assumed. It shows that there exists a k ∈ N such that
L(A) ⊆ Π(L(k)(A)) where Π(L) denotes the language obtained by permuting symbols of w
for every w ∈ L. As an incompleteness result, Salomaa showed in [16] that for the Dyck
language LD∗1

over 1-pair of parentheses there is no CFG G′, variable A′ of G′ and k ∈ N
such that L(k)(A′) = LD∗1

.
Inspired by [5, 7, 6] let us define the CFG G[k] which annotates the variables of X with a

positive integer. With this annotation we can capture precisely finite-index approximations
of L(A) as given in Lem. 2.

I Definition 1. Let G[k] = (X [k],Σ,P [k]) be the context-free grammar defined as follows:
X [k] =

{
X [i] | 0 ≤ i ≤ k ∧X ∈ X

}
, and P [k] is the smallest set such that:

For every X → Y Z ∈ P, P [k] has the productions X [i] → Y [i−1]Z [i] and X [i] →
Y [i]Z [i−1] for every i ∈ {1, . . . , k}.
For every X → σ ∈ P with σ ∈ Σ ∪ {ε}, X [i] → σ ∈ P [k] for all i ∈ {0, . . . , k}.

What follows is a consequence of several results from different papers by Esparza et al.
Because of space constraints the proof is given in [1].

I Lemma 2. Let X ∈ X . We have L(X [k]) = L(k+1)(X).

2.3 Petri nets with Inhibitor Arcs
Let Σ be a finite non-empty set, a multiset (or a marking) m : Σ → N over Σ maps each
symbol of Σ to a natural number. Let M[Σ] be the set of all multisets over Σ.

Sometimes, we use m = Jq1, q1, q3K to denote the multiset m ∈ M[{q1, q2, q3, q4}] such
that m(q1) = 2, m(q2) = m(q4) = 0, and m(q3) = 1. The empty multiset is denoted ∅.

Given m,m′ ∈ M[Σ] we define m ⊕ m′ ∈ M[Σ] to be the multiset such that ∀a ∈
Σ: (m ⊕m′)(a) = m(a) + m′(a), we also define the natural partial order � on M[Σ] as
follows: m � m′ iff there exists m∆ ∈ M[Σ] such that m ⊕m∆ = m′. We also define
m	m′ ∈M[Σ] as the multiset such that (m	m′)⊕m′ = m provided m′ �m.

A Petri net with inhibitor arcs (PNI for short) N = (S, T, F = 〈Z, I,O〉,mı) consists
of a finite non-empty set S of places, a finite set T of transitions disjoint from S, a tuple

1 Finite-index approximations were first studied in the 60’s.
2 See [11] for definitions.

M. F. Atig and P. Ganty 155

F = 〈Z, I,O〉 of functions Z : T → 2S , I : T → M[S] and O : T → M[S], and an initial
marking mı ∈M[S]. A marking m (∈M[S]) of N assigns to each place p ∈ S m(p) tokens.

A transition t ∈ T is enabled at m, written m [t〉, if I(t) � m and m(p) = 0 for all
p ∈ Z(t). A transition t that is enabled at m can be fired, yielding a marking m′ such that
m′ = (m	 I(t))⊕O(t). We write this fact as follows: m [t〉m′. We extend enabledness and
firing inductively to finite sequences of transitions as follows. Let w ∈ T ∗. If w = ε we define
m [w〉m′ iff m′ = m; else if w = u · v we have m [w〉m′ iff ∃m1 : m [u〉m1 ∧m1 [v〉m′.

A marking m ∈ M[S] is reachable from m0 if and only if there exists w ∈ T ∗ such that
m0 [w〉m. Given a language L ⊆ T ∗ over the transitions of N , the set of reachable markings
from m0 along L, written [m0〉L, is defined by {m | ∃w ∈ L : m0 [w〉m}. Incidentally, if L
is unspecified then it is assumed to be T ∗ and we simply write [m0〉 for the set of markings
reachable from m0. To avoid ambiguities, we sometimes explicit the PNI, e.g. m1 ∈ [m0〉LN .

A Petri net with weak inhibitor arcs (PNW for short) is a PNI N = (S, T, F =
〈Z, I,O〉,mı) such that there is an index function f : S → N with the property:

∀p, p′ ∈ S : f(p) ≤ f(p′)→ (∀t ∈ T : p′ ∈ Z(t)→ p ∈ Z(t)) . (1)

A Petri net (PN for short) can be seen as a subclass of Petri nets with weak inhibitor
arcs where Z(t) = ∅ for all transitions t ∈ T . In this case, we shorten F as the pair 〈I,O〉.

The reachability problem for a PNI N = (S, T, F = 〈Z, I,O〉,mı) is the problem of
deciding, for a given marking m, whether m ∈ [mı〉 holds. It is well known that reachability
for Petri nets with inhibitor arcs is undecidable [10]. However, the following holds:

I Theorem 3. [15] The reachability problem for PNW is decidable.

2.4 The reachability problem for Petri nets along finite-index CFL

Let us formally define the problem we are interested in. Given: (1) a Petri net N =
(S, T, F,mı) where T 6= ∅; (2) a CFG G = (X , T,P) and A ∈ X ; (3) a marking mf ∈ M[S];
and (4) a value k ∈ N.

Does mf ∈ [mı〉L
(k)(A) hold ?

In what follows, we prove the interreducibility of the reachability problem for PN along
finite-index CFL and the reachability problem for PNW.

3 From PN reachability along fiCFL to PNW reachability

In this section, we show that the reachability problem for Petri nets along finite-index CFL
is decidable. To this aim, let us fix an instance of the problem: a Petri net N = (S, T, F,mı)
where T 6= ∅, a CFG G = (X , T,P), mf ∈ M[S], and a natural number k ∈ N. Moreover,
let G[k] = (X [k], T,P [k]) be the CFG given by def. 1.

Lemma 2 shows that mf ∈ [mı〉L
(k+1)(A) if and only if mf ∈ [mı〉L(A[k]). Then, our

decision procedure, which determines if mf ∈ [mı〉L(A[k]), proceeds by reduction to the
reachability problem for PNW and is divided in two steps. First, we reduce the question
mf ∈ [mı〉L(A[k]) to the existence of a successful execution in the program of Alg. 1 which,
in turn, is reduced to a reachability problem for PNW. Let us describe Alg. 1.

FSTTCS 2011

156 Approximating Petri Net Reachability Along Context-free Traces

Part 1. Alg. 1 gives the pro-
cedure traverse in which Mi
and Mf are global arrays of
markings with index ranging
from 0 to k (i.e., for every
j ∈ {0, . . . , k}, Mi[j],Mf [j] ∈
M[S]). We say that a call
traverse(X [`]) successfully re-
turns if there exists an execu-
tion which eventually reaches
line 22 (i.e., no assert fails)
and the postcondition Mi[j] =
Mf [j] = ∅ for every j ∈
{0, . . . , `} holds. Moreover we
say that a call traverse(X [`])
is proper if Mi[j] = Mf [j] =
∅ for all 0 ≤ j < `. Let
` ∈ {0, . . . , k}, we shall now
demonstrate that a proper call
traverse(X [`]) successfully re-
turns if and only if there ex-
ists w ∈ L(X [`]) such that
Mi[`] [w〉N Mf [`].
The formal statement is given
at Lem. 4. We give some ex-
planations about Alg. 1 first.

Algorithm 1: traverse
Input: A variable X [`] ∈ X [k] of G[k]

1 begin
2 Let p ∈ P [k] such that head(p) = X [`]

3 switch p do
4 case X [`] → σ /* σ ∈ Σ ∪ {ε} */
5 Mi[`] := (Mi[`]	 I(σ))⊕O(σ)
6 Choose non det qty ∈M[S]
7 (Mi[`],Mf [`]) := (Mi[`],Mf [`])	 qty
8 case X [`] → B[`]C [`−1]

9 transfer_from_to(Mf [`],Mf [`− 1])
10 Choose non det qty ∈M[S]
11 (Mf [`],Mi[`−1]) := (Mf [`],Mi[`−1])⊕qty
12 traverse(C [`−1])
13 assert Mi[j] = Mf [j] = ∅ for all j < `

14 traverse(B[`])
15 case X [`] → B[`−1]C [`]

16 transfer_from_to(Mi[`],Mi[`− 1])
17 Choose non det qty ∈M[S]
18 (Mi[`],Mf [`−1]) := (Mi[`],Mf [`−1])⊕qty
19 traverse(B[`−1])
20 assert Mi[j] = Mf [j] = ∅ for all j < `

21 traverse(C [`])

22 return

Instructions of the form (var1, var2) := (var1, var2)�qty where qty ∈M[S] and � ∈ {⊕,	}
stand for the two instructions var1 := var1 � qty; var2 := var2 � qty. Observe that, given
two markings m,m′, the subtraction operation m	m′ can be performed only when m′ �m
(i.e., assume every occurence of m	m′ is preceded by assert m′ �m).
The procedure transfer_from_to proceeds as
follows: (1) non deterministically choose a
marking qty ∈ M[S], (2) add qty to tgt, and
(3) subtract qty from src. Intuitively, it trans-
fers an arbitrary sub-marking qty of src to tgt.

Algorithm 2: transfer_from_to
Input: src, tgt
Choose non det. qty ∈ M[S]
tgt := tgt ⊕ qty
src := src 	 qty

Intuitively, traverse(X [`]) simulates the execution of N along a sequence of transitions
w such that X [`] ⇒∗ w. However as traverse simulates the derivation of w, it does not
necessarily follows a leftmost order but instead an order which guarantees that a bounded
amount of memory only is needed to derive w. This is needed for the translation to PNW.

To understand the correctness argument of Alg. 1, let us see why the call traverse(X [`])
successfully returns if there exists w ∈ L(X [`]) such that Mi[`] [w〉N Mf [`].

Let us start by assuming that X [`] ⇒ u⇒∗ w with u ∈ (Σ∪X [k])∗ and Mi[`] [w〉N Mf [`].
An execution of traverse(X [`]) is such that at line 2, some p = (X [`], u) ∈ P [k] is picked.
The choice of p yields three case studies.

The first case is given by p = (X [`], σ) ∈ P [k] (with σ ∈ Σ ∪ {ε}) which yields the case
of line 4 to be executed. It follows that X [`] ⇒ u = w = σ. Since Mi[`] [σ〉Mf [`] holds
by assumption there exists a marking qty such that (Mi[`],Mf [`]) := (Mi[`],Mf [`]) 	 qty

M. F. Atig and P. Ganty 157

has the effect to empty Mi[`] and Mf [`]. Finally, upon reaching line 22 we find that the
post condition Mi[`] = ∅ = Mf [`] for every j ∈ {0, . . . , `} holds. Therefore the call to
traverse(X [`]) successfully returns.

The second case is p = (X [`], B[`]C [`−1]) which yields line 9 is executed. We further
assume that Mi[`] [w1w2〉Mf [`] where w1 ∈ L(B[`]) and w2 ∈ L(C [`−1]). Hence, we find
that there is m ∈ M[S] such that Mi[`] [w1〉m [w2〉Mf [`] which, by monotonicity of PN, is
equivalent to:

∃m1,m2,m3 ∈M[S] : Mi[`] [w1〉m1 ∧m2 [w2〉m3 ∧m1 = m2 ⊕ (Mf [`]	m3) . (2)

Observe that, for (2) to be valid, we need m3 �Mf [`] to hold.
Let us resume the execution of traverse(X [`]) which now executes the call to the procedure

transfer_from_to(Mf [`],Mf [`−1]) of line 9. We assume the transfer is given by the marking
m3 so that when returning from Alg. 2 we have Mf [` − 1] = m3. Next the instruction
(Mf [`],Mi[` − 1]) := (Mf [`],Mi[` − 1]) ⊕ qty of line 11 executes. The effect is to add an
arbitrary value, say m2, to the markings Mf [`] and Mi[`−1]. Therefore, Mi[`−1] is updated
to m2 and Mf [`] to m1 (= m2 ⊕ (Mf [`]	m3)).

Now, a recursive proper call traverse(C [`−1]) takes place (see line 12) to determine if
there exists a word w′ ∈ L(C [`−1]) such that Mi[` − 1] [w′〉Mf [` − 1]. We conclude from
above that w2 is such a word: (Mi[` − 1] =)m2 [w2〉m3(= Mf [` − 1]) holds. Therefore the
call traverse(C [`−1]) successfully returns and we find that Mi[j] = Mf [j] = ∅ for all j < `

(assuming Alg. 1 is correct). This implies that the assert statement at line 13 succeeds.
Then, a recursive proper call traverse(B[`]) takes place (see line 14) to determine if there

exists a word w′ ∈ L(B[`]) such that Mi[`] [w′〉Mf [`]. We conclude from above that w1 is
such a word: Mi[`] [w1〉m1(= Mf [`]) holds. Therefore traverse(B[`]) successfully returns
(again assuming Alg. 1 is correct) and so is traverse(X [`]) and we are done.

The third case given by p = (X [`], B[`−1]C [`]) ∈ P [k] is treated similarly.

It is worth pointing that the control flow of traverse matches the traversal of a parse
tree of G[k] such that at each node traverse goes first to the subtree which carries the least
index. The tree traversal is implemented through recursive calls in traverse. To see that
the traversal goes first in the subtree of least index, it suffices to look at the ordering of the
recursive calls to traverse in the code of Alg. 1, e.g. in case the of line 8, traverse(C [`−1]) is
called before traverse(B[`]). Moreover, we have that the proper call traverse(X [`]) returns iff
there exists a parse tree t of G[k] with root variable X [`] such that the sequence of transitions
given by the yield of t is enabled from the marking stored in Mi[`] and its firing yields the
marking stored in Mf [`]. Because of the least index first tree traversal, it turns out that the
arrays Mi and Mf provide enough space to manage all the intermediary results.

Also, we observe that when the procedure traverse(X [`]) calls itself with the parameter,
say B[`], the call is a tail recursive call. This means that when traverse(B[`]) returns then
traverse(X [`]) immediately returns. It is known from programming techniques how to im-
plement tail recursive call without consuming space on the call stack. In the case of Alg. 1,
we can do so by having a global variable to store the parameter of traverse and by replacing
tail recursive calls with goto statements. For the remaining recursive calls (line 12 and 19),
because the index of the callee is one less than the index of the caller, we conclude that a
bounded space consisting of k frames suffices for the call stack.

Those two insights (two arrays with k entries and a stack with k frames) will be the key
to show, in Part 2, that traverse can be implemented as a PNW.

I Lemma 4. Let ` ∈ {0, . . . , k}, X [`] ∈ X [k], and m,m′ ∈ M[S]. Then, the proper call

FSTTCS 2011

158 Approximating Petri Net Reachability Along Context-free Traces

traverse(X [`]) with Mi[`] = m and Mf [`] = m′ successfully returns if and only if there exists
w ∈ L(X [`]) such that m [w〉N m′.

Proof. If. We prove that if there exists w ∈ L(X [`]) such that m [w〉m′ then the proper
call traverse(X [`]) with Mi[`] = m and Mf [`] = m′ successfully returns.

Our proof is done by induction on the length n of the derivation of w ∈ L(X [`]). For the
case n = 1, we necessarily have X [`] ⇒ w = σ for some (X [`], σ) ∈ P [k]. In this case, the
proper call traverse(X [`]) with Mi[`] = m and Mf [`] = m′ executes as follows: p = (X [`], σ)
is picked and the case of line 4 executes successfully since m = Mi[`] [σ〉Mf [`] = m′ holds.
In fact, after the assignment of line 5 we have Mi[`] = Mf [`]. Hence, by choosing the right
qty, the instruction (Mi[`],Mf [`]) := (Mi[`],Mf [`]) 	 qty of line 7 empties Mi[`] and Mf [`]
which shows that traverse(X [`]) successfully returns.

For the case n > 1, we have X [`] ⇒n w which necessarily has the form X [`] ⇒
B[`]C [`−1] ⇒n−1 w or X [`] ⇒ B[`−1]C [`] ⇒n−1 w by def. of G[k]. Assume we are in the latter
case. Thus there exists w1 and w2 such that X [`] ⇒ B[`−1]C [`] ⇒i w1C

[`] ⇒j w1w2 = w

with i + j = n − 1 and ∃m1 : m [w1〉m1 [w2〉m′. Observe that w1 ∈ L(B[`−1]) and
w2 ∈ L(C [`]) and so by induction hypothesis we find that the proper call traverse(B[`−1])
with Mi[`− 1] = m, Mf [`− 1] = m1 successfully returns. And so does, by induction hypo-
thesis, the proper call traverse(C [`]) with Mi[`] = m1, Mf [`] = m′. Therefore let us consider
the proper call traverse(X [`]) with Mi[`] = m, Mf [`] = m′. We show it successfully returns.

First observe that the call to the procedure traverse(X [`]) is proper. Next, at line 2, pick
p = (X [`], B[`−1]C [`]). Then the call transfer_from_to(Mi[`],Mi[`− 1]) of line 16 executes
such that Mi[`] is updated to ∅ and Mi[`− 1] to m. Next the non determisnistic choice of
qty and the instruction (Mi[`],Mf [`− 1]) := (Mi[`],Mf [`− 1])⊕ qty execute such that both
Mi[`] and Mf [`− 1] are updated to m1. Recall that m [w1〉m1 [w2〉m′.

Finally we showed above that the proper call traverse(B[`−1]) successfully returns, the
assert that follows too and finally the proper call traverse(C [`]). Moreover it is routine to
check that upon completion of traverse(C [`]) (and therefore traverse(X [`])) we have Mi[j] =
Mf [j] = ∅ for all j ≤ `.

The left case (i.e. p = (X [`], B[`]C [`−1]) ∈ P [k]) is treated similarly.
Only If. Here we prove that if the proper call traverse(X [`]) successfully returns then there
exists w ∈ L(X [`]) such that Mi[`] [w〉N Mf [`].

Our proof is done by induction on the number n of times line 2 is executed during the
execution of traverse(X [`]). In every case, line 2 is executed at least once. For the case
n = 1, the algorithm necessarily executes the case of line 4. In this case, the definition of
G[k] shows that along a successful execution of traverse(X [`]), the non deterministic choice
of line 2 necessarily returns a production of the form p = (X [`], σ) ∈ P [k]. Therefore, a
successful execution must execute line 5 to 7 and then 22 after which the postcondition
Mi[j] = Mf [j] = ∅ for all j ≤ ` holds. Because the postcondition holds, we find that
Mi[`] = Mf [`] holds before executing line 7, hence that Mf [`] = Mi[`]	 I(σ)⊕O(σ) before
executing line 5, and finally Mi[`] [σ〉Mf [`] by semantics of transition σ and we are done.

For the case n > 1, the first non deterministic choice of line 2 necessarily picks p ∈ P [k] of
the form (X [`], B[`]C [`−1]) or (X [`], B[`−1]C [`]). Let us assume p = (X [`], B[`]C [`−1]), hence
that the case of line 8 is executed. Let m and m′ be respectively the values of Mi[`] and
Mf [`] when traverse(X [`]) is invoked. Now, let m3,m∆ be such that m′ = m3⊕m∆ and such
that upon completion of the call to transfer_from_to at line 9 we have that Mf [`] = m∆
and Mf [` − 1] = m3. Moreover, let m2 be the marking such that Mi[` − 1] = m2 upon
completion of the assignment at line 11. Therefore we find that Mf [`] is updated to m∆⊕m2.
Next consider the successful proper call traverse(C [`−1]) of line 12 with Mi[`− 1] = m2,

M. F. Atig and P. Ganty 159

Mf [`− 1] = m3. Observe that because the execution of traverse(X [`]) yields the calls
traverse(C [`−1]) and traverse(B[`]), we find that the number of times line 2 is executed in
traverse(C [`−1]) and traverse(B[`]) is strictly less than n. Therefore, the induction hypothesis
shows that there exists w2 such that w2 ∈ L(C [`−1]) and m2 [w2〉m3. Then comes the
successful assert of line 13 followed by the successful proper call traverse(B[`]) of line 14
with Mi[`] = m and Mf [`] = m∆ ⊕m2. Again by induction hypothesis, there exists w1
such that w1 ∈ L(B[`]) and m [w1〉 (m∆ ⊕m2).

Next we conclude from the monotonicity property of PN that since m2 [w2〉m3 then
(m2⊕m∆) [w2〉 (m3⊕m∆), hence that m [w1〉 (m2⊕m∆) [w2〉 (m3⊕m∆) and finally that
m [w1 w2〉m′ because m′ = m3 ⊕ m∆. Finally since w1w2 ∈ L(X [`]) we conclude that
m′ ∈ [m〉L(X[`]) and we are done.

The left case (i.e. p = (X [`], B[`−1]C [`]) ∈ P [k]) is treated similarly. J

Part 2. In this section, we show that it is possible to construct a PNI N ′ such that
the problem asking if the call to traverse(A[k]) successfully returns can be reduced to a
reachability problem for N ′. Incidentally, we show that N ′ is a PNW, hence that the
reachability problem for PN along finite-index CFL is decidable.

To describe N ′ we use a generalization of the net program formalism introduced by
Esparza in [4] which enrich the instruction set with the test for 0 of a variable.

A net program is a finite sequence of labelled commands. Those commands have the
following form, where `, `′, `1, . . . , `k are labels taken from some arbitrary set, and x is a
variable over the natural numbers, also called a counter.

` : x := x− 1
` : x := x+ 1
` : assertx = 0

` : return
` : goto `1 or · · ·or goto `k (where k ≥ 1)
` : gosub `′

A net program is syntactically correct if the labels of commands are pairwise different,
and if the destinations of the goto and gosub commands corresponds to existing labels.
(goto commands correspond to a possibly non deterministic jump while gosub commands
correspond to a subroutine call.) A subroutine is a subsequence of the program commands
which has a unique entry label identified by a subroutine name, and a unique exit command of
the form ` : return. Also every command of the program belongs to exactly one subroutine.
No goto commands leaves its enclosing subroutine. Finally, we require the existence of a
level assignment to subroutines such that each subroutine only calls lower-level subroutines,
which in turn only call lower-level subroutines, etc so as to prevent recursion.

A net program can only be executed once its variables have received initial values which
we assume here to be 0. The semantics of net programs can be defined in a straightforward
manner from the syntax (see [4] for more information). The only point to be remarked is
that the command ` : x := x− 1 fails if x = 0, and causes abortion of the program.

The compilation of a syntactically correct net program to a PNI is straightforward and
omitted due to space constraints. See [4] for the compilation.

At Alg. 3, 4, 5 and 6 is the net program that implements Alg. 1. In what follows assume
S, the set of places of the underlying Petri net, to be {1, . . . , d} for d ≥ 1. The counter
variables of the net program are given by {x[i]}0≤i≤k,x∈X and Mf [0..k][1..d] Mi[0..k][1..d]
which arranges counters into two matrices of dimension (k + 1) × d. For clarity, our net
programs use some abbreviations whose semantics is clear from the syntax, e.g. Mi[`] :=
Mi[`]⊕m stands for Mi[`][1] := Mi[`][1] + m(1); [. . .]; Mi[`][d] := Mi[`][d] + m(d).

FSTTCS 2011

160 Approximating Petri Net Reachability Along Context-free Traces

Let us now make a few observations of Alg. 3, 4, 5 and 6
• the execution starts with the subroutine main which sets up Mi[`] and Mf [`], then
simulates the call traverse(X [`]) and finally checks that the postcondition holds (label 01)
before returning (label success).
• in subroutines traversej , [. . .] stands for the code which is given at Alg. 5 and 6 according
to the different cases that may occur. The code for the case pj

i = (X [j], B[j−1]C [j]) has been
omitted for space reasons but it is easily inferred.
• the counter variables {x[i]}0≤i≤k,x∈X record the parameters of the calls to traverse. For
instance, a call to traverse(X [j]) is simulated in the net program by incrementing counter x[j]

(which records that the parameter of traverse is X [j]) and then calling subroutine traversej .
When the call executes, the corresponding variable is decremented.
• the goto command at label traversej simulates the non deterministic selection of a
production rule pj

i = (X [j], w) which will be fired next (if enabled else the program fails).

Algorithm 3: main & tra-
versei=`,...,0

main: Mi[`] := Mi[`]⊕m;
Mf [`] := Mf [`]⊕m′;
x[`] := x[`] + 1;
gosub traverse`;

01 assert
Mi[0..`] = ∅ = Mf [0..`];

success: return;
traverse`: goto p`

1 or · · · or goto p`
n`
;

p`
1: [. . .];

...
p`

n`
: [. . .];

exit`: return;
...

traverse0: goto p0
1 or · · · or goto p0

n0 ;
p0

1: [. . .];
...

p0
n0

: [. . .];
exit0: return;

Algorithm 4: tr_f `_f `−1

tr_f`_f`−1: goto out or t1 or . . .or td ;
t1: Mf [`][1] := Mf [`][1]− 1;

Mf [`−1][1] := Mf [`−1][1]+1;
goto tr_f `_f `−1;
[. . .];

td: Mf [`][d] := Mf [`][d]− 1;
Mf [`−1][d] := Mf [`−1][d]+1;
goto tr_f `_f `−1;

out: return;

Algorithm 5: if pj
i = (X [j], σ)

then
pj

i
: x[j] := x[j] − 1;

Mi[j] := Mi[j]	 I(σ);
Mi[j] := Mi[j]⊕O(σ);

loop: goto exitj or s1 or . . .or sd ;
s1: Mi[j][1] := Mi[j][1]− 1;

Mf [j][1] := Mf [j][1]− 1;
goto loop;
[. . .];

sd: Mi[j][d] := Mi[j][d]− 1;
Mf [j][d] := Mf [j][d]− 1;
goto loop;

Algorithm 6: if pj
i =

(X [j], B[j]C[j−1]) then

pj
i
: x[j] := x[j] − 1;

gosub tr_f j_f (j−1);
loop: goto exitloop or s1 or . . .or sd ;

s1: Mi[j][1] := Mi[j][1] + 1;
Mf [j − 1][1] := Mf [j − 1][1] + 1;
goto loop;
[. . .];

sd: Mi[j][d] := Mi[j][d] + 1;
Mf [j − 1][d] := Mf [j − 1][d] + 1;
goto loop;

exitloop: c[j−1] := c[j−1] + 1;
gosub traverse(j−1);

02 assert
Mi[0..j − 1]=∅=Mf [0..j − 1];

l1: b[j] := b[j] + 1;
goto traversej ;

• the program is syntactically correct. First, observe that no goto commands leaves its
enclosing subroutine. Second, we assign levels to subroutines as follows: main has level
` + 1, traversej has level j for every 0 ≤ j ≤ ` and tr_f j_f j−1 has level j − 1. Then it
is routine to check that this level assignment satisfies the requirement. Moreover, thanks
to the programming techniques that allow to implement the tail recursive call as a goto
instead of gosub we find that the program is syntactically correct. (If we had used gosub
everywhere, then the net program would be syntactically incorrect because of the recursion).

M. F. Atig and P. Ganty 161

• the assert commands at labels 01 and 02 have a particular structure matching the level
of the subroutines (level `+ 1 for 01 and j for 02). So, after compilation of the net program
into a PNI N ′, if we set a mapping f from the places of N ′ to N such that c is mapped to i if
c ∈ {Mi[i][j] | j ∈ {1, . . . , d}} ∪ {Mf [i][j] | j ∈ {1, . . . , d}} and every other place is mapped
to `+2 then we find that N ′ is a PNW. Clearly, deciding whether main returns (i.e. reaches
success) reduces to PNW reachability. Therefore, by Thm. 3, it is decidable whether main
returns.

I Lemma 5. Let ` ∈ {0, . . . , k}, X [`] ∈ X [k], and m,m′ ∈ M[S]. Then the proper call
traverse(X [`]) with Mi[`] = m, Mf [`] = m′ successfully returns iff main returns.

Hence from Lem. 2, 4 and 5, we conclude the following.

I Corollary 6. The reachability problem for PN along finite-index CFL can be reduced to the
reachability problem for PNW.

4 From PNW reachability to PN reachability along fiCFL

In this section, we show that the reachability problem for PNW can be reduced to the reach-
ability problem of PN along finite-index CFL. To this aim, let N = (S, T, F = 〈Z, I,O〉,mı)
be a PNW, mf ∈M[S] a marking, and f : S → N an index function such that (1) holds.

Let S = {s1, . . . , sn+1} and T = {t1, . . . , tm}. Because it simplifies the presentation we
will make a few assumptions that yield no loss of generality. (i) For every i ∈ {1, . . . , n},
we have f(si) ≤ f(si+1), (ii) mı = Jsn+1K, mf = ∅, (iii) Z(t1) ⊆ Z(t2) ⊆ · · · ⊆ Z(tm) ⊆
{s1, . . . , sn}, and (iv) for every t ∈ T , if s ∈ Z(t) then O(t)(s) = 0 (see [15], Lemma 2.1).
Notice that the Petri net N can not test if the place sn+1 is empty or not.

In the following, we show that it is possible to construct a Petri net (without inhibitor
arcs) N ′, a marking m′f , and a finite-index CFL L such that: mf ∈ [mı〉T

∗

N iff m′f ∈ [m′ı〉
L
N ′ .

Constructing the Petri net N ′: Let N ′ = (S′, T ′, F ′ = 〈I ′, O′〉,m′ı) be a PN which
consists in n + 1 unconnected PN widget: the widget N0 given by N without tests for
zero (i.e. Z(t) is set to ∅ for every t ∈ T) and the widgets N1, . . . , Nn where each Ni =
({ri}, {pi, ci}, Fi,∅) where Fi(pi) = 〈∅, JriK〉 and Fi(ci) = 〈JriK,∅〉. Ni is depicted as
follows:

pi

�→
ri

©→
ci

�. Finally, define m′ı ∈ M[S′] to be m′ı(s) = mı(s) for s ∈ S and 0
elsewhere; and m′f = ∅.

Since we have the ability to restrict the possible sequences of transitions that fire in N ′,
we can enforce the invariant that the sum of tokens in si and ri stays constant. To do so
it suffices to force that whenever a token is produced in si then a token is consumed from
ri and vice versa. Call L the language enforcing that invariant. Then, let m be a marking
such that m(si) = m(ri) = 0, observe that by firing from m a sequence of the form: (i) pi

repeated n times, (ii) any sequence w ∈ L and (iii) ci repeated n times; the marking m′
that is reached is such that m′(si) = m′(ri) = 0. This suggests that to simulate faithfully a
transition t0 of N that does test si for 0 we allow the occurrence of the counterpart of t0 in
N0 right before (i) or right after (iii) only. In what follows, we build upon the above idea
the language Ln which, as we we will show, coincides with the finite-index approximation
of some CFG.

We need the following notation. Given a word v ∈ Σ∗ and Θ ⊆ Σ, we define v|Θ to be
the word obtained from v by erasing all the symbols that are not in Θ. We extend it to
languages as follows: Let L ⊆ Σ∗. Then L|Θ = {u|Θ | u ∈ L}.
Constructing the language Ln: For every j ∈ {1, . . . ,m}, let uj = p i1

1 p
i2
2 · · · p in

n and
vj = c k1

1 c k2
2 · · · c kn

n be two words over the alphabet T ′ such that i` = I(tj)(s`) and k` =

FSTTCS 2011

162 Approximating Petri Net Reachability Along Context-free Traces

O(tj)(s`) for all ` ∈ {1, . . . , n}. Observe that firing the sequence of transitions uj (resp. vj)
will produce in (resp. consume from) the place r` (with 1 ≤ ` ≤ n) the same number of
tokens that the transition tj will consume from (resp. produce in) the place s`. Therefore,
firing the sequence of transitions vjtjuj keeps unchanged the total number of tokens in
{si, ri} for each i ∈ {1, . . . , n}.

Let L0 be a regular language over the alphabet T ′ defined as follows:
L0 = {vj · tj · uj | Z(tj) = ∅ in the Petri net N}∗ .

Next, we define the CFL L1, . . . , Ln such that for every ` ∈ {1, . . . , n} we have:
L` =

(
{p i

` · v · c i
` | i ∈ N, v ∈ L`−1} ∪ {vj · tj · uj | Z(tj) = {s1, . . . , s`} in N}

)∗ .
Observe that, for every j ∈ {1, . . . , n}, the sum of tokens in the places sj and rj is

preserved after firing a sequence of transitions in L`. Hence, the places r` and s` are empty
after firing a sequence of transitions w ∈ L` from a marking where these places are empty.
Also notice that these places can become non-empty during the execution of w. For instance,
if w fires pi

` · v · ci
` which first produces i tokens in r`, then executes v and finally consumes i

tokens from r`. It is worth pointing that along v transitions which produce and/or consume
tokens in s` can be fired. However, since v ∈ L`−1 no transition t such that s` ∈ Z(t) is
allowed, that is no test of s` for 0 is allowed along v. The language L` imposes that the
place s` can only be tested for 0 along vj · tj ·uj ∈ L` \L`−1. The underlying idea is that L`

allows to test s` for 0 provided the places s` and r` (and inductively all the places sj and
rj for j ≤ `) are empty.

It is routine to check that L0 ⊆ L1 ⊆ · · · ⊆ Ln (since L`−1 ⊆ {p i
` · v · c i

` | i ∈ N, v ∈
L`−1}) and Ln|T = T ∗ (since Ln ⊇

⋃n
i=0 {vj · tj · uj | Z(tj) = {s1, . . . , si}}3). Also, L0 is

a regular language and therefore there exists a CFG G0 and a variable A0 of G0 such that
L(1)(A0) = L0. Now, let us assume that for Li there exists a CFG Gi and a variable Ai such
that L(i+1)(Ai) = Li. From the definition of Li+1 it is routine to check that there exists a
CFG Gi+1 and a variable Ai+1 such that L(i+2)(Ai+1) = Li+1. Finally we find that Ln can
be captured by the n+ 1-index approximation of a CFG.

Let us make a few observations about the transitions of N ′ which were carrying out 0
test in N . In L` no transition t such that s`+1 ∈ Z(t) is allowed, that is no test of place
s`+1 for 0 is allowed along any word of L`. The language L` imposes that the place s` can
only be tested for 0 along T`. The intuition is that L` allows to test s` for 0 provided all
places sj and rj for j ≤ ` are empty.

The relation between the reachability problem for N and the reachability problem for
N ′ along Ln is given by the following lemma (whose proof can be found in [1]):

I Lemma 7. mf (= ∅) ∈ [mı〉N if and only if m′f (= ∅) ∈ [m′ı〉
Ln

N ′ .

As an immediate consequence of Lemma 7, we obtain the following result:

I Corollary 8. The reachability problem for PNW can be reduced, in polynomial time, to the
reachability problem for PN along finite-index CFL.

5 Conclusion

In this paper, we have shown that the problem of checking whether the intersection of a
finite-index context-free language and a Petri net language is empty is decidable. This result
is obtained through a non-trivial reduction to the reachability problem for Petri nets with

3 Note that if i = 0 then {s1, . . . , si} = ∅.

M. F. Atig and P. Ganty 163

weak inhibitor arcs. On the other hand, we have proved that the reachability problem for
Petri nets with weak inhibitor arcs can be reduced, in polynomial time, to the emptiness
problem of the language obtained from the intersection of a finite-index context-free language
and a Petri net language.

References
1 Mohamed Faouzi Atig and Pierre Ganty. Approximating petri net reachability along

context-free traces. CoRR, abs/1105.1657, 2011.
2 Rémi Bonnet. The reachability problem for vector addition systems with one zero-test.

In MFCS ’11: Proc. 36th Int. Symp. on Mathematical Foundations of Computer Science,
volume 6907 of LNCS, pages 145–157. Springer, 2011.

3 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL ’77,
pages 238–252. ACM Press, 1977.

4 Javier Esparza. Decidability and complexity of petri net problems – an introduction. In
Lectures on Petri Nets I: Basic Models, volume 1491 of LNCS, pages 374–428. Springer,
1998.

5 Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. Parikh’s theorem:
A simple and direct automaton construction. Information Processing Letters, 111:614–619,
2011.

6 Javier Esparza, Stefan Kiefer, and Michael Luttenberger. Newton’s method for ω-
continuous semirings. In ICALP ’08, volume 5126 of LNCS, pages 14–26. Springer, 2008.
Invited paper.

7 Javier Esparza, Stefan Kiefer, and Michael Luttenberger. Newtonian program analysis.
Journal of the ACM, 57(6):33:1–33:47, 2010.

8 Pierre Ganty, Benjamin Monmege, and Rupak Majumdar. Bounded underapproximations.
In CAV ’10, volume 6174 of LNCS, pages 600–614. Springer, 2010.

9 Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with PVS. In
CAV ’97, volume 1254 of LNCS, pages 72–83. Springer, 1997.

10 Michel Henri Théodore Hack. Decidability questions for petri nets. Technical Report 161,
MIT, 1976.

11 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, third edition, July 2006.

12 Martin Lange and Hans Leiß. To CNF or not to CNF ? An efficient yet presentable version
of the CYK algorithm. Informatica Didactica, 8, 2008-2010.

13 Jérôme Leroux. Vector addition system reachability problem (a short self-contained proof).
In POPL ’11, pages 307–316. ACM, 2011.

14 Mark Luker. A family of languages having only finite-index grammars. Information and
Control, 39(1):14–18, 1978.

15 Klaus Reinhardt. Reachability in petri nets with inhibitor arcs. Electr. Notes Theor.
Comput. Sci, 223:239 – 264, 2008. RP ’08.

16 Arto Salomaa. On the index of a context-free grammar and language. Information and
Control, 14(5):474 – 477, 1969.

FSTTCS 2011

Minimum Fill-in of Sparse Graphs: Kernelization
and Approximation∗

Fedor V. Fomin1, Geevarghese Philip2, and Yngve Villanger1

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway.
{fomin|yngvev}@ii.uib.no

2 The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai
600 113, India. gphilip@imsc.res.in

Abstract
The Minimum Fill-in problem is to decide if a graph can be triangulated by adding at most
k edges. The problem has important applications in numerical algebra, in particular in sparse
matrix computations. We develop kernelization algorithms for the problem on several classes
of sparse graphs. We obtain linear kernels on planar graphs, and kernels of size O(k3/2) in
graphs excluding some fixed graph as a minor and in graphs of bounded degeneracy. As a
byproduct of our results, we obtain approximation algorithms with approximation ratios O(log k)
on planar graphs and O(

√
k log k) on H-minor-free graphs. These results significantly improve

the previously known kernelization and approximation results for Minimum Fill-in on sparse
graphs.

1998 ACM Subject Classification G.2.2 Graph Theory — Graph Algorithms

Keywords and phrases Minimum Fill-In, Approximation, Kernelization, Sparse graphs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.164

1 Introduction

A graph is chordal (or triangulated) if every cycle of length at least four has a chord, i.e.
an edge between nonadjacent vertices of the cycle. In the Minimum Fill-in problem (also
known as Minimum Triangulation and Chordal Graph Completion) the task is to
check if at most k edges can be added to a graph such that the resulting graph is chordal.
That is

Minimum Fill-in
Input: A graph G = (V,E) and a non-negative integer k.
Question: Is there F ⊆ [V]2, |F | ≤ k, such that graph H = (V,E ∪ F) is
chordal?

This is a classical computational problem motivated by, and named after, a fundamental
issue arising in sparse matrix computations. During Gaussian eliminations of large sparse
matrices, new non-zero elements — called fill — can replace original zeros, thus increasing
storage requirements, the time needed for the elimination, and the time needed to solve
the system after the elimination. The problem of finding the right elimination ordering

∗ The research of Fedor V. Fomin was supported by the European Research Council (ERC) grant “Rigorous
Theory of Preprocessing”, reference 267959. The research of Yngve Villanger was supported by the
Research Council of Norway.

© Fedor V. Fomin, Geevarghese Philip, and Yngve Villanger;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 164–175

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.164
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. V. Fomin, G. Philip, and Y. Villanger 165

minimizing the amount of fill elements can be expressed as the Minimum Fill-in problem on
graphs [21]. Besides sparse matrix computations, applications of Minimum Fill-in can be
found in database management, artificial intelligence, and the theory of Bayesian statistics.
The survey of Heggernes [15] gives an overview of techniques and applications of minimum
and minimal triangulations.

Unfortunately, the problem is notoriously difficult to analyze from the algorithmic
perspective. Minimum Fill-in (under the name Chordal Graph Completion) was one
of the 12 open problems presented at the end of the first edition of Garey and Johnson’s
book [13] and it was proved to be NP-complete by Yannakakis [26]. Due to its importance the
problem has been studied intensively, and many heuristics, without performance guarantees,
have been developed [18, 21].

Very few approximation and FPT algorithms for Minimum Fill-in are known. Chung
and Mumford [8] proved that every planar, and more generally, H-minor-free, n-vertex
graph has a fill-in with O(n logn) edges, thus yielding an O(n logn)-approximation on
these classes of graphs. Agrawal et al. [1] gave an algorithm with the approximation ratio
O(m1.25 log3.5 n/k +

√
m log3.5 n/k0.25), where m is the number of edges and n the number

of vertices in the input graph. For graphs of degree at most d, they obtained a better
approximation factor O((nd+ k)

√
d log4 n)/k). Natanzon et al. [17] provided another type

of approximation algorithms for Minimum Fill-in. For an input graph with a minimum
fill-in of size k, their algorithm produces a fill-in of size at most 8k2 , i.e., within a factor
of 8k of optimal. For graphs with maximum degree d, they gave another approximation
algorithm achieving the ratio O(d2.5 log4 (kd)). Kaplan et al. proved that Minimum Fill-in
is fixed parameter tractable (FPT) for the parameter k by giving an algorithm which runs
in O(k616k + k2mn) time [16]. Following this, faster FPT algorithms were devised for the
problem, with running times that have smaller constants in the base of the exponent [6, 7].
Very recently, the first and third authors of this paper developed a subexponential FPT
algorithm for the problem which runs in O(2O(

√
k log k) + k2nm) time [12].

In this paper we study kernelization algorithms for Minimum Fill-in on different classes
of sparse graphs. Kernelization can be regarded as systematic mathematical investigation of
preprocessing heuristics within the framework of parameterized complexity. In parameterized
complexity each problem instance comes with a parameter k and the parameterized problem
is said to admit a polynomial kernel if there is a polynomial time algorithm (the degree of
polynomial is independent of k), called a kernelization algorithm, that reduces the input
instance down to an instance with size bounded by a polynomial p(k) in k, while preserving
the answer. This reduced instance is called a p(k) kernel for the problem. If p(k) = O(k),
then we call it a linear kernel. For example, for the instance (G, k) of Planar Minimum
Fill-in, where G is a planar graph and k is the parameter, the pair (G′, k′) is a linear kernel
if G′ is planar, the size of G′, i.e., the number of edges and vertices, is O(k), and there is
a fill-in of G with at most k fill edges if and only if there is a fill-in of G′ with at most k′
fill edges. Kernelization has been extensively studied, resulting in polynomial kernels for a
variety of problems. In particular, it has been shown that many problems have polynomial
and linear kernels on planar and other classes of sparse graphs [2, 5, 20].

There are several known polynomial kernels for the Minimum Fill-in problem [16] on
general (not sparse) graphs. The best known kernelization algorithm is due to Natanzon
et al. [17], which for a given instance (G, k) outputs in time O(k2nm) an instance (G′, k′)
such that k′ ≤ k, |V (G′)| ≤ 2k2 + 4k, and (G, k) is a YES instance if and only if (G′, k′) is.
Note that not every kernelization algorithm for fill-in in general graphs produces a sparse
kernel, even if the input is a sparse graph. For example, the algorithm of Natanzon et al. [17],

FSTTCS 2011

166 Minimum Fill-In: Kernelization and Approximation

while reducing the number of vertices in the input graph G, introduces new edges. Thus the
resulting kernel G′ can be very dense. In order to obtain kernels on classes of sparse graphs,
we have to design new kernelization algorithms which preserve the sparsity of the kernel.
Our Results. We provide kernelization algorithms for three important and increasingly
general classes of graphs. For planar graphs, we obtain an O(k) kernel, and for graphs
excluding a fixed graph as a minor and graphs of bounded degeneracy, a kernel of size
O(k3/2). Our reduction rules are easy to implement. Small kernels for sparse graphs can be
used as an argument explaining the successful behavior of several heuristics for sparse matrix
computations. As a byproduct of our results, we obtain an approximation algorithm that,
for an input planar graph with minimum fill-in of size k, produces a fill-in of size O(k log k),
which is within factor O(log k) of optimal. For H-minor-free graphs our kernelization yields
an approximation with the ratio O(

√
k log k).

2 Preliminaries

All graphs in this paper are finite and undirected. In general we follow the graph terminology
of Diestel [9]. For a vertex v in graph G, NG(v) is the set of neighbours of v, and for two
non-adjacent vertices u, v, NG(u, v) ≡ NG(u)∩NG(v). We drop the subscript G where there
is no scope for confusion. For S ⊆ V (G), we use N(S) for the set of neighbours in V (G) \ S
of the vertices in S, and N [S] ≡ N(S) ∪ S. We also use G[S] to denote the subgraph of G
induced by S, and G \ S to denote the subgraph G[V \ S].

The operation of contracting an edge {u, v} of a graph consists of replacing its endpoints
u, v with a single vertex which is adjacent to all the former neighbours of u and v in G. A
graph H is said to be a contraction of a graph G if H can be obtained from G by contracting
zero or more edges of G. Graph H is a minor of G if H is a contraction of some subgraph of
G. A family F of graphs is said to be H-minor free if no graph in F has H as a minor. For
d ∈ N, a graph G is said to be d-degenerate if every subgraph of G has a vertex of degree at
most d. A family F of graphs is said to be of bounded degeneracy if there is some fixed d ∈ N
such that every graph in the family is d-degenerate. Note that all graph properties discussed
in this paper (being chordal, planar, H-minor free, and d-degenerate) are hereditary, i.e., are
closed under taking induced subgraphs.

Minimal Separators. Let u, v be two vertices in a graph G. A set S of vertices of G is said to
be a u, v-separator of G if u and v are in different components in the graph G \ S. The set S
is said to be a minimal u, v-separator if no proper subset of S is a u, v-separator of G. A set
S of vertices of G is said to be a (minimal) separator of G if there exist two vertices u, v in
G such that S is a (minimal) u, v-separator of G.

Let S be a separator of a graph G. A connected component C of G \ S is said to be
associated with S, and is said to be a full component if N(C) = S.

The following proposition is an exercise in [14].

I Proposition 1. A set S of vertices of a graph G is a minimal u, v-separator if and only if
u and v are in different full components of G \ S.

A set S of vertices of a graph G is said to be a clique separator of G if S is a separator of
G, and G[S] is a clique.

Minimal and minimum fill-in. Chordal or triangulated graphs are graphs containing no
induced cycles of length more than three. In other words, every cycle of length at least four
in a chordal graph contains a chord. Let F be a set of edges which, when added to a graph

F. V. Fomin, G. Philip, and Y. Villanger 167

G, makes the resulting graph chordal. Then F is called a fill-in of G, and the edges in F are
called fill edges. A fill-in F of G is said to be minimal if no proper subset of F is a fill-in
of G, and F is a minimum fill-in if no fill-in of G contains fewer edges. Notice that every
minimum fill-in is also minimal, and so to find a minimum fill-in it is sufficient to search the
set of minimal fill-ins.

I Proposition 2. [6] Let G be a graph, and let S be a minimal separator of G such that
G[S] is a complete graph minus one edge, and there is a vertex v in V (G) \ S which is
adjacent to every vertex in S. Then there exists a minimum fill-in of G which contains the
single missing edge in G[S] as a fill-edge.

The following proposition is folklore; for a proof see, e.g., Bodlaender et al.’s recent article
on faster FPT algorithms for the Minimum Fill-In problem [6].

I Proposition 3. Let 〈v1, v2, v3, v4, . . . , vt〉 be a chordless cycle in a graph G, and let F be a
minimal fill-in of G. If {v1, v3} /∈ F , then {v2, v} ∈ F for some v ∈ {v4, . . . , vt}.

I Proposition 4. [23] Let S be a minimal separator of G, let G′ be the graph obtained by
completing S into a clique, and let ES = E(G′) \E(G). Let C1, C2, . . . , Cr be the connected
components of G \ S. Then ES ∪ F is a minimal fill-in of G if and only if F =

⋃r
i=1 Fi,

where Fi is the set of fill edges in a minimal fill-in of G′[N [Ci]].

Parameterized complexity. A parameterized problem Π is a subset of Γ∗ × N for some finite
alphabet Γ. An instance of a parameterized problem is of the form (x, k), where k is called
the parameter. A central notion in parameterized complexity is fixed parameter tractability
(FPT) which means, for a given instance (x, k), solvability in time f(k) · p(|x|), where f is
an arbitrary function of k and p is a polynomial in the input size. We refer to the book of
Downey and Fellows [11] for further reading on Parameterized Complexity.
Kernelization. A kernelization algorithm for a parameterized problem Π ⊆ Γ∗ × N is
an algorithm that given (x, k) ∈ Γ∗ × N outputs in time polynomial in |x| + k a pair
(x′, k′) ∈ Γ∗ × N, called the kernel such that (x, k) ∈ Π if and only if (x′, k′) ∈ Π and
max{k′, |x′|} ≤ g(k), and k′ ≤ k, where g is some computable function. The function g is
referred to as the size of the kernel. If g(k) = O(k), then we say that Π admits a linear
kernel.

The kernels in this paper are obtained by applying a sequence of polynomial time reduction
rules. We use the following notational convention: for each reduction rule, (G, k) denotes
the instance on which the rule is applied, and (G′, k′) denotes the resulting instance. We say
that a rule is safe if (G′, k′) is a YES instance if and only if (G, k) is a YES instance. We
show that each rule is safe. We also show—in most cases—that the resulting graph is in the
same class as G.

The remaining part of the paper is organized as follows. Sections 3, 4, and 5 give kernel
algorithms for planar, d-degenerate, and H-minor free graphs, respectively. All three kernels
use Rule 2 in Section 3, and Rule 6 in Section 4 is used in Section 5 as well. The kernels
obtained are then used in Section 6 to get approximations algorithms for planar and H-minor
free graphs. We conclude and state some open problems in Section 7.

3 A Linear Kernel for Planar Graphs

In this section we show that the planar minimum fill-in problem has a linear kernel. The
kernel is obtained by applying four reduction rules. Rules 1, 2, and 3 are applied exhaustively,

FSTTCS 2011

168 Minimum Fill-In: Kernelization and Approximation

while Rule 4 is only applied if none of the other three can be applied. At the end of this
process, the algorithm either solves the problem (giving either YES or NO as the answer), or
it yields an equivalent instance (G′, k′); k′ ≤ k where G is of size O(k).
I Reduction Rule 1. [24] Let S be a minimal clique separator in G and let C1, . . . , Ct be
the connected components of G \ S. We set G′ to be the disjoint union of the graphs
G1, G2, . . . , Gt, where Gi is isomorphic to G[N [Ci]], 1 ≤ i ≤ t, and set k′ ← k.

By Proposition 4, we have the following lemma.

I Lemma 1. Rule 1 is safe.

Since each of the connected components of graph G′ produced by Rule 1 is an induced
subgraph of G, it follows that if G is planar or d-degenerate, then G′ has the same property.
Our next rule deletes vertices which are not part of any chordless cycle; as we show later
(Theorem 3), a vertex v satisfies the conditions of the rule if and only if it is not part of any
chordless cycle in the graph. This rule can be inferred from previous work due to Tarjan [24]
and Berry et al. [3].
I Reduction Rule 2. For a vertex v of G, let C1, C2, . . . , Ct be the connected components of
G \N [v]. If for every 1 ≤ i ≤ t, the vertex set N(Ci) is a clique in G, then set G′ ← G \ {v},
k′ ← k.

I Lemma 2. Rule 2 is safe.

Proof. Let H be a chordal graph obtained by adding k edges to G. Chordality is a hereditary
property, and thus the graphH ′ = H\{v} is chordal. ButH ′ is a triangulation of G′ = G\{v},
and since it is obtained by adding at most k edges, we have that G′ has a fill-in of size at
most k′ ≤ k.

For the opposite direction, let H ′ be a minimal triangulation obtained from G′ by adding
the set of fill edges F ′, where |F ′| ≤ k′. Then the graph H obtained by adding F ′ to G is
chordal. Indeed, if H was not chordal, it would contain a chordless cycle A of length at least
4 passing through v. Let w be a vertex of A not adjacent to v and let C be the connected
component of G \N [v] containing w. The set S = NG(C) is a clique minimal separator in
G and thus by Proposition 4, we can conclude that in H every path from w to v should
go through some vertex of S. Hence the set S contains at least two non-consecutive (in A)
vertices a and b of A. But S is a clique in G, and thus is a clique in H. Hence, a and b form
a chord in A, which is a contradiction. Therefore, H is chordal. J

In Reduction Rule 2, we only remove a vertex, and thus this rule does not change
hereditary properties of graphs, like being H-minor free. We now state some useful properties
of graphs on which the above reduction rules cannot be applied.

I Lemma 3. A vertex v in a graph G does not satisfy the conditions of Reduction Rule 2 if
and only if v is part of a chordless cycle in G.

Proof. Let v be a vertex in G which does not satisfy the conditions of Reduction Rule 2. Then
there exists a connected component C of G \N [v] such that N(C) contains two non adjacent
vertices, say x, y ∈ N(v). Let P be a shortest path from x to y in G[C ∪ {x, y}]. Since x
and y are not adjacent, the path P is of length at least two; let P = 〈x = v1, v2, . . . , v` = y〉.
Since P is an induced path, 〈v, x = v1, v2, . . . , v` = y〉 is a chordless cycle containing v.

Conversely, let v = v1, v2, v3, . . . , vr−2, vr−1, vr = v be a chordless cycle in G containing
v, and let C be the connected component of G\N [v] which contains v3 and vr−2. The vertex
set N(C) does not contain the edge {v2, vr−1} and hence is not a clique. J

F. V. Fomin, G. Philip, and Y. Villanger 169

I Lemma 4. Let G be a graph to which Rule 2 cannot be applied, and let F be an edge set
such that H = (V,E ∪ F) is chordal. Then for every vertex v in G, there either exists an
edge {v, x} ∈ F , or an edge {u,w} ∈ F , where u,w ∈ N(v).

Proof. By Lemma 3 it follows that every vertex v in G is part of at least one chordless cycle〈
v = v1, v2, v3, v4, . . . , vt

〉
. By Proposition 3, there is either a fill edge {v, vi} ∈ F or an edge

{v2, vt} ∈ F , for i ∈ {3, . . . , t− 1}. J

I Reduction Rule 3. [6] Let (G, k) be an input instance of Minimum Fill-In. If G has a
minimal separator S such that adding exactly one edge to G[S] turns it into a complete
graph, and there exists a vertex v in V (G) \ S such that all vertices of S are adjacent to v,
then
1. Turn G[S] into a complete graph by adding one edge,
2. Apply Rule 1 on the resulting minimal clique separator, and
3. Reduce k by one.

The correctness of this rule is evident from Proposition 2 and Lemma 1. We now show
that the rule preserves the planarity of the graph. Observe that if the input graph G is
planar, then |S| ≤ 4.

I Claim 1. Reduction Rule 3 preserves the planarity of the graph.

Proof. Let G,S be as in the statement of the rule, and let G′ be the graph obtained by
applying the rule to G. Let {u, v} be the missing edge in G[S]. By Proposition 1, there
are at least two full components, say C1, C2, associated with S in G. Notice that for each
i = 1, 2, there is a uv-path in G with all internal vertices contained in Ci. This implies that
each of the connected components of the output graph G′ is a minor of planar graph G, and
thus is planar. J

I Reduction Rule 4. Let (G, k) be an input instance of Minimum Fill-In, where none of
the Rules 1, 2, and 3 can be applied. If |V (G)| > 6k − 4 then return a trivial NO instance.

I Lemma 5. Reduction Rule 4 is safe.

Proof. Let (G, k) be a YES instance where G = (V,E) is planar and none of the Rules 1, 2,
and 3 can be applied. We now argue that |V | ≤ 6k − 4.

Let F be an edge set such that |F | ≤ k and H = (V,E ∪ F) is chordal, and let VF be the
set of at most 2k vertices that are incident to the edges in F . We then have:

I Claim 2. Each vertex v ∈ V \ VF is adjacent to at least three vertices of VF .

Proof. Since Rule 2 cannot be applied on vertex v it follows that N [v] (V . Let C be a
connected component of G\N [v] and let S = N(C) be the minimal separator of G separating
vertices of C from v. Rules 1 and 3 cannot be applied on S, so the graph G[S] is missing
at least two edges {x1, y1} and {x2, y2}. By finding a shortest path P from xj to yj in
G[C ∪ {xj , yj}] we can create a chordless cycle consisting of P and xj , v, yj for j ∈ {1, 2}.
By Proposition 3 every fill-in of a chordless cycle either adds an edge incident to vertex v
on the chordless cycle or adds a fill edge between its two unique neighbours. By definition
there is no fill edge in F incident to v, and thus both {x1, y1} and {x2, y2} are contained in
F . Two edges have to be incident to at least three vertices, and the claim follows. J

FSTTCS 2011

170 Minimum Fill-In: Kernelization and Approximation

We construct a new graph B = (V,EB) whose edge set EB is a subset of E, such that
{u,w} ∈ EB if and only if {u,w} ∈ E, u ∈ VF , and w 6∈ VF . The graph B is planar since it is
a subgraph of planar graph G, and is bipartite by construction with the two partite sets being
V1 = VF and V2 = V \ VF . As noted before, |V1| ≤ 2k; we now bound |V2|. Let F be the set
of faces in any fixed planar embedding of B. Let s =

∑
f∈F (number of edges on the face f).

Since B is bipartite, each face has at least four sides, and so s ≥ 4|F|. Since each edge of B
lies on at most two faces in the embedding, it is counted at most twice in this process, and
so s ≤ 2|EB |. Thus 4|F| ≤ 2|EB |. From this and the well-known Euler’s formula for planar
graphs applied to B (namely, |V | − |EB |+ |F| ≥ 2; observe that B may not be a connected
graph) we get |EB | ≤ 2|V | − 4 = 2(|V1|+ |V2|)− 4. By Claim 2 each vertex in V2 has degree
at least 3 in B, and so EB ≥ 3|V2|. Combining these we get |V2| ≤ 2|V1| − 4 = 4k − 4, and
so |V | = |V1|+ |V2| ≤ 6k − 4. J

We now argue that all executions of the rules can be performed in polynomial time. By
Proposition 4, a minimal clique separator is a clique separator in every minimal triangulation
of the given graph. A minimal triangulation can be constructed in O(nm) time [22] and
the minimal separators of the triangulation which are also cliques in G can be enumerated
in O(nm) time [4]. As a consequence Rule 1 can be executed in polynomial time. For the
remaining three rules it is not hard to see that we can check, find an instance, and execute
the rule in polynomial time.

The rules are applied exhaustively in the order they are described. Rule 1 is globally
applied at most n − 1 times, since all minimal clique separators we split on, even across
connected components, are the so called “non-crossing” minimal separators in the initial graph,
and a graph on n vertices has at most n− 1 pairwise non-crossing minimal separators [19].
Each time Rule 1 is applied, at most n connected components are created, and each of them
contains at most n vertices. Thus, Rule 2 is applied at most O(n3) times. Rule 3 is applied
at most k times as one fill edges is added each time, and finally Rule 4 is applied only once.
Thus we get

I Theorem 6. Minimum Fill-In has a planar kernel of size O(k) in planar graphs.

4 An O(k3/2) kernel for d-degenerate graphs

We now describe two reduction rules for d-degenerate graphs. The second among these is in
fact an algorithm which specifies how to apply Rule 2 and the first rule of this section in
tandem. Given a problem instance (G, k) where G is a d-degenerate graph, the second rule
outputs an equivalent instance (G′, k′) such that k′ ≤ k and |V (G′)| = O(k3/2). However,
these rules do not guarantee that the resulting graph G′ is d-degenerate. We will later show
how to obtain an equivalent d-degenerate graph from G′ while keeping the size bounded by
O(k3/2).

The next reduction rule says that if two non-adjacent vertices in an d-degenerate graph
G have many common neighbours, then the missing edge between the two vertices belongs
to every small fill-in of G.

I Reduction Rule 5. Let (G, k) be an instance where G is d-degenerate. Let u,w be two
non-adjacent vertices in G, and let b = |N(u,w)|. If (b/2)(b − 1 − 2d) > k, then set
G′ ← (V (G), E(G) ∪ {{u,w}}), k′ ← k − 1.

I Lemma 7. Rule 5 is safe.

F. V. Fomin, G. Philip, and Y. Villanger 171

Algorithm 1 Reduction Rule 6 for d-degenerate graphs.
1: procedure Rule6(G, k) . G is assumed to be d-degenerate.
2: while (Rule 2 applies to (G, k) and the vertex u) do
3: G← G \ {u}
4: F ′0 = ∅
5: for (each nonadjacent pair x, y ∈ V (G)) do
6: if (Rule 5 applies to (G, k) and the non-adjacent vertices x, y) then
7: F ′0 = F ′0 ∪ {{x, y}}
8: G′ ← (V (G), E(G) ∪ F ′0), k′ ← k − |F ′0|
9: D0 = ∅
10: while (Rule 2 applies to (G′, k′) and the vertex u) do
11: G′ ← G′ \ {u},D0 = D0 ∪ {u}
12: F0 = E(G′) ∩ F ′0
13: if k′ < 0 or |V (G′)| > 2k + k(2

√
k + 2d+ 1) then

14: return a trivial NO instance.
15: else
16: return (G′, k′)

Proof. Let F be a fill-in of G of size at most k. We claim that {u,w} ∈ F . For, if
{u,w} /∈ F , then let H be the chordal graph obtained by adding the edges in F to the
graph G. Since u and w are non-adjacent in H, there exists an u,w-separator in H,
and every minimal u,w-separator in H contains all the vertices in N(u,w). Since H is
chordal, every minimal separator in H is a clique [10], and so the vertex set N(u,w)
induces a clique in H. Hence the subgraph H[N(u,w)] contains (b − 1)b/2 edges, where
b = |N(u,w)|. Since G is d-degenerate, the subgraph G[N(u,w)] contains at most db edges.
Thus |F | ≥ (b− 1)b/2− db = (b/2)(b− 1− 2d) > k, a contradiction, and so {u,w} ∈ F . It
immediately follows that F \ {{u,w}} is a fill-in of G′ of size at most k − 1.

Conversely, if G′ has a fill-in F ′ of size at most k − 1, then F ′ ∪ {{u,w}} is a fill-in of G
of size at most k. J

I Reduction Rule 6. Let (G, k) be an instance where G is d-degenerate. Set (G′, k′) to be
the instance output by Algorithm 1.

I Lemma 8. Rule 6 is safe.

Proof. By Rule 2 it is safe to delete vertex u in Line 3. Let e1, e2, . . . , e|F ′
0| be the set of

edges in F ′0. By Rule 5 it is safe to add edge e1 to G and decrement k. Let our induction
hypothesis be that it is safe to add edges e1, e2, . . . , ei−1 to G and reduce k by i−1, and let us
argue that it is also safe to add edges e1, e2, . . . , ei and reduce k by i. Let ki−1 = k − (i− 1).
Edge ei = {x, y} was added to F ′0 because (b/2)(b − 1 − 2d) > k where b = |NG(x, y)|. In
the extreme case, all the edges e1, e2, . . . , ei−1 are added between vertices in NG(x, y), but
(b/2)(b− 1− 2d)− (i− 1) > k − (i− 1) = ki−1 and thus it is safe to add edge ei as well and
reduce ki−1 by 1. We can now conclude that (G′, k′) in Line 8 is a YES instance if and only
if (G, k) is. Finally by the safeness of Rule 2, instance (G′, k′) in Line 13 is a YES instance if
and only if (G, k) is.

It remains to argue that we can safely return a trivial NO instance if |V (G′)| > 2k +
k(2
√
k + 2d + 1), where G′ is the graph in Line 13. Let us assume that (G′, k′) is a YES

instance and let F be a set of edges such that H = (V (G′), E(G′) ∪ F) is chordal and

FSTTCS 2011

172 Minimum Fill-In: Kernelization and Approximation

|F | ≤ k′. Let VF be the set of vertices incident to edges of F , and let VF0 be the set of
vertices incident to edges of F0. Notice that |VF |+ |VF0 | ≤ 2k as (G′, k′) is a YES instance.
By Line 10 in Algorithm 1, Rule 2 is applied exhaustively, and thus by Lemma 4 every vertex
of V (G′)\ (VF ∪VF0) is contained in NG′(x, y) for some edge {x, y} ∈ F . In particular, notice
that NG′(x, y)\ (VF ∪VF0) ⊆ NG(x, y). Since G′ is reduced with respect to Rule 5 (See Line 6
of Algorithm 1), |NG(x, y)| = b < 2

√
k+2d+1. To see this we notice that a clique on b vertices

contains b(b−1)/2 edges while G[NG(x, y)] contains at most db edges. Thus if b ≥ 2
√
k+2d+1

then b(b−1)/2−db = b/2(b−1−2d) ≥ ((2
√
k+2d+1)/2)(2

√
k) > k which is a contradiction

to {x, y} 6∈ F ′0. Summing up we have that |V (G′)| ≤ |VF ∪ VF0 | +
∑
{x,y}∈F |NG(x, y)| ≤

2k + k(2
√
k + 2d+ 1). J

Observe that Rule 5 — which is applicable only when the input graph is d-degenerate —
adds an edge to the graph. The graph resulting from applying Rule 6 — which adds the
edge set F ′0 found by applying Rule 5 — may thus not be d-degenerate. The graph output
by Rule 6 can be modified to become d-degenerate while preserving the bound on its size,
and this gives an O(k3/2) kernel for Minimum Fill-In in d-degenerate graphs:

I Theorem 9. Minimum Fill-In has a d-degenerate kernel of size O(k3/2) in d-degenerate
graphs.

Proof. Since a 1-degenerate graph is a forest, and every forest has a fill-in of size zero —
since the forest is chordal — we can assume without loss of generality that d ≥ 2. Let (G, k)
be an instance of Minimum Fill-In where G is a d-degenerate graph. The kernelization
algorithm applies Reduction Rule 6 – Algorithm 1 – to (G, k) to obtain an equivalent instance
(G′, k′). If (G′, k′) is the trivial NO instance returned by Line 14, then it is d-degenerate and
its size is a constant, and the kernelization algorithm returns (G′, k′) itself as the kernel.

Now let (G′, k′) be a non-trivial instance returned by Line 16. Observe that G′ is obtained
from G by (i) deleting some vertices – Line 3, – (ii) adding edges F ′0 – Line 6, – and (iii)
deleting vertices D0 – Line 11. Edge set F0 is defined in Line 12 as the set of edges in F ′0
with both endpoints in V (G′).

The kernelization algorithm constructs a new graph G′′ from G′ by doing the following
for each edge {u, v} ∈ F0 : remove {u, v}, add two new vertices auv, buv, and make both
these vertices adjacent to both u and v. The algorithm returns (G′′, k′′) as the kernel, where
k′′ = k′ + |F0|. Let G1 be the graph G′ where edge set F0 is removed.

To see that (G′′, k′′) satisfies all the requirements, note that G1 is d-degenerate by the
hereditary property of d-degenerate graphs, and G′ = (V (G′), E(G1) ∪ F0). The graph G′′
is d-degenerate since it can be obtained from G1 by adding a sequence of vertices, each
of degree two. Since each edge in F0 corresponds to two new vertices in G′′, |V (G′′)| =
|V (G1)|+ 2|F0| ≤ 4k + k(2

√
k + 2d+ 1).

It remains to argue that (G′, k′) is a YES instance if and only if (G′′, k′′) is. If (G′, k′) is
a YES instance, then let F ′ be a fill-in of G′ of size at most k′, and let H ′ be the chordal
graph obtained by adding the edges in F ′ to G′. Let F ′′ = F0 ∪ F ′, and let H ′′ be the graph
obtained by adding the edges in F ′′ to the graph G′′. Observe that H ′′ can be obtained from
the chordal graph H ′ by adding a sequence of vertices of degree two each, each of which
is adjacent to the two end-points of some edge in F0. It follows that H ′′ is chordal — any
potential chordless cycle in H ′′ has to contain one of these new vertices, but every cycle
passing through such a vertex has the respective edge in F0 as a chord. Thus F ′′ is a fill-in
of G′′ of size at most |F0|+ k′ = k′′.

Conversely, let (G′′, k′′) be a YES instance. Observe that for each {u, v} ∈ F0, the
vertex set S = {u, v} satisfies all the conditions of Proposition 2 in G′′ — S is a minimal

F. V. Fomin, G. Philip, and Y. Villanger 173

auv, buv-separator (using the notation of the proof of Theorem 9), G′′[S] is missing the one
edge which will make it a clique, and the vertex auv ∈ V (G′′) \ S is adjacent to every vertex
in S. So there exists a minimum fill-in F ′′ of G′′ such that F0 ⊆ F ′′, and |F ′′| ≤ k′′. Let H ′′
be the chordal graph obtained by adding the edges in F ′′ to the graph G′′, and let H ′ be the
graph obtained by deleting all the vertices {auv, buv | {u, v} ∈ F0 from H ′′. Then H ′ can be
obtained by adding the edges in F ′ = F ′′ \ F0 to G′ , and H ′ is chordal by the hereditary
property of chordality. Thus F ′ is a fill-in of G′ of size at most k′. J

5 An O(k3/2) kernel for H-minor free graphs

It is known [25] that every H-minor free graph is d-degenerate for d ≤ αh
√

log h, where
h = |V (H)| and α > 0 is a constant. As we have already shown in Section 4, the application
of Rules 2, 5, and 6 on d-degenerate graphs results in an equivalent instance (G′, k′) where
G′ has O(k3/2) vertices. However, this G′ is not necessarily H-minor free or d-degenerate.
In Theorem 9, we show how to transform G′ into a d-degenerate graph without significantly
increasing its size. We employ a somewhat more involved transformation to convert G′ to an
H-minor free problem instance on O(k3/2) vertices:

I Theorem 10. [?]1 Let H be a fixed graph. Minimum Fill-In has an H-minor free kernel
of size O(k3/2) in H-minor free graphs.

6 Approximation

As a byproduct of our kernelization algorithms, we obtain improved approximation algorithms
for the Minimum Fill-In problem on planar and H-minor free graphs. We need the following
result of Chung and Mumford [8].

I Proposition 5. [8] Let H be a fixed graph, and let G be an n vertex graph that is H-minor
free. Then there is a triangulation HT of G such that |E(HT)| = O(n logn), and such a
triangulation can be found in polynomial time.

Together with our improved kernels, this result yields approximate solutions for Minimum
Fill-In, with ratio O(

√
k log k) for H-minor-free graphs, and with ratio O(log k) for planar

graphs.

I Theorem 11. Let k be the minimum size of a fill-in of a graph G. There is a polynomial
time algorithm which computes a fill-in of G of size O(k log k) if G is planar and of size
O(k3/2 log k) if G is H-minor free for some fixed graph H.

Proof. Let G be a planar graph. For each k ∈ {1, 2, . . . , n2}, in this order, we run the
algorithm of Theorem 6 on (G, k), and compute the maximum value k? of the parameter k
for which the algorithm gives us a NO answer. This guarantees that there is no fill-in of G of
size k∗. We then run the same algorithm on the instance (G, k? + 1) to obtain a planar kernel
G′ on at most 6(k? + 1) vertices. Using Proposition 5, we obtain a fill-in of G′ with at most
c(k? + 1) log (k? + 1) edges, for some constant c. By making use of standard backtracking,
the solution for G′ can be transformed into a fill-in of G with O(k log k) fill edges.

The arguments when G is an H-minor free graph are almost identical to the planar case.
The only difference is that we use Theorem 10 instead, which provides us with an H-minor
free kernel of size O(k3/2). J

1 Proofs of results labelled with a ? have been deferred to a longer version of the paper.

FSTTCS 2011

174 Minimum Fill-In: Kernelization and Approximation

7 Conclusion and Open Questions

In this paper we obtained new algorithms for Minimum Fill-In on several sparse classes of
graphs. Specifically, we obtained a linear kernel for the problem on planar graphs and kernels
of size O(k3/2) in H-minor free graphs and in graphs of bounded degeneracy. Using these
kernels, we obtained approximation algorithms with ratios O(log k) for planar graphs, and
O(
√
k log k) for H-minor free graphs. These results significantly improve known kernelization

and approximation results for this problem. We note that for any g ∈ N, the same set of
reduction rules and essentially the same argument as for the planar case shows that Minimum
Fill-In has a kernel of size O(k) in graphs of genus at most g. We conclude with a number
of open questions.

Minimum Fill-in on general graphs is NP-complete [26]. However, it is a very old open
question if the problem is NP-complete on planar graphs [8]. It turns out that Minimum
Fill-in is NP-complete on bipartite 2-degenerate graphs.

I Theorem 12. [?] The Minimum Fill-In problem is NP -complete on bipartite 2-degenerate
graphs.

The complexity of the problem on planar and on H-minor free graphs is still open. From
the approximation perspective, we leave the possibility of obtaining an o(log k)-approximation
on planar graphs as an open problem.

From the perspective of kernelization, it would be very interesting to find out if there is a
linear kernel for Minimum Fill-in on H-minor free graphs. We also were not able to find
any evidence that the existence of an O(k/ log k) kernel on planar graphs would contradict
any complexity assumption. Can it be that the problem has a sublinear kernel?

Acknowledgements.

We thank our anonymous reviewers for pointing out a way to reduce the constant factor
in Reduction Rule 4 from 22 to 6 with a simpler proof of Lemma 5, and for many other
comments which helped in improving the presentation. F. V. Fomin acknowledges the support
of the European Research Council (ERC) via grant “Rigorous Theory of Preprocessing”,
reference 267959.

References

1 A. Agrawal, P. N. Klein, and R. Ravi. Cutting down on fill using nested dissection: provably
good elimination orderings. Graph Theory and Sparse Matrix Computation, 56:31–55, 1993.

2 J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data reduction for dominat-
ing set. Journal of the ACM, 51(3):363–384, 2004.

3 A. Berry, J. P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-range algorithm
for minimal triangulation from an arbitrary ordering. Journal of Algorithms, 58(1):33–66,
2006.

4 J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and clique trees. In
Graph Theory and Sparse Matrix Computations, pages 1–30. Springer, 1993. IMA Volumes
in Mathematics and its Applications, Vol. 56.

5 H. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M. Thilikos.
(Meta) Kernelization. In FOCS 2009, pages 629–638. IEEE, 2009.

F. V. Fomin, G. Philip, and Y. Villanger 175

6 H. Bodlaender, P. Heggernes, and Y. Villanger. Faster parameterized algorithms for min-
imum fill-in. Algorithmica, pages 1–22, 2010. Available online. DOI:10.1007/s00453-010-
9421-1.

7 L. Cai. Fixed-parameter tractability of graph modification problems for hereditary proper-
ties. Inf. Process. Lett., 58(4):171–176, 1996.

8 F. R. K. Chung and D. Mumford. Chordal completions of planar graphs. J. Comb. Theory,
Ser. B, 62(1):96–106, 1994.

9 R. Diestel. Graph Theory. Springer-Verlag, Heidelberg, third edition, 2005.
10 G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25:71–76, 1961.
11 R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag, New York,

1999.
12 F. V. Fomin and Y. Villanger. Subexponential parameterized algorithm for minimum fill-in.

Accepted at the ACM-SIAM Symposium on Discrete Algorithms (SODA 2012)., 2012.
13 M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company, New York, 1979.
14 M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New

York, 1980.
15 P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics,

306(3):297–317, 2006.
16 H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized completion problems

on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput., 28:1906–1922,
May 1999.

17 A. Natanzon, R. Shamir, and R. Sharan. A polynomial approximation algorithm for the
minimum fill-in problem. SIAM J. Comput., 30:1067–1079, October 2000.

18 T. Ohtsuki, L. K. Cheung, and T. Fujisawa. Minimal triangulation of a graph and optimal
pivoting ordering in a sparse matrix. J. Math. Anal. Appl., 54:622–633, 1976.

19 A. Parra and P. Scheffler. Characterizations and algorithmic applications of chordal graph
embeddings. Discrete Applied Mathematics, 79(1-3):171–188, 1997.

20 G. Philip, V. Raman, and S. Sikdar. Solving dominating set in larger classes of graphs: Fpt
algorithms and polynomial kernels. In ESA 2009, volume 5757 of Lecture Notes in Comput.
Sci., pages 694–705. Springer, 2009.

21 D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite
systems of linear equations. In R. C. Read, editor, Graph Theory and Computing, pages
183–217. Academic Press, New York, 1972.

22 D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on
graphs. SIAM J. Comput., 5:266–283, 1976.

23 Kloks. T., D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in of asteroidal
triple-free graphs. Theor. Comput. Sci., 175(2):309–335, 1997.

24 R. E. Tarjan. Decomposition by Clique Separators. Discrete Mathematics, 55:221–232,
1985.

25 A. Thomason. The extremal function for complete minors. Journal of Combinatorial
Theory, Series B, 81(2):318 – 338, 2001.

26 M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth.,
2:77–79, 1981.

FSTTCS 2011

Cubicity, Degeneracy, and Crossing Number
Abhijin Adiga, L. Sunil Chandran, and Rogers Mathew

Department of Computer Science and Automation,
Indian Institute of Science,
Bangalore - 560012, India
{abhijin,sunil,rogers}@csa.iisc.ernet.in

Abstract
A k-box B = (R1, R2, . . . , Rk), where each Ri is a closed interval on the real line, is defined to
be the Cartesian product R1 × R2 × · · · × Rk. If each Ri is a unit length interval, we call B a
k-cube. Boxicity of a graph G, denoted as box(G), is the minimum integer k such that G is an
intersection graph of k-boxes. Similarly, the cubicity of G, denoted as cub(G), is the minimum
integer k such that G is an intersection graph of k-cubes.

It was shown in [L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan. Repres-
enting graphs as the intersection of axis-parallel cubes. MCDES-2008, IISc Centenary Con-
ference, available at CoRR, abs/cs/0607092, 2006.] that, for a graph G with maximum de-
gree ∆, cub(G) ≤ d4(∆ + 1) lnne. In this paper we show that, for a k-degenerate graph G,
cub(G) ≤ (k+2)d2e logne. Since k is at most ∆ and can be much lower, this clearly is a stronger
result. We also give an efficient deterministic algorithm that runs in O(n2k) time to output a
8k(d2.42 logne+ 1) dimensional cube representation for G.

The crossing number of a graph G, denoted as CR(G), is the minimum number of crossing
pairs of edges, over all drawings of G in the plane. An important consequence of the above result
is that if the crossing number of a graph G is t, then box(G) is O(t1/4dlog te3/4) . This bound is
tight upto a factor of O((log t)3/4).

Let (P,≤) be a partially ordered set and let GP denote its underlying comparability graph.
Let dim(P) denote the poset dimension of P. Another interesting consequence of our result is
to show that dim(P) ≤ 2(k + 2)d2e logne, where k denotes the degeneracy of GP . Also, we get
a deterministic algorithm that runs in O(n2k) time to construct a 16k(d2.42 logne + 1) sized
realizer for P. As far as we know, though very good upper bounds exist for poset dimension in
terms of maximum degree of its underlying comparability graph, no upper bounds in terms of
the degeneracy of the underlying comparability graph is seen in the literature.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Degeneracy, Cubicity, Boxicity, Crossing Number, Interval Graph, In-
tersection Graph, Poset Dimension, Comparability Graph

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.176

1 Introduction

A graph G is an intersection graph of sets from a family of sets F , if there exists f : V (G)→
F such that (u, v) ∈ E(G)⇔ f(u)∩ f(v) 6= ∅. Representations of graphs as the intersection
graphs of various geometrical objects is a well studied topic in graph theory. Probably the
most well studied class of intersection graphs are the interval graphs. Interval graphs are the
intersection graphs of closed intervals on the real line. A restricted form of interval graphs,
that allow only intervals of unit length, are indifference graphs or unit interval graphs.

An interval on the real line can be generalized to a “k-box” in Rk. A k-box B =
(R1, R2, . . . , Rk), where each Ri is a closed interval on the real line, is defined to be the

© Abhijin Adiga, L. Sunil Chandran, and Rogers Mathew;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 176–190

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.176
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Adiga, L.S. Chandran, and R. Mathew 177

Cartesian product R1 × R2 × · · · × Rk. If each Ri is a unit length interval, we call B a
k-cube. Thus, 1-boxes are just closed intervals on the real line whereas 2-boxes are axis-
parallel rectangles in the plane. The parameter boxicity of a graph G, denoted as box(G),
is the minimum integer k such that G is an intersection graph of k-boxes. Similarly, the
cubicity of G, denoted as cub(G), is the minimum integer k such that G is an intersection
graph of k-cubes. Thus, interval graphs are the graphs with boxicity equal to 1 and unit
interval graphs are the graphs with cubicity equal to 1. A k-box representation or a k

dimensional box representation of a graph G is a mapping of the vertices of G to k-boxes
such that two vertices in G are adjacent if and only if their corresponding k-boxes have a
non-empty intersection. In a similar way, we define k-cube representation (or k dimensional
cube representation) of a graph G. Since k-cubes by definition are also k-boxes, boxicity of
a graph is at most its cubicity.

The concepts of boxicity and cubicity were introduced by F.S. Roberts in 1969 [15].
Roberts showed that for any graph G on n vertices box(G) ≤ bn2 c and cub(G) ≤ b 2n

3 c. Both
these bounds are tight since box(K2,2,...,2) = bn2 c and cub(K3,3,...,3) = b 2n

3 c where K2,2,...,2
denotes the complete n/2-partite graph with 2 vertices in each part and K3,3,...,3 denotes the
complete n/3-partite graph with 3 vertices in each part. It is easy to see that the boxicity
of any graph is at least the boxicity of any induced subgraph of it.

Box representation of graphs finds application in niche overlap (competition) in ecology
and to problems of fleet maintenance in operations research (see [9]). Given a low dimen-
sional box representation, some well known NP-hard problems become polynomial time
solvable. For instance, the max-clique problem is polynomial time solvable for graphs with
boxicity k because the number of maximal cliques in such graphs is only O((2n)k).

1.1 Previous Results on Boxicity and Cubicity
It was shown by Cozzens [8] that computing the boxicity of a graph is NP-hard. Kratochvíl
[11] showed that deciding whether the boxicity of a graph is at most 2 itself is NP-complete.
It has been shown by Yannakakis [19] that deciding whether the cubicity of a given graph
is at least 3 is NP-hard.

Researchers have tried to bound the boxicity and cubicity of graph classes with special
structure. Scheinerman [16] showed that the boxicity of outerplanar graphs is at most 2.
Thomassen [17] proved that the boxicity of planar graphs is bounded from above by 3.
Upper bounds for the boxicity of many other graph classes such as chordal graphs, AT-
free graphs, permutation graphs etc. were shown in [7] by relating the boxicity of a graph
with its treewidth. The cube representation of special classes of graphs like hypercubes and
complete multipartite graphs were investigated in [15, 12, 13].

Various other upper bounds on boxicity and cubicity in terms of graph parameters such
as maximum degree, treewidth etc. can be seen in [4, 2, 3, 10, 7]. The ratio of cubicity to
boxicity of any graph on n vertices was shown to be at most dlog2 ne in [5].

1.2 Equivalent Definitions for Boxicity and Cubicity
Let G,G1, G2, . . . , Gb be a collection of graphs with V (G) = V (Gi), for every i ≤ b. We say
G =

⋂b
i=1 Gi when E(G) =

⋂b
i=1 E(Gi). Below, we state two very useful lemmas due to

Roberts [15].

I Lemma 1. For any graph G, box(G) ≤ k if and only if there exist k interval graphs
I1, . . . , Ik such that G = I1 ∩ · · · ∩ Ik.

FSTTCS 2011

178 Cubicity, Degeneracy, and Crossing Number

I Lemma 2. For any graph G, cub(G) ≤ k if and only if there exist k indifference graphs
(unit interval graphs) I1, . . . , Ik such that G = I1 ∩ · · · ∩ Ik.

1.3 Our Results

A graph G is k-degenerate if the vertices of G can be enumerated in such a way that
every vertex is succeeded by at most k of its neighbors. The least number k such that G
is k-degenerate is called the degeneracy of G and any such enumeration is referred to as a
degeneracy order of V (G). For example, trees and forests are 1-degenerate and planar graphs
are 5-degenerate. Series-parallel graphs, outerplanar graphs, non-regular cubic graphs, circle
graphs of girth at least 5 etc. are subclasses of 2-degenerate graphs.

Main Result: It was shown in [2] that, for a graph G with maximum degree ∆,
cub(G) ≤ d4(∆+1) lnne. In this paper, we show that, for a k-degenerate graph G, cub(G) ≤
(k+2)d2e logne. Since k is at most ∆ and can be much lower, this clearly is a stronger result.
Moreover, we give an efficient deterministic algorithm that outputs a 8k(d2.42 logne + 1)
dimensional cube representation for G in O(n2k) time.

Consequence 1: The crossing number of a graph G, denoted as CR(G), is the minimum
number of crossing pairs of edges, over all drawings of G in the plane. We prove that, if
CR(G) = t, then box(G) ≤ 66t 1

4 dlog 4te
3
4 +6. This bound is tight upto a factor ofO((log t) 3

4).
See Section 5 for details.

Consequence 2: Let (P,≤) be a poset (partially ordered set) and let GP be the
underlying comparability graph of P. A linear extension L of P is a total order which
satisfies (x ≤ y ∈ P) =⇒ (x ≤ y ∈ L). A realizer of P is a set of linear extensions of P,
say R, which satisfy the following condition: for any two distinct elements x and y, x ≤ y

in P if and only if x ≤ y in L, ∀L ∈ R. The poset dimension of P, denoted by dim(P), is
the minimum integer k such that there exists a realizer of P of cardinality k. Yannakakis
[19] showed that it is NP-complete to decide whether the dimension of a poset is at most 3.
The poset dimension is an extensively studied parameter in the theory of partial order (See
[18] for a comprehensive treatment).

There are several research papers in the partial order literature which study the dimen-
sion of posets whose underlying comparability graph has some special structure – interval
order, semi order and crown posets are some examples. While very good upper bounds (for
example c∆(log ∆)2 in [20], where c is a constant) are known for poset dimension in terms
of maximum degree ∆ of its underlying comparability graph, as far as we know there are no
upper bounds in terms of the degeneracy of the underlying comparability graph. Connecting
our main result with a result in [1], we can get an upper bound for poset dimension in terms
of the degeneracy of the underlying comparability graph as follows. It was shown in [1] that
dim(P) < 2box(GP). Therefore, if the degeneracy of the underlying comparability graph
GP is k, then our result says that dim(P) ≤ 2(k+ 2)d2e logne. Also, we get a deterministic
algorithm that runs in O(n2k) time to construct a 16k(d2.42 logne+ 1) sized realizer for P.

2 Preliminaries

For any finite positive integer n, let [n] denote the set {1, 2, . . . n}. Unless mentioned ex-
plicitly, all logarithms are to the base e in this paper. All the graphs that we consider are
simple, finite and undirected. For a graph G, we denote the vertex set of G by V (G) and
the edge set of G by E(G). For any vertex u ∈ V (G), NG(u) = {v ∈ V (G) | (u, v) ∈ E(G)}.
We define degG(u) := |NG(u)|. The average degree of G is denoted by dav(G).

A. Adiga, L.S. Chandran, and R. Mathew 179

Since an interval graph is the intersection graph of closed intervals on the real line, for
every interval graph Ia, there exists a function fa : V (Ia)→ {X ⊆ R |X is a closed interval},
such that for u, v ∈ V (Ia), (u, v) ∈ E(Ia)⇔ fa(u) ∩ fa(v) 6= ∅. The function fa is called an
interval representation of the interval graph Ia. Note that the interval representation of an
interval graph need not be unique. Given a closed interval X = [y, z], we define L(X) := y

and R(X) := z. In a similar way, we call a function fb a unit interval representation of unit
interval graph Ib if fb : V (Ib) → {X ′ ⊆ R | X ′ is a unit length closed interval}, such that
∀u, v ∈ V (Ib), (u, v) ∈ E(Ib)⇔ fb(u) ∩ fb(v) 6= ∅.

Given a graph G, let C be a coloring of V (G) using colors χ1, χ2, . . . , χa. Then, for each
u ∈ V (G), C(u) denotes the color of u in C.

2.1 Definitions, Notations and Assumptions used in Sections 3 and 4:

Recall that the degeneracy of a graph is the least number k such that it has a vertex
enumeration in which each vertex is succeeded by at most k of its neighbors. Such an
enumeration is called the degeneracy order. The graph G that we consider in these sections
is a k-degenerate graph having V (G) = {v1, v2, . . . , vn}, |E(G)| = m and m (=

(
n
2
)
− m)

denotes the number of non-edges in G. The enumeration v1, v2, . . . , vn is a degeneracy
order of V (G) and is denoted by D. For every vi, vj ∈ V (G), we say vi <D vj if vi comes
before vj in D i.e., vi <D vj if and only if i < j. Suppose vi <D vj . If (vi, vj) ∈ E(G),
then we call vj a forward neighbor of vi and vi is referred to as a backward neighbor of vj .
Observe that since G is k-degenerate, a vertex can have at most k forward neighbors. If
(vi, vj) /∈ E(G), then vj a forward non-neighbor of vi and vi is a backward non-neighbor of
vj . For any u ∈ V (G), Nf

G(u) = {w ∈ V (G) | w is a forward neighbor of u} and N b
G(u) =

{w ∈ V (G) | w is a backward neighbor of u}.
Support sets of a non-edge: For each (vx, vy) /∈ E(G), where vx <D vy, let Sxy = {vz ∈
Nf
G(vx) | vy <D vz} ∪ {vy}. We call Sxy the weak support set of the non-edge (vx, vy).

Define Txy = Sxy ∪ {vx}. We call Txy the strong support set of the non-edge (vx, vy). Let
C be a coloring (need not be proper) of V (G). We say Sxy is favorably colored in C, if
C(vy) 6= C(vw), ∀vw ∈ Sxy \ {vy}. We say Txy is favorably colored in C, if C(vy) 6= C(vw),
∀vw ∈ Txy \ {vy}

3 Cube Representation and Coloring

I Lemma 3. Let G be a k-degenerate graph. Let χ = {χ1, χ2, . . . χa} be a set of colors and
let C = {C1, C2, . . . Cb} be a family of colorings (need not be proper) of V (G), where each Ci
uses colors from the set χ. If the strong support set Txy of every non-edge (vx, vy) /∈ E(G),
vx <D vy, is favorably colored in some Ci, where i ∈ [b], then cub(G) ≤ ab.

Proof. We prove this by constructing ab unit interval graphs Ii,j on the vertex set V (G),
where i ∈ [a] and j ∈ [b], such that G =

⋂a
i=1
⋂b
j=1 Ii,j . Then the statement will follow from

Lemma 2. Let fi,j denote an interval representation of Ii,j . Let us partition the vertices
of Ii,j into two parts, namely Aij and Bij , where Aij = {v ∈ V (G) | Ci(v) = χj} and
Bij = V (G) \ Aij . For every i ∈ [a] and j ∈ [b], an interval representation fi,j of Ii,j is
constructed from the coloring Ci in the following way. For every vy ∈ V (G),

FSTTCS 2011

180 Cubicity, Degeneracy, and Crossing Number

If vy ∈ Aij , then
fi,j(vy) = [y + n, y + 2n]

else
fi,j(vy) = [gijmax(vy), gijmax(vy) + n], where
gijmax(vy) = max({g | (vy, vg) ∈ E(G),
vg ∈ Aij} ∪ {0}).

Since the length of fi,j(vy) is n, for every vy ∈ V (G), Ii,j is a unit interval graph. It
is easy to see that, ∀vx, vy ∈ Aij , 2n ∈ fi,j(vx) ∩ fi,j(vy) and therefore Aij forms a clique
in Ii,j . Since n ∈ fi,j(vx) ∩ fi,j(vy), ∀vx, vy ∈ Bi,j , Bi,j too forms a clique in Ii,j . For
every (vx, vy) ∈ E(G), with vx ∈ Aij and vy ∈ Bij , we have L(fi,j(vy)) = gijmax(vy) ≤
n ≤ L(fi,j(vx)) = n + x ≤ n + gijmax(vy), where the last inequality is inferred from the
fact that (vx, vy) ∈ E(G) and vx ∈ Aij . But n + gijmax(vy) = R(fi,j(vy)). Therefore, we
get L(fi,j(vy)) ≤ L(fi,j(vx)) ≤ R(fi,j(vy)) and hence (vx, vy) ∈ E(Ii,j). Hence Ii,j is a
supergraph of G.

Let vx <D vy and (vx, vy) /∈ E(G). We now have to show that there exists some
unit interval graph Ii,j such that (vx, vy) /∈ E(Ii,j). We know that, by assumption, there
exists a coloring, say Ci (where i ∈ [a]), such that the strong support set Txy is favorably
colored in Ci. Let χj = Ci(vy). Let g = gijmax(vx). We claim that g < y. Assume, for
contradiction, that g > y. Then g 6= 0 and vg ∈ Aij . Since y > x, we get g > x. Therefore,
vg ∈ Nf

G(vx) and g > y. This implies that vg ∈ Txy. Since Txy is favorably colored in Ci,
Ci(vg) 6= χj . This contradicts the fact that vg ∈ Aij . Thus we prove the claim. Therefore,
R(fi,j(vx)) = n + g < n + y = L(fi,j(vy)) and hence (vx, vy) /∈ E(Ii,j). We infer that
G =

⋂a
i=1
⋂b
j=1 Ii,j . J

4 Cubicity and Degeneracy

4.1 An Upper Bound – Probabilistic Approach
I Theorem 4. For every k-degenerate graph G, cub(G) ≤ (k + 2) · d2e logne

Proof. Let χ = {χ1, χ2, . . . χk+2} be a set of k + 2 colors. Generate a random coloring
C1 (need not be a proper coloring) of vertices of G in the following way: For each vertex
vx ∈ V (G), pick a color χj , where j ∈ [k + 2], uniformly at random from χ and set
C1(vx) = χj . In a similar way, independently generate random colorings C2, C3, . . . Cb, where
b = d2e logne.

For every (vx, vy) /∈ E(G) and vx <D vy, since G is k-degenerate we have |Txy| =

t ≤ k + 2. Pr[Txy is favorably colored in Ci] = (k+2)(k+1)t−1

(k+2)t−1 =
(
k+1
k+2

)t−1
≥
(
k+1
k+2

)k+1
.

Therefore, Pr[Txy is not favorably colored in Ci] ≤ 1−
(
k+1
k+2

)k+1
≤ e−(k+1

k+2)k+1
. Now taking

b = d2e logne,

Pr[
⋃

x,y:(vx<Dvy),((vx,vy)/∈E(G))

b⋂
i=1

(Txy is not favorably colored in Ci)]

≤ n2e−b(
k+1
k+2)k+1

< 1.

A. Adiga, L.S. Chandran, and R. Mathew 181

Hence, Pr[C1, C2, . . . Cb satisfy the condition of Lemma 3] > 0. Therefore, there exists a
coloring C1, . . . Cb, with b = d2e logne, of V (G) using colors from the set {χ1, χ2, . . . χk+2}
such that the condition of Lemma 3 is satisfied. Hence by Lemma 3, cub(G) ≤ (k + 2) ·
d2e logne. J

4.2 Deterministic Algorithm
DET_ALGO(G) is a deterministic algorithm which takes a simple, finite k-degenerate graph
G as input and outputs a cube representation in 8kα dimensional space i.e., 8kα unit interval
graphs I1,1, . . . , I1,8k, . . . , Iα,1, . . . , Iα,8k such that G =

⋂α
i=1
⋂8k
j=1 Ii,j . In order to achieve

this, DET_ALGO(G) invokes the procedure CONSTRUCT_COLORING (for a detailed
version of this procedure , see Appendix A.5) α times and thereby generates α colorings
C1, . . . , Cα, where each coloring uses colors from the set {χ1, . . . , χ8k}. Then from each color-
ing Ci, it constructs 8k unit interval graphs Ii,1, . . . , Ii,8k using the construction described in
Lemma 3, which is implemented in procedure CONSTRUCT_UNIT_INTERVAL_GRAPHS
(See Appendix A.1).

Note that in order for G to be equal to
⋂α
i=1
⋂8k
j=1 Ii,j , Lemma 3 requires that the

colorings C1, . . . , Cα satisfy the following property: for every (vx, vy) /∈ E(G), where vx <D
vy, there exists an i ∈ [α] such that the strong support set Txy of this non-edge is favorably
colored in Ci. The colorings C1, . . . , Cα are generated one by one keeping this objective in
mind. At the stage when we have just generated the (i− 1)-th coloring Ci−1, if a non-edge
(vx, vy) is such that its strong support set Txy is already favorably colored in some Cj , where
j < i, then we say that the non-edge (vx, vy) is already DONE. Naturally at each stage we
have to keep track of the non-edges that are not yet DONE. In order to do this, we introduce
two data structures BNN i and FNN i, for all i ∈ [α] 1. For each vy ∈ V (G),

BNN i[vy] = {vx ∈ V (G) | vx is a backward non-neighbor of vy, and (vx, vy)
is not yet DONE with respect to C1, . . . , Ci−1.}

FNN i[vy] = {vz ∈ V (G) | vz is a forward non-neighbor of vy, and (vy, vz)
is not yet DONE with respect to C1, . . . , Ci−1.}

It is easy to see that,
⋃
vy∈V (G) BNN i[vy] =

⋃
vy∈V (G) FNN i[vy] and therefore,(⋃

vy∈V (G) BNN i[vy] = ∅
)
⇐⇒

(⋃
vy∈V (G) FNN i[vy] = ∅

)
. In Theorem 7, we show that if

we select α to be at least (d2.42 logne+ 1), then FNNα+1[vy] = ∅, ∀vy ∈ V (G). This clearly
would mean that all non-edges are DONE with respect to C1, . . . , Cα. In other words, the
condition of Lemma 3 will be satisfied for C1, . . . , Cα.

The only thing that remains to be discussed now is how our coloring strategy (i.e. the pro-
cedure CONSTRUCT_COLORING) achieves the above objective, namely BNNα+1[vy] = ∅
and FNNα+1[vy] = ∅, ∀vy ∈ V (G), if α ≥ (d2.42 logne + 1). To start with BNN 1[vy] (re-
spectively FNN 1[vy]) contains all the backward (respectively forward) non-neighbors of vy.
The procedure CONSTRUCT_COLORING(i) generates the i-th coloring Ci as follows. It
colors vertices in the reverse degeneracy order starting from vertex vn. The partial color-
ing at the stage when we have colored the vertices vn to vz is denoted by Cvz

i . Note that
Cv1
i = Ci. Consider the stage at which the algorithm has already colored the vertices from
vn upto vy+1 and is about to color vy. That is, we have the partial coloring Cvy+1

i and are

1 BNN – Backward Non-Neighbor, FNN – Forward Non-Neighbor

FSTTCS 2011

182 Cubicity, Degeneracy, and Crossing Number

about to extend it to the partial coloring Cvy

i by assigning one of the 8k possible colors to
vertex vy. Let C

vy=χc

i denote the partial coloring that results if we extend Cvy+1
i by assign-

ing color χc to vy. The coloring Ci and the partial colorings Cvz
i , ∀vz ∈ V (G) and Cvz=χc

i ,
∀vz ∈ V (G), χc ∈ {χ1, . . . , χ8k}, will be generically called the colorings associated with the
i-th stage (i.e. the i-th invocation of CONSTRUCT_COLORING).

With respect to colorings C1, . . . , Ci−1 and some coloring C′i associated with the i-th stage,
we define the following sets:

W (vw, C′i) = {vx ∈ BNN i[vw] | the strong support set Txw of non-edge (1)
(vx, vw) is favorably colored in C′i}

X(vw, C′i) = {vx ∈ BNN i[vw] | the weak support set Sxw of non-edge (2)
(vx, vw) is favorably colored in C′i}

Y (vw, C′i) = {vz ∈ FNN i[vw] | the strong support set Twz of non-edge (3)
(vw, vz) is favorably colored in C′i}

Z(vw, C′i) = {vz ∈ FNN i[vw] | the weak support set Swz of non-edge (4)
(vw, vz) is favorably colored in C′i}

Naturally, we want to give a color χc to vy such that a large number of (not yet DONE)
non-edges incident on vy get DONE. With respect to the colorings C1, . . . , Ci−1 and the
partial coloring Cvy=χc

i , we define the status of a non-edge incident on vy as follows: A non-
edge (vy, vz) ∈ FNN i[vy] is DONE2 if Tyz is favorably colored in Cvy=χc

i and is NOT-DONE
if Tyz is not favorably colored in Cvy=χc

i . A non-edge (vx, vy) ∈ BNN i[vy] is HOPELESS3
if Sxy (which happens to be a proper subset of Txy) is not favorably colored in Cvy=χc

i and
is HOPEFUL if Sxy is favorably colored in Cvy=χc

i . So when we decide a color for vy, our
intention is to make a large fraction of the HOPEFUL non-edges of FNNi[vy] (i.e. the set
Z(vy, C

vy=χc

i)), DONE and to make a large fraction of BNN i[vy], HOPEFUL. More formally,
we want the algorithm to assign a color χc to vy such that the following two conditions are
satisfied.
(i) |X(vy, C

vy=χc

i)| ≥ 3
4 |BNN i[vy]|, and

(ii)|Y (vy, C
vy=χc

i)| ≥ 3
4 |Z(vy, C

vy=χc

i)|.
The obvious question then is, whether such a color χc always exists, for each vy ∈ V (G).
Lemma 5 answers this question in the affirmative. It follows that, the number of non-edges
that are not yet DONE with respect to colorings C1, . . . Ci is at most a constant fraction of
the number of non-edges that were not DONE with respect to colorings C1, . . . Ci−1. This is
formally proved in Lemma 6. That BNNα+1[vy] = ∅ and FNNα+1[vy] = ∅, ∀vy ∈ V (G), is
a consequence of this and is formally proved in Theorem 7.

I Lemma 5. For every i ∈ [α], vy ∈ V (G), (i) |X(vy, Ci)| ≥ 3
4 |BNN i[vy]|, and (ii)|Y (vy, Ci)| ≥

3
4 |Z(vy, Ci)|.

Proof. See Appendix A.2. J

I Lemma 6. Let mi = Σy∈[n]|FNN i[vy]|. Then mi+1 ≤ 7
16mi.

2 Recall that we had defined earlier that a non-edge (vx, vy) is DONE with respect to a list of colorings
C1, . . . , Ci−1 if Txy was favorably colored in some Cj , where j < i. Here we extend this notion, by
allowing the partial coloring Cvy=χc

i also in the list.
3 A HOPELESS non-edge (vx, vy) will not be DONE with respect to C1, . . . , Ci if we set Ci(vy) = χc,
irrespective of the color given to vy−1, . . . , v1.

A. Adiga, L.S. Chandran, and R. Mathew 183

Algorithm 4.1 DET_ALGO(G)
for y = n to 1 do
1. Initialize BNN 1[vy]← {vx ∈ V (G) | vx <D vy, (vx, vy) /∈ E(G)}.
2. Initialize FNN 1[vy]← {vz ∈ V (G) | vy <D vz, (vy, vz) /∈ E(G)}.

end for
3. SET FLAG ← TRUE.
4. SET i ← 0.
while FLAG = TRUE do
5. i++.
6. Ci = CONSTRUCT_COLORING(i).
for y = 1 to n do
7. SET BNN i+1[vy]← BNNi[vy] \W (vy, Ci)
8. SET FNN i+1[vy]← FNNi[vy] \ Y (vy, Ci)

end for
9. If FNN i+1[vy] = ∅, ∀vy ∈ V (G), then FLAG = FALSE.

end while
10. SET α← i

11. CONSTRUCT_UNIT_INTERVAL_GRAPHS()

Proof. See Appendix A.3. J

I Theorem 7. Let G be a k-degenerate graph. Algorithm DET_ALGO(G) constructs a
valid 8k(d2.42 logne+ 1) dimensional cube representation for G.

Proof. The algorithm constructs α colorings C1, C2, . . . , Cα of V (G), where each coloring uses
colors from the set {χ1, χ2, . . . χ8k}. From Lemma 6, we have mi+1 ≤ 7

16mi. Also, m1 =
|Σy∈[n]FNN1[vy]| ≤ n2. Putting α = (d2.42 logne+1), we getmα ≤ 1. That is, for every y ∈
[n], FNNα+1[vy] = EMPTY . This means that, for every (vx, vy) /∈ E(G), where vx <D vy,
there exists an i ∈ [α] such that Txy is favorably colored in Ci. Then by Lemma 3 , cub(G) ≤
8k(d2.42 logne + 1). The procedure CONSTRUCT_UNIT_INTERVAL_GRAPHS con-
structs 8k(d2.42 logne+ 1) unit interval graphs whose intersection gives G, as described in
Lemma 3. Thus we prove the theorem. J

4.2.1 Running Time Analysis
I Lemma 8. The procedure CONSTRUCT_COLORING(i) can be implemented to run in
O(kmi + kn) time, where mi = Σy∈[n]|FNNi[vy]|.

Proof. See Appendix A.4. J

I Theorem 9. DET_ALGO(G) runs in O(n2k) time.

Proof. The algorithm invokes the function CONSTRUCT_COLORING(i) α
times to construct colorings C1, C2, . . . Cα of V (G). By Lemma 8, to construct these α color-
ings it requires O(Σαi=1(mik) + αkn) time. From Lemma 6, we get that Σαi=1(mi) is O(m).
Since α = (d2.42 logne+1), the running time of the while loop in DET_ALGO(G) is O(mk+
nk logn). It is easy to see that the procedure CONSTRUCT_UNIT_INTERVAL_GRAPHS()
runs in O(nk logn) time. Since m ≤ n2, DET_ALGO(G) runs in O(n2k) time. J

FSTTCS 2011

184 Cubicity, Degeneracy, and Crossing Number

Algorithm 4.2 CONSTRUCT_COLORING(i)
/*For a detailed version of this procedure, see Appendix A.5.
All data structures are assumed to be global.
Notational Note:
Let Cvz

i denote the partial coloring at the stage when we have colored the vertices vn to vz.
Let Cvz=χc

i denote the partial coloring that results if we extend Cvz+1
i by assigning color χc

to vz.*/
for y = n to 1 do

for each χc ∈ {χ1, . . . , χ8k } do
1. Compute |X(vy, C

vy=χc

i)|, |Y (vy, C
vy=χc

i)|, and |Z(vy, C
vy=χc

i)| as per equations
(2),(3), and (4) respectively.
if |X(vy, C

vy=χc

i)| ≥ 3
4 |BNN i[vy]| and |Y (vy, C

vy=χc

i)| ≥ 3
4 |Z(vy, C

vy=χc

i)| then
2. SET Cvy

i ← C
vy=χc

i (i.e. SET Ci(vy)← χc).
3. SET Y (vy, C

vy

i)← Y (vy, C
vy=χc

i)
4. BREAK.

end if
end for

end for
for y = 1 to n do
5. Compute W (vy, Ci) as per equation (1)
6. SET Y (vy, Ci)← Y (vy, Cv1

i)
end for
7. Return Ci.

5 Boxicity and Crossing Number

5.1 A Useful Lemma
For a graph H, let VA, VB ⊆ V (H) such that V (H) = VA]VB . Let SB(H) be the graph with
V (SB(H)) = V (H) and E(SB(H)) = E(H) \ {(u, v) | u, v ∈ VB}. In other words, SB(H) is
obtained from H by making VB a stable set. Let HB be the subgraph of H induced on VB .

I Lemma 10. box(H) ≤ 2box(SB(H)) + box(HB).

Proof. See Appendix A.6. J

5.2 Crossing Number
Crossing number of a graph G, denoted as CR(G), is the minimum number of crossing pairs
of edges, over all drawings of G in the plane. A graph G is planar if and only if CR(G) = 0.
Determination of the crossing number is an NP-complete problem.

The following theorem is due to Pach and Tóth [14]

I Theorem 11. For a graph G with n vertices and m ≥ 7.5n edges, CR(G) ≥ 1
33.75

m3

n2 , and
this estimate is tight upto a constant factor.

The following claim directly follows from the above theorem.
I Claim 12. For a graph G, if CR(G) ≤ t, then dav(G) ≤ 2(33.75t

n)1/3 + 15.

Proof. If m < 7.5n, then dav < 15. Otherwise, we have m ≤ (33.75n2t)1/3 implying that
dav ≤ 2(33.75t

n)1/3. J

A. Adiga, L.S. Chandran, and R. Mathew 185

We now prove the main theorem of this section.

I Theorem 13. For a graph G with CR(G) = t, box(G) ≤ 66 · t 1
4 dlog 4te

3
4 + 6.

Proof. Consider a drawing P of G with t crossings. We say a vertex v participates in a
given crossing in P , if at least one of the edges of the given crossing is incident on v.

Partition the vertices of G into two parts, namely VA and VB , such that VB = {v ∈
V (G) | v participates in some crossing in P} and VA = V (G) \VB . Let SB(G) be the graph
with V (SB(G)) = V (G) and E(SB(G)) = E(G)\{(u, v) | u, v ∈ VB}. In other words, SB(G)
is obtained from G by making VB a stable set. Let GB be the subgraph of G induced on
VB . Then by Lemma 10,

box(G) ≤ 2box(SB(G)) + box(GB).

Observe that SB(G) is a planar graph and hence its boxicity is at most 3 (see [17]). Therefore,
box(G) ≤ 6 + box(GB). For ease of notation, let H ≡ GB . Then,

box(G) ≤ 6 + box(H). (5)

We have CR(H) = CR(G) = t. Let n = |V (H)| and m = |E(H)|. At most 4 vertices
participate in a given crossing. Since each vertex in H participates in some crossing in P ,
we get

n ≤ 4t.

Let V (H) = {v1, v2, . . . , vn}. Let v1, v2, . . . , vn be an ordering of the vertices of H, such
that for each i ∈ [n], degHi(vi) ≤ degHi(v),∀v ∈ V (Hi), where Hi denotes the subgraph of

H induced on vertex set {vi, vi+1, . . . , vn}. Let k =
(33.75

3
) 1

4
(

t
dlog 4te

) 1
4 . Let x = min({i ∈

[n] | degHi
(vi) > k}). Partition V (H) into two parts, namely VC = {v1, v2, . . . , vx−1}

and VD = {vx, vx+1, . . . , vn}. Let SD(H) be the graph with V (SD(H)) = V (H) and
E(SD(H)) = E(H) \ {(u, v) | u, v ∈ VD}. In other words, SD(H) is obtained from H

by making VD a stable set. Let HD be the subgraph of H induced on VD. Then by Lemma
10,

box(H) ≤ 2box(SD(H)) + box(HD).

Note that SD(H) is k-degenerate. If k = 1, then SD(H) is a forest and hence its boxicity
is at most 2. Suppose k > 1. Then by Theorem 4, box(SD(H)) ≤ cub(SD(H)) ≤ (k +
2)d2e logne ≤ 12kdlog(4t)e ≤ 12

(33.75
3
) 1

4 t
1
4 dlog 4te

3
4 . Thus we have,

box(H) ≤ 24
(

33.75
3

) 1
4

t
1
4 dlog 4te

3
4 + box(HD). (6)

Since HD ≡ Hx, vx is a minimum degree vertex of HD. Therefore, dav(HD) > degHD
(vx) >

k. Then by Claim 12, we have

k =
(

33.75
3

) 1
4
(

t

dlog 4te

) 1
4

< dav(HD) ≤ 2
(

33.75t
|V (HD)|

)1/3
+ 15.

From this, we get |V (HD)| ≤ 48 3
4 (33.75t) 1

4 dlog 4te
3
4 . Since boxicity of a graph is at most

half the number of its vertices[15] , we get box(HD) ≤ 48
3
4 (33.75t)

1
4 dlog 4te

3
4

2 . Substituting this
in Inequality 6, we get

box(H) ≤ 66t 1
4 dlog 4te

3
4

FSTTCS 2011

186 Cubicity, Degeneracy, and Crossing Number

Therefore from Inequality 5 ,we get

box(G) ≤ 66t 1
4 dlog 4te

3
4 + 6.

J

5.2.1 Tightness of Theorem 13:
We know that, for any graph G on n vertices andm edges, CR(G) ≤ m(m−1)/2 ≤ m2 ≤ n4.
Let G ≡ K2,2,...,2 denote the complete n

2 -partite graph with 2 vertices in each part and let
t = CR(G). From [15], we know that box(G) = bn2 c ≥ b

t1/4

2 c. Therefore, the bound given
by Theorem 13 is tight upto a factor of O((log t) 3

4).

References
1 Abhijin Adiga, Diptendu Bhowmick, and L. Sunil Chandran. Boxicity and poset dimension.

In COCOON, pages 3–12, 2010.
2 L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan. Representing graphs as the

intersection of axis-parallel cubes. MCDES-2008, IISc Centenary Conference, available at
CoRR, abs/cs/0607092, 2006.

3 L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan. Boxicity and maximum
degree. Journal of Combinatorial Theory, Series B, 98(2):443–445, March 2008.

4 L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan. Geometric representation
of graphs in low dimension using axis parallel boxes. Algorithmica, 56(2):129–140, 2010.

5 L. Sunil Chandran and K. Ashik Mathew. An upper bound for cubicity in terms of boxicity.
Discrete Mathematics, In Press, Corrected Proof, doi:10.1016/j.disc.2008.04.011, 2008.

6 L. Sunil Chandran, Rogers Mathew, and Naveen Sivadasan. Boxicity of line graphs. CoRR,
abs/1009.4471, 2010.

7 L. Sunil Chandran and Naveen Sivadasan. Boxicity and treewidth. Journal of Combinat-
orial Theory, Series B, 97(5):733–744, September 2007.

8 M. B. Cozzens. Higher and multidimensional analogues of interval graphs. Ph. D. thesis,
Rutgers University, New Brunswick, NJ, 1981.

9 M. B. Cozzens and F. S. Roberts. Computing the boxicity of a graph by covering its
complement by cointerval graphs. Discrete Applied Mathematics, 6:217–228, 1983.

10 Louis Esperet. Boxicity of graphs with bounded degree. European Journal of Combinator-
ics, doi:10.1016/j.ejc.2008.10.003, 2008.

11 J. Kratochvil. A special planar satisfiability problem and a consequence of its NP–
completeness. Discrete Applied Mathematics, 52:233–252, 1994.

12 H. Maehara. Sphericity exceeds cubicity for almost all complete bipartite graphs. Journal
of Combinatorial Theory, Series B, 40(2):231–235, April 1986.

13 T.S. Michael and Thomas Quint. Sphericity, cubicity, and edge clique covers of graphs.
Discrete Applied Mathematics, 154(8):1309–1313, May 2006.

14 János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Combinatorica,
17(3):427–439, 1997.

15 F. S. Roberts. Recent Progresses in Combinatorics, chapter On the boxicity and cubicity
of a graph, pages 301–310. Academic Press, New York, 1969.

16 E. R. Scheinerman. Intersection classes and multiple intersection parameters. Ph. D. thesis,
Princeton University, 1984.

17 C. Thomassen. Interval representations of planar graphs. Journal of Combinatorial Theory,
Series B, 40:9–20, 1986.

A. Adiga, L.S. Chandran, and R. Mathew 187

18 W.T. Trotter. Combinatorics and partially ordered sets: Dimension theory. Johns Hopkins
Univ Pr, 2001.

19 Mihalis Yannakakis. The complexity of the partial order dimension problem. SIAM Journal
on Algebraic Discrete Methods, 3:351–358, 1982.

20 Z. Füredi and J. Kahn. On the dimensions of ordered sets of bounded degree. Order,
3(1):15–20, 1986.

A Appendix

A.1 Procedure CONSTRUCT_UNIT_INTERVAL_GRAPHS()

Algorithm A.1 CONSTRUCT_UNIT_INTERVAL_GRAPHS()
/*All data structures are assumed to be global. */
1. INITIALIZE L(fi,j(vy))← 0, R(fi,j(vy))← n, ∀y ∈ [n], i ∈ α, j ∈ [8k]
for i = 1 to α do

for y = n to 1 do
2. SET j ← c, such that Ci(vy) = χc
3. SET L(fi,j(vy))← y + n

4. SET R(fi,j(vy))← y + 2n
for each v ∈ N b

G(vy) do
if (Ci(v) 6= j) ∩ (L(fi,j(v)) = 0) then
5. SET L(fi,j(v))← y

6. SET R(fi,j(v))← y + n

end if
end for

end for
end for
7. Output fi,j(vy),∀y ∈ [n], i ∈ α, j ∈ [8k]

A.2 The proof of Lemma 5
Proof. The statement of the lemma is obvious if the BREAK statement in Step 4 of
CONSTRUCT_COLORING(i) is executed, for every i ∈ [α] and vy ∈ V (G). In order to
prove that the BREAK statement will be executed, it is sufficient to show that there exists
a color χc ∈ {χ1, . . . , χ8k} such that |X(vy, C

vy=χc

i)| ≥ 3
4 |BNN i[vy]| and |Y (vy, C

vy=χc

i)| ≥
3
4 |Z(vy, C

vy=χc

i)|. Since the vertices in Z(vy, C
vy=χc

i) or Z(vy, Ci) do not depend on the colors
given to v1, . . . vy, we have Z(vy, C

vy=χc

i) = Z(vy, Ci) . Hence, Z(vy, C
vy=χc

i) and Z(vy, Ci)
can be used interchangeably.

Let A = BNN i[vy]× Z(vy, Ci). Let < vx, vz > be an element of A. We say a color χc is
good for < vx, vz >, if vx ∈ X(vy, C

vy=χc

i) and vz ∈ Y (vy, C
vy=χc

i). In other words, χc is good
for < vx, vz >, if both Sxy and Tyz are favorably colored in Cvy=χc

i . Sxy is favorably colored
in Cvy=χc

i , if χc /∈ P , where P = {Cvy=χc

i (vw) | vw ∈ Nf
G(vx), vy <D vw}. Since |Nf

G(vx)| ≤ k,
|P | ≤ k. Therefore, there are at least 8k − k = 7k possible values that χc can take such
that Sxy is favorably colored in Cvy=χc

i . For Tyz also to be favorably colored in Cvy=χc

i , the
only thing required is that χc 6= C

vy=χc

i (vz), since vz ∈ Z(vy, Ci) and therefore Syz is already
favorably colored. This implies that there are at least 7k−1 possible values that χc can take

FSTTCS 2011

188 Cubicity, Degeneracy, and Crossing Number

such that both Sxy and Tyz are favorably colored in Cvy=χc

i . In other words, there are at least
7k−1 good colors for < vx, vz >. Thus for each element in A, there are at least 7k−1 colors
good for it. For each color χj ∈ {χ1, . . . , χ8k}, let Sj = {< vx, vz >∈ A | χj is good for <

vx, vz >} = X(vy, C
vy=χj

i)× Y (vy, C
vy=χj

i). Since there are at least (7k − 1) colors good for
each element in A, Σj∈[8k]|Sj | ≥ (7k − 1)|A|. Then by pigeonhole principle, there exists a
c ∈ [8k] such that |Sc| = |X(vy, C

vy=χc

i)| · |Y (vy, C
vy=χc

i)| ≥ (7k−1)
8k |A| = 7k−1

8k |BNN i[vy]| ·
|Z(vy, Ci)| ≥ 3

4 |BNN i[vy]| · |Z(vy, Ci)| elements of A. In other words, |X(vy, C
vy=χc

i)| ≥
3
4 |BNN i[vy]| and |Y (vy, C

vy=χc

i)| ≥ 3
4 |Z(vy, C

vy=χc

i)|. J

A.3 The proof of Lemma 6

Proof. From step 8 of DET_ALGO(G), we have |FNNi+1[vy]| = |FNNi[vy]|−|Y (vy, Ci)| ≤
|FNNi[vy]| − 3

4 |Z(vy, Ci)| (using Lemma 5). Taking summation over all y ∈ [n], we get
mi+1 ≤ mi− 3

4 Σy∈[n]|Z(vy, Ci)| = mi− 3
4 Σy∈[n]|X(vy, Ci)|. The last equality comes from the

fact that both Σy∈[n]|X(vy, Ci)| and Σy∈[n]|Z(vy, Ci)| represent the number of HOPEFUL
non-edges in G with respect to colorings C1, . . . , Ci. From Lemma 5, we have |X(vy, Ci)| ≥
3
4 |BNN i[vy]|. Therefore, mi+1 ≤ mi − (3

4)2Σy∈[n]|BNN i[vy]|. Since Σy∈[n]|BNN i[vy]| =
Σy∈[n]|FNN i[vy]|, we get mi+1 ≤ mi − (3

4)2Σy∈[n]|FNN i[vy]| = mi − 9
16mi = 7

16mi. J

A.4 The proof of Lemma 8

Proof. A detailed description of the procedure is given in Section A.5. To implement
the procedure efficiently, we make use of an (n × 8k) 0 − 1 matrix, hereafter called FNC
(Forward Neighbor Color), and two (n × n) 0 − 1 matrices named HOPE_MATRIX and
DONE_MATRIX respectively. At the beginning of the procedure each of these matrices
have all entries set to 0. As the procedure progresses, we change some of the entries to 1 in
such a way that,
∀w ∈ [n], j ∈ [8k],FNC [w][j] = 1 ⇐⇒ ∃vz ∈ Nf

G(vw) such that vz is already
colored by the procedure with color χj .
∀w, z ∈ [n], vw ∈ BNN i[vz],HOPE_MATRIX [w][z] = 1 ⇐⇒ Swz is already
favorably colored by the procedure.
∀w, z ∈ [n], vw ∈ BNN i[vz],DONE_MATRIX [w][z] = 1 ⇐⇒ Twz is already
favorably colored by the procedure.

In order for the above matrices to satisfy their respective properties, the only thing that
needs to be done is to update these matrices at each stage of the procedure. Consider the
stage at which the procedure is extending partial coloring Cvy+1

i to Cvy

i by assigning color
χc to vy. At this stage, the matrices FNC , HOPE_MATRIX and DONE_MATRIX are
updated as described in steps 11(a), 12(a) and 13(a) respectively. Note that this can be
done in O(|BNN i[vy]| + |FNNi[vy]| + |N b

G(vy)|) time. Steps 4(a)-(b), 5(a)-(b) and 6(a)-
(b) compute X(vy, C

vy=χc

i), Y (vy, C
vy=χc

i) and Z(vy, C
vy=χc

i) respectively in O(|BNN i[vy]|+
|FNN i[vy]|) time. Computing W (vy, Ci) is done in step 15 (a)–(b) in O(|BNN i[vy]|) time.

Since steps 4 to 14, in the worst case, are run for each vy ∈ V (G), χc ∈ {χ1, . . . , χ8k},
the procedure runs in O(k(Σy∈[n](|BNN i[vy]| + |FNN i[vy]|) + Σy∈[n]|N b

G(vy)|)) time. We
know that Σy∈[n](|BNN i[vy]| + |FNN i[vy]|) = 2mi and Σy∈[n]|N b

G(vy)| = m ≤ kn. Hence
the Lemma. J

A. Adiga, L.S. Chandran, and R. Mathew 189

A.5 A Detailed version of procedure CONSTRUCT_COLORING(i)

Algorithm A.2 CONSTRUCT_COLORING(i) /* detailed */
/*All data structures are assumed to be global.
Notational Note:
Let Cvz

i denote the partial coloring at the stage when we have colored the vertices vn to vz.
Let Cvz=χc

i denote the partial coloring that results if we extend Cvz+1
i by assigning color χc

to vz. */
1. Initialize FNC [w][j]← 0,∀w ∈ [n], j ∈ [8k]
2. Initialize HOPE_MATRIX [w][z]← 0,∀w, z ∈ [n]
3. Initialize DONE_MATRIX [w][z]← 0,∀w, z ∈ [n]
for y = n to 1 do

for each χc ∈ {χ1, . . . , χ8k } do
4. Compute X(vy, C

vy=χc

i) /*as described in steps (a) and (b) below */
(a) Initialize X(vy, C

vy=χc

i)← ∅
(b) ∀vx ∈ BNN i[vy], if FNC[x][c] = 0, then
SET X(vy, C

vy=χc

i)← X(vy, C
vy=χc

i) ∪ {vx}
5. Compute Y (vy, C

vy=χc

i) /*as described in steps (a) and (b) below */
(a) Initialize Y (vy, C

vy=χc

i)← ∅
(b) ∀vz ∈ FNN i[vy], if (HOPE_MATRIX [y][z] = 1) and(
Cvy=χc

i (vz) 6= χc
)
, then SET Y (vy, C

vy=χc

i)← Y (vy, C
vy=χc

i) ∪ {vz}
6. Compute Z(vy, C

vy=χc

i) /*as described in steps (a) and (b) below */
(a) Initialize Z(vy, C

vy=χc

i)← ∅
(b) ∀vz ∈ FNN i[vy], if HOPE_MATRIX [y][z] = 1,
then SET Z(vy, C

vy=χc

i)← Z(vy, C
vy=χc

i) ∪ {vz}
if |X(vy, C

vy=χc

i)| ≥ 3
4 |BNN i[vy]| and |Y (vy, C

vy=χc

i)| ≥ 3
4 |Z(vy, C

vy=χc

i)| then
7. SET Cvy

i ← C
vy=χc

i (i.e. SET Ci(vy)← χc).
8. SET X(vy, C

vy

i)← X(vy, C
vy=χc

i)
9. SET Y (vy, C

vy

i)← Y (vy, C
vy=χc

i)
10. SET Z(vy, C

vy

i)← Z(vy, C
vy=χc

i)
11. Update FNC matrix. /* as described in step (a) below */

(a) ∀vx ∈ N b
G(vy), SET FNC [x][c]← 1

12. Update HOPE_MATRIX /* as described in step (a) below */
(a) ∀vx ∈ X(vy, C

vy

i), SET HOPE_MATRIX [x][y]← 1
13. Update DONE_MATRIX /* as described in step (a) below */

(a) ∀vz ∈ Y (vy, C
vy

i), SET DONE_MATRIX [y][z]← 1
14. BREAK.

end if
end for

end for
for y = 1 to n do
15. Compute W (vy, Ci) /*as described in steps (a) and (b) below */

(a) Initialize W (vy, Ci)← ∅
(b) ∀vx ∈ BNN i[vy], if DONE_MATRIX [x][y] = 1, then
SET W (vy, Ci)←W (vy, Ci) ∪ {vx}

16. SET Y (vy, Ci)← Y (vy, Cv1
i)

end for
17. Return Ci.

FSTTCS 2011

190 Cubicity, Degeneracy, and Crossing Number

A.6 The proof of Lemma 10
Proof. Let CB(H) be the graph with V (CB(H)) = V (H) and E(CB(H)) = E(H) ∪
{(u, v) | u, v ∈ VB}. In other words, CB(H) is obtained from H by making VB a clique. Let
H ′ be the graph with V (H ′) = V (H) and E(H ′) = E(H) ∪ {(u, v) | u ∈ VA}. Observe that

H = CB(H) ∩H ′.

In conjunction with Lemma 1, this implies that

box(H) ≤ box(CB(H)) + box(H ′). (7)

I Claim 14. box(CB(H)) ≤ 2box(SB(H)).
Proof of this claim is very similar to the proof of Lemma 3 in [6] and hence we only give a
brief outline of it here. Assume box(SB(H)) = r. Then by Lemma 1, there exist r interval
graphs I1, . . . , Ir such that SB(H) = I1 ∩ I2 ∩ · · · ∩ Ir. For each i ∈ [r], let fi denote an
interval representation of Ii. From these r interval graphs we construct 2r interval graphs
I ′1, I

′
2, . . . , I

′
r, I
′′
1 , I
′′
2 , . . . , I

′′
r as outlined below. Let f ′i , f ′′i denote interval representations of

I ′i and I ′′i respectively, where i ∈ [r].

Construction of f ′i :
∀u ∈ VA, f ′i(u) = fi(u).
∀u ∈ VB , f ′i(u) = [min

v∈VB

(L(fi(v))), R(fi(u))].

Construction of f ′′i :
∀u ∈ A, f ′′i (u) = fi(u).
∀u ∈ B, f ′′i (u) = [L(fi(u)), max

v∈VB

(R(fi(v)))].

We leave it to the reader to verify that CB(H) =
⋂r
i=1(I ′i ∩ I ′′i).

I Claim 15. box(H ′) ≤ box(HB).
Clearly, H ′ is obtained from HB by adding universal vertices one after the other. Since
adding a universal vertex to a graph does not increase its boxicity, box(H ′) ≤ box(HB).

Combining Inequality 7, Claim 14 and Claim 15, we get box(H) ≤ 2box(SB(H)) +
box(HB). J

Conditional Reactive Systems∗

H. J. Sander Bruggink1, Raphaël Cauderlier2, Mathias Hülsbusch1,
and Barbara König1

1 Universität Duisburg-Essen, Germany
{sander.bruggink,mathias.huelsbusch,barbara_koenig}@uni-due.de

2 ENS de Cachan, France
rcauderl@dptinfo.ens-cachan.fr

Abstract
We lift the notion of nested application conditions from graph transformation systems to the
general categorical setting of reactive systems as defined by Leifer and Milner. This serves two
purposes: first, we enrich the formalism of reactive systems by adding application conditions for
rules; second, it turns out that some constructions for graph transformation systems (such as
computing weakest preconditions and strongest postconditions and showing local confluence by
means of critical pair analysis) can be done very elegantly in the more general setting.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases reactive systems, graph transformation, graph logic, Hoare triples, crit-
ical pair analysis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.191

1 Introduction

Reactive Systems were introduced in [12, 11] to obtain a framework for deriving bisimulation
congruences. They provide a general categorical setting for modelling abstract rewriting:
both graph transformation systems and process calculi can be seen as special cases of reactive
systems.

One of the main possibilities to control reductions is to fix a set of reactive contexts in
which reductions are possible. However, this gives little control for complex specifications for
which it is necessary to describe very precisely under which conditions a rule is applicable.
Graph transformation systems provide the notion of negative application conditions or, more
generally, nested application conditions [18, 6, 2, 7]. Nested application conditions are used
extensively for specifications, for instance in (UML) model transformations.

Here we lift the idea of (application) conditions from the setting of graph transformation to
reactive systems. This serves two purposes: first, we enrich the formalism of reactive systems
by adding application conditions for rules. Second, it turns out that some constructions
which are fairly cumbersome in the case of graph transformation (such as computation of
weakest preconditions, strongest postconditions and critical pairs) become very elegant in
this more abstract high-level setting. Interestingly it turns out that idem pushout squares
(IPOs) [12], needed for label derivation in reactive systems, have a natural interpretation
on application conditions and form the basis of an important construction, called shift or
partial evaluation.

∗ Supported by the dfg project Behaviour-GT.

© H.J.S. Bruggink, R. Cauderlier, M. Hülsbusch, and B. König;
licensed under Creative Commons License ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 191–203

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.191
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

192 Conditional Reactive Systems

The paper is structured as follows: in Section 2 we introduce conditional reactive systems
and boolean operations on conditions. Furthermore we briefly introduce adhesive categories
and cospan categories. We then show in Section 3 that if conditions are interpreted in the
base category, they are equivalent in expressiveness to a first-order logic on subobjects [1].
Section 4 introduces representative squares, a generalization of IPOs, and uses them in
Section 5 in order to define logical operations such as shift and quantification on conditions.
We study the properties of these operations, especially a characterization via adjunctions.
Then in Section 6 we investigate applications, such as Hoare triples, weakest preconditions,
strongest postconditions and a critical pair lemma for proving confluence.

We assume some basic knowledge of category theory.

2 Reactive Systems and Conditions

We now define the notion of reactive systems, first introduced in [12, 11] for label derivation
and the definition of bisimulation congruences.

I Definition 1 (Reactive System). Let C be a category with a distinguished object 0 (not
necessarily initial). A reactive system rule is a pair R = (`, r) of arrows – called left-hand
side and right-hand side respectively – with `, r : 0→ I for some object I. Let R be a set of
rules. We say that an arrow a : 0→ J reduces to b : 0→ J with the rules in R (in symbols:
a ⇒R b or simply a ⇒ b) if there exists a rule (r, `) ∈ R with `, r : 0 → I and an arrow
c : I → J such that a = ` ; c and b = r ; c.1

An important class of reactive systems can be defined over a base category D which
has all pushouts along monos and in which pushouts preserve monos. Then we define as
C = ILC (D) the category which has as objects the objects of D and as arrows cospans of
the form A B Cf g (called input-linear cospans, because the left arrow f is a mono),
where the middle object is taken up to isomorphism. Composition of cospans is performed
via pushouts.

As base category D we will mainly use adhesive categories [10] where pushouts are well-
behaved with respect to pullbacks and where, among other properties, monos are preserved
by pushouts. Their properties make them suitable for deriving bisimulation congruences
[20]. Here we need adhesive categories only in a limited way and the results can be stated
and understood without the exact definition, which we therefore do not give. In some of
the examples we will use the adhesive category Graphfin which has finite graphs (with
node and edge labels) as objects and graph morphisms as arrows. Reactive systems over
ILC (Graphfin) coincide exactly with DPO graph transformation systems with injective
matches (see [20]).

We will now define conditions, similar to the presentation in [18, 6], as tree-like structures,
where nodes are annotated with quantifiers and objects and edges are annotated with arrows.

I Definition 2 (Conditions). Let C be a category. A condition (in C) is a triple A = (A,Q, S)
where

A is an object of C (called the root object of A or RO(A)),
Q is a quantifier (either ∀ or ∃) and
S is a set of pairs (A′, f) such that A′ is a condition and f : A→ RO(A′) is a C-arrow.

1 For arrows f : A→ B and g : B → C we use the notation f ; g for their composition, that is f ; g : A→ C.

H. J. S. Bruggink, R. Cauderlier,M. Hülsbusch, and B. König 193

The pair (A′, f) will be denoted, by a slight abuse of notation, by A f−→ A′. A condition
A can be viewed as a tree, with RO(A) as the root and edges labelled with arrows. Note that
in most cases we will require that S is a finite set, so that the trees are finitely branching.

I Definition 3. For all conditions A, all objects C and all arrows c : RO(A)→ C we define
a satisfaction relation as follows:

c |= (A,∀, S) iff for every (A f−→ A′) ∈ S and every arrow α : RO(A′)→ C

such that f ;α = c we have α |= A′

c |= (A,∃, S) iff for some (A f−→ A′) ∈ S there is an arrow α : RO(A′)→ C

with f ;α = c and α |= A′

Now, given a reactive system over C, it is natural to associate conditions with the target
object of left-hand and right-hand sides and to interpret them on the contexts.

I Definition 4 (Rules with Application Conditions). Let C be a category with a distinguished
object 0. A rule with application condition is a triple (`, r,A) where `, r : 0 → I and A is
a condition with root object I. We say that the rule is applicable to a : 0 → J whenever
a = ` ; c for some c : I → J such that c |= A. The result of the rule application is r ; c as in
Definition 1. Again we denote by ⇒R the rewriting relation induced by a set R of rules with
application conditions.

I Example 5. For this example we are working in the category ILC (Graphfin).
Consider the following situation: In a file system a user can only dereference a file if it is

owned by the user and the file is not marked as protected. To dereference protected files, the
user must have administrator rights. Files which are no longer owned by any user are later
removed by a garbage-collecting process.

Files are modelled by F -labeled nodes and users by U -labeled nodes. The fact that a
user owns a files is represented by an edge which is labeled owns from the user to the file
node. Protected files and users with administrator rights are designated with loops labeled
protected and admin, respectively.

The derefencing is modelled by the rule Rderef = (`deref , rderef ,Aderef) with application
condition Aderef . The components are:

`deref = ∅→ UF
owns ← UF rderef = ∅→ UF ← UF

Aderef = UF ,∀
c1−→ UF

protected

,∃
c2−→ UF

protected admin

,∀
where ∅ is the empty graph and c1 and c2 are cospans where the right leg is the identity
and the left morphism is induced by the labels. The condition expresses, that for all matches
such that a protected-loop is connected to the file node, a admin-loop is connected to the
user node. This condition is equivalent to the description above. Applying the rule has the
effect that the owns-label is removed.

The condition for the garbage collection is:

B = ∅,∃ c−→ ∅,∀ with c = ∅→ F ← ∅,

which is true on exactly those cospans (with source object ∅) with isolated F -nodes in the
center graph. In standard nested application conditions this requirement can be specified

FSTTCS 2011

194 Conditional Reactive Systems

only by saying that the node is not connected to any edge, which means quantifying over
all edge labels. This does not yield a finite condition in the case of infinitely many edge
labels [9].

∅ L I R ∅

G C H

∅

m

Note that in graph transformation, nested application con-
ditions are defined and handled in a slightly different way:
they are defined in the base category instead of the cospan
category and they are attached to the object L of the left-
hand side, instead of the interface object I. In more de-
tail: assume that C = ILC (D), hence rules have the form
` : ∅� L ← I, r : ∅� R ← I and we assume that contexts
are of the form c : I � C ← ∅. Note that the empty graph ∅ acts as the distinguished
object 0. The conditions a = ` ; c, b = r ; c lead to a double-pushout diagram as shown on
the right.

Now, a nested application condition in the sense of [6] is defined as a condition in D with
root object L and it is evaluated on the match m. As above, a rule may only be applied
if the condition is satisfied. This has some consequences. Most importantly, such nested
application conditions are equal in expressivity to a first-order logic (see [18] for the case of
graphs and Section 3 for the general case), whereas conditions on cospans are slightly more
expressive: The paper [9] shows that every condition A in D, consisting only of monos, can
be translated into a condition A′ in C such that c : A� B satisfies A iff c : A� B �idB−B
satisfies A′. A translation in the other direction is in general impossible. We can always,
even in the presence of infinitely many edge labels, specify that an isolated node exists; see
also Example 5.

We feel that viewing conditions in the cospan category C = ILC (D) gives us an additional
and very helpful layer of abstraction that simplifies many of the constructions to come. In
Section 6 we will compare weakest preconditions and strongest postconditions as well as
critical pair analysis in our setting with analogous notions in graph transformation and obtain
constructions that are much simpler and straightforward. Hence we believe that switching to
this higher level of abstraction is of great benefit.

We will in the following write A |= B for two conditions A, B with the same root object,
whenever every arrow satisfying A satisfies B as well. We write A ≡ B iff A |= B and B |= A.
We now define the usual boolean operations on conditions.

I Definition 6 (Boolean Operations on Conditions). We define operations on conditions as
follows:
Constants: For an object A define falseA := (A,∃,∅), trueA := (A,∀,∅).
Negation: For a condition of the form (A,Q, S) with Q ∈ {∀,∃} we define:
¬(A,∀, S) := (A,∃, {A f−→ ¬A′ | (A f−→ A′) ∈ S})
¬(A,∃, S) := (A,∀, {A f−→ ¬A′ | (A f−→ A′) ∈ S})

Conjunction und Disjunction: For two conditions A,B with root object C we define:
A ∧ B := (C,∀, {C idC−→ A, C idC−→ B})
A ∨ B := (C,∃, {C idC−→ A, C idC−→ B})

These definitions are easily generalized to conjunctions and disjunctions over infinite sets of
conditions.

I Proposition 7 (Boolean Operations on Conditions). The operations and constants of Defin-
ition 6 satisfy the following laws:

No arrow c : A→ B satisfies c |= falseA and every arrow c : A→ B satisfies c |= trueA.

H. J. S. Bruggink, R. Cauderlier,M. Hülsbusch, and B. König 195

For all conditions A and all arrows c : RO(A)→ B, we have c |= ¬A ⇐⇒ c 6|= A.
For all conditions A,B with C = RO(A) = RO(B) and all arrows c : C → D it holds that
(c |= A ∧ B ⇐⇒ c |= A and c |= B) and (c |= A ∨ B ⇐⇒ c |= A or c |= B).

3 Comparison to a First-Order Logic on Subobjects

Logic on subobjects [1] is a generalization of monadic second order logic of graphs to the
world of categories. Nodes and edges are replaced by subobjects of fixed structure, sets of
nodes and sets of edges are replaced by subobjects of arbitrary structure. Here we consider
the first-order fragment of the logic on subobjects, which, as shown in [1], instantiates to
first-order logic on graphs if we choose Graphfin as the underlying category.

In the following we will work in the subcategory D of an adhesive category C, where
D contains only monos. While this does not make a difference for the logic on subobjects,
where we only quantify over monos anyway, for conditions it means that only monos are
used in the evaluation, which is a typical restriction. (For an investigation of the effects of
evaluating conditions on monos only see [5]. It is shown that under mild conditions both
variants of conditions are expressively equivalent.) In addition the category D has a canonical
embedding into ILC (C). We remark again that, as discussed on Page 194, conditions in
ILC (C) are in general more expressive than conditions in the base category D.

3.1 Syntax and semantics
We fix a category C. The first-order logic of subobjects consists of expressions and formulae:

Expressions are of the form e = f # x, where x is a variable typed by an object A and f
is a mono with codomain A. Expressions represent subobjects restricted by a mono.
Formulae are generated by the grammar:

ϕ ::= e v e | ϕ ∧ ϕ | ¬ϕ | (∀x : A) ϕ

where x is a variable and A is an object. We use e1 = e2 as an abbreviation for
(e1 v e2) ∧ (e2 v e1). The notations ϕ1 ∨ ϕ2, ϕ1 → ϕ2 and (∃x : A) ϕ are defined in the
usual way.

Let C be an object. A C-valuation maps variables to monos with codomain C (that is, to
subobjects of C). We will overload the operator ; to the composition of C-valuations with
monos, that is, for a C-valuation η and a mono c : C � D, η ; c is a D-valuation defined as:
(η ; c)(x) = η(x) ; c for all x in the domain of η.

I Definition 8. For all objects C and all C-valuations η, we define a modelling relation as
follows:

C, η |= (f1 # x1 v f2 # x2) iff (f1 ; η(x1) ≤ f2 ; η(x2)).2

C, η |= ϕ1 ∧ ϕ2 iff C, η |= ϕ1 and C, η |= ϕ2.

C, η |= ¬ϕ iff C, η 6|= ϕ.

C, η |= (∀x : T) ϕ iff for all monos m : T � C we have C, η[x 7→ m] |= ϕ

2 For monos a : A� T and b : B � T we write a ≤ b if there exists a mono c : A� B such that a = c ; b.

FSTTCS 2011

196 Conditional Reactive Systems

3.2 From Conditions to the Logic on Subobjects

In this subsection we will translate conditions into the logic on subobjects.

I Definition 9. We define a translation from conditions to formulae as follows (where the
variable x is of type A):

J(A,∀, S)K (x) :=
∧

(f,A′)∈S

(∀x′ : RO(A′)) (f # x′ = x → JA′K (x′))

J(A,∃, S)K (x) :=
∨

(f,A′)∈S

(∃x′ : RO(A′)) (f # x′ = x ∧ JA′K (x′))

A condition and its translation are equivalent in the following sense:

I Proposition 10. If A is a condition then for all objects C and all monos c : RO(A)� C

we have c |= A iff C, (x 7→ c) |= JAK (x).

3.3 From the Logic on Subobjects to Conditions

The idea behind the translation from formulae of the first-order logic of subobjects to
conditions, is to consider all the different ways how the variables can overlap. That is, every
time we quantify over a variable, we consider all possible ways how the objects pointed to by
the new variable can overlap with the other variables, and build sub-conditions for all the
possible overlaps. Formally, the set of overlaps of two objects A,B is defined as follows:

Ovl(A,B) := {(C, a, b) | a : A� C and b : B� C are monos and jointly epi}

We assume in the following that Ovl(A,B) contains only one representative for each iso-
morphism class.

I Definition 11. Let B be an object and η a B-valuation. We define:

Jf # x v g # yKηB :=
{

trueB if f ; η(x) ≤ g ; η(y)
falseB if f ; η(x) 6≤ g ; η(y)

Jϕ1 ∧ ϕ2K
η
B := Jϕ1K

η
B ∧ Jϕ2K

η
B

J¬ϕKηB := ¬JϕKηB

J(∀x : T) ϕKηB :=
(
B, ∀, {B

a
� JϕKηa,b

C | (C, a, b) ∈ Ovl(T,B)}
)

where ηa,b(y) =
{
a if y = x

η(y) ; b otherwise

Note that the tree produced by Definition 11 is finitely branching (and because of the
finite depth of formulas thus finite) if Ovl(A,B) is finite (up to isomorphism) for all objects
A,B. In the category Graphfin this is the case.

I Proposition 12. Let C be an adhesive category. For any formula ϕ of the logic on
subobjects, any objects B and C, any mono c : B� C and any B-valuation η it holds that
C, η ; c |= ϕ if and only if c |= JϕKηB.

H. J. S. Bruggink, R. Cauderlier,M. Hülsbusch, and B. König 197

4 Representative Squares

We will now define the notion of representative squares, which describe representative ways
to close a span of arrows. Such squares are intimately related to idem pushouts [12] or
borrowed context diagrams [4].

I Definition 13 (Representative classes of squares). A class κ of commuting squares in a
category C is called representative if κ satisfies the following property: for every commuting
square of C (such as the one consisting of a, b, c′, d′ on the left) there exists a square in κ
(consisting of a, b, c, d) and an arrow e : M → N which makes the diagram commute (on the
right).

I J

K

N

a

b
c′

d′

;

I J

K M

N

a

b
c′

d′

c

d e

For two arrows a : I → J , b : I → K we denote by κ(a, b) the set of pairs (c, d) of arrows
c : J →M and d : K →M such that a, b, c, d form a representative square in κ.

In the following, we fix a representative class κ of squares and we shall call every square
in κ representative. Also note that the class of all squares of C is representative. The
interesting classes of representative squares, however, have the property that κ(a, b) is finite,
which means that the constructions described below are effective since the finiteness of the
transformed conditions is preserved.

Naturally, in a category with pushouts, pushouts are the most natural candidate for
representative squares. Alternatively in adhesive categories they can be replaced by jointly
epi squares. In [12] idem pushouts (IPOs) were introduced as a means to close squares in a
representative way. (IPOs satisfy more properties than required in Definition 13, but those
are not needed here.) A concrete manifestation of IPOs (or rather groupoidal idem pushouts
or GIPOs) are borrowed context squares in the category ILC (D), where the base category
D is adhesive [20, 19].

For many categories of interest – such as the category of finite graphs (and graph
morphisms) and the category of (input-linear) cospans of finite graphs – we can indeed
guarantee a choice of κ such that each set κ(a, b) is finite.

5 Shift and Quantification

One central operation is the shift of a condition along an arrow. The name shift is taken
from an analogous operation for nested application conditions (see [13]). Intuitively a shift
corresponds to a partial evaluation, where we assume that the arrows on which the condition
is to be evaluated are of the form ϕ ; c for a fixed ϕ.

I Definition 14 (Shift of a Condition). Given a fixed set κ of representative squares, the shift
A↓ϕ of a condition A = (A,Q, S) along an arrow ϕ : A→ B is inductively defined as follows:

A↓ϕ = (B,Q, {(B β−→ A′↓α) | (A f−→ A′) ∈ S, (α, β) ∈ κ(f, ϕ)})

Note that the shift of a condition depends on the specific representive class of squares
chosen. For different representative squares, the constructed condition can be different

FSTTCS 2011

198 Conditional Reactive Systems

(but equivalent). If we require that each set κ(f, ϕ) is finite, then every finite condition is
transformed into a finite-branching and hence again finite condition.

I Proposition 15 (Shift). Given two arrows ϕ : A→ B and c : B → C, and a condition A
with root object A, the following holds:

ϕ ; c |= A ⇐⇒ c |= A↓ϕ

We also define the following two quantification operations on conditions:

I Definition 16 (Quantification). Given a condition B with root object B and an arrow
ϕ : A→ B we define for Q ∈ {∃,∀}:

Qϕ.B = (A,Q, {A ϕ−→ B})

We can view the set CA of all conditions over a root object A as a category with an
arrow between A and B whenever A |= B. Now the three operations on conditions can be
seen as functors between these categories. Furthermore for ϕ : A→ B it can be shown that
∃ϕ : CB → CA is the left adjoint of ↓ϕ : CA → CB and ∀ϕ : CB → CA is its right adjoint.
These properties can be spelled out as follows.

I Proposition 17 (Adjunction). Let A,B be two conditions with root object A, C,D two
conditions with root object B and let ϕ : A→ B. Then it holds that:

1. A |= B implies A↓ϕ |= B↓ϕ.
2. C |= D implies Qϕ.C |= Qϕ.D for Q ∈ {∃,∀}.
3. ∃ϕ.(A↓ϕ) |= A and for every C with ∃ϕ.C |= A we have that C |= A↓ϕ.
4. A |= ∀ϕ.(A↓ϕ) and for every C with A |= ∀ϕ.C we have that A↓ϕ |= C.

The adjunction is strongly reminiscent of categorical logic [14], where logical quantifiers
are obtained as left or right adjoints to projections or pullback functor.

One easily obtains the following functoriality and de Morgan laws for shift and quantific-
ation:

A↓id ≡ A A↓ϕ ;ψ ≡ (A↓ϕ)↓ψ ¬A↓ϕ ≡ (¬A)↓ϕ
∀id.A ≡ A ∀(ϕ ;ψ).A ≡ ∀ϕ.∀ψ.A ¬∀ϕ.A ≡ ∃ϕ.(¬A)
∃id.A ≡ A ∃(ϕ ;ψ).A ≡ ∃ϕ.∃ψ.A ¬∃ϕ.A ≡ ∀ϕ.(¬A)

Since shift has a left and a right adjoint, it is a right and left adjoint itself. Left adjoints
preserve colimits and right adjoints preserve limits. Since conjunction is a product, hence a
limit, and disjunction is a coproduct, hence a colimit, we immediately obtain the following
laws (which would not be very difficult to prove directly). This is in accordance with predicate
logic where universal quantification distributes over conjunction and existential quantification
over disjunction.

(A ∧ B)↓ϕ ≡ A↓ϕ ∧ B↓ϕ (A ∨ B)↓ϕ ≡ A↓ϕ ∨ B↓ϕ
∀ϕ.(A ∧ B) ≡ ∀ϕ.A ∧ ∀ϕ.B ∃ϕ.A ∨ ∃ϕ.B ≡ ∃ϕ.A ∨ ∃ϕ.B

Instead if we combine existential quantification and conjunction or universal quantification
and disjunction we obtain the following laws involving representative squares.

H. J. S. Bruggink, R. Cauderlier,M. Hülsbusch, and B. König 199

I Proposition 18 (Quantifier Distribution). The following quantifier distribution laws hold:

∃ϕ.A ∧ ∃ψ.B ≡
∨

(α,β)∈κ(ϕ,ψ)

∃(ϕ ;α).(A↓α ∧ B↓β)

∀ϕ.A ∨ ∀ψ.B ≡
∧

(α,β)∈κ(ϕ,ψ)

∀(ϕ ;α).(A↓α ∨ B↓β)

6 Applications

After introducing the theory we will now give two applications: Hoare logic and critical pair
analysis. Both applications generalize the special case of graph transformation to the setting
of reactive systems.

Compared to earlier work on graph transformation our presentation is much simpler
(compare with [13] for Hoare logic and [3] for critical pair analysis), which is due to the
switch to a higher level of abstraction. Note that, as explained in Section 2, we are also
working with a slightly more expressive logic.

Furthermore we improve the result in [15] by exhibiting an if-and-only-if result for critical
pair analysis without application conditions and we strengthen the theorem in [3] for critical
pair analysis with application conditions.

6.1 Weakest Preconditions and Strongest Postconditions
We will now show how to define Hoare triples, weakest preconditions and strongest postcon-
ditions in this framework.

IDefinition 19 (Hoare Triple, Weakest Precondition, Strongest Postcondition). Let R = (`, r, C)
be a rule with `, r : 0→ I and application condition C and let A,B be conditions with root
object 0. We say that A, R,B form a Hoare triple (written as {A}R {B}) if for all a, b : 0→ J

with a |= A and a⇒{R} b we have that b |= B.
A condition A is called a precondition for R and B whenever {A}R {B}. Similarly B is

called a postcondition for A and R.
A condition A is the weakest precondition for R and B (written wp(R,B)), whenever it is

a precondition and for every other precondition A′ we have that A′ |= A. A condition B is
the strongest postcondition for A and R (written sp(A, R)), whenever it is a postcondition
and for every other postcondition B′ we have that B |= B′.

With all the machinery in place it is now easy to construct weakest preconditions and
strongest postconditions.

I Proposition 20 (Weakest Precondition, Strongest Postcondition). Let R = (`, r, C) be a rule
with application condition as in Definition 19 and let A,B be conditions with root object 0.
Then

wp(R,B) = ∀`.(C → B↓r)
sp(A, R) = ∃r.(C ∧ A↓`)

Compared to the constructions for graph transformation or transformation systems over
adhesive categories in [13] our definitions are much simpler. This is due mainly to two
reasons: First, the shift operation relies on the powerful underlying notion of representative
squares. Second, our conditions are defined in the same category as the rules, i.e., they would
be cospans in the setting of [13]. As already discussed in [9] this simplifies matters and allows
us to express dangling and inhibition conditions directly in the logics. When spelled out,

FSTTCS 2011

200 Conditional Reactive Systems

the constructions are more or less identical, but we believe that this more abstract view is
very helpful to better understand the theory and to find additional applications, such as the
following critical pair lemma.

6.2 Critical Pair Lemma

In order to show the fact that a given reactive system with rule set R is confluent, we use the
well-known result from rewriting theory that states that a terminating rewriting system is
confluent if and only if it is locally confluent [21]. Local confluence means that for all arrows
a, b1, b2 with a⇒ b1, a⇒ b2 there exists an arrow c such that b1 ⇒∗ c and b2 ⇒∗ c.

Local confluence can be reduced to showing confluence for so-called critical pairs, i.e.,
overlapping left-hand sides. Overlaps of left-hand sides can be described by our notion of
representative squares. When there are only finitely many representative squares in κ(a, b),
showing local confluence becomes a much easier task.

I Definition 21 (Critical Pair). Let Ri = (`i, ri), for i ∈ {1, 2} with `i, ri : 0 → Ii be two
rules. A critical pair for R1, R2 is a pair (c1, c2) of arrows c1 : I1 → K and c2 : I2 → K such
that (`1, `2, c1, c2) is a representative square.

I Proposition 22 (Local Confluence for Rules without Application Conditions). Let R be a set
of rules without application conditions. Then ⇒R is locally confluent if and only if for every
critical pair (c1, c2) for rules (`i, ri), i ∈ {1, 2}, in R there exists an arrow d with r1 ; c1 ⇒∗ d
and r2 ; c2 ⇒∗ d.

The above result is not directly comparable to Plump’s results in [15, 16]. Plump
establishes the “if” direction of a criticial pair lemma, but his notion of confluence is different.
Our notion of confluence is connected to what Plump calls “strongly joinable”, which means
that the common reducts must not only be isomorphic, but also have the same interface.
Interestingly, our notion of confluence is decidable for terminating graph transformation
systems – since the set of critical pairs is finite and constructible, and for terminating graph
transformation systems (strong) joinability of the critical pairs is trivially decidable – whereas
Plump’s notion of confluence is not.

In order to extend Proposition 22 to rules with application conditions, we first have to
collect conditions over a reduction sequence.

IDefinition 23 (Conditions for Reductions). LetR be a set of rules with application conditions.
For two arrows a, b : 0→ J we define A� a⇒R b (where A ∈ CJ) if for all d : J → K with
d |= A there exists (`, r,B) ∈ R and an arrow c such that a = ` ; c, b = r ; c and c ; d |= B.

The intuitive meaning of A� a⇒R b is that a can reduce to b whenever it is put into
a passive context satisfying A. It is easy to show that A � a ⇒R b and d |= A imply
a ; d⇒R b ; d.

I Lemma 24. Let R be a set of rules with application conditions and let a, b : 0 → J two
arrows. Then the weakest condition A with A� a⇒R b can be obtained as follows:

A =
∨
{B↓c | (`, r,B) ∈ R, ` ; c = a, r ; c = b}

I Proposition 25. Let R be a set of rules with application conditions. The following laws
hold:

H. J. S. Bruggink, R. Cauderlier,M. Hülsbusch, and B. König 201

if (`, r,A) ∈ R
A↓c � ` ; c⇒∗R r ; c

A� a⇒∗R b B � a⇒∗R b

A ∨ B � a⇒∗R b

A� a⇒∗R b B � b⇒∗R c

A ∧ B � a⇒∗R c

B � a⇒∗R b A |= B
A� a⇒∗R b

If, for two arrows a, b, there are only finitely many derivation paths leading from a to b,
then the rules above are complete. This is for instance the case if ⇒R is finitely branching
and the system is terminating. Otherwise there is no guarantee that the weakest condition
A satisfying A� a⇒∗R b is even expressible as a finite (first-order) condition.

I Proposition 26 (Local Confluence for Rules with Application Conditions). Let R be a set
of rules with application conditions. Then ⇒R is locally confluent if, for every critical pair
(c1, c2) of rules (`i, ri,Ai) (i ∈ {1, 2}) in R, there exist arrows d1, . . . , dm and conditions
C1

1 , C1
2 , . . . , Cm1 , Cm2 such that Ci1 � r1 ; c1 ⇒∗R di and Ci2 � r2 ; c2 ⇒∗R di and

(A1)↓c1 ∧ (A2)↓c2 |=
m∨
i=1

(Ci1 ∧ Ci2).

That is, we have to show that the condition describing that both left-hand sides match
(shifted to the common context) implies one of the conditions specifiying that the reduction
sequences can again be joined. The ideas underlying this result are taken from [3]. Note
however that our result is stronger, since we weaken the precondition: the precondition
in [3], transferred to reactive systems, would require that there is a single d such that
C1 � r1 ; c1 ⇒∗R d and C2 � r1 ; c2 ⇒∗R d and (A1)↓c1 ∧ (A2)↓c2 |= C1 ∧ C2.

In Proposition 26 it is probably hard to obtain “if and only if”, due to the non-monotonicity
of rules with application conditions. Consider the following example:

I Example 27. We perform rewriting of labelled sets (basically Petri nets), where the start
set contains a single element labelled A. A can either be replaced by B or C (that is, we
have a critical pair). Now both B and C can be rewritten to D, but only if no E is present.
Hence the system as such is not (locally) confluent. If however we add a rule removing E’s
the system would become confluent, since we could remove all E’s first. However, this could
take an arbitrary number of steps since there could be arbitrarily many E’s around.

The problem is also, in a sense, that by writing A�a⇒ b we talk about a passive context
(satisfying A), on which the conditions are evaluated, but which does not truly interact
with a.

7 Conclusion

We have shown how reactive systems can be extended with conditions, generalizing well-
known constructions and results (axioms, pre- and postconditions, critical pair lemma) to
the very general setting of reactive systems.

With the computation of weakest preconditions and strongest postconditions we now have
the means to do Hoare logic reasoning (similar to [17]) for graph transformation and, even
more interesting, to set up a framework for counterexample-guided abstraction refinement
(CEGAR) in the sense of [8].

Another question of future research is to determine whether the axioms presented in
Section 5 can be extended to a complete set of axioms. The thesis by Pennemann [13] contains
some interesting developments going in this direction, including tool support. However, note

FSTTCS 2011

202 Conditional Reactive Systems

that this question will for sure also depend on the category: it is known that for finite graphs
the satisfiability problem is semi-decidable, while the validity problem is not, whereas it is
exactly the other way around for arbitrary (finite and infinite) graphs.

Finally we want to extend the derivation of labels and generation of bisimulation congru-
ences to the case of conditional reactive systems.

References
1 H.J.S. Bruggink and B. König. A logic on subobjects and recognizability. In Proc. of

IFIP-TCS ’10, volume 323 of IFIP AICT, pages 197–212. Springer, 2010.
2 H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Trans-

formation. Monographs in Theoretical Computer Science. Springer, 2006.
3 H. Ehrig, A. Habel, L. Lambers, F. Orejas, and U. Golas. Local confluence for rules with

nested application conditions. In Proc. of ICGT ’10, pages 330–345. Springer, 2010. LNCS
6372.

4 H. Ehrig and B. König. Deriving bisimulation congruences in the DPO approach to graph
rewriting with borrowed contexts. MSCS, 16(6):1133–1163, 2006.

5 A. Habel and K.-H. Pennemann. Satisfiability of high-level conditions. In Proc. of ICGT
’06, pages 430–444. Springer, 2006. LNCS 4178.

6 A. Habel and K.-H. Pennemann. Correctness of high-level transformation systems relative
to nested conditions. Mathematical Stuctures in Computer Science, 19:245–296, 2009.

7 R. Heckel and A. Wagner. Ensuring consistency of conditional graph rewriting - a con-
structive approach. In Proc. of the Joint COMPUGRAPH/SEMAGRAPH Workshop on
Graph Rewriting and Computation, volume 2 of ENTCS, 1995.

8 T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions from proofs. In
Proc. of POPL ’04, pages 232–244. ACM, 2004.

9 M. Hülsbusch. Application conditions for reactive systems with applications to bisimulation
theory. In ICGT 2010 – Doctoral Symposium, ECEASST 38, 2011.

10 S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. RAIRO – Theoretical
Informatics and Applications, 39(3), 2005.

11 J.J. Leifer. Operational congruences for reactive systems. PhD thesis, University of Cam-
bridge Computer Laboratory, September 2001.

12 J.J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems. In Proc.
of CONCUR 2000, pages 243–258. Springer, 2000. LNCS 1877.

13 K.-H. Pennemann. Development of Correct Graph Transformation Systems. PhD thesis,
Universität Oldenburg, May 2009.

14 A.M. Pitts. Categorical logic. In Handbook of Logic in Computer Science V. Oxford
University Press, 2001.

15 D. Plump. Hypergraph rewriting: Critical pairs and undecidability of confluence. In M.R.
Sleep, M.J. Plasmeijer, and M.C. van Eekelen, editors, Term Graph Rewriting: Theory and
Practice, chapter 15, pages 201–214. John Wiley, 1993.

16 D. Plump. Confluence of graph transformation revisited. In A. Middeldorp, V. van Oostrom,
F. van Raamsdonk, and R. de Vrijer, editors, Festschrift Jan Willem Klop. Springer, 2005.
LNCS 3838.

17 C.M. Poskitt and D. Plump. A Hoare calculus for graph programs. In Proc. of ICGT ’10,
pages 139–154. Springer, 2010. LNCS 6372.

18 A. Rensink. Representing first-order logic using graphs. In Proc. of ICGT ’04, pages
319–335. Springer, 2004. LNCS 3256.

19 V. Sassone and P. Sobociński. Reactive systems over cospans. In Proc. of LICS ’05, pages
311–320. IEEE, 2005.

H. J. S. Bruggink, R. Cauderlier,M. Hülsbusch, and B. König 203

20 P. Sobociński. Deriving process congruences from reaction rules. PhD thesis, Department
of Computer Science, University of Aarhus, 2004.

21 Terese. Term Rewriting Systems. CTTCS 55. Cambridge University Press, 2003.

FSTTCS 2011

Transforming Password Protocols to Compose
Céline Chevalier1, Stéphanie Delaune1, and Steve Kremer1,2

1 LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France, France
2 INRIA Nancy – Grand Est, France

Abstract
Formal, symbolic techniques are extremely useful for modelling and analysing security protocols.
They improved our understanding of security protocols, allowed to discover flaws, and also provide
support for protocol design. However, such analyses usually consider that the protocol is executed
in isolation or assume a bounded number of protocol sessions. Hence, no security guarantee is
provided when the protocol is executed in a more complex environment.

In this paper, we study whether password protocols can be safely composed, even when a
same password is reused. More precisely, we present a transformation which maps a password
protocol that is secure for a single protocol session (a decidable problem) to a protocol that is
secure for an unbounded number of sessions. Our result provides an effective strategy to design
secure password protocols: (i) design a protocol intended to be secure for one protocol session;
(ii) apply our transformation and obtain a protocol which is secure for an unbounded number
of sessions. Our technique also applies to compose different password protocols allowing us to
obtain both inter-protocol and inter-session composition.

1998 ACM Subject Classification D.4.6 Security and Protection

Keywords and phrases Security, cryptographic protocols, composition

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.204

1 Introduction

Password-based cryptographic protocols are a prominent means to achieve authentication
or to establish authenticated, shared session keys, e.g. EKE [10], SPEKE [23], or the KOY
protocol [24]. The advantage of such schemes is that they do not rely on a key infrastructure
but only on a shared password, which is often human chosen or at least human memorable.
However, such passwords are generally weak and may be subject to dictionary (also called
guessing) attacks. In an online dictionary attack an adversary tries to execute the protocol
for each possible password. While such attacks are difficult to avoid they can be made
impracticable by limiting the number of password trials or adding a time-out of few seconds
after a wrong password. In an offline guessing attack an adversary interacts with one or
more sessions in a first phase. In a second, offline phase the attacker uses the collected
data to verify each potential password. In this paper we concentrate on the second type
of attacks.

It has been widely acknowledged that security protocol design is extremely error prone
and rigorous security proofs are a necessity. Formal, symbolic models, in the vein of Dolev
and Yao’s seminal work [21], provide effective and often automated methods to find errors or
prove protocols correct. While most of these methods focus on secrecy and authentication,
resistance against offline guessing attacks has been considered in some works [26, 9, 17]. We
will in particular focus on an elegant definition of resistance against offline guessing attacks
by Corin et al. [17] which was introduced in the framework of the applied pi calculus [1] and
for which tool support exists [11, 9].

© Céline Chevalier, Stéphanie Delaune, and Steve Kremer;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 204–216

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.204
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

C. Chevalier, S. Delaune, and S. Kremer 205

Nowadays, state-of-the-art protocol analysis tools are able to analyse a variety of proto-
cols. However, this analysis is generally carried out in isolation, i.e., analysing one protocol
at a time. This is motivated by the fact that in models like the applied pi calculus, se-
curity properties, even if shown in isolation, hold in the presence of an arbitrary (public)
environment. This is similar to universal composition (UC) [14] in computational models.
However, these arbitrary environments are public, in the sense that they don’t have access
to the secrets of the protocol under analysis. This is of course necessary as otherwise a com-
pletely arbitrary environment could simply output all secret cryptographic key material and
trivially break the protocol’s security. While not sharing key material may be a reasonable
hypothesis in some cases it is certainly not the case when we compose the same sessions of a
same protocol or in a situation where the same password is used in different protocols — it is
indeed unreasonable to assume that all users have different passwords for each application.

Our contributions

In this paper we propose a simple protocol transformation which ensures that a same pass-
word can safely be shared between different protocols. More precisely, our results can be
summarized as follows. We use a safe transformation which replaces a weak password w by
h(t, w) where t is some tag and h a hash function. Then, we show how to use this tagging
technique to compose different protocols. Consider n password protocols such that each
protocol resists separately against guessing attacks on w. When we instantiate the tag t to
a unique protocol identifier pid, one for each of the n protocols, we show that the parallel
composition of these tagged protocols resists against guessing attacks on w, where w is the
password shared by each of these protocols. Next we show how to dynamically establish a
session identifier sid. Instantiating the tag t by this session identifier allows us to compose
different sessions of a same protocol. Hence it is sufficient to prove resistance against guess-
ing attacks on a single session of a protocol to conclude that the transformed protocol resists
against guessing attacks for an unbounded number of sessions. These techniques can also be
combined into a tag which consists of both the protocol and session identifier obtaining both
inter-protocol and inter-session composition. One may note that resistance against guessing
attack is generally not the main goal of a protocol, which may be authentication or key
exchange. It follows however from our proofs that trace properties such as authentication
will also be preserved. Detailed proofs of our results can be found in [16].

Related Work

In recent years, compositional reasoning has received a lot of attention. Datta et al. [19]
provide a general strategy whereas our composition result identifies a specific class of pro-
tocols that can be composed. In [22, 5, 18], some criteria are given to ensure that parallel
and in some works sequential composition is safe. In [6] the issue of composition of sessions
of a same protocol is addressed using a transformation similar to the one considered in this
paper. None of these works considers password protocols and resistance to guessing attacks.
Composition of different password protocols (but not of sessions of the same protocol) using
a protocol identifier tag was shown in [20]. In this paper we generalize these results to allow
composition of sessions of a same protocol. Moreover, the composition theorem given in [20]
only applies to two protocols (and cannot be iterated). This shortcoming was overseen by
the authors of [20] and we adapt their result to apply to an arbitrary number of protocols
in parallel.

In computational models, Boyko et al. [13] presented a security model for password-based

FSTTCS 2011

206 Transforming Password Protocols to Compose

key-exchange based on simulation proofs, ensuring security in case of composition. A more
generic solution was proposed by Canetti et al. [15] who propose a protocol based on KOY,
which is secure in the UC model [14]. This work has been extended to active adversaries [4],
group key exchange [3] and to define distributed public-key cryptography from passwords
in e.g. [2]. A main difference between works in the UC model and our work (besides the
obvious differences between symbolic and computational models) is that in the UC model
designers generally apply an “ad-hoc recipe” (often using “magical” session identifiers given
by the framework) and show that one session of a protocol fulfills the given requirements.
The UC theorem then ensures composition, i.e., composition follows from the strong security
definition which has to be proven. In our work we make explicit the construction of session
identifiers in our transformation and prove that a generic protocol transformation can be
used to achieve composition. Note, however, that despite this difference, both approaches
share many essential ideas.

Finally, we may note that tagging is a well known technique. We have already mentioned
its use to achieve some forms of composition [6, 18]. Other forms of tagging were used to
ensure termination of a verification procedure [12], safely bound the length of messages [7]
or obtain decidability for the verification of some classes of protocols [27].

2 Modeling Protocols

In this section, we recall the cryptographic process calculus defined in [20] for describing
protocols. This calculus is a simplified version of the applied pi calculus [1]. In particular
we only consider one channel, which is public (i.e. under the control of the attacker) and
we only consider finite processes, i.e. processes without replication.

2.1 Messages

A protocol consists of some agents communicating on a network. The messages sent by the
agents are modelled using an abstract term algebra. For this, we assume an infinite set of
names N , for representing keys, data values, nonces, and names of agents, and we assume
a signature Σ, i.e. a finite set of function symbols such as senc and sdec, each with an arity.
Given a signature Σ and an infinite set of variables X , we denote by T (Σ) (resp. T (Σ,X))
the set of ground terms (resp. terms) over Σ∪N (resp. Σ∪N ∪X). We write fn(M) (resp.
fv(M)) for the set of names (resp. variables) that occur in the term M . A substitution σ is
a mapping from a finite subset of X called its domain and written dom(σ) to T (Σ,X). The
application of a substitution σ to a term T is written Tσ. We also allow replacement of names
by terms: the term M{N/n} is the term obtained from M after replacing any occurrence of
the name n by the term N (assuming that n does not occur in N). We sometimes abbreviate
the sequence of terms t1, . . . , tn by t̃ and write {t̃/x̃} for {t1/x1, . . .

tn /xn}.

To model algebraic properties of cryptographic primitives, we define an equational theory
by a finite set E of equations U = V with U, V ∈ T (Σ,X) such that U, V do not contain
names. We define =E to be the smallest equivalence relation on terms, that contains E and
that is closed under application of function symbols and substitutions of terms for variables.

I Example 1. Consider the signature Σ = {sdec, senc, 〈 〉, proj1, proj2, exp}. The function
symbols sdec, senc, 〈 〉 and exp of arity 2 represent respectively symmetric encryption and
decryption, pairing as well as exponentiation. Functions proj1 and proj2 of arity 1 model
projection of the first and the second component of a pair. As an example that will be useful

C. Chevalier, S. Delaune, and S. Kremer 207

for modelling the SPEKE protocol [23], we consider the equational theory E, defined by the
following equations:

sdec(senc(x, y), y) = x proji(〈x1, x2〉) = xi (i ∈ {1, 2})
senc(sdec(x, y), y) = x exp(exp(x, y), z) = exp(exp(x, z), y)

Let T1 = senc(proj2(〈a, b〉), k) and T2 = senc(b, k). We have that the terms T1 and T2 are
equal modulo E, written T1 =E T2, while obviously the syntactic equality T1 = T2 does not
hold.

To represent the knowledge of an attacker (who may have observed a sequence of mes-
sages M1, . . . ,M`), we use the concept of frame. A frame φ = νñ.σ consists of a finite
set ñ ⊆ N of restricted names (those unknown to the attacker), and a substitution σ of the
form {M1/z1 , . . . ,

M`/z`
} where eachMi is a ground term. The variables zi enable an attacker

to refer to each Mi. The domain of the frame φ, written dom(φ), is dom(σ) = {z1, . . . , z`}.
Given a frame φ that represents the information available to an attacker, and an equa-

tional theory E on Σ, we may ask whether a given ground term M may be deduced from φ.
This relation is written φ `E M and is formally defined below.

I Definition 2 (deduction). LetM be a ground term and φ = νñ.σ be a frame. We have that
M is deducible from φ, denoted νñ.σ `E M , if and only if there exists a term N ∈ T (Σ,X)
such that fn(N) ∩ ñ = ∅ and Nσ =E M . N is called a recipe of the term M .

Intuitively, the set of deducible messages is obtained from the messages Mi in φ, the
names that are not restricted in φ, and closed under equality modulo E and application of
function symbols.

I Example 3. Consider the theory E given in Example 1. Let φ = νb, k.{senc(b,k)/z1 ,
k/z2}.

We have that φ `E k, φ `E b and φ `E a. Indeed z2, sdec(z1, z2) and a are recipes of the
terms k, b and a respectively.

Two frames are considered equivalent when the attacker cannot detect the difference
between the two situations they represent, that is, his ability to distinguish whether two
recipes M,N produce the same term does not depend on the frame. Formally,

I Definition 4 (static equivalence). We say that two frames φ1 = νñ.σ1 and φ2 = νñ.σ2 are
statically equivalent, φ1 ≈E φ2, when dom(φ1) = dom(φ2), and for all terms M,N such that
fn(M,N) ∩ ñ = ∅, we have that: Mσ1 =E Nσ1 if, and only if, Mσ2 =E Nσ2.

Static equivalence is useful to model the notion of security we consider in this paper,
namely resistance against guessing attacks. To resist against a guessing attack, the protocol
must be designed such that the attacker cannot decide on the basis of the data collected
whether his current guess of the password is the actual password or not. Assume φ = νw̃.φ′

is the frame representing the information gained by the attacker by eavesdropping one or
more sessions and let w̃ be the sequence of weak passwords. The frame φ is resistant to
guessing attacks if the attacker cannot distinguish between a situation in which he guesses
the correct passwords w̃ and a situation in which he guesses incorrect ones, say w̃′.

I Definition 5 (frame resistant to guessing attacks). The frame νw̃.φ′ is resistant to guessing
attacks against the sequence of names w̃ if νw̃.φ′ ≈ νw̃.νw̃′.φ′{w̃′

/w̃} where w̃′ is a sequence
of fresh names.

FSTTCS 2011

208 Transforming Password Protocols to Compose

This definition was proposed in [17, 9]. A slightly simpler formulation requiring φ′ ≈
φ′{w̃′

/w̃} (without the name restrictions) was shown equivalent in [20] and will be used in
this paper.

I Example 6. Consider the following protocol where h is a unary function symbol modelling
a hash function (no equation on h):

A→ B : senc(n,w) B→ A : senc(h(n), w)

An interesting problem arises if the shared key w is a weak secret, i.e. vulnerable to brute-
force off-line testing. Indeed, the frame representing the knowledge of the attacker at the
end of a normal execution of this protocol is φ = νw.φ′ = νw.νn.{senc(n,w)/z1 ,

M/z2} where:

M = senc(h(sdec(senc(n,w), w)), w) =E senc(h(n), w).

The frame φ is not resistant to guessing attacks against the password w. Indeed, the test
h(sdec(z1, w)) ?= sdec(z2, w) is a witness of the non-equivalence φ′ 6≈E φ

′{w′
/w}.

2.2 Protocol Language and Semantics
Syntax

The grammar for processes is given below. One has plain processes P,Q,R and extended
processes A,B,C that allow the use of active substitutions and restrictions.

P,Q,R := plain processes
0 null process
P | Q parallel composition
in(x).P message input
out(M).P message output
if M = N then P else Q conditional

A,B,C := extended processes
P plain processes
A | B parallel composition
νn.A restriction
{M/x} active substitution

As usual, names and variables have scopes, which are delimited by restrictions and inputs.
We write fv(A), bv(A), fn(A), bn(A) for the sets of free and bound variables (resp. names).
Moreover, we consider processes such that bn(A) ∩ fn(A) = ∅, bv(A) ∩ fv(A) = ∅, and each
name and variable is bound at most once in A. An extended process is closed if all free
variables are in the domain of an active substitution. An instance of an extended process is
a process obtained by a bijective renaming of its bound names and variables. We observe
that given processes A and B, there always exist instances A′ and B′ of A, respectively B,
such that the process A′ | B′ will respect the disjointness conditions on names and variables.

I Example 7. We illustrate our syntax with the SPEKE protocol (see [23] for a complete
description).

A → B : M1 = exp(w, ra)
B → A : M2 = exp(w, rb)
A → B : M3 = senc(ca, exp(exp(w, rb), ra))
B → A : M4 = senc(〈ca, cb〉, exp(exp(w, ra), rb))
A → B : M5 = senc(cb, exp(exp(w, rb), ra))

The goal of this protocol is to mutually authenticate A and B with respect to each other,
provided that they share an initial secret w. This is done by a simple Diffie-Hellman exchange
from a shared secret w, creating a common key exp(exp(w, ra), rb) =E exp(exp(w, rb), ra),
followed by a challenge-response transaction. The data ra, ca (resp. rb, cb) are nonces that

C. Chevalier, S. Delaune, and S. Kremer 209

are freshly generated by A (resp. B). In our calculus, we model one session of the protocol
as νw.(A | B):

A = νra, ca.out(exp(w, ra)).in(x1). B = νrb, cb.in(y1).out(exp(w, rb)).
out(senc(ca, ka)).in(x2). in(y2).out(senc(〈sdec(y2, kb), cb〉, kb)).
out(senc(proj2(sdec(x2, ka)), ka)) in(y3). if sdec(y3, kb) = cb then P else 0.

where ka = exp(x1, ra), kb = exp(y1, rb), and P models an application that is executed
when B has been successfully authenticated.

An evaluation context is an extended process with a hole instead of an extended process.
Given an extended process A we denote by φ(A) the frame obtained by replacing any
embedded plain processes in it with 0.

Semantics

We here only give an informal account of the semantics and refer the reader to [20] for the
complete definition. We consider a basic structural equivalence, denoted ≡, which includes
for instance A | B ≡ B | A, A | 0 ≡ A and νn1, n2.A ≡ νn2, n1.A. In particular, using
structural equivalence, every extended process A can be rewritten to consist of a substitution
and a plain process with some restricted names, i.e.,

A ≡ νñ.({M1/z1} | . . . | {Mk/zk
} | P).

Moreover, any frame can be rewritten as νn.σ matching the notion of frame introduced in
Section 2.1.

Labelled operational semantics is the smallest relation A
`−→ A′ between extended pro-

cesses which is closed under structural equivalence (≡), application of evaluation context,
and a few usual rules for input, output and conditional where ` is a label of one of the
following forms:

a label in(M), where M is a ground term such that φ(A) `E M ;
a label out(M), where M is a ground term, which corresponds to an output of M and
which adds an active substitution {M/z} in A′;
a label τ corresponding to a silent action (the evaluation of a conditional).

We denote by → the relation
{ `−→ | ` ∈ {in(M), out(M), τ}, M ∈ T (Σ)

}
and by →∗ its re-

flexive and transitive closure. Note that these semantics take the viewpoint that the attacker
controls the entire network. Any message is sent to the attacker (who may or not forward it
to the intended recipient) and the processes do not have any means to communicate directly.

I Example 8. We illustrate our semantics with the SPEKE protocol presented in Example 7.
The derivation below represents a normal execution of the protocol. For simplicity of this
example we suppose that fv(P) = ∅.

νw.(A | B)
out(exp(w,ra))−−−−−−−−−→ νw, ra, ca.(in(x1).out(senc(ca, ka)).in(x2). . . . | {M1/z1} | B)
in(exp(w,ra))−−−−−−−−→ νw, ra, ca, rb, cb.(in(x1).out(senc(ca, ka)).in(x2). . . . | {M1/z1} | B′)
→∗ νw, ra, ca, rb, cb.({M1/z1 ,

M2/z2 ,
M3/z3 ,

M4/z4 ,
M5/z5} | P)

where B′ represents the remaining actions of B in which y1 is replaced by exp(w, ra), and
M1, . . . ,M5 are defined in Example 7. The first step is an output of M1 performed by A.

FSTTCS 2011

210 Transforming Password Protocols to Compose

The active substitution {M1/z1} allows the environment (i.e. the attacker) to access the
message M1 via the handle z1. The handle z1 is important since the environment cannot
itself describe the term that was output, except by referring to it using z1. Since M1 is
accessible to the environment via z1, the next input action can be triggered: we have that
νw, ra, ca.{M1/z1} `E exp(w, ra) using the the recipe z1.

In the remaining, we will focus our attention on password-based protocols.

I Definition 9 (`-party password protocol specification). An `-party password protocol spe-
cification P is a process such that:

P = νw.(νm̃1.P1 | . . . | νm̃`.P`)

where each Pi is a closed plain processes. The processes νm̃i.Pi are called the roles of P.

The process νw.(A | B) described in Example 7 is a 2-party password protocol specification
with roles A and B. The notion of security we will mainly concentrate on is resistance
against guessing attacks.

I Definition 10 (process resistant to guessing attacks). Let A be an extended, closed process
and w̃ ⊆ bn(A). We say that a process A is resistant to guessing attacks against w̃ if, for
every process B such that A →∗ B, we have that the frame φ(B) is resistant to guessing
attacks against w̃.

3 Composition Results for Password-based Protocols

In this section, we present several composition results that hold for an arbitrary equational
theory E. The only requirement we have is that there exists a function symbol h, which is
a free symbol in E, i.e. h does not occur in any equation in E. Intuitively, h models a hash
function.

3.1 Disjoint State
First, we note that, as usual, composition preserves security properties as soon as protocols
have disjoint states, i.e., they do not share any restricted names. Intuitively, this is due to
the fact that when other protocols do not share any secrets of the analyzed protocol, then
the attacker can completely simulate all messages sent by these other protocols. This has
been formally shown in [20].

I Theorem 11. [20] Let A1, . . . , Ak be k extended processes such that for all i, we have
that Ai is resistant to guessing attack against wi. We have that A1 | · · · | Ak is resistant to
guessing attack against w1, . . . , wk.

3.2 Joint State
As soon as two protocols share a restricted name, e.g. a password, composition does not
necessarily preserve security properties (see [20] for an example). We will use a tagging
technique to avoid confusion between messages that come from different protocols. More
precisely we will tag each occurrence of a password. Intuitively, we consider protocols that
are well-tagged w.r.t. a secret w: all occurrences of w are of the form h(t, w) for some tag t.

C. Chevalier, S. Delaune, and S. Kremer 211

Composing protocols

When each process is well-tagged with a different tag, it can be shown that the processes
can be safely composed. One may think of these tags as protocol identifiers, which uniquely
identify which protocol is executed, and avoid messages from different protocols to interfere
with each other.

I Theorem 12. Let α1, . . . , αk be k distinct names, and νw.A1, . . . , νw.Ak be k processes
such that αi 6∈ bn(Ai) for any i ∈ {1, . . . , k}. If each νw.Ai is resistant to guessing attack
against w then the process νw.(A1{h(α1,w)/w} | · · · | Ak{h(αk,w)/w}) is resistant to guessing
attack against w.

Actually, this result is a small adaptation from [20] (the result was shown for k = 2 only).
This result can also be seen as a consequence of Proposition 15 and Lemma 16 (stated in
Section 4) and a theorem showing that adding tags preserves resistance against guessing
attacks (this last theorem is stated and proved in [20]).

The previous result is useful to compose distinct protocols. However, when we want to
compose different sessions from the same protocol, we cannot assume that participants share
a distinct tag for each possible session. In the following, we define a way to dynamically
establish such a session tag.

Composing sessions from the same protocol

We now define a protocol transformation which establishes a dynamic tag that will guaran-
tee composition. To establish such a tag that serves as a session identifier all participants
generate a fresh nonce, that is sent to all other participants. This is similar to the estab-
lishment of session identifiers proposed by Barak [8]. The sequence of these nonces is then
used to tag the password. Note that an active attacker may interfere with this initialization
phase and may intercept and replace some of the nonces. However, since each participant
generates a fresh nonce, these tags are indeed distinct for each session. This transformation
is formally defined as follows.

I Definition 13 (transformation P). Let P = νw.(νm̃1.P1 | . . . | νm̃`.P`) be a password
protocol specification. Let n1, . . . , n` be fresh names and {xji | 1 6 i, j 6 `} be a set of fresh
variables. We define the protocol specification P = νw.(νm̃1, n1.P1 | . . . | νm̃`, n`.P`) as
follows:

Pi = in(x1
i). . . . in(xi−1

i).out(ni).in(xi+1
i).in(x`i).Pi{h(tagi,w)/w}

where tagi = 〈x1
i , 〈. . . 〈x

`−1
i , x`i〉〉〉 and xii = ni.

We can now state our composition result for sessions of a same protocol: if a protocol
resists against guessing attacks on w then any number of instances of the transformed
protocol will also resist to guessing attacks on w.

I Theorem 14. Let P = νw.(νm̃1, P1 | . . . | νm̃`.P`) be a password protocol specification
that is resistant to guessing attacks against w. Let P ′ be such that P = νw.P ′, and P ′1, . . .P ′p
be p instances of P ′. Then we have that νw.(P ′1 | . . . | P ′p) is resistant to guessing attacks
against w.

Discussion

Note that it is possible to combine these two ways of tagging. Applying successively the
two previous theorems we obtain that a tag of the form h(〈n1, . . . , n`〉, h(α,w)) allows to

FSTTCS 2011

212 Transforming Password Protocols to Compose

safely compose different sessions of a same protocol, and also sessions of other protocols.
It would also be easy to adapt the proofs to directly show that a simpler tag of the form
h(〈α, 〈n1, . . . , n`〉〉, w) could be used.

The notion of security we consider is resistance to guessing attacks. While generally
resistance against guessing attacks is indeed a necessary condition to ensure security prop-
erties, this property is not a goal in itself. However, the way we prove our composition
results allows us also to ensure that those protocols can be safely composed w.r.t. more
classical trace-based security properties such as secrecy or authentication.

Finally, we note that our composition result yields a simple design methodology. It
is sufficient to design a protocol which is secure for a single session. After applying the
above protocol transformation we conclude that the transformed protocol is secure for an
arbitrary number of sessions. Note that even though our protocol language does not include
replication, our composition results for sessions ensure security for an unbounded number
of sessions. Indeed, as any attack requires only a finite number of sessions, any attack on a
transformed protocol which is secure for a single instance would yield a contradiction. As
deciding resistance to guessing attacks is decidable for a bounded number of sessions (for a
large class of equational theories) [9] our result can also be seen as a new decidability result
for an unbounded number of sessions on a class of tagged protocols.

4 Proof of our main result

The goal of this section is to give an overview of the proof of Theorem 14. This proof is
done in 4 main steps.

Step 1

Assume, by contradiction, that P = νw.(P ′1 | . . . | P ′p) admits a guessing attack on w. Hence
there exists an attack derivation P →∗ Q for some process Q such that φ(Q) is not resistant
to a guessing attack against w.

Thanks to our transformation, we know that each role involved in P has to execute its
preamble, i.e., the preliminary nonce exchange of our transformation, at the end of which it
computes a tag. Let t1, . . . , tk be the distinct tags that are computed during this derivation.
Then, we group together roles (i.e. a process) that computed the same tag in order to
retrieve a situation that is similar to when we use static tags. We note that the tags are
constructed such that each group contains at most one instance of each role of P. Our aim
is to show that an attack already exists on one of these groups, and so the attack is not due
to composition. However, one difficulty comes from the fact that once the preambles have
been executed, the tags that have been computed by the different roles may share some
names in addition to w.

Step 2

The fact that some names are shared between the processes we would like to separate in order
to retrieve the disjoint case significantly complicates the situation. Indeed, if composition
still works, it is due to the fact that names shared among differently tagged processes only
occur at particular positions. To get rid of shared names, we show that we can mimic a
derivation by another derivation where tags t1, . . . , tk are replaced by constants c1, . . . , ck and
different password are used (w1, . . . , wk instead of w). We denote by δwi,w the replacement

C. Chevalier, S. Delaune, and S. Kremer 213

{w/w1} . . . {w/wk
}, by δwi,h(ci,wi) the replacement {h(c1,w1)/w1} . . . {h(ck,wk)/wk

} and by δci,ti

the replacement {t1/c1} . . . {tk/ck
}.

I Proposition 15. Let t1, . . . , tk be distinct ground terms modulo E and c1, . . . , ck, w1, . . . , wk
be distinct fresh names. Let νñ.A be an extended process such that bn(A) = ∅, w 6∈ fn(A),
and A =E A

′δwi,h(ci,wi) for some A′ such that c1, . . . , ck 6∈ fn(A′). Moreover, we assume that
w,w1, . . . , wk, c1, . . . , ck 6∈ ñ.

Let B be such that νw.νñ.(Aδci,tiδwi,w) `−→ B. Moreover, when ` = in(M̃) we assume
that w1, . . . , wk, c1, . . . , ck 6∈ fn(M̃). Then there exists extended processes B, B′, and labels
`0, `′ such that:

B ≡ νw.νñ.(Bδci,tiδwi,w) with bn(B) = ∅ and w 6∈ fn(B), ` = `0δci,tiδwi,w, and
B =E B

′δwi,h(ci,wi) with c1, . . . , ck 6∈ fn(B′), `0 =E `
′δwi,h(ci,wi), and

νw1 . . . νwk.νñ.A
`0−→ νw1 . . . νwk.νñ.B.

This proposition shows how to map an execution of P ≡ νn1 . . . νnkνw.(A1δci,tiδwi,w |
· · · | Akδci,tiδwi,w) (same password) to an execution of νn1νw1.A1 | · · · | νnkνwk.Ak (differ-
ent password) by maintaining a strong connection between these two derivations. Intuitively,
the process Ajδci,tiδwi,w contains the roles in P that computed the tag tj in the attack de-
rivation.

Note that, except for w, a name that is shared between Ajδci,tiδwi,w and Aj′δci,tiδwi,w

(j 6= j′) necessarily occurs in a tag position in one of the process. Now that tags have been
replaced by some constants, and the password w has been replaced by different passwords
according to the tag, the processes Aj and Aj′ do not share any name.

This proposition is actually sufficient to establish that security properties, like authen-
tication, are preserved by composition. However, to establish resistant against guessing
attacks, we need more.

Step 3

We show that if a frame, obtained by executing several protocols that share a same password
and that are tagged with terms ti, is vulnerable to guessing attacks then the frame obtained
by the corresponding execution of the protocols with different passwords and tagged with
constants ci is also vulnerable to guessing attacks.

I Lemma 16. Let t1, . . . , tk be distinct ground terms modulo E. Let c1, . . . , ck, w1, . . . , wk be
distinct fresh names, and φ = νñ.σ be a frame such that c1, . . . , ck, w1, . . . , wk 6∈ ñ, and σ =E
σ0δwi,h(ci,wi) for some substitution σ0. Let w be a fresh name, and ψ = νñ.(σδci,tiδwi,w).
For each 1 6 i 6 k, we also assume that νw.ψ ` ti.

If νw̃.φ is resistant to guessing attacks against w̃ = {w1, . . . , wk}, then νw.ψ is resistant
to guessing attacks against w.

The proof of the lemma is technical because mapping all wi’s on the same password can
introduce additional equalities between terms. However, each occurrence of the password
is tagged, and the purpose of this design is to avoid the introduction of equalities between
terms. Again, the lemma holds because the frames are well-tagged.

Thanks to Proposition 15 and Lemma 16 we obtain a guessing attack on the process
νn1νw1.A1 | · · · | νnkνwk.Ak against w1, . . . , wk.

FSTTCS 2011

214 Transforming Password Protocols to Compose

Step 4

Applying Theorem 11 (combination for disjoint state protocols), we conclude that there is
a guessing attack on νniνwi.Ai for some i ∈ {1, . . . , k}. Then, it remains to show that the
attack also works on the original protocol, i.e. the non-tagged version of the protocol. This
is a direct application of Theorem 2 in [20]. This leads us to a contradiction since we have
assumed that P is resistant to guessing attacks against w.

5 Conclusion

In this paper we propose a transformation for password protocols based on a simple tag-
ging mechanism. This transformation ensures that security is preserved when protocols are
composed with other protocols which may use the same password. We show that when
protocols are tagged using a simple protocol identifier, we are able to compose different pro-
tocols. Computing a dynamic session identifier allows one to also compose different sessions
of a same protocol. Hence, it is sufficient to prove that a protocol is secure for one session
in order to conclude security under composition.

Currently, as stated, our composition results allow to preserve resistance against offline
guessing attacks. As already discussed it also follows from our proofs that trace properties
would be preserved. Formalizing for instance preservation of authentication should be a
rather straightforward extension. A more ambitious direction for future work would be the
composition of more general, indistinguishability properties, expressed in terms of observa-
tional equivalence. We also plan to investigate sufficient conditions to ensure composition
of protocols in the vein of [25] avoiding to change existing protocols.

Acknowledgements

This work has been partially supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agree-
ment no 258865, project ProSecure and the ANR project JCJC VIP no 11 JS02 006 01.

References
1 M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In

Proc. 28th Symposium on Principles of Programming Languages (POPL’01), pages 104–
115. ACM Press, 2001.

2 M. Abdalla, X. Boyen, C. Chevalier, and D. Pointcheval. Strong cryptography from weak
secrets: Building efficient pke and ibe from distributed passwords in bilinear groups. In
Progress in Cryptology – AFRICACRYPT’10. Springer, 2010.

3 M. Abdalla, C. Chevalier, L. Granboulan, and D. Pointcheval. UC-secure group key ex-
change with password-based authentication in the standard model. In Proc. The Crypto-
graphers’ Track at the RSA Conference (CT-RSA’11), LNCS. Springer, 2011.

4 M. Abdalla, C. Chevalier, and D. Pointcheval. Smooth projective hashing for conditionally
extractable commitments. In Advances in Cryptology – CRYPTO’09, volume 5677 of LNCS,
pages 671–689. Springer, 2009.

5 S. Andova, C. Cremers, K. G. Steen, S. Mauw, S. M. lsnes, and S. Radomirović. Sufficient
conditions for composing security protocols. Information and Computation, 206(2-4):425–
459, 2008.

6 M. Arapinis, S. Delaune, and S. Kremer. From one session to many: Dynamic tags for
security protocols. In Proc. 15th International Conference on Logic for Programming,

C. Chevalier, S. Delaune, and S. Kremer 215

Artificial Intelligence, and Reasoning (LPAR’08), volume 5330 of LNAI, pages 128–142.
Springer, 2008.

7 M. Arapinis and M. Duflot. Bounding messages for free in security protocols. In Proc.
27th Conference on Foundations of Software Technology and Theoretical Computer Science
(FST&TCS’07), volume 4855 of LNCS, pages 376–387. Springer, 2007.

8 B. Barak, Y. Lindell, and T. Rabin. Protocol initialization for the framework of universal
composability. Cryptology ePrint Archive, Report 2004/006, 2004.

9 M. Baudet. Deciding security of protocols against off-line guessing attacks. In Proc. 12th
ACM Conference on Computer and Communications Security (CCS’05), pages 16–25. ACM
Press, 2005.

10 S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In Proc. Symposium on Security and Privacy (SP’92), pages
72–84. IEEE Comp. Soc., 1992.

11 B. Blanchet. Automatic Proof of Strong Secrecy for Security Protocols. In Proc. Symposium
on Security and Privacy (SP’04), pages 86–100. IEEE Comp. Soc., 2004.

12 B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces
termination. In Proc. Foundations of Software Science and Computation Structures
(FoSSaCS’03), volume 2620 of LNCS, pages 136–152. Springer, 2003.

13 V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-authenticated key
exchange using Diffie-Hellman. In Advances in Cryptology – EUROCRYPT’00, volume
1807 of LNCS, pages 156–171. Springer, 2000.

14 R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proc. 42nd Annual Symposium on Foundations of Computer Science (FOCS’01), pages
136–145. IEEE Comp. Soc., 2001.

15 R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally composable
password-based key exchange. In Advances in Cryptology – EUROCRYPT’05, volume 3494
of LNCS, pages 404–421. Springer, 2005.

16 C. Chevalier, S. Delaune, and S. Kremer. Transforming password protocols to compose.
Research Report LSV-11-21, Laboratoire Spécification et Vérification, ENS Cachan, France,
Oct. 2011. 20 pages.

17 R. Corin, J. Doumen, and S. Etalle. Analysing password protocol security against off-line
dictionary attacks. ENTCS, 121:47–63, 2005.

18 V. Cortier and S. Delaune. Safely composing security protocols. Formal Methods in System
Design, 34(1):1–36, Feb. 2009.

19 A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. A derivation system and compositional
logic for security protocols. Journal of Computer Security, 13(3), 2005.

20 S. Delaune, S. Kremer, and M. D. Ryan. Composition of password-based protocols. In
Proc. 21st IEEE Computer Security Foundations Symposium (CSF’08), pages 239–251,
Pittsburgh, PA, USA, June 2008. IEEE Computer Society Press.

21 D. Dolev and A. Yao. On the security of public key protocols. In Proc. of the 22nd Symp.
on Foundations of Computer Science, pages 350–357. IEEE Comp. Soc. Press, 1981.

22 J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryption.
In Proc. 13th Computer Security Foundations Workshop (CSFW’00), pages 24–34. IEEE
Comp. Soc. Press, 2000.

23 D. Jablon. Strong password-only authenticated key exchange. Computer Communication
Review, 26(5):5–26, 1996.

24 J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange using
human-memorable passwords. In Advances in Cryptology – EUROCRYPT’01, volume 2045
of LNCS, pages 475–494. Springer, 2001.

FSTTCS 2011

216 Transforming Password Protocols to Compose

25 R. Küsters and M. Tuengerthal. Composition Theorems Without Pre-Established Session
Identifiers. In Proc. 18th ACM Conference on Computer and Communications Security
(CCS’11). ACM Press, 2011. To appear.

26 G. Lowe. Analysing protocols subject to guessing attacks. Journal of Computer Security,
12(1):83–98, 2004.

27 R. Ramanujam and S. P. Suresh. Decidability of context-explicit security protocols. Journal
of Computer Security, 13(1):135–165, 2005.

Obtaining a Bipartite Graph by Contracting Few
Edges∗

Pinar Heggernes1, Pim van ’t Hof1, Daniel Lokshtanov2, and
Christophe Paul3

1 Department of Informatics, University of Bergen, Norway.
{pinar.heggernes|pim.vanthof}@ii.uib.no

2 Department of Computer Science and Engineering,
University of California San Diego, USA.
dlokshtanov@cs.ucsd.edu

3 CNRS, LIRMM, Université Montpellier 2, France.
paul@lirmm.fr

Abstract
We initiate the study of the Bipartite Contraction problem from the perspective of param-
eterized complexity. In this problem we are given a graph G on n vertices and an integer k, and
the task is to determine whether we can obtain a bipartite graph from G by a sequence of at
most k edge contractions. Our main result is an f(k)nO(1) time algorithm for Bipartite Con-
traction. Despite a strong resemblance between Bipartite Contraction and the classical
Odd Cycle Transversal (OCT) problem, the methods developed to tackle OCT do not seem
to be directly applicable to Bipartite Contraction. To obtain our result, we combine several
techniques and concepts that are central in parameterized complexity: iterative compression,
irrelevant vertex, and important separators. To the best of our knowledge, this is the first time
the irrelevant vertex technique and the concept of important separators are applied in unison.
Furthermore, our algorithm may serve as a comprehensible example of the usage of the irrelevant
vertex technique.

1998 ACM Subject Classification G.2.2, F.2.2

Keywords and phrases fixed parameter tractability, graph modification problems, edge contrac-
tions, bipartite graphs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.217

1 Introduction

Odd Cycle Transversal (OCT) is a central problem in parameterized complexity. The
establishment of its fixed parameter tractability by Reed, Smith, and Vetta [24] in 2004,
settling a long-standing open question [8], supplied the field with the powerful new technique
of iterative compression [22]. Both OCT and the closely related Edge Bipartization
problem take as input a graph G and an integer k, and ask whether a bipartite graph
can be obtained by deleting at most k vertices, respectively k edges, from G. These two
problems can be viewed as two ways of measuring how close G is to being bipartite. Over
the last few years a considerable amount of research has been devoted to studying different
measures of how close a graph is to being bipartite [9, 10, 15, 14], and how similarity to a
bipartite graph can be exploited [6]. Another natural similarity measure is defined by the

∗ This work is supported by the Research Council of Norway.

© P. Heggernes, P. van ’t Hof, D. Lokshtanov, and C. Paul;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 217–228

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.217
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

218 Obtaining a Bipartite Graph by Contracting Few Edges

Bipartite Contraction problem: Given a graph G and an integer k, can we obtain a
bipartite graph from G by a sequence of at most k edge contractions in G? Considering the
significant amount of interest the problems OCT and Edge Bipartization have received,
we find it surprising that Bipartite Contraction has not yet been studied with respect
to parameterized complexity. In this area, a graph problem with input G and k is said to
be fixed parameter tractable (FPT) when parameterized by k if there is an algorithm with
running time f(k)nO(1), where the function f depends only on k and not on the size of G.

The classical computational complexity of contracting at most k edges in a given graph to
obtain a graph with a specific structure has been studied by Watanabe et al. [27, 28] and by
Asano and Hirata [1]. NP-completeness of Bipartite Contraction follows from an easy
polynomial-time reduction from Edge Bipartization, in which every edge of the input
graph is replaced by a path of sufficiently large odd length. The study of edge contractions
in general is motivated from Hamiltonian graph theory and graph minor theory, and it has
applications in computer graphics and cluster analysis [18]. Graph minors play a central
role in parameterized complexity, and the edge contraction operation in turn is essential in
the study of graph minors: a graph H is a minor of a graph G if H can be obtained from G

by a sequence of edge contractions, edge deletions, and vertex deletions. Although deciding
whether a graph H is a minor of a given graph G is FPT when parameterized by the size of
H [25], deciding whether H can be obtained from G by edge contractions is NP-complete
already for some very small fixed graphs H, such as a path or a cycle on four vertices [2].

In this paper we show that Bipartite Contraction is FPT when parameterized by
the number k of edges to be contracted. The key ingredients of our algorithm fundamentally
differ from the ones used in the above-mentioned algorithms for OCT and Edge Biparti-
zation. In the algorithm for OCT by Reed, Smith, and Vetta [24], iterative compression is
combined with maximum flow arguments. The recent nearly linear time algorithm for the
two problems, due to Kawarabayashi and Reed [14], uses the notion of odd minors, together
with deep structural results of Robertson and Seymour [25] about graphs of large treewidth
without large clique minors. Interestingly, Bipartite Contraction does not seem to be
amenable to these approaches.

Although our algorithm is based on iterative compression, it seems difficult to adapt the
compression step from [24] for OCT to work for Bipartite Contraction. Instead, we
perform the compression step using a variant of the irrelevant vertex technique, introduced
by Robertson and Seymour [25] (see also [26]). In particular, if the treewidth of the input
graph is large, then we identify an irrelevant edge that can be deleted from the graph without
affecting the outcome. The irrelevant vertex technique has played a key role in the solutions
of several problems (see, e.g., [13, 15, 16]).

Our algorithm crucially deviates from previous work in the manner in which it finds
the irrelevant edge. While previous work has relied on large minor models as obstructions
to small treewidth, ours uses the fact that any graph of high treewidth contains a large
p-connected set X [7]. A vertex set X is p-connected if, for any two subsets X1 and X2
of X with |X1| = |X2| ≤ p, there are |X1| vertex-disjoint paths with one endpoint in X1
and the other in X2. Using p-connected sets in order to find irrelevant edges has several
advantages. First, our algorithm avoids the huge parameter-dependence which seems to be
an inadvertent side effect of applying Robertson and Seymour’s graph minors machinery.
Second, our arguments are nearly self-contained, and rely only on results whose proofs are
simple enough to be taught in a graduate class.

Using p-connected sets in order to find an irrelevant vertex or edge is non-trivial, because
p-connectivity is a more “implicit” notion than that of a large minor model. We overcome this

P. Heggernes, P. van ’t Hof, D. Lokshtanov, and C. Paul 219

difficulty by using important sets. Important sets and the closely related notion of important
separators were introduced in [20] to prove the fixed parameter tractability of multiway cut
problems. The basic idea is that in many problems where terminals need to be separated
in some way, it is sufficient to consider separators that are “as far as possible” from one of
the terminals. Important separators turned out to be a crucial component, in some cases
implicitly, in the solutions of cardinal problems in parameterized complexity [4, 5, 21, 23].
To the best of our knowledge, this is the first time the irrelevant vertex technique and
important sets (or separators) are used together. We believe that this combination will turn
out to be a useful and powerful tool.

2 Definitions and Notation

All graphs considered in this paper are finite, undirected, and simple, i.e., do not contain
multiple edges or loops. Given a graph G, we denote its vertex set by V (G) and its edge set
by E(G). We also use the ordered pair (V (G), E(G)) to represent G. We let n = |V (G)|
and m = |E(G)|. For two graphs G1 = (V1, E1) and G2 = (V2, E2), the disjoint union of
G1 and G2 is the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). The deletion of an edge e ∈ E(G)
yields the graph G − e = (V (G), E(G) \ e). For a set X ⊆ V (G), we write G[X] to denote
the subgraph of G induced by X. A graph is connected if there is a path between each pair
of its vertices. The connected components of a graph are its maximal connected subgraphs.
For any set X ⊆ V (G), we write δG(X) to denote the set of edges in G that have exactly
one endpoint in X. We define dG(X) = |δ(X)|.

The contraction of edge xy in G deletes vertices x and y from G, and replaces them by a
new vertex, which is made adjacent to precisely those vertices that were adjacent to at least
one of the vertices x and y. The resulting graph is denoted G/xy. Every edge contraction
reduces the number of vertices in the graph by exactly one. We point out that several edges
might disappear as the result of a single edge contraction. For a set S ⊆ E(G), we write G/S
to denote the graph obtained from G by repeatedly contracting an edge from S until no such
edges remain. Let H be a graph with V (H) = {h1, h2, . . . , h`}. A graph G is H-contractible
if H can be obtained from G by contracting edges. Saying that G is H-contractible is
equivalent to saying that G has a so-called H-witness structure W, which is a partition of
V (G) into witness sets W (h1),W (h2), . . . ,W (h`), satisfying the following properties: each
witness set induces a connected subgraph of G, and for every two hi, hj ∈ V (H), there is
an edge in G between a vertex of W (hi) and a vertex of W (hj) if and only if hi and hj
are adjacent in H. Let G′ = G[W (h1)] ∪ · · · ∪ G[W (h`)] be the graph obtained from G

by removing all the edges of G, apart from the ones that have both endpoints in the same
witness set. In order to contract G toH, it is necessary and sufficient to contract all the edges
of some spanning forest F of G′. Note that |E(F)| =

∑`
i=1(|W (hi)|−1) = |V (G)|− |V (H)|.

A 2-coloring of a graph G is a function φ : V (G)→ {1, 2}. We point out that a 2-coloring
of G is merely an assignment of colors 1 and 2 to the vertices of G, and should therefore
not be confused with a proper 2-coloring of G, which is a 2-coloring with the additional
property that no two adjacent vertices receive the same color. An edge uv is said to be good
(with respect to φ) if φ(u) 6= φ(v), and uv is called bad (with respect to φ) otherwise. A
good component of φ is the vertex set of a connected component of the graph (V (G), E′),
where E′ ⊆ E is the set of all edges that are good with respect to φ. Any 2-coloring φ of
G defines a partition of V (G) into two sets V 1

φ and V 2
φ , which are the sets of vertices of G

colored 1 and 2 by φ, respectively. A set X ⊆ V (G) is a monochromatic component of φ
if G[X] is a connected component of G[V 1

φ] or a connected component of G[V 2
φ]. We write

FSTTCS 2011

220 Obtaining a Bipartite Graph by Contracting Few Edges

Mφ to denote the set of all monochromatic components of φ. The cost of a 2-coloring φ is
defined as

∑
X∈Mφ

(|X| − 1). Note that the cost of a 2-coloring φ of G is 0 if and only if φ
is a proper 2-coloring of G.

Let G be a graph. A tree decomposition of G is a pair (T,X = {Xt}t∈V (T)), where T
is a tree and X is a collection of subsets of V (G), satisfying the following three properties:
(1) ∪t∈V (T)Xt = V ; (2) ∀uv ∈ E(G),∃t ∈ V (T) : {u, v} ⊆ Xt; and (3) ∀v ∈ V (G), T [{t :
v ∈ Xt}] is connected. The width of a tree decomposition is maxt∈V (T) |Xt| − 1 and the
treewidth of G, denoted tw(G), is the minimum width over all tree decompositions of G.

The syntax of monadic second order (MSO) logic of graphs includes the logical connec-
tives ∨, ∧, ¬, variables for vertices, edges, sets of vertices and sets of edges, the quantifiers
∀, ∃ that can be applied to these variables, and the following five binary relations:

u ∈ U , where u is a vertex variable and U is a vertex set variable;
d ∈ D, where d is an edge variable and D is an edge set variable;
inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is
that the edge d is incident to the vertex u;
adj(u, v), where u and v are vertex variables and the interpretation is that u and v are
adjacent;
equality of variables representing vertices, edges, sets of vertices and sets of edges.

3 Bipartite Contraction and the Cost of 2-Colorings

In the Bipartite Contraction problem we are given a graph G and an integer k, and
the task is to determine whether there exists a set S ⊆ E(G) of at most k edges such that
G/S is bipartite. The following lemma allows us to reformulate this problem in terms of
2-colorings of the graph G.

I Lemma 1. A graph G has a 2-coloring φ of cost at most k if and only if there exists a
set S ⊆ E(G) of at most k edges such that G/S is bipartite.

Proof. Suppose G has a 2-coloring φ of cost at most k. We build an edge set S as follows.
For each monochromatic component X ∈ Mφ, find a spanning tree TX of G[X] and add
the |X| − 1 edges of TX to S. The total number of edges in S is exactly the cost of φ, so
|S| ≤ k. It remains to argue that G′ = G/S is bipartite. Note that G′ is obtained from G

by contracting each spanning tree TX to a single vertex tX . Let φ′ be the 2-coloring of G′
that assigns to each tX ∈ V (G′) the color of the corresponding monochromatic component
X ∈Mφ. Since each monochromatic component has been contracted to a single vertex, G′
has no edge that is bad with respect to φ′. Hence φ′ is a proper 2-coloring of G′, implying
that G′ is bipartite.

For the reverse direction, suppose there is a set S ⊆ E(G) of at most k edges such that
G′ = G/S is bipartite. We define G∗ to be the graph with the same vertex set as G and
edge set S, i.e., G∗ = (V (G), S). Let W be the G′-witness structure of G whose witness
sets are exactly the connected components of G∗. Let φ′ be a proper 2-coloring of G′. We
construct a 2-coloring φ of G as follows. For every v ∈ V (G), we set φ(v) = φ′(y), where y
is the vertex in V (G′) such that v ∈ W (y). Since the monochromatic components of φ are
exactly the connected components of the graph G∗, and since G∗ contains exactly |S| edges,
the cost of φ is at most |S| ≤ k. J

An instance of the Cheap Coloring problem consists of a graph G and an integer k,
and the task is to decide whether G has a 2-coloring of cost at most k. Lemma 1 shows that
the problems Bipartite Contraction and Cheap Coloring are equivalent.

P. Heggernes, P. van ’t Hof, D. Lokshtanov, and C. Paul 221

The deletion of an edge can not increase the cost of a 2-coloring, and can only decrease
the cost of a 2-coloring by at most one. We state this as the following observation.
I Observation 1. Let φ be a 2-coloring of G of cost k. For any edge uv ∈ E(G), the cost of
φ in G− uv is k or k − 1.

Observation 1 allows us to use the well-known iterative compression technique of Reed,
Smith and Vetta [24] to reduce the Cheap Coloring problem to the Cheaper Coloring
problem. The Cheaper Coloring problem takes as input a graph G, an integer k, and
a 2-coloring φ of G of cost k + 1, and the task is to either find a 2-coloring of G of cost at
most k, or to conclude that such a coloring does not exist.

I Lemma 2. If there is an algorithm for Cheaper Coloring that runs in time f(k)nc
for some constant c, then there is an algorithm for Cheap Coloring that runs in time
f(k)ncm.

Proof. Suppose there exists an algorithm for Cheaper Coloring that runs in time f(k)nc.
Then we can solve an instance (G, k) of Cheap Coloring by iterating over the edges
e1, e2, . . . em of G as follows. For every i ∈ {1, . . . ,m}, we define Gi to be the graph with
vertex set V (G) and edge set Ei = {ej : j ≤ i}. The graph G1 has a 2-coloring φ1 of cost
0, which is at most k. For the first k iterations, we trivially maintain a 2-coloring of cost at
most k. Now, in iteration i of the algorithm, assume that we have a 2-coloring φi of cost at
most k in Gi. By Observation 1, the cost of φi in Gi+1 is at most k+ 1. If the cost of φi in
Gi+1 is at most k, then we proceed to iteration i+ 1. Otherwise, we run the algorithm for
Cheaper Coloring with input (Gi+1, k, φi). If the algorithm concludes that Gi+1 has no
2-coloring of cost at most k, then, by Observation 1, neither does G. If, on the other hand,
the algorithm outputs a 2-coloring φi+1 of Gi+1 of cost at most k, then we proceed to the
(i + 1)th iteration. Since we call the algorithm for Cheaper Coloring at most m times,
each time with parameter k, the time bound follows. J

We have now almost reached the variant of the problem that will be the focus of attention
in the remainder of this paper. Given a graph G and two disjoint vertex sets T1, T2 ⊆ V (G),
a 2-coloring φ of G is a (T1, T2)-extension if φ colors every vertex in T1 with 1 and every
vertex in T2 with 2. In the Cheap Coloring Extension problem we are given a bipartite
graph G, two integers k and t, and two disjoint vertex sets T1 and T2 such that |T1|+|T2| ≤ t;
the sets T1 and T2 are not related to the sets of the bipartition of G. The objective is to
find a (T1, T2)-extension φ of cost at most k, or to conclude that such a 2-coloring does not
exist. We will say that a (T1, T2)-extension φ is a cheapest (T1, T2)-extension if there is no
(T1, T2)-extension φ′ with strictly lower cost than φ.

I Lemma 3. If there is an algorithm for Cheap Coloring Extension that runs in time
f(k, t)nc for some constant c, then there is an algorithm for Cheaper Coloring that runs
in time 4k+1f(k, 2k + 2)nc.

Proof. Given an f(k, t)nc time algorithm for Cheap Coloring Extension, we show how
to solve an instance (G, k, φ) of Cheaper Coloring. Let S be the set of all bad edges in
G with respect to φ, and let X be the set of endpoints of the edges in S. Since φ has cost
k + 1, we have |X| ≤ 2k + 2. We create 4k+1 instances of Cheap Coloring Extension
as follows.

For every possible partition of X into two sets X1 and X2, we set k′ = k and t = |X|,
and we build a graph G(X1, X2) from G in the following way. As long as there is an edge
uv ∈ S such that u and v are both in X1 or both in X2, contract the edge uv, put the new
vertex resulting from the contraction into the set Xi that u and v belonged to, and decrease

FSTTCS 2011

222 Obtaining a Bipartite Graph by Contracting Few Edges

k′ by 1. Since the cost of φ is at most k+1, we contract at most k+1 edges in this way, and
hence k′ ≥ −1. When there are no such edges left, then we discard this partition of X into
X1 and X2 if k′ = −1; otherwise, we continue to build an instance of Cheap Coloring
Extension as follows. Delete all edges uv ∈ S with u ∈ Xi and v ∈ Xj such that i 6= j.
Since S contains all the edges of G that are bad with respect to φ, and each of the edges
of S is either contracted or deleted, the resulting graph G(X1, X2) has no bad edges with
respect to φ and is therefore bipartite. Thus we obtain an instance (G(X1, X2), k′, t,X1, X2)
of Cheap Coloring Extension with k′ ≥ 0.

We now show that (G, k, φ) is a yes-instance of Cheaper Coloring if and only if there
is a partition of X into X1 and X2 such that (G(X1, X2), k′, t,X1, X2) with k′ ≥ 0 is a
yes-instance of Cheap Coloring Extension.

Suppose that (G, k, φ) is a yes-instance of Cheaper Coloring. Then there exists a
2-coloring φ∗ of G of cost at most k. Let X1 and X2 be the vertices of X that are colored 1
and 2 by φ∗, respectively. Consider the set S′ ⊆ S of edges that were contracted in order to
obtain G(X1, X2) from G in the way described earlier. Since every edge in S′ is bad with
respect to φ∗, the cost of φ∗ decreased by 1 with every edge contraction. Hence, φ∗ is an
(X1, X2)-extension of G(X1, X2) of cost k′. We conclude that (G(X1, X2), k′, t,X1, X2) is a
yes-instance of Cheap Coloring Extension.

For the reverse direction, suppose there is a partition of X into X1 and X2 such that
(G(X1, X2), k′, t,X1, X2) is a yes-instance of Cheap Coloring Extension with k′ ≥ 0,
i.e., the bipartite graphG(X1, X2) has an (X1, X2)-extension ψ of cost at most k′. Let S′ ⊆ S
be the set of edges that were contracted in G to create the instance (G(X1, X2), k′, t,X1, X2).
Since k′ = k − |S′| ≥ 0, we have that |S′| ≤ k. We define a 2-coloring θ of G by coloring
both endpoints of every edge uv in S′ with the color that ψ assigned to the vertex resulting
from the contraction of the edge uv, and coloring all other vertices in G with the color they
received from ψ. Clearly, the cost of θ is at most k′ + |S′| = k, and therefore (G, k, φ) is a
yes-instance of Cheaper Coloring.

Since we need to run the f(k, t)nc time algorithm for Cheap Coloring Extension at
most 4k+1 times, with parameters k′ ≤ k and t = |X| ≤ 2k + 2 at each iteration, the time
bound follows. J

The next section is devoted to showing that Cheap Coloring Extension is fixed
parameter tractable when parameterized by k and t. The reason we want to work with the
Cheap Coloring Extension problem rather than with the Bipartite Contraction
problem directly is that, as we shall see in Section 4.2, Cheap Coloring Extension is a
“cut” problem, and is therefore amenable to techniques based on important separators [20].

4 Solving Cheap Coloring Extension in FPT Time

In this section, we present an algorithm for the Cheap Coloring Extension problem. For
the remainder of this section, let (G, k, t, T1, T2) be a given instance of Cheap Coloring
Extension, where G is assumed to be connected. Recall that G is bipartite. The high level
structure of our algorithm is as follows. If the treewidth of G is bounded by a function of k
and t, then we can use standard dynamic programming techniques to solve the problem in
time f(k, t)n. If, on the other hand, the treewidth of G is large, then we can find a large
set of vertices which is “highly connected”. In this case we show how to find in f(k, t)nO(1)

time an edge e ∈ E(G), such that G has a (T1, T2)-extension of cost at most k if and only
if G− e does. We then re-run our algorithm on G− e.

To make the distinction between the two cases in our algorithm more precise, we use the

P. Heggernes, P. van ’t Hof, D. Lokshtanov, and C. Paul 223

following notion, due to Diestel et al. [7]. A set X ⊆ V (G) is p-connected in G if |X| ≥ p

and, for all subsets X1, X2 ⊆ X with |X1| = |X2| ≤ p, there are |X1| vertex-disjoint paths
in G with one endpoint in X1 and the other in X2. Diestel et al. [7] prove the following
statement in the proof of Proposition 3 (ii): if h ≥ p and G contains no p-connected set of
size h, then G has treewidth < h + p − 1. (In fact, they prove a stronger version of this
statement using the notion of an externally p-connected set, but we do not need this stronger
assertion for our purposes.) We define a set X to be well-connected if it is |X|/2-connected.
Using this definition, the result of Diestel et al. [7] can be seen to imply the following.

I Theorem 4 ([7]). If tw(G) > w, then G contains a well-connected set of size at least
2w/3.

The proof of Theorem 4 is constructive. In fact, given G and w, a tree decomposition
of width at most w or a well-connected set of size at least 2w/3 can be computed in time
cwnO(1) for some constant c [7]. We use Theorem 4 to compute either a tree-decomposition of
G of width at most 3(4k2) t 44k2 +3 or a well-connected set Y of size at least 2(4k2) t 44k2 +2.
Section 4.1 deals with the first case, whereas the second case is covered in Section 4.2.

4.1 Small Treewidth
Suppose our algorithm has found a tree-decomposition of G of width at most 3(4k2) t 44k2 +3.
We use the following celebrated theorem by Courcelle [3] to solve the Cheap Coloring
Extension problem in this case.

I Theorem 5 ([3]). There is an algorithm that tests whether a monadic second order formula
ψ holds on a graph G of treewidth w, in time f(|ψ|, w)n.

Since Cheap Coloring Extension can be expressed in monadic second order logic
(we omit the details due to page restrictions), we have the following result.

I Lemma 6. There is an algorithm that, given an instance (G, k, t, T1, T2) of Cheap Col-
oring Extension together with a tree-decomposition of G of width w, solves the instance
in time f(k, t, w)n.

We would like to remark that, given an instance (G, k, t, T1, T2) of Cheap Coloring
Extension together with a tree-decomposition of G of width w, it is possible to solve that
instance in time (w+1)O(w)n using standard dynamic programming techniques, which gives
a much faster algorithm than the one obtained by applying Theorem 5 on the monadic
second order formula.

4.2 Large Treewidth and Irrelevant Edges
Suppose our algorithm did not find a tree-decomposition of G of small width, but instead
found a well-connected set Y of size at least 2(4k2) t 44k2 + 2. We use Y throughout this
section to refer to this specific set. An edge e ∈ E(G) is said to be irrelevant if it satisfies
the following property: G has a (T1, T2)-extension of cost at most k if and only if G−e does.
We will show that the presence of the large well-connected set Y guarantees the presence of
an irrelevant edge e in G. Hence we find such an irrelevant edge e in G, delete it from the
graph, and solve Cheap Coloring Extension on the instance (G − e, k, t, T1, T2). Since
each iteration of this process deletes an edge, we will find a tree-decomposition of the graph
under consideration of small width after at most m iterations, in which case we solve the
problem as described in Section 4.1.

FSTTCS 2011

224 Obtaining a Bipartite Graph by Contracting Few Edges

I Observation 2. Let φ be a 2-coloring of G. No bad edge has both endpoints in the same
good component of φ.

Proof. Suppose, for contradiction, that G has a bad edge uv such that both u and v belong
to a good component C of φ. Since uv is bad, we have φ(u) = φ(v). Every good component
is connected, so there is a path P in C, starting in u and ending in v, consisting only of
good edges. The path P must contain an even number of edges, implying that P and uv

together form an odd cycle in G. This contradicts the assumption that G, which is part
of the instance (G, k, t, T1, T2) of Cheap Coloring Extension that we are solving, is
bipartite. J

I Observation 3. Let uv ∈ E(G). If φ is a cheapest (T1, T2)-extension of G− uv and u and
v are in the same good component of φ, then uv is irrelevant.

Proof. Suppose u and v belong to the same good component of a cheapest (T1, T2)-extension
φ of G−uv. Note that φ is a 2-coloring of G, and that the edge uv in G is good with respect
to φ as a result of Observation 2. Hence φ is a (T1, T2)-extension of G, and the cost of φ
in G equals the cost of φ in G − uv. As a result of Observation 1, φ must be a cheapest
(T1, T2)-extension of G. Since the cost of a cheapest (T1, T2)-extension of G− uv equals the
cost of a cheapest (T1, T2)-extension of G, the edge uv is irrelevant by definition. J

In order to use Observation 3, we need to identify two adjacent vertices u and v in G

that will end up in the same good component of some cheapest (T1, T2)-extension of G−uv.
The vertices in Y are good candidates, because they are so highly connected to each other.
Over the next few lemmas we formalize this intuition. We start with two observations that
will allow us, in the proof of Lemma 7 below, to bound the number of bad edges and the
number of good components of a cheapest (T1, T2)-extension of G of cost at most k.
I Observation 4. Let φ be a 2-coloring of G. If φ has cost at most k, then there are less
than 2k2 bad edges.

Proof. Let M′φ = {X ∈ Mφ : |X| ≥ 2} be the set of monochromatic components of φ
containing more than one vertex, and let G′ be the disjoint union of the graphs induced
in G by the elements of M′φ, i.e., G′ =

⋃
X∈M′

φ
G[X]. By definition, the cost of φ is∑

X∈Mφ
(|X|−1) =

∑
X∈M′

φ
(|X|−1), which is exactly the number of edges in any spanning

forest of G′. Since any forest on at most k edges without isolated vertices has at most 2k
vertices, we have |V (G′)| ≤ 2k. Every bad edge has both endpoints in V (G′), so the number
of bad edges is at most

(2k
2
)

= 2k2 − k < 2k2. J

I Observation 5. Let φ be a cheapest (T1, T2)-extension of G. Every good component of φ
contains a vertex from T1 ∪ T2.

Proof. Suppose a good component C of φ does not contain any vertex from T1 ∪ T2. We
build a coloring φ′ from φ by changing the color of every vertex in C, leaving the color of
every other vertex unchanged, i.e., φ′(v) = 3 − φ(v) if v ∈ C, and φ′(v) = φ(v) if v /∈ C.
Since φ(v) = φ′(v) for every v ∈ T1 ∪ T2, φ′ is a (T1, T2)-extension of G. Furthermore, every
edge that was good with respect to φ is good with respect to φ′, while every edge in δG(C)
was bad with respect to φ and is good with respect to φ′. Recall that G is assumed to be
connected. Hence there is some vertex v ∈ C which is incident to at least one edge that
was bad with respect to φ. On the other hand, all edges incident to v are good with respect
to φ′. Hence {v} is a monochromatic component of φ′, but {v} was not a monochromatic
component of φ. This means that |Mφ| < |Mφ′ |. This, together with the observation that
the number of edges that are bad with respect to φ′ is not higher than the number of edges

P. Heggernes, P. van ’t Hof, D. Lokshtanov, and C. Paul 225

that were bad with respect to φ, implies that the cost of φ′ is strictly less than the cost of
φ. This contradicts the assumption that φ is a cheapest (T1, T2)-extension of G. J

The next lemma shows that almost all the vertices of Y appear in the same good com-
ponent of any cheapest (T1, T2)-extension φ of G of cost at most k. In fact, we prove that
the same holds if we remove any edge of G.

I Lemma 7. Let uv ∈ E(G) and let φ be a cheapest (T1, T2)-extension of G− uv. If φ has
cost at most k, then there exists exactly one good component C∗ of φ satisfying |Y \C∗| ≤ 2k2,
and every other good component C ′ of φ satisfies |Y ∩ C ′| ≤ 2k2.

Proof. Suppose φ has cost at most k, and let C be a good component of φ. We first show
that either |Y \ C| ≤ 2k2 or |Y ∩ C| ≤ 2k2. Suppose for contradiction that |Y ∩ C| > 2k2

and |Y \ C| > 2k2. We define Y1 to be the smallest of the two sets Y ∩ C and Y \ C, and
Y2 to be any subset of the largest of the two sets such that |Y2| = |Y1|. Note that 2k2 + 1 ≤
|Y1| = |Y2| ≤ |Y |/2. By the definition of a well-connected set, there are |Y1| ≥ 2k2 + 1
vertex-disjoint paths with one endpoint in Y ∩ C and the other in Y \ C. At least 2k2 of
these paths exist in G − uv, and each of those must contain an edge in δG−uv(C). Since
each edge in δG−uv(C) is bad, it follows that φ has at least 2k2 bad edges, contradicting
Observation 4.

Now suppose for contradiction that φ does not have a good component C∗ with |Y \C∗| ≤
2k2. Then |Y ∩ C| ≤ 2k2 for every good component C of φ, as we showed earlier. Since
φ has at most t = |T1| + |T2| good components as a result of Observation 5, at most t 2k2

vertices of Y appear in good components. The fact that the size of Y is much larger than
t 2k2, together with the observation that every vertex of G appears in a good component by
definition, yields the desired contradiction. Hence we know that φ has a good component
C∗ with |Y \ C∗| ≤ 2k2. The uniqueness of C∗ follows from the sizes of Y and C∗, and the
fact that the good components of φ are pairwise disjoint. J

There are two problems with how to exploit the knowledge obtained from Lemma 7.
The first is that, even though we know that almost all the vertices of Y appear in the same
good component together, we do not know exactly which ones do. The second problem is
that we are looking for an edge with both endpoints in the same good component, and Y
could be an independent set and thus not immediately give us an edge to delete. We deal
with both problems by employing the very useful notion of important sets. For two vertices
x, y ∈ V (G), we say that a set X ⊆ V (G) is (x, y)-important if it satisfies the following
three properties: (1) x ∈ X and y /∈ X; (2) G[X] is connected; and (3) there is no X ′ ⊃ X,
y 6∈ X ′ such that dG(X ′) ≤ dG(X) and G[X ′] is connected. The following theorem was first
proved in [4]. We use here the formulation in [19], because that one best fits the purposes
of this paper.

I Theorem 8 ([4, 19]). Let x, y be two vertices in a graph G. For every p ≥ 0, there are
at most 4p (x, y)-important sets X such that dG(X) ≤ p. Furthermore, these important sets
can be enumerated in time 4p · nO(1).

Suppose G − uv has a cheapest (T1, T2)-extension φ of cost at most k for an edge uv ∈
E(G). We will use the important sets together with Lemma 7 to identify vertices in Y which
must be in the unique good component C∗ of φ that contains all but at most 2k2 vertices of
Y . We first build a graph G∗ from G by adding a new vertex y∗ and making y∗ adjacent to
all vertices in Y . We then enumerate all x ∈ T1 ∪ T2 and all (x, y∗)-important sets X in G∗
such that dG∗(X) ≤ 4k2. By Theorem 8, this can be done in time 44k2

nO(1) for each choice

FSTTCS 2011

226 Obtaining a Bipartite Graph by Contracting Few Edges

of x. Finally, we define the set Z to be the union of all enumerated sets X. In other words,

Z = {w ∈ V (G∗) : ∃x ∈ T1∪T2, X ⊆ V (G∗), w ∈ X, dG∗(X) ≤ 4k2, X is (x, y∗)-important}

Observe that, given G and Y , Z can be computed in time t 44k2
nO(1). We will use the set Z

in the following way. First we show that if there is an edge uv ∈ E(G) such that neither u
nor v belongs to Z, then the edge uv is irrelevant. Then we show that such an edge always
exists.

I Lemma 9. Let uv ∈ E(G) such that u /∈ Z and v /∈ Z. Then uv is irrelevant.

Proof. Let φ be a cheapest (T1, T2)-extension of G− uv, and suppose φ has cost at most k.
Let C∗ be a good component of φ such that |Y \C∗| ≤ 2k2. By Lemma 7, such a component
C∗ exists, and every other good component C of φ satisfies |Y ∩ C| ≤ 2k2. We prove that
both u and v are in C∗. Suppose u /∈ C∗. Then u ∈ C for some other good component of φ,
since by definition every vertex belongs to some good component, possibly of size 1. Now
C induces a connected subgraph in G− uv, and all edges leaving C in G− uv are bad with
respect to φ by the definition of a good component. Since φ has less than 2k2 bad edges
by Observation 4, it follows that dG−uv(C) < 2k2, and thus dG(C) ≤ 2k2. Furthermore,
because |Y ∩ C| ≤ 2k2, we have that dG∗(C) ≤ 4k2. Finally, by Observation 5, C must
contain a vertex x ∈ T1 ∪ T2. Hence there must be an (x, y∗)-important set X such that
C ⊆ X and d(X) ≤ 4k2 in G∗. But C ⊆ X ⊆ Z, which implies that u ∈ Z, contradicting
the assumption that u /∈ Z. The proof that v ∈ C∗ is identical. We conclude that both u
and v belong to the good component C∗, and hence, by Observation 3, uv is irrelevant. J

I Lemma 10. G contains an edge uv such that u /∈ Z and v /∈ Z.

Proof. We first prove that dG(Z) ≤ (4k2) t 44k2 and |Z ∩ Y | ≤ (4k2) t 44k2 . For the first
inequality, it suffices to show that dG∗(Z) ≤ (4k2) t 44k2 , because G is a subgraph of G∗.
By Theorem 8, there exist at most 44k2 (x, y∗)-important sets with dG∗(X) ≤ 4k2 for each
x ∈ T1∪T2. Since Z is the union of all those sets over all elements of T1∪T2, and |T1∪T2| ≤ t,
the first inequality follows. To see that |Z ∩ Y | ≤ (4k2) t 44k2 , observe that each (x, y∗)-
important set X in G∗ with dG∗(X) ≤ 4k2 contains at most 4k2 vertices of Y , since each
vertex in Y is a neighbour of y∗.

In order to prove that G contains an edge uv with u /∈ Z and v /∈ Z, we arbitrarily choose
two disjoint subsets Y1, Y2 of Y such that Z∩Y ⊆ Y2 and |Y1| = |Y2| = (4k2) t 44k2 +1. Since
|Y | ≥ 2(4k2) t 44k2 + 2 by assumption and we showed that |Z ∩ Y | ≤ (4k2) t 44k2 , such sets
Y1, Y2 always exist. By the definition of a well-connected set, there are |Y1| = (4k2) t 44k2 +1
vertex-disjoint paths starting in Y1 and ending Y2. For every 1 ≤ i ≤ |Y1|, let uivi be the
first edge on the ith such path, with ui ∈ Y1. Recall that Z ∩ Y ⊆ Y2 by assumption. Since
all of the ui’s are in Y1, none of them are in Z. Thus, each vi that belongs to Z contributes
one to dG(Z), as then uivi ∈ δG(Z). Since we bounded dG(Z) from above by (4k2) t 44k2

at the start of this proof, not every vi can belong to Z. Hence there is an edge uivi with
neither endpoint in Z. J

We are now ready to state the main lemma of this section.

I Lemma 11. Cheap Coloring Extension can be solved in time f(k, t)nO(1).

Proof. Let (G, k, t, T1, T2) be an instance of Cheap Coloring Extension, and let f be an
appropriate function that does not depend on n. We first apply Theorem 4 and the remark
immediately following it to compute, in time f(k, t)nO(1), either a tree-decomposition of G
of width at most 3(4k2) t 44k2 + 3 or a well-connected set Y of size at least 2(4k2) t 44k2 + 2.

P. Heggernes, P. van ’t Hof, D. Lokshtanov, and C. Paul 227

If we get a tree-decomposition of small width, we apply Lemma 6 to solve the problem in
additional time f(k, t)n. If we find a well-connected set Y , we continue to find an irrelevant
edge e ∈ E(G) and delete it from G. Lemmas 9 and 10 guarantee that such an edge always
exists. In order to find e, we first compute the set Z. We already argued that this can be
done in time f(k, t)nO(1) if G and Y are given. We can find an irrelevant edge as explained
in the proof of Lemma 10 in additional polynomial time, since this amounts to computing
Z ∩ Y , choosing Y2 to contain the whole intersection and as many more vertices as needed
to obtain |Y2| = (4k2) t 44k2 +1, choosing Y1 to be any subset of Y \Y2 such that |Y1| = |Y2|,
and checking all edges leaving Y1 to find one whose endpoints do not belong to Z. The total
running time of this whole procedure is clearly f(k, t)nO(1).

After an irrelevant edge e is deleted from G, we run the whole procedure on (G −
e, k, t, T1, T2). This can be repeated at most |E(G)| = nO(1) times, and hence the total
running time f(k, t)nO(1) follows. J

Our main result immediately follows from Lemmas 1, 2, 3, and 11.

I Theorem 12. Bipartite Contraction is fixed parameter tractable when parameterized
by k.

We end this section with a remark on the running time. If we use Lemma 6 in the proof
of Lemma 11, then the parameter dependence of the whole algorithm is dominated by a very
large function in k [3]. However, as we remarked after Lemma 6, we can obtain a running
time of (4O(k2))4O(k2)

n = 22O(k2)
n for the small treewidth case in the proof of Lemma 11.

This is because the treewidth of the instance at hand is 44k2
kO(1) = 44k2+O(log k) = 4O(k2)

when the small treewidth case applies. This gives a total running time of of 22O(k2)
nO(1) for

our algorithm for Bipartite Contraction.

5 Concluding Remarks

We showed that Bipartite Contraction is fixed parameter tractable. A highly relevant
question is whether this problem admits a polynomial kernel, i.e., a polynomial time algo-
rithm that transforms an instance (G, k) into an equivalent instance (G′, k′) of size g(k),
where g is a polynomial in k. Very recently, Kratsch and Wahlström [17] announced that
the problems OCT and Edge Bipartization admit randomized polynomial kernels, which
can be obtained using a novel kernelization approach based on matroid theory.

We conclude with the following question: Can some of the algorithms that currently use
Robertson-Seymour machinery to find an irrelevant vertex, be modified in such a way that
they find an irrelevant vertex using p-connected sets instead?

References
1 T. Asano and T. Hirata. Edge-contraction problems. Journal of Computer and System

Sciences, 26:197–208, 1983.
2 A. E. Brouwer and H. J. Veldman. Contractibility and NP-completeness. Journal of Graph

Theory, 11:71–79, 1987.
3 B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.

Information and Computation, 85:12–75, 1990.
4 J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum node

multiway cut problem. Algorithmica, 55(1):1–13, 2009.
5 J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm for the

directed feedback vertex set problem. Journal of the ACM, 55(5), 2008.

FSTTCS 2011

228 Obtaining a Bipartite Graph by Contracting Few Edges

6 E. Demaine, M. Hajiaghayi and K. Kawarabayashi. Decomposition, approximation, and
coloring of odd-minor-free graphs. In Proceedings of SODA 2010, 329–344, ACM-SIAM.

7 R. Diestel, K. Yu. Gorbunov, T. R. Jensen and C. Thomassen. Highly connected sets and
the excluded grid theorem. Journal of Combinatorial Theory, Series B, 75:61–73, 1999.

8 R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer
Science, Springer-Verlag, 1999.

9 J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Compression-based fixed-
parameter algorithms for feedback vertex set and edge bipartization. Journal of Computer
and System Sciences, 72:1386–1396, 2006.

10 F. Hüffner. Algorithm engineering for optimal graph bipartization. Journal of Graph Algo-
rithms and Applications, 13(2):77–98, 2009.

11 R.M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Com-
putations, 85–103, Plenum Press, New York, 1972.

12 K. Kawarabayashi. Planarity allowing few error vertices in linear time. In Proceedings of
FOCS 2009, 639–648, IEEE.

13 K. Kawarabayashi. An improved algorithm for finding cycles through elements. In Proceed-
ings of IPCO 2008, LNCS 5035:374–384, Springer.

14 K. Kawarabayashi and B. A. Reed. An (almost) linear time algorithm for odd cycles
transversal. In Proceedings of SODA 2010, 365–378, ACM-SIAM.

15 K. Kawarabayashi and B. A. Reed. Odd cycle packing. In Proceedings of STOC 2010,
695–704, ACM.

16 K. Kawarabayashi and P. Wollan. A simpler algorithm and shorter proof for the graph
minor decomposition. In Proceedings of STOC 2010, 687–694, ACM.

17 S. Kratsch and M. Wahlström. Compression via matroids: a randomized polynomial kernel
for Odd Cycle Transversal. Manuscript available as CoRR abs/1107.3068.

18 A. Levin, D. Paulusma, and G. J. Woeginger. The computational complexity of graph
contractions I: polynomially solvable and NP-complete cases. Networks, 51:178–189, 2008.

19 D. Lokshtanov and D. Marx Clustering with local restrictions. In Proceedings of ICALP
2011, LNCS 6755:785–797, Springer.

20 D. Marx. Parameterized graph separation problems. Theoretical Computer Science,
351(3):394–406, 2006.

21 D. Marx and I. Razgon. Fixed-parameter tractability of multicut parameterized by the size
of the cutset. In Proceedings of STOC 2011, 469–478, ACM.

22 R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
23 I. Razgon and B. O’Sullivan. Almost 2-SAT is fixed-parameter tractable. Journal of Com-

puter and System Sciences, 75(8):435–450, 2009.
24 B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations Research

Letters, 32:299–301, 2004.
25 N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. Journal

of Combinatorial Theory, Series B, 63:65–110, 1995.
26 N. Robertson and P. D. Seymour. Graph Minors. XXII. Irrelevant vertices in linkage prob-

lems. Submitted.
27 T. Watanabe, T. Ae, and A. Nakamura. On the removal of forbidden graphs by edge-

deletion or edge-contraction. Discrete Applied Mathematics, 3:151–153, 1981.
28 T. Watanabe, T. Ae, and A. Nakamura. On the NP-hardness of edge-deletion and edge-

contraction problems. Discrete Applied Mathematics, 6:63–78, 1983.
29 S. Wernicke. On the algorithmic tractability of single nucleotide polymorphism (SNP) anal-

ysis and related problems. Diplomarbeit, WSI für Informatik, Universität Tübingen, 2003.

Simultaneously Satisfying Linear Equations Over
F2: MaxLin2 and Max-r-Lin2 Parameterized
Above Average
Robert Crowston1, Michael Fellows2, Gregory Gutin1, Mark
Jones1, Frances Rosamond2, Stéphan Thomassé3, and Anders Yeo1

1 Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

2 Charles Darwin University
Darwin, Northern Territory 0909 Australia

3 LIRMM-Université Montpellier II
34392 Montpellier Cedex, France

Abstract
In the parameterized problem MaxLin2-AA[k], we are given a system with variables x1, . . . , xn

consisting of equations of the form
∏

i∈I xi = b, where xi, b ∈ {−1, 1} and I ⊆ [n], each equation
has a positive integral weight, and we are to decide whether it is possible to simultaneously satisfy
equations of total weight at least W/2 + k, where W is the total weight of all equations and k is
the parameter (if k = 0, the possibility is assured). We show that MaxLin2-AA[k] has a kernel
with at most O(k2 log k) variables and can be solved in time 2O(k log k)(nm)O(1). This solves an
open problem of Mahajan et al. (2006).

The problem Max-r-Lin2-AA[k, r] is the same as MaxLin2-AA[k] with two differences:
each equation has at most r variables and r is the second parameter. We prove a theorem
on Max-r-Lin2-AA[k, r] which implies that Max-r-Lin2-AA[k, r] has a kernel with at most
(2k − 1)r variables, improving a number of results including one by Kim and Williams (2010).
The theorem also implies a lower bound on the maximum of a function f : {−1, 1}n → R whose
Fourier expansion (which is a multilinear polynomial) is of degree r. We show applicability of
the lower bound by giving a new proof of the Edwards-Erdős bound (each connected graph on n

vertices and m edges has a bipartite subgraph with at least m/2+(n−1)/4 edges) and obtaining
a generalization.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases MaxLin; fixed-parameter tractability; kernelization; pseudo-boolean func-
tions

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.229

1 Introduction

1.1 MaxLin2-AA and Max-r-Lin2-AA. While MaxSat and its special case Max-r-Sat
have been widely studied in the literature on algorithms and complexity for many years,
MaxLin2 and its special case Max-r-Lin2 are less well known, but Håstad [24] succinctly
summarized the importance of these two problems by saying that they are “as basic as
satisfiability.” These problems provide important tools for the study of constraint satisfaction
problems such as MaxSat and Max-r-Sat since constraint satisfaction problems can often
be reduced to MaxLin2 or Max-r-Lin2, see, e.g., [1, 2, 10, 11, 24, 26]. Accordingly, in the
last decade, MaxLin2 and Max-r-Lin2 have attracted significant attention in algorithmics.

© R. Crowston, M. Fellows, G. Gutin, M. Jones, F. Rosamond, S. Thomassé, and A. Yeo;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 229–240

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.229
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

230 Simultaneously Satisfying Linear Equations

The problem MaxLin2 can be stated as follows. We are given a system of m equations in
variables x1, . . . , xn, where each equation is

∏
i∈Ij

xi = bj and xi, bj ∈ {−1, 1}, j = 1, . . . , m,
and where each equation is assigned a positive integral weight wj . We are required to find
an assignment of values to the variables in order to maximize the total weight of the satisfied
equations.

Let W be the sum of the weights of all equations in S and let sat(S) be the maximum
total weight of equations that can be satisfied simultaneously. To see that W/2 is a tight
lower bound on sat(S) choose assignments to the variables independently and uniformly at
random. Then W/2 is the expected weight of satisfied equations (as the probability of each
equation being satisfied is 1/2) and thus W/2 is a lower bound; to see the tightness consider
a system consisting of pairs of equations of the form

∏
i∈I xi = −1,

∏
i∈I xi = 1 of the same

weight, for some non-empty sets I ⊆ [n]. This leads to the following decision problem:

MaxLin2-AA
Instance: A system S of equations

∏
i∈Ij

xi = bj , where xi, bj ∈ {−1, 1}, j = 1, . . . , m

and where each equation is assigned a positive integral weight wj ; and a nonnegative
integer k.
Question: sat(S) ≥W/2 + k?

The maximization version of MaxLin2-AA (maximize k for which the answer is Yes), has
been studied in the literature on approximation algorithms, cf. [24, 25]. These two papers
also studied the following important special case of MaxLin2-AA:

Max-r-Lin2-AA
Instance: A system S of equations

∏
i∈Ij

xi = bj , where xi, bj ∈ {−1, 1}, |Ij | ≤ r,
j = 1, . . . , m; equation j is assigned a positive integral weight wj , and a nonnegative
integer k.
Question: sat(S) ≥W/2 + k?

Håstad [24] proved that, as a maximization problem, Max-r-Lin2-AA with any fixed
r ≥ 3 (and hence MaxLin2-AA) cannot be approximated within a constant factor c for
any c > 1 unless P=NP (that is, the problem is not in APX unless P=NP). Håstad and
Venkatesh [25] obtained some approximation algorithms for the two problems. In particular,
they proved that for Max-r-Lin2-AA there exists a constant c > 1 and a randomized
polynomial-time algorithm that, with probability at least 3/4, outputs an assignment with
an approximation ratio of at most cr

√
m.

The problem MaxLin2-AA was first studied in the context of parameterized com-
plexity by Mahajan et al. [28] who naturally took k as the parameter1. We will denote
this parameterized problem by MaxLin2-AA[k]. Despite some progress [10, 11, 22], the
complexity of MaxLin2-AA[k] has remained prominently open in the research area of
“parameterizing above guaranteed bounds” that has attracted much recent attention (cf.
[1, 7, 10, 11, 22, 26, 28]) and that still poses well-known and longstanding open problems
(e.g., how difficult is it to determine if a planar graph has an independent set of size at
least (n/4) + k?). One can parameterize Max-r-Lin2-AA by k for any fixed r (denoted by
Max-r-Lin2-AA[k]) or by both k and r (denoted by Max-r-Lin2-AA[k, r])2.

1 We provide basic definitions on parameterized algorithms and complexity in Subsection 1.4 below.
2 While in the preceding literature only MaxLin2-AA[k] was considered, we introduce and study Max-

r-Lin2-AA[k, r] in the spirit of Multivariate Algorithmics as outlined by Fellows [18] and Niedermeier
[30].

R. Crowston, M. Fellows, G. Gutin, M. Jones, F. Rosamond, S. Thomassé, and A. Yeo 231

Define the excess for x0 = (x0
1, . . . , x0

n) ∈ {−1, 1}n over S to be

εS(x0) =
m∑

j=1
cj

∏
i∈Ij

x0
i , where cj = wjbj .

Note that εS(x0) is the total weight of equations satisfied by x0 minus the total weight of
equations falsified by x0. The maximum possible value of εS(x0) is the maximum excess
of S. Håstad and Venkatesh [25] initiated the study of the excess of a system of equations
and further research on the topic was carried out by Crowston et al. [11] who concentrated
on MaxLin2-AA. In this paper, we study the maximum excess for Max-r-Lin2-AA. Note
that the excess is a pseudo-boolean function [9], i.e., a function that maps {−1, 1}n to the
set of reals.

1.2 Main Results and Structure of the Paper. Roughly speaking, a kernelization is a
polynomial-time algorithm that transforms every instance I of the parameterized decision
problem under consideration into an equivalent instance (called a kernel) I ′ of the same
problem such that both the size of I ′ and the value of its parameter are bounded from
above by a function in the parameter of I only.

Hereafter, O(1) will denote an arbitrary absolute constant.
The main results of this paper are Theorems 6 and 9 outlined below. In 2006 Mahajan

et al. [28] introduced MaxLin2-AA[k] and asked what is its complexity. We answer this
question in Theorem 6 by showing that MaxLin2-AA[k] admits a kernel with at most
O(k2 log k) variables. Note that, in our kernel, only the number of variables is bounded
from above by a polynomial in k. For the number of equations, we obtain an upper bound
exponential in k. These two results imply that MaxLin2-AA[k] admits a kernel and, hence,
is fixed-parameter tractable (see Section 1.4). The proof of Theorem 6 is based on the main
result in [11] and on a new algorithm for MaxLin2-AA[k] of complexity n2k(nm)O(1). We
also prove that MaxLin2-AA[k] can be solved in time 2O(k log k)(nm)O(1) (Corollary 7).

The other main result of this paper, Theorem 9, gives a sharp lower bound on the
maximum excess for Max-r-Lin2-AA as follows. Let S be an irreducible system (i.e., a
system that cannot be reduced using Rule 1 or 2 defined below) and suppose that each
equation contains at most r variables. Let n ≥ (k − 1)r + 1 and let wmin be the minimum
weight of an equation of S. Then, in time mO(1), we can find an assignment x0 to variables
of S such that εS(x0) ≥ k · wmin.

In Section 2, we give some reduction rules for Max-r-Lin2-AA, describe an algorithm
H introduced by Crowston et al. [11] and give some properties of the maximum excess,
irreducible systems and Algorithm H. In Section 3, we prove Theorem 6 and Corollary 7.
A key tool in our proof of Theorem 9 is a lemma on sum-free subsets in a set of vectors
from Fn

2 . The lemma and Theorem 9 are proved in Section 4. We prove several corollaries of
Theorem 9 in Section 5. The corollaries are on parameterized and approximation algorithms
as well as on lower bounds for the maxima of pseudo-boolean functions and their applications
in graph theory. Our results on parameterized algorithms improve a number of previously
known results including those of Kim and Williams [26]. In Section 6, we discuss some recent
results and open problems.

1.3 Corollaries of Theorem 9. The following results have been obtained for Max-r-Lin2-
AA[k] when r is fixed and for Max-r-Lin2-AA[k, r]. Gutin et al. [22] proved that Max-r-
Lin2-AA[k] is fixed-parameter tractable and, moreover, has a kernel with n ≤ m = O(k2).
This kernel is, in fact, a kernel of Max-r-Lin2-AA[k, r] with n ≤ m = O(9rk2). This kernel
for Max-r-Lin2-AA[k] was improved by Crowston et al. [11], with respect to the number of

FSTTCS 2011

232 Simultaneously Satisfying Linear Equations

variables, to n = O(k log k). For Max-r-Lin2-AA[k], Kim and Williams [26] were the first
to obtain a kernel with a linear number of variables, i.e., n = O(k). This kernel is, in fact, a
kernel with n ≤ r(r + 1)k for Max-r-Lin2-AA[k, r]. In this paper, we obtain a kernel with
n ≤ (2k−1)r for Max-r-Lin2-AA[k, r]. As an easy consequence of this result we show that
the maximization problem Max-r-Lin2-AA is in APX if restricted to m = O(n) and the
weight of each equation is bounded by a constant. This is in the sharp contrast with the
fact mentioned above that for each r ≥ 3, Max-r-Lin2-AA is not in APX.

Fourier analysis of pseudo-boolean functions, i.e., functions f : {−1, 1}n → R, has been
used in many areas of computer science (cf. [1, 11, 31]). In Fourier analysis, the Boolean
domain is often assumed to be {−1, 1}n rather than more usual {0, 1}n and we will follow
this assumption in our paper. Here we use the following well-known and easy to prove fact
(see, e.g., [31]): each function f : {−1, 1}n → R can be uniquely written as

f(x) = f̂(∅) +
∑
I∈F

f̂(I)
∏
i∈I

xi. (1)

where F ⊆ {I : ∅ 6= I ⊆ [n]}, [n] = {1, 2, . . . , n} and f̂(I) are non-zero reals. Formula (1)
is the Fourier expansion of f and f̂(I) are the Fourier coefficients of f . The right hand side
of (1) is a polynomial and the degree max{|I| : I ∈ F} of this polynomial will be called the
degree of f . Let A be a (0, 1)-matrix with n rows and |F| columns and with entries aij such
that aij = 1 if and only if term j in (1) contains xi.

In Section 5, we obtain the following lower bound on the maximum of a pseudo-boolean
function f of degree r:

max
x

f(x) ≥ f̂(∅) + b(rankA + r − 1)/rc ·min{|f̂(I)| : I ∈ F}, (2)

where rankA is the rank of A over F2. (Note that since rankA does not depend on the order
of the columns in A, we may order the terms in (1) arbitrarily.)

To demonstrate the combinatorial usefulness of (2), we apply it to obtain a short proof of
the well-known lower bound of Edwards-Erdős on the maximum size of a bipartite subgraph
in a graph (the Max Cut problem). Erdős [16] conjectured and Edwards [15] proved that
every connected graph with n vertices and m edges has a bipartite subgraph with at least
m/2 + (n− 1)/4 edges. For short graph-theoretical proofs, see, e.g., Bollobás and Scott [7]
and Erdős et al. [17]. We consider the Balanced Subgraph problem [3] that generalizes
Max Cut and show that our proof of the Edwards-Erdős bound can be easily extended
to Balanced Subgraph. By contrast, the graph-theoretical proofs of the Edwards-Erdős
bound do not seem to be easily extendable to Balanced Subgraph.
1.4 Parameterized Complexity and (Bi)kernelization. A parameterized problem is a
subset L ⊆ Σ∗ ×N over a finite alphabet Σ. L is fixed-parameter tractable (FPT, for short)
if membership of an instance (x, k) in Σ∗×N can be decided in time f(k)|x|O(1), where f is
a function of the parameter k only. If membership can be decided in time |x|O(f(k)) then L

belongs to the parameterized complexity class XP. It is known that FPT is a proper subset
of XP [14]. Analogs of NP are provided by the classes of parameterized problems of the
W[t] Hierarchy giving the tower: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP. For the definition of the
classes W[t], see, e.g., [14, 19].

Given a pair L, L′ of parameterized problems, a bikernelization from L to L′ is a polynomial-
time algorithm that maps an instance (x, k) to an instance (x′, k′) (the bikernel) such that
(i) (x, k) ∈ L if and only if (x′, k′) ∈ L′, (ii) k′ ≤ f(k), and (iii) |x′| ≤ g(k) for some
functions f and g. The function g(k) is called the size of the bikernel. The notion of a
bikernelization was introduced in [1], where it was observed that a parameterized problem

R. Crowston, M. Fellows, G. Gutin, M. Jones, F. Rosamond, S. Thomassé, and A. Yeo 233

L is fixed-parameter tractable if and only if it is decidable and admits a bikernelization
to a parameterized problem L′. A kernelization of a parameterized problem L is simply a
bikernelization from L to itself; the bikernel is the kernel, and g(k) is the size of the kernel.
Due to the importance of polynomial-time kernelization algorithms in applied multivariate
algorithmics, low degree polynomial size kernels and bikernels are of considerable interest,
and the subject has developed substantial theoretical depth, cf. [1, 4, 5, 6, 13, 19, 20, 21, 22].

The case of several parameters k1, . . . , kt can be reduced to the one parameter case by
setting k = k1 + · · ·+ kt, see, e.g., [13].

2 Maximum Excess, Irreducible Systems and Algorithm H

Recall that an instance of MaxLin2-AA consists of a system S of equations
∏

i∈Ij
xi = bj ,

j ∈ [m], where ∅ 6= Ij ⊆ [n], bj ∈ {−1, 1}, xi ∈ {−1, 1}. An equation
∏

i∈Ij
xi = bj has an

integral positive weight wj . Recall that the excess for x0 = (x0
1, . . . , x0

n) ∈ {−1, 1}n over S

is εS(x0) =
∑m

j=1 cj

∏
i∈Ij

x0
i , where cj = wjbj . The excess εS(x0) is the total weight of

equations satisfied by x0 minus the total weight of equations falsified by x0. The maximum
possible value of εS(x0) is the maximum excess of S.

I Remark 1. Observe that the answer to MaxLin2-AA is Yes if and only if the maximum
excess is at least 2k.

I Remark 2. The excess εS(x) is a pseudo-boolean function and its Fourier expression is
εS(x) =

∑m
j=1 cj

∏
i∈Ij

xi. Moreover, observe that every pseudo-boolean function f(x) =∑
I∈F f̂(I)

∏
i∈I xi (where f̂(∅) = 0) is the excess over the system

∏
i∈I xi = bI , I ∈ F ,

where bI = 1 if f̂(I) > 0 and bI = −1 if f̂(I) < 0, with weights |f̂(I)|. Thus, studying the
maximum excess over a MaxLin2-AA-system (with real weights) is equivalent to studying
the maximum of a pseudo-boolean function.

Consider two reduction rules for MaxLin2 studied in [22]. Rule 1 was studied before in
[25].

I Reduction Rule 1. If we have, for a subset I of [n], an equation
∏

i∈I xi = b′I with weight
w′I , and an equation

∏
i∈I xi = b′′I with weight w′′I , then we replace this pair by one of these

equations with weight w′I + w′′I if b′I = b′′I and, otherwise, by the equation whose weight is
bigger, modifying its new weight to be the difference of the two old ones. If the resulting
weight is 0, we delete the equation from the system.

Hereafter, rankA will denote the rank of A over F2.

I Reduction Rule 2. Let A be the matrix over F2 corresponding to the set of equations
in S, such that aji = 1 if i ∈ Ij and 0, otherwise. Let t = rankA and suppose columns
ai1 , . . . , ait of A are linearly independent. Then delete all variables not in {xi1 , . . . , xit

} from
the equations of S.

I Lemma 1. [22] Let S′ be obtained from S by Rule 1 or 2. Then the maximum excess
of S′ is equal to the maximum excess of S. Moreover, S′ can be obtained from S in time
polynomial in n and m.

If we cannot change a weighted system S using Rules 1 and 2, we call it irreducible.

I Lemma 2. Let S′ be a system obtained from S by first applying Rule 1 as long as possible
and then Rule 2 as long as possible. Then S′ is irreducible.

FSTTCS 2011

234 Simultaneously Satisfying Linear Equations

Proof. Let S∗ denote the system obtained from S by applying Rule 1 as long as possible.
Without loss of generality, assume that x1 6∈ {xi1 , . . . , xit

} (see the description of Rule 2)
and thus Rule 2 removes x1 from S∗. To prove the lemma it suffices to show that after x1
removal no pair of equations has the same left hand side. Suppose that there is a pair of
equations in S∗ which has the same left hand side after x1 removal; let

∏
i∈I′ xi = b′ and∏

i∈I′′ xi = b′′ be such equations and let I ′ = I ′′ ∪ {1}. Then the entries of the first column
of A, a1, corresponding to the pair of equations are 1 and 0, but in all the other columns of
A the entries corresponding to the the pair of equations are either 1,1 or 0,0. Thus, a1 is
independent from all the other columns of A, a contradiction. J

Let S be an irreducible system of MaxLin2-AA. Consider the following algorithm in-
troduced in [11]. We assume that, in the beginning, no equation or variable in S is marked.

Algorithm H
While the system S is nonempty do the following:
1. Choose an equation

∏
i∈I xi = b and mark a variable xl such that l ∈ I.

2. Mark this equation and delete it from the system.
3. Replace every equation

∏
i∈I′ xi = b′ in the system containing xl by

∏
i∈I∆I′ xi = bb′,

where I∆I ′ is the symmetric difference of I and I ′ (the weight of the equation is unchanged).
4. Apply Reduction Rule 1 to the system.

The maximum H-excess of S is the maximum possible total weight of equations marked
by H for S taken over all possible choices in Step 1 of H. The following lemma proved by
Crowston et al. [11] indicates the potential power of H.

I Lemma 3. Let S be an irreducible system. Then the maximum excess of S equals its
maximum H-excess. Furthermore, for any set of equations marked by Algorithm H, in
polynomial time, we can find an assignment of excess at least the total weight of marked
equations.

3 MaxLin2-AA

The following two theorems provide a basis for proving Theorem 6, the main result of this
section.

I Theorem 4. There exists an n2k(nm)O(1)-time algorithm for MaxLin2-AA[k] that re-
turns an assignment of excess of at least 2k if one exists, and returns no otherwise.

Proof. Suppose we have an instance L of MaxLin2-AA[k] that is reduced by Rules 1 and
2, and that the maximum excess of L is at least 2k. Let A be the matrix introduced in
Rule 2. Pick n equations e1, . . . , en such that their rows in A are linearly independent. An
assignment of excess at least 2k must either satisfy one of these equations, or falsify them
all. If they are all falsified, then the system of equations ē1, . . . , ēn, where each ēi is ei with
the changed right hand side, has a unique solution, an assignment of values to x1, . . . , xn.
If this assignment does not give excess at least 2k for L, then any assignment that leads to
excess at least 2k must satisfy at least one of e1, . . . , en. Thus, by Lemma 3, algorithm H
can mark one of these equations and achieve an excess of at least 2k.

This gives us the following depth-bounded search tree. At each node N of the tree,
reduce the system by Rules 1 and 2, and let n′ be the number of variables in the reduced

R. Crowston, M. Fellows, G. Gutin, M. Jones, F. Rosamond, S. Thomassé, and A. Yeo 235

system. Then find n′ equations e1, . . . , en′ corresponding to linearly independent vectors.
Find an assignment of values to x1, . . . , xn′ that falsifies all of e1, . . . , en′ . Check whether
this assignment achieves excess of at least 2k − w∗, where w∗ is total weight of equations
marked by H in all predecessors of N . If it does, then return the assignment and stop
the algorithm. Otherwise, split into n′ branches. In the i’th branch, run an iteration of
H marking equation ei. Then repeat this algorithm for each new node. Whenever the
total weight of marked equations is at least 2k, return the suitable assignment. Clearly, the
algorithm will terminate without an assignment if the maximum excess of L is less than 2k.

All the operations at each node take time (nm)O(1), and there are less than n2k+1 nodes
in the search tree. Therefore this algorithm takes time n2k(nm)O(1). J

I Theorem 5. [11] Let S be an irreducible system of MaxLin2-AA[k] and let k ≥ 2. If
k ≤ m ≤ 2n/(k−1) − 2, then the maximum excess of S is at least k. Moreover, we can find
an assignment with excess of at least k in time mO(1).

I Theorem 6. The problem MaxLin2-AA[k] has a kernel with at most O(k2 log k) vari-
ables.

Proof. Let L be an instance of MaxLin2-AA[k] and let S be the system of L with m

equations and n variables. We may assume that S is irreducible. Let the parameter k be
an arbitrary positive integer.

If m < 2k then n < 2k = O(k2 log k). If 2k ≤ m ≤ 2n/(2k−1) − 2 then, by Theorem 5
and Remark 1, the answer to L is yes and the corresponding assignment can be found in
polynomial time. If m ≥ n2k then, by Theorem 4, we can solve L in polynomial time.

Finally we consider the case 2n/(2k−1) − 1 ≤ m ≤ n2k − 1. Hence, n2k ≥ 2n/(2k−1).

Therefore, 4k2 ≥ 2 + n/ log n ≥
√

n and n ≤ (2k)4. Hence, n ≤ 4k2 log n ≤ 4k2 log(16k4) =
O(k2 log k).

Since S is irreducible, m < 2n and thus we have obtained the desired kernel. J

I Corollary 7. The problem MaxLin2-AA[k] can be solved in time 2O(k log k)(nm)O(1).

Proof. Let L be an instance of MaxLin2-AA[k]. By Theorem 6, in time (nm)O(1) either
we solve L or we obtain a kernel with at most O(k2 log k) variables. In the second case, we
can solve the reduced system (kernel) by the algorithm of Theorem 4 in time [O(k2 log k)]2k

= [O(k2 log k)m]O(1) = 2O(k log k)mO(1). Thus, the total time is 2O(k log k)(nm)O(1). J

4 Max-r-Lin2-AA

In order to prove Theorem 9, we will need the following lemma on vectors in Fn
2 . Let M be

a set of m vectors in Fn
2 and let A be a m × n-matrix in which the vectors of M are rows.

Using Gaussian elimination on A one can find a maximum size linearly independent subset
of M in polynomial time [27]. Let K and M be sets of vectors in Fn

2 such that K ⊆M . We
say K is M -sum-free if no sum of two or more distinct vectors in K is equal to a vector in
M . Observe that K is M -sum-free if and only if K is linearly independent and no sum of
vectors in K is equal to a vector in M\K.

I Lemma 8. Let M be a set of vectors in Fn
2 such that M contains a basis of Fn

2 . Suppose
that each vector of M contains at most r non-zero coordinates. If k ≥ 1 is an integer and
n ≥ r(k − 1) + 1, then in time |M |O(1), we can find a subset K of M of k vectors such that
K is M -sum-free.

FSTTCS 2011

236 Simultaneously Satisfying Linear Equations

Proof. Let 1 = (1, . . . , 1) be the vector in Fn
2 in which every coordinate is 1. Note that

1 6∈ M. By our assumption M contains a basis of Fn
2 and we may find such a basis in

polynomial time (using Gaussian elimination, see above). We may write 1 as a sum of some
vectors of this basis B. This implies that 1 can be expressed as follows: 1 = v1 +v2 +· · ·+vs,
where {v1, . . . , vs} ⊆ B and v1, . . . , vs are linearly independent, and we can find such an
expression in polynomial time.

For each v ∈ M\{v1, . . . , vs}, consider the set Sv = {v, v1, . . . , vs}. In polynomial time,
we may check whether Sv is linearly independent. Consider two cases:

Case 1: Sv is linearly independent for each v ∈ M\{v1, . . . , vs}. Then {v1, . . . , vs} is M -
sum-free (here we also use the fact that {v1, . . . , vs} is linearly independent). Since each
vi has at most r positive coordinates, we have sr ≥ n > r(k − 1). Hence, s > k − 1
implying that s ≥ k. Thus, {v1, . . . , vk} is the required set K.

Case 2: Sv is linearly dependent for some v ∈ M\{v1, . . . , vs}. Then we can find (in poly-
nomial time) I ⊆ [s] such that v =

∑
i∈I vi. Thus, we have a shorter expression for 1:

1 = v′1 + v′2 + · · ·+ v′s′ , where {v′1, . . . , v′s′} = {v} ∪ {vi : i /∈ I}. Note that {v′1, . . . , v′s′}
is linearly independent.

Since s ≤ n and Case 2 produces a shorter expression for 1, after at most n iterations of
Case 2 we will arrive at Case 1. J

Now we can prove the main result of this section.

I Theorem 9. Let S be an irreducible system and suppose that each equation contains at
most r variables. Let n ≥ (k − 1)r + 1 and let wmin be the minimum weight of an equation
of S. Then, in time mO(1), we can find an assignment x0 to variables of S such that
εS(x0) ≥ k · wmin.

Proof. Consider a set M of vectors in Fn
2 corresponding to equations in S as follows: for

each equation
∏

i∈I xi = b in S, define a vector v = (v1, . . . , vn) ∈ M , where vi = 1 if i ∈ I

and vi = 0, otherwise.
As S is reduced by Rule 2 we have that M contains a basis for Fn

2 , and each vector
contains at most r non-zero coordinates and n ≥ (k−1)r + 1. Therefore, using Lemma 8 we
can find an M -sum-free set K of k vectors. Let {ej1 , . . . , ejk

} be the corresponding set of
equations. Run Algorithm H, choosing at Step 1 an equation of S from {ej1 , . . . , ejk

} each
time, and let S′ be the resulting system. Algorithm H will run for k iterations of the while
loop as no equation from {ej1 , . . . , ejk

} will be deleted before it has been marked.
Indeed, suppose that this is not true. Then for some ejl

and some other equation e in S,
after applying Algorithm H for at most l−1 iterations ejl

and e contain the same variables.
Thus, there are vectors vj ∈ K and v ∈ M and a pair of nonintersecting subsets K ′ and
K ′′ of K \ {v, vj} such that vj +

∑
u∈K′ u = v +

∑
u∈K′′ u. Thus, v = vj +

∑
u∈K′∪K′′ u,

contradicting the definition of K.

Thus, by Lemma 3, we are done. J

I Remark 3. To see that the inequality n ≥ r(k − 1) + 1 in the theorem is best possible
assume that n = r(k − 1) and consider a partition of [n] into k − 1 subsets N1, . . . , Nk−1,
each of size r. Let S be the system consisting of subsystems Si, i ∈ [k − 1], such that a
subsystem Si is comprised of equations

∏
i∈I xi = −1 of weight 1 for every I such that

∅ 6= I ⊆ Ni. Now assume without loss of generality that Ni = [r]. Observe that the
assignment (x1, . . . , xr) = (1, . . . , 1) falsifies all equations of Si but by setting xj = −1 for
any j ∈ [r] we satisfy the equation xj = −1 and turn the remaining equations into pairs

R. Crowston, M. Fellows, G. Gutin, M. Jones, F. Rosamond, S. Thomassé, and A. Yeo 237

of the form
∏

i∈I xi = −1 and
∏

i∈I xi = 1. Thus, the maximum excess of Si is 1 and the
maximum excess of S is k − 1.
I Remark 4. It is easy to check that Theorem 9 holds when the weights of equations in S

are real numbers, not necessarily integers.

5 Applications of Theorem 9

I Theorem 10. The problem Max-r-Lin2-AA[k, r] has a kernel with at most (2k − 1)r
variables.

Proof. Let T be the system of an instance of Max-r-Lin2-AA[k, r]. After applying Rules
1 and 2 to T as long as possible, we obtain a new system S which is irreducible. Let n

be the number of variables in S and observe that the number of variables in an equation
in S is bounded by r (as in T). If n ≥ (2k − 1)r + 1, then, by Theorem 9 and Remark 1,
S is a Yes-instance of Max-r-Lin2-AA[k, r] and, hence, by Lemma 1, S and T are both
Yes-instances of Max-r-Lin2-AA[k, r]. Otherwise n ≤ (2k− 1)r and since S is irreducible
the number m of equations in S is less than 2n. Thus, we have the required kernel. J

I Corollary 11. The maximization problem Max-r-Lin2-AA is in APX if restricted to
m = O(n) and the weight of each equation bounded by a fixed constant.

Proof. It follows from Theorem 9 and Remark 1 that the answer to Max-r-Lin2-AA, as a
decision problem, is Yes as long as 2k ≤ b(n + r − 1)/rc. This implies approximation ratio
at most W/(2b(n + r − 1)/rc) which is bounded by a constant provided m = O(n) and the
weight of each equation is bounded by a constant (then W = O(n)). J

The (parameterized) Boolean Max-r-Constraint Satisfaction Problem (Max-r-CSP) gen-
eralizes MaxLin2-AA[k, r] as follows: We are given a set Φ of Boolean functions, each
involving at most r variables, and a collection F of m Boolean functions, each f ∈ F being
a member of Φ, and each acting on some subset of the n Boolean variables x1, x2, . . . , xn

(each xi ∈ {−1, 1}). We are to decide whether there is a truth assignment to the n variables
such that the total number of satisfied functions is at least E + k, where E is the average
value of the number of satisfied functions. The parameters are k and r.

Using a bikernelization algorithm described in [1, 11] and our new kernel result, it easy to
see that Max-r-CSP with parameters k and r admits a bikernel with at most (k2r+1 − 1)r
variables. This result improves the corresponding result of Kim and Williams [26] (n ≤
kr(r + 1)2r).

The following result is essentially a corollary of Theorem 9 and Remark 4.

I Theorem 12. Let

f(x) = f̂(∅) +
∑
I∈F

f̂(I)
∏
i∈I

xi (3)

be a pseudo-boolean function of degree r. Then

max
x

f(x) ≥ f̂(∅) + b(rankA + r − 1)/rc ·min{|f̂(I)| : I ∈ F}, (4)

where A is a (0, 1)-matrix with entries aij such that aij = 1 if and only if term j in (3)
contains xi and rankA is the rank of A over F2. One can find an assignment of values to x

satisfying (4) in time (n|F|)O(1).

FSTTCS 2011

238 Simultaneously Satisfying Linear Equations

Proof. By Remark 2 the function f(x) − f̂(∅) =
∑

I∈F f̂(I)
∏

i∈I xi is the excess over the
system

∏
i∈I xi = bI , I ∈ F , where bI = +1 if f̂(I) > 0 and bI = −1 if f̂(I) < 0, with

weights |f̂(I)|. Clearly, Rule 1 will not change the system. Using Rule 2 we can replace the
system by an equivalent one (by Lemma 1) with rankA variables. By Lemma 2, the new
system is irreducible and we can now apply Theorem 9. By this theorem, Remark 2 and
Remark 4, maxx f(x) ≥ f̂(∅) + k∗min{|f̂(I)| : I ∈ F}, where k∗ is the maximum value of k

satisfying rankA ≥ (k − 1)r + 1. It remains to observe that k∗ = b(rankA + r − 1)/rc. J

To give a new proof of the Edwards-Erdős bound, we need the following well-known and
easy-to-prove fact [8]. For a graph G = (V, E), an incidence matrix is a (0, 1)-matrix with
entries me,v, e ∈ E, v ∈ V such that me,v = 1 if and only if v is incident to e.

I Lemma 13. The rank over F2 of an incidence matrix M of a connected graph equals
|V | − 1.

I Theorem 14. Let G = (V, E) be a connected graph with n vertices and m edges. Then G

contains a bipartite subgraph with at least m
2 + n−1

4 edges. Such a subgraph can be found in
polynomial time.

Proof. Let V = {v1, v2, . . . , vn} and let c : V → {−1, 1} be a 2-coloring of G. Observe that
the maximum number of edges in a bipartite subgraph of G equals the maximum number
of properly colored edges (i.e., edges whose end-vertices received different colors) over all 2-
colorings of G. For an edge e = vivj ∈ E consider the following function fe(x) = 1

2 (1−xixj),
where xi = c(vi) and xj = c(vj) and observe that fe(x) = 1 if e is properly colored by c and
fe(x) = 0, otherwise. Thus, f(x) =

∑
e∈E fe(x) is the number of properly colored edges for c.

We have f(x) = m
2 −

1
2

∑
e∈E xixj . By Theorem 12, maxx f(x) ≥ m/2+b(rankA+2−1)/2c/2.

Observe that matrix A in this bound is an incidence matrix of G and, thus, by Lemma 13
rankA = n− 1. Hence, maxx f(x) ≥ m

2 + 1
2b

n
2 c ≥

m
2 + n−1

4 as required. J

This theorem can be extended to the Balanced Subgraph problem [3], where we are
given a graph G = (V, E) in which each edge is labeled either by = or by 6= and we are
asked to find a 2-coloring of V such that the maximum number of edges is satisfied; an edge
labeled by = (6=, resp.) is satisfied if and only if the colors of its end-vertices are the same
(different, resp.).

I Theorem 15. Let G = (V, E) be a connected graph with n vertices and m edges labeled by
either = or 6=. There is a 2-coloring of V that satisfies at least m

2 + n−1
4 edges of G. Such

a 2-coloring can be found in polynomial time.

Proof. Let V = {v1, v2, . . . , vn} and let c : V → {−1, 1} be a 2-coloring of G. Let
xp = c(vp), p ∈ [n]. For an edge vivj ∈ E we set sij = 1 if vivj is labeled by 6= and
sij = −1 if vivj is labeled by =. Then the function 1

2
∑

vivj∈E(1 − sijxixj) counts the
number of edges satisfied by c. The rest of the proof is similar to that in the previous
theorem. J

6 Open Problems

The kernels obtained in Theorems 6 and 10 are not of polynomial size as the number of
equations in the kernels is not bounded by a polynomial in the parameter(s). The existence
of polynomial-size kernels for MaxLin2-AA[k] and Max-r-Lin2-AA[k, r] remains an open
question.

R. Crowston, M. Fellows, G. Gutin, M. Jones, F. Rosamond, S. Thomassé, and A. Yeo 239

Perhaps the kernel obtained in Theorem 6 or the algorithm of Corollary 7 can be improved
if we find a structural characterization of irreducible systems for which the maximum excess
is less than 2k. Such a characterization can be of interest by itself.

Let F be a CNF formula with clauses C1, . . . , Cm of sizes r1, . . . , rm. Since the probability
of Ci being satisfied by a random assignment is 1− 2−ri , the expected (average) number of
satisfied clauses is E =

∑m
i=1(1−2−ri). It is natural to consider the following parameterized

problem MaxSat-AA[k]: decide whether there is a truth assignment that satisfies at least
E +k clauses. When there is a constant r such that |Ci| ≤ r for each i = 1, . . . , m, MaxSat-
AA[k] is denoted by Max-r-Sat-AA[k]. Mahajan et al. [28] asked what is the complexity
of Max-r-Sat-AA[k] and Alon et al. [1] proved that it is fixed-parameter tractable [1]. It
would be interesting to determine the complexity3 of MaxSat-AA[k].

In a graph G = (V, E), a bisection (X, Y) is a partition of V into sets X and Y such
that |X| ≤ |Y | ≤ |X|+ 1. The size of (X, Y) is the number of edges between X and Y . In
Max Bisection, we are given a graph G with n ≥ 2 vertices and m edges and asked to
find a bisection of maximum size. It is not hard to see that dm/2e is a tight lower bound
on the maximum size of a bisection of G. Gutin and Yeo [23] proved that Max Bisection
parameterized above dm/2e has a kernel with O(k2) vertices and O(k3) edges. Gutin and
Yeo [23] also showed that d nm

2(n−1)e is another tight lower bound on the maximum size of a
bisection of G. Clearly, d nm

2(n−1)e ≤ dm/2e. Gutin and Yeo [23] left it as an open problem
to determine the complexity of Max Bisection parameterized above d nm

2(n−1)e.
Finally, the entire area of parameterizing above or below tight guaranteed bounds offers

many challenging open problems in parameterized complexity.

Acknowledgments The research of Crowston, Gutin, Jones and Yeo was partially suppor-
ted by an International Joint grant of Royal Society. Fellows was supported by an Australian
Research Council Professorial Fellowship. Gutin was also supported in part by the IST Pro-
gramme of the European Community, under the PASCAL 2 Network of Excellence. The
research of Rosamond was supported by an Australian Research Council Discovery Project.
The research of Thomassé was partially supported by the AGAPE project (ANR-09-BLAN-
0159).

References

1 N. Alon, G. Gutin, E. J. Kim, S. Szeider, and A. Yeo, Solving MAX-r-SAT above a tight
lower bound. Algorithmica 61(3): 638–655 (2011).

2 N. Alon, G. Gutin and M. Krivelevich. Algorithms with large domination ratio, J. Al-
gorithms 50: 118–131, 2004.

3 S. Böcker, F. Hüffner, A. Truss and M. Wahlström, A faster fixed-parameter approach to
drawing binary tanglegrams. IWPEC 2009, Lect. Notes Comput. Sci. 5917: 38–49, 2009.

4 H. L. Bodlaender, R.G. Downey, M.R. Fellows, and D. Hermelin, On problems without
polynomial kernels. J. Comput. Syst. Sci. 75(8): 423–434, 2009.

5 H.L. Bodlaender, B.M.P. Jansen and S. Kratsch, Cross-Composition: A new technique for
kernelization lower bounds. STACS 2011: 165–176.

6 H. L. Bodlaender, S. Thomassé, and A. Yeo, Kernel bounds for disjoint cycles and disjoint
paths. ESA 2009, Lect. Notes Comput. Sci. 5757: 635–646, 2009.

3 Recently, Crowston et al. [12] determined the complexity of MaxSat-AA[k] by showing that MaxSat-
AA[2] is NP-complete. Thus, MaxSat-AA[k] is not fixed-parameter tractable unless P=NP.

FSTTCS 2011

240 Simultaneously Satisfying Linear Equations

7 B. Bollobás and A. Scott, Better bounds for max cut. In Contemporary Combinatorics (B.
Bollobás, ed.), Springer, 2002.

8 J.A. Bondy and U.S.R. Murty, Graph Theory. Springer, 2008.
9 E. Boros and P.L. Hammer, Pseudo-Boolean optimization. Discrete Applied Math. 123(1-

3): 155–225, 2002.
10 R. Crowston, G. Gutin, and M. Jones, Note on Max Lin-2 above average. Inform. Proc.

Lett. 110: 451–454, 2010.
11 R. Crowston, G. Gutin, M. Jones, E. J. Kim, and I. Ruzsa. Systems of linear equations

over F2 and problems parameterized above average. SWAT 2010, Lect. Notes Comput. Sci.
6139 (2010), 164–175.

12 R. Crowston, G. Gutin, M. Jones, V. Raman, S. Saurabh, and A. Yeo, Parameterized
Complexity of MaxSat Above Average. CoRR abs/1108.4501: (2011).

13 M. Dom, D. Lokshtanov and S. Saurabh, Incrompressibility though Colors and IDs, ICALP
2009, Part I, Lect. Notes Comput. Sci. 5555: 378–389, 2009.

14 R. G. Downey and M. R. Fellows. Parameterized Complexity, Springer, 1999.
15 C.S. Edwards, An improved lower bound for the number of edges in a largest bipartite

subgraph. Recent Advances in Graph Theory, Proc. 2nd Czecholslovac Symp., Academia,
Prague, 1995, 167–181.

16 P. Erdős, On some extremal problems in graph theory. Israel J. Math. 3: 113–116, 1965.
17 P. Erdős, A. Gyárfás and Y. Kohayakawa, The size of the largest bipartite subgraphs.

Discrete Math. 117: 267–271, 1997.
18 M. R. Fellows, Towards Fully Multivariate Algorithmics: Some New Results and Direc-

tions in Parameter Ecology. 20th International Workshop on Combinatorial Algorithms
(IWOCA09), Lect. Notes Comput. Sci., 5874: 2–10, 2009.

19 J. Flum and M. Grohe. Parameterized Complexity Theory, Springer, 2006.
20 F.V. Fomin, D. Lokshtanov, N. Misra, G. Philip and S. Saurabh, Hitting forbidden minors:

Approximation and kernelization. STACS 2011: 189–200.
21 G. Gutin, L. van Iersel, M. Mnich, and A. Yeo, All ternary permutation constraint satisfac-

tion problems parameterized above average have kernels with quadratic number of vertices.
J. Comput. Syst. Sci., in press, doi:10.1016/j.jcss.2011.01.004.

22 G. Gutin, E. J. Kim, S. Szeider, and A. Yeo. A probabilistic approach to problems para-
meterized above or below tight bounds. J. Comput. Sys. Sci. 77: 422–429, 2011.

23 G. Gutin and A. Yeo, Note on Maximal Bisection above Tight Lower Bound. Inform. Proc.
Lett. 110: 966–969, 2010.

24 J. Håstad, Some optimal inapproximability results. J. ACM 48: 798–859, 2001.
25 J. Håstad and S. Venkatesh, On the advantage over a random assignment. Random Struc-

tures & Algorithms 25(2):117–149, 2004.
26 E.J. Kim and R. Williams, Improved Parameterized Algorithms for Constraint Satsfaction.

Tech. Report arXiv:1008.0213, 2010.
27 B. Korte and J. Vygen, Combinatorial Optimization: theory and algorithms, 3rd Edition,

Springer, 2006.
28 M. Mahajan, V. Raman, and S. Sikdar. Parameterizing above or below guaranteed values.

J. Computer System Sciences, 75(2):137–153, 2009. A preliminary version appeared in the
2nd IWPEC, Lect. Notes Comput. Sci. 4169:38–49, 2006.

29 R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
30 R. Niedermeier, Reflections on Multivariate Algorithmics and Problem Parameterization.

STACS 2010: 17–32.
31 R. O’Donnell, Some topics in analysis of Boolean functions. Technical report, ECCC Report

TR08-055, 2008. Paper for an invited talk at STOC’08, www.eccc.uni-trier.de/eccc-reports/
2008/TR08-055/ .

www.eccc.uni-trier.de/eccc-reports/2008/TR08-055/
www.eccc.uni-trier.de/eccc-reports/2008/TR08-055/

Rainbow Connectivity: Hardness and Tractability
Prabhanjan Ananth1, Meghana Nasre1, and Kanthi K. Sarpatwar2

1 Indian Institute of Science
Bangalore
prabhanjan,meghana@csa.iisc.ernet.in

2 University of Maryland
College Park, Maryland, U.S.A.
kanthik@gmail.com

Abstract
A path in an edge colored graph is said to be a rainbow path if no two edges on the path have
the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic)
rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G,
denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color
the graph such that G is (strongly) rainbow connected. In this paper we study the rainbow
connectivity problem and the strong rainbow connectivity problem from a computational point
of view. Our main results can be summarised as below:

For every fixed k ≥ 3, it is NP-Complete to decide whether src(G) ≤ k even when the graph
G is bipartite.
For every fixed odd k ≥ 3, it is NP-Complete to decide whether rc(G) ≤ k. This resolves one
of the open problems posed by Chakraborty et al. [4] hardness for the even case.
The following problem is fixed parameter tractable: Given a graph G, determine the maximum
number of pairs of vertices that can be rainbow connected using two colors.
For a directed graph G, it is NP-Complete to decide whether rc(G) ≤ 2.

1998 ACM Subject Classification G.2 Discrete Mathematics

Keywords and phrases Computational Complexity, Rainbow Connectivity, Graph Theory, Fixed
Parameter Tractable Algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.241

1 Introduction

This paper deals with the notion of rainbow connectivity and strong rainbow connectivity
of a graph. Unless mentioned otherwise, all the graphs are assumed to be connected and
undirected. Consider an edge coloring (not necessarily proper) of a graph G = (V,E). A
path between a pair of vertices is said to be a rainbow path, if no two edges on the path have
the same color. If the edges of G can be colored using k colors such that, between every pair
of vertices there exists a rainbow path then G is said to be k-rainbow connected. Further, if
the k-coloring ensures that between every pair of vertices one of its geodesic i.e., one of the
shortest paths is a rainbow path, then G is said to be k-strongly rainbow connected. The
minimum number of colors required to (strongly) rainbow connect a graph G is called the
(strong) rainbow connection number denoted by (src(G), respectively) rc(G).

The concept of rainbow connectivity was recently introduced by Chartrand et al. in [6]
as a measure of strengthening connectivity. The rainbow connection problem, apart from
being an interesting combinatorial property, also finds an application in routing messages
on cellular networks [4]. In their original paper [6], Chartrand et al. determined rc(G)

© P. Ananth, M. Nasre, and K.K. Sarpatwar;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 241–251

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.241
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

242 Rainbow Connections: Hardness and Tractability

and src(G), in special cases where G is a complete bipartite or multipartite graph. Rain-
bow connectivity from a computational point of view was first studied by Caro et al. [3]
who conjectured that computing the rainbow connection number of a given graph is NP-
hard. This conjecture was confirmed by Chakraborty et al. [4], who proved that even
deciding whether rainbow connection number of a graph equals 2 is NP-Complete. They
further showed that the problem of deciding whether rainbow connection of a graph is at
most k is NP-hard where k is an even integer. The status of the k-rainbow connectivity
problem was left open for the case when k is odd. One of our results is to resolve this problem.

Our Results. We present the following new results in this paper:
1. For every fixed k ≥ 3, deciding whether src(G) ≤ k, is NP-Complete even when G is

bipartite. As a consequence of our reduction, we show that it is NP-hard to approximate
the problem of finding the strong connectivity of a graph by a factor of n 1

2−ε, where n is
the number of vertices in G.

2. For every fixed odd k ≥ 3, deciding whether rc(G) ≤ k is NP-Complete.
3. We consider the following natural extension of the 2-rainbow connectivity problem: Given

a graph G, determine the maximum number of pairs of vertices that can be rainbow
connected with two colors. We show that the above problem is fixed parameter tractable
when the number of pairs to be rainbow connected is a parameter.

4. We extend the notion of rainbow connectivity for directed graphs and show that for a
directed graph G it is NP-Complete to decide whether rc(G) ≤ 2.

In [4], Chakraborty et al. introduced the problem of subset rainbow connectivity, where in
addition to the graph G = (V,E) we are given a set P containing pairs of vertices. The goal
is to answer whether there exists an edge coloring of G with k colors such that every pair in
P has a rainbow path. We also use the subset rainbow connectivity problem and analogously
define the subset strong rainbow connectivity problem to prove our hardness results.
Related Work. The problem of rainbow connectivity has received considerable attention
after it was introduced by Chartrand et al. in [6]. Caro et al. [3], Krivelevich et al. [9],
Chandran et al. [5] gave lower bounds for rainbow connection number of graphs as a function
of the number of vertices and the minimum degree of the graph. Upper bounds were also
given by Chandran et al. [5] for special graphs like interval graphs and AT-free graphs. In [2],
Basavaraju et al. gave a constructive argument to show that any graph G can be colored
with r(r + 2) colors in polynomial time where r is the radius of the graph. The threshold
function for random graph to have rc(G) = 2 was studied by Caro et al. [3]. In case of
strong rainbow connection number, Li et al. [10] and Li and Sun [11] gave upper bounds on
some special graphs. Interestingly, no good upper bounds are known for the strong rainbow
connection number in the general case.

2 Strong rainbow connectivity

In this section, we prove the hardness result for the k-strong rainbow connectivity problem:
given a graph G and an integer k ≥ 3, decide whether src(G) ≤ k. In order to show the
hardness of this problem, we first consider an intermediate problem called the k-subset strong
rainbow connectivity problem. The input to the k-subset strong rainbow connectivity problem
is a graph G = (V,E) along with a set of pairs P = {(u, v) : (u, v) ⊆ V × V } and an integer
k. Our goal is to answer whether there exists an edge coloring of G with at most k colors
such that every pair (u, v) ∈ P has a geodesic rainbow path.

The overall plan is to prove that k-subset strong rainbow connectivity is NP-hard by

P. Ananth, M. Nasre, and K.K. Sarpatwar 243

showing a reduction from the vertex coloring problem. We then establish the polynomial time
equivalence of the k-subset strong rainbow connectivity problem and the k-strong rainbow
connectivity problem.

2.1 k-subset strong rainbow connectivity
Let G = (V,E) be an instance of the k-vertex coloring problem. The problem is to decide
if there exists an assignment of at most k colors to the vertices of G such that no pair of
adjacent vertices are colored using the same color. This is one of the most well-studied
problems in computer science and is known to be NP-hard for k ≥ 3. Given an instance
G = (V,E) of the k-vertex coloring problem, we construct an instance 〈G′ = (V ′, E′), P 〉 of
the k-subset strong rainbow connectivity problem.

The graph G′ that we construct is a star, with one leaf vertex corresponding to every
vertex v ∈ V and an additional central vertex a. The set of pairs P captures the edges in E,
that is, for every edge (u, v) ∈ E we have a pair (u, v) in the set P . The goal is to color the
edges of G′ using at most k colors such that every pair in the set P has a geodesic rainbow
path. More formally, we define the parameters 〈G′ = (V ′, E′), P 〉 of the k-subset strong
rainbow connectivity problem below:

V ′ = {a} ∪ V
E′ = {(a, v) : v ∈ V }
P = {(u, v) : (u, v) ∈ E}

We now prove the following lemma which establishes the hardness of the k-subset strong
rainbow connectivity problem.

I Lemma 1. The graph G = (V,E) is vertex colorable using k(≥ 3) colors iff the graph
G′ = (V ′, E′) can be edge colored using k colors such that for every pair (u, v) ∈ P there is a
geodesic rainbow path between u and v in G′.

Proof. Assume that G can be vertex colored using k colors; we show an assignment of colors
to the edges of the graph G′. Let c be the color assigned to a vertex v ∈ V ; we assign the
color c to the edge (a, v) ∈ E′. Now consider any pair (u, v) ∈ P . Recall that (u, v) ∈ P
because there exists an edge (u, v) ∈ E. Since the coloring was a proper vertex coloring of G,
the edges (a, u) and (a, v) in G′ are assigned different colors by our coloring. Thus, the path
u− a− v is a rainbow path; further since that is the only path between u and v it is also a
geodesic rainbow path.

To prove the other direction, assume that there exists an edge coloring of G′ using k
colors such that between every pair of vertices in P there is a geodesic rainbow path. It is
easy to see that if we assign the color c of the edge (a, v) ∈ E′ to the vertex v ∈ V , we get a
coloring that is a proper vertex coloring for G. J

Recall the problem of subset rainbow connectivity where we are content with any rainbow
path between every pair in P . Note that our graph G′ constructed in the above reduction is
a tree, in fact a star and hence between every pair of vertices in P there is exactly one path.
Thus, all the above arguments apply for the k-subset rainbow connectivity problem as well.
As a consequence we can conclude the following:

I Lemma 2. For every k ≥ 3, both the problems k-subset strong rainbow connectivity and
k-subset rainbow connectivity are NP-hard even when the input graph G is a star.

FSTTCS 2011

244 Rainbow Connections: Hardness and Tractability

2.2 k-strong rainbow connectivity
In this section, we establish the hardness of deciding whether a given graph can be strongly
rainbow connected using k colors.

I Theorem 3. For every k ≥ 3, deciding whether a given graph G can be strongly rainbow
colored using k colors is NP-hard. Further, the hardness holds even when the graph G is
bipartite.

Proof. We reduce the k-subset strong rainbow connectivity problem to the k-strong rainbow
connectivity problem. Let 〈G = (V,E), P 〉 be an instance of the k-subset strong rainbow
connectivity problem. Using Lemma 2, we know that k-subset strong rainbow connectivity
is NP-hard even when G is a star as well as the pairs (vi, vj) ∈ P are such that both vi and
vj are leaf nodes of the star. We assume both these properties on the input 〈G,P 〉 and use
them crucially in our reduction. Let us denote the central vertex of the star G by a and the
leaf vertices by L = {v1, . . . , vn}, that is, V = {a} ∪ L. Using the graph G and the pairs P ,
we construct the new graph G′ = (V ′, E′) as follows: for every leaf node vi ∈ L, we introduce
two new vertices ui and u′i. For every pair of leaf nodes (vi, vj) ∈ (L× L) \ P , we introduce
two new vertices wi,j and w′i,j .

V ′ = V ∪ V1 ∪ V2

V1 = {ui : i ∈ {1, . . . , n}} ∪ {wi,j : (vi, vj) ∈ (L× L) \ P}
V2 = {u′i : i ∈ {1, . . . , n}} ∪ {w′i,j : (vi, vj) ∈ (L× L) \ P}

The edge set E′ is be defined as follows:

E′ = E ∪ E1 ∪ E2 ∪ E3

E1 = {(vi, ui) : vi ∈ L, ui ∈ V1} ∪ {(vi, wi,j), (vj , wi,j) : (vi, vj) ∈ (L× L) \ P}
E2 = {(x, x′) : x ∈ V1, x

′ ∈ V2}
E3 = {(a, x′) : x′ ∈ V2}

We now prove that G′ is k-strong rainbow connected iff 〈G,P 〉 is k-subset strong rainbow
connected. To prove one direction, we first note that, for all pairs (vi, vj) ∈ P , there is a two
length path vi − a− vj in G and this path is also present in G′. Further, this path is the
only two length path in G′ between vi and vj ; hence any strong rainbow coloring of G′ using
k colors must make this path a rainbow path. This implies that if G cannot be edge colored
with k colors such that every pair in P is strongly rainbow connected, the graph G′ cannot
be strongly rainbow colored using k colors.

To prove the other direction, assume that there is an edge coloring χ : E → {c1, c2, . . . , ck}
of G such that all pairs in P are strongly rainbow connected. We extend this edge coloring
of G to an edge coloring of G′, denoted by χ′, such that G′ is strong rainbow connected:

We retain the color on the edges of G, i.e. χ′(e) = χ(e) : e ∈ E.
For each edge (vi, ui) ∈ E1, we set χ′(vi, ui) = c3.
For each pair of edges {(vi, wi,j), (vj , wi,j)} ∈ E1, we set χ′(vi, wi,j) = c1, χ′(vi, wi,j) = c2
(Assume without loss of generality that i < j).
The edges in E2 form a complete bipartite graph between the vertices in V1 and V2. To color
these edges, we pick a perfect matching M of size |V1| and assign χ′(e) = c1,∀e ∈ E2 ∩M
and χ′(e) = c2,∀e ∈ E2 \M .
Finally, for each edge (a, x′) ∈ E3, we set χ′(a, x′) = c3.

P. Ananth, M. Nasre, and K.K. Sarpatwar 245

It is straightforward to verify that this coloring makes G′ strong rainbow connected. This
completes the proof of NP-hardness of the k-strong rainbow connectivity problem.

We further note that the graph G′ constructed above is in fact bipartite. The vertex set
V ′ can be partitioned into two sets A and B, where A = {a} ∪ V1 and B = L ∪ V2 such that
there are no edges between vertices in the same partition. This establishes the fact that the
k-strong rainbow connectivity problem is NP-hard even for the bipartite case. J

From the same construction when k = 3, it follows that deciding whether a given graph G
can be rainbow colored using at most 3 colors is NP-hard. To see this, note that between any
pair of vertices (vi, vj) ∈ P , a path in G′ that is not contained in G is of length at least 4 and
the shortest path between vi and vj is in G. Further, we always color the edges E′ \E using
3 colors; hence none of these paths can be rainbow path. Thus, we conclude the following
corollary.

I Corollary 4. Deciding whether rc(G) ≤ 3 is NP-hard even when the graph G is bipartite.

As a consequence of the reduction from the k-subset strong rainbow connectivity to the
k-strong rainbow connectivity, we have the following result (the proof is in full version [1]):

I Theorem 5. There is no polynomial time algorithm that approximates strong rainbow
connection number of a graph G = (V,E) within a factor of n 1

2−ε, unless NP = ZPP . Here
n denotes the number of vertices of G.

3 Rainbow connectivity

In this section we investigate the complexity of deciding whether the rainbow connection
number of a graph is at most k. We prove the NP-hardness of the k-rainbow connectivity
problem i.e., deciding whether rc(G) ≤ k, when k is odd. We recall from Lemma 2 that
the k-subset rainbow connectivity problem is NP-hard. In the following theorem, we give
a reduction of the k-subset rainbow connectivity problem to the k-rainbow connectivity
problem.

I Theorem 6. For every odd integer k ≥ 3, deciding whether rc(G) ≤ k is NP-Complete.

Proof. Let 〈G = (V,E), P 〉 be an instance of the k-subset rainbow connectivity problem.
Since k is assumed to be odd, let k = 2m+ 1 where m ∈ N. Let us denote the vertices of G
as V = {v1, . . . , vn}. Given the graph G and a set of pairs of vertices P , we construct an
instance G′ = (V ′, E′) of the k-rainbow connectivity problem as follows: For each vertex
vi ∈ V , we add 2m new vertices denoted by ui,j where j ∈ {1, . . . , 2m}. Further, we add the
following two paths: vi − ui,1 − ui,2 · · · − ui,m and vi − ui,m+1 − ui,m+2 · · · − ui,2m. We also
add edges (ui,m, ui,2m) and (ui,1, ui,m+1) (if m = 1, we only add one edge). For every pair of
vertices (vi, vj) ∈ (V × V) \P : we add the edges (ui,m, uj,2m) and (ui,2m, uj,m). We add two
more new vertices x, y and for every vi ∈ V we add the following edges: (x, ui,m), (x, ui,2m),
(y, ui,m) and (y, ui,2m). Figure 1 shows a subgraph of the graph G′. The construction shows
extra vertices added corresponding to vi and vj such that the pair (vi, vj) ∈ (V × V) \ P .
More formally, the vertex set V ′ can be defined as:

V ′ = V ∪ V1,m ∪ Vm+1,2m ∪ Vx,y
V1,m = {ui,j : vi ∈ V, j ∈ {1, . . . ,m}}

Vm+1,2m = {ui,j : vi ∈ V, j ∈ {m+ 1, . . . , 2m}}
Vx,y = {x, y}

FSTTCS 2011

246 Rainbow Connections: Hardness and Tractability

y

vjvi

G

uim1 ujm1

uj2m

x

ujm2

uim

ui2

ui1

Figure 1 A subgraph of the graph G′. The construction shows extra vertices added corresponding
to vertices vi and vj belonging to G. The pair (vi, vj) ∈ (V × V) \ P .

The edge set E′ can be defined as:

E′ = E ∪ E1 ∪ E2 ∪ Ex,y
E1 = {(ui,j , ui,j+1) : vi ∈ V, j ∈ {1, . . . ,m}, j (mod m) 6= 0} ∪

{(ui,1, ui,m+1), (ui,m, ui,2m) : vi ∈ V }
E2 = {(ui,m, uj,2m), (ui,2m, uj,m) : (vi, vj) ∈ (V × V) \ P} ∪

= {(vi, ui,1), (vi, ui,m+1) : vi ∈ V }
Ex,y = {(x, ui,m), (x, ui,2m), (y, ui,m), (y, ui,2m) : i ∈ {1, . . . , n}}

We claim that G can be edge colored using k colors such that every pair belonging to P
is rainbow connected if and only if rc(G′) ≤ k. Assume that G can be edge colored using k
colors such that all pairs in P are rainbow connected. Let χ : E → {c1, . . . , c2m+1} be such
a coloring. We obtain a coloring χ′ : E′ → {c1, . . . , c2m+1} as follows:

For every vi ∈ V :
χ′(vi, ui,1) = c1; χ′(vi, ui,m+1) = cm+1;
χ′(ui,j , ui,j+1) = cj+1 where j ∈ {1, . . . , 2m− 1} and j (mod m) 6= 0;
χ′(x, ui,m) = cm+1; χ′(x, ui,2m) = c2m+1;
χ′(y, ui,m) = c2m+1; χ′(y, ui,2m) = c1.
If m 6= 1, χ′(ui,1, ui,m+1) = cm+1; χ′(ui,m, ui,2m) = c1
else χ′(ui,1, ui,m+1) = c1.
For every (vi, vj) ∈ (V × V) \ P : χ′(ui,m, uj,2m) = c2m+1 and χ′(ui,2m, ui,m) = c2m+1.
For every edge (vi, vj) ∈ E: χ′(vi, vj) = χ(vi, vj).

We claim that if χ makes G k-subset rainbow connected then χ′ makes the graph G′ k-rainbow
connected. This requires a case-wise analysis, which we defer to the full version [1].

To prove the other direction, assume that rc(G′) ≤ k. Let χ : E′ → {c1, . . . , ck} be an
edge coloring of G′ such that χ makes G′ rainbow connected. We will translate this edge
coloring of G′ to an edge coloring of G as follows: color the edge (vi, vj) in G with the color
χ(vi, vj). We claim that all pairs in P are rainbow connected in G. This follows from the
observation that for a pair (vi, vj) ∈ P , any path between vi and vj which is of length at most

P. Ananth, M. Nasre, and K.K. Sarpatwar 247

2m+ 1 in G′ has to be completely contained in G. Since χ makes G′ rainbow connected, the
rainbow path between vi and vj in G′ has to lie completely inside G itself. Correspondingly,
there is a rainbow path between vi and vj in G. Hence, all pairs in P are rainbow connected
in G. This proves that k-rainbow connectivity problem is NP-hard.

It is clear that given an edge k-coloring, for k ∈ N, we can check in polynomial time, that
the edge coloring rainbow connects every pair of vertices. Hence the problem of deciding if
rc(G) ≤ k is in NP. The result follows. J

Unlike the case of strong rainbow connectivity, the reduction presented above does not give
any insight into the inapproximability of the problem of finding the rainbow connection
number of a graph. The reason being that the reduction stated in the proof of Theorem 3
yields an instance of k-strong rainbow connectivity problem which is independent of k i.e.,
the structure of the graph does not change with k. On the contrary, the size of the instance of
k-rainbow connectivity problem obtained from the reduction in Theorem 6 crucially depends
on k.

3.1 Parameterized complexity
In this section, we study the parameterized complexity of a maximization version of the
rainbow connectivity problem. Before that, we describe the necessary preliminaries. A
problem is said to be fixed parameter tractable (FPT) with respect to a parameter k∗, if
given an instance x of size |x| there exists an algorithm with running time f(k) × |x|O(1)

where f is a function of k which is independent of |x|. One way of showing that a problem is
fixed parameter tractable is to exhibit polynomial time reductions to obtain a kernel which
is basically an equivalent instance whose size is purely a function of the parameter k. If the
size of the kernel is a linear function in k then the kernel is termed as a linear kernel. For
formal definitions, we refer the reader to [7, 8].

We are interested in the following problem: Given a graph G = (V,E), color the edges of
G using 2 colors such that maximum number of pairs are rainbow connected. Since deciding
whether rc(G) ≤ 2 is NP-Complete [4], it follows that the above maximization problem is
NP-hard. Any edge coloring of a graph G = (V,E) with 2 colors, trivially satisfies |E| pairs.
Hence, we are interested in deciding whether G can be 2-colored such that at least |E|+ k

pairs of vertices are rainbow connected, where k is a parameter. We show that the problem
is fixed parameter tractable with respect to k.

We first state a useful lemma (proof in full version [1]). Let us call a non-edge in G as an
anti-edge; formally we call e = (u, v) an anti-edge of a graph G = (V,E) if e /∈ E.

I Lemma 7. Let G = (V,E) be a connected graph with at least k anti-edges and a clique
of size ≥ k. The edges of G can be colored using 2 colors such that at least |E|+ k pair of
vertices are rainbow-connected.

Using the above lemma 7 we now show that the problem is fixed parameter tractable.

I Theorem 8. Given a graph G = (V,E), decide whether the edges of G can be colored using
2 colors such that at least |E|+ k pair of vertices are rainbow connected. The above problem
has a kernel with at most 4k vertices and hence is fixed parameter tractable.

∗ A parameter is a natural number associated to a problem instance. For example, a parameter could be
the number of vertices of a graph instance in a vertex cover problem or the number of processors in a
scheduling problem.

FSTTCS 2011

248 Rainbow Connections: Hardness and Tractability

Proof. Let v be any arbitrary vertex and let Ov be the set of vertices which are not adjacent
to v. We claim that there is a coloring which rainbow connects at least |Ov| pair of non-
adjacent vertices. Consider a breadth first search (bfs) tree rooted at v. Denote the set
of vertices in each level of the bfs tree by Li, i ≥ 1. Then, L1 = {v}, L2 = N(v) and
Ov = ∪i>2Li. We now color the edges from Li−1 to Li by red if i is odd and by blue if i
is even. For i > 2, every vertex of Li is rainbow connected to some vertex of Li−2. Thus
we have |Ov| pairs of non-adjacent vertices rainbow connected by this coloring. Hence if
|Ov| ≥ k for any vertex v ∈ V , we have a trivial yes instance at hand. Otherwise, |Ov| < k,
for all v ∈ V .

Recall that our goal is to color the graph using 2 colors such that at least |E|+ k pair of
vertices are rainbow connected. If G has less than k anti-edges, clearly this is not possible
and we have a no instance. Assume that this is not the case. Now consider a vertex v and let
N(v) denote the neighbors of v in G. Let H denote the complement of the graph induced by
the neighbourhood of v, ie the complement of G[N(v)]† Further, let C1, C2, . . . , Cr denote
the components of H. If there are more than k isolated vertices in H, we have a clique of size
≥ k in G. Further, since there are at least k anti-edges, using lemma 7, we have a coloring
which rainbow connects at least |E|+ k pairs of G. Thus we have a yes instance.

It remains to deal with the case when the number of isolated vertices in H is less than k.
Let Ci be some non-trivial component of H, that is Ci contains at least two vertices. (If
no non-trivial component exists, we are already done, since we can bound the number of
vertices of G from above by 2k). We now show a coloring of edges of G such that at least
|Ci| − 1 non-adjacent vertices are rainbow connected. For this, consider a spanning tree of Ci
and color the vertices of the spanning tree level by level using alternate colors. That is, color
the root as red, the vertices at the next level in the spanning tree as blue and so on. We map
the colors on the vertices of Ci back to the edges of G as follows. If a vertex u1 ∈ Ci got
the color red, we color the edge (v, u1) ∈ G as red. Thus for every edge (u1, u2) in Ci that
got distinct colors on its end points, we ensure that one pair got rainbow connected via the
path u1, v, u2. Further, since (u1, u2) is an edge in H, it is an anti-edge in G. Thus for every
non-trivial component Ci we can rainbow connect |Ci| − 1 anti-edges of G. Counting this
across all the components we have

∑r
i=1 |Ci| − r pairs of anti-edges in G rainbow connected.

If
∑r
i=1 |Ci| − r ≥ k we have a yes instance, otherwise we have:

Σri=1|Ci| − r < k. (1)

Let the number of non-trivial components of H be s. Each of these non-trivial components
have at least 2 vertices. Hence we have the following:

Σri=1|Ci| ≥ 2 ∗ s+ (r − s) = r + s (2)

Since the number of isolated vertices in H is strictly less than k, we have r < s+ k. Further,
from equations (1) and (2) we get s < k. Combining these we have r < 2k. Thus we can
bound the number of vertices in H as:

|H| = Σri=1|Ci| < r + k < 3k (3)

Therefore we have:

|G| = |H|+ 1 + |Ov| < 3k + 1 + k =⇒ |G| ≤ 4k. (4)

Hence, we have a 4k vertex kernel. J

† G[H] denotes the induced subgraph of G on vertices of H

P. Ananth, M. Nasre, and K.K. Sarpatwar 249

4 Rainbow connectivity on directed graphs

In this section, we consider the rainbow connectivity problem for directed graphs. All the
directed graphs considered in this section are assumed to be connected i.e., between any
two vertices u, v in the directed graph there is either a directed path from u to v or from v

to u. Consider an edge-coloring of a directed graph G = (V,E). We say that there exists
a rainbow path between a pair of vertices (u, v) if there exists a directed path from u to v
or from v to u with distinct edge colors. An edge coloring of the edges in a directed graph
is said to make the graph rainbow connected if between every pair of vertices there is a
rainbow path. Analogous to the undirected version, the minimum colors needed to rainbow
color a directed graph G is called the rainbow connection number of the directed graph. The
rainbow connection number of a directed graph is at least the rainbow connection number
of the underlying undirected graph; however, there are examples where the directed graph
requires many more colors than the underlying undirected graph. Consider the directed
graph G = (V,E) with V = {v1, . . . , vn} and E = {(vi, vi+1) : i = 1, . . . , n− 1} ∪ {(v1, vn)}.
The rainbow connection number of G is n− 2 while the rainbow connection number of its
underlying undirected graph, which is a cycle, is dn2 e.

We study the computational complexity of the problem of computing rainbow connection
number for a directed graph. We prove that the problem of deciding whether the rainbow
connection of a simple directed graph is at most 2 is NP-hard. As in the case of undirected
graphs, we define the problem of subset rainbow connectivity on directed graphs. Given a
directed graph G = (V,E) and a set of pairs P ⊆ V × V decide whether the edges of G can
be colored using 2 colors such that every pair in P is rainbow connected (in the directed
sense). Throughout this section we will use the term rainbow connected to mean that it
is rainbow connected in the directed sense. Our plan, as in the previous cases, is to show
that the 2-subset rainbow rainbow connectivity is NP-hard by showing a reduction from
the 3SAT problem. We then establish the polynomial time equivalence of 2-subset rainbow
connectivity and 2-rainbow connectivity for a directed graph G.

Let I be an instance of the 3SAT problem with X = {x1, . . . , xn} as the set of variables
and C1, . . . , Cm being the clauses. We construct from I a directed graph G = (V,E) and a
set of pairs P ⊆ V × V which is an instance of the 2-subset rainbow connectivity problem.
For readability sake, we reuse the symbols Ci, xi to represent the vertices.

V = {Ci : i ∈ {1, . . . ,m}} ∪X ∪ X̄ ∪ {T,R,B}
X̄ = {x̄i : xi ∈ X}

The edge set E is defined as below. We say that xi ∈ Cj to imply that the clause Cj contains
the positive occurrence of the variable xi. If xi appears negated in the clause Cj we denote
it as x̄i ∈ Cj .

E = {(R, T), (T,B)} ∪
{(xi, T), (T, x̄i), (xi, x̄i) : xi ∈ X} ∪
{(Cj , xi) : xi ∈ Cj} ∪
{(x̄i, Cj) : x̄i ∈ Cj}

FSTTCS 2011

250 Rainbow Connections: Hardness and Tractability

The set of pairs P is defined as follows:

P = {(Ci, T) : i ∈ {1, . . . ,m}} ∪
{(xi, Cj), (x̄i, Cj) : xi ∈ Cj} ∪
{(xi, Cj), (x̄i, Cj) : x̄i ∈ Cj} ∪
{(R,B)} ∪ {(R, x̄i), (B, xi) : xi ∈ X}

We now state the following lemma (proof in full version [1]) which establishes the
correctness of our reduction.

I Lemma 9. There exists a satisfying assignment for I if and only if there is an edge
coloring of G = (V,E) with 2 colors such that all the pairs in P are rainbow connected.

We now prove the equivalence of the following two problems.

I Lemma 10. The following two problems are polynomial time equivalent:
(1) Given a directed graph G = (V,E) decide whether G is 2-rainbow connected.
(2) Given a directed graph G = (V,E), and a set of pairs P ⊆ V × V , decide whether 〈G,P 〉
is 2-subset rainbow connected.

Proof. It suffices to prove that problem (2) reduces to problem (1). Given 〈G = (V,E), P 〉
we construct an instance G′ = (V ′, E′) as follows:

V ′ = V ∪ V1 ∪ {vex}
V1 = {wi,j : (vi, vj) ∈ (V × V) \ P, vi 6= vj}

The edge set E′ is defined as:

E′ = E ∪ {(vi, wi,j), (wi,j , vj) : (vi, vj) ∈ (V × V) \ P, vi 6= vj} ∪
{(v, vex), (vex, x) : v ∈ V, x ∈ V1} ∪ E1

The set of edges in E1 are amongst the vertices in V1 such that the induced subgraph
T = (V1, E1) is a tournament.

Assume that G has an edge coloring χ using two colors, say red and blue such that every
pair of vertices in P is rainbow connected. We give a coloring χ′ the edges of G′ as follows:

Set {χ′(v, vex) = red : v ∈ V } and set {χ′(vex, x) = blue : x ∈ V1}.
For every pair (vi, vj) ∈ (V × V) \ P , we set χ′(vi, wi,j) = red and χ′(wi,j , vj) = blue.
Color the edges of the graph induced by V1 arbitrarily.
Set {χ′(vi, vj) = χ(vi, vj) : vi ∈ V, vj ∈ V }.

It is easy to verify that the above coloring makes G′ rainbow connected.
In the other direction, we note that no pair of vertices in P has a directed 2 length path

in G′ which is not contained entirely in G. Hence if G′ has an edge coloring using 2 colors
such that every pair has a rainbow path, then the coloring of the induced subgraph G of G′
rainbow connects every pair of vertices in P . This completes the proof of the lemma. J

Using lemma 9 and lemma 10 we can conclude the following theorem.

I Theorem 11. Given a directed graph G = (V,E), it is NP-hard to decide whether G can
be colored using two colors such that between every pair of vertices there is a rainbow path.

P. Ananth, M. Nasre, and K.K. Sarpatwar 251

5 Conclusion

In this paper, we present several hardness results related to the rainbow connectivity problem.
The hardness results for the strong rainbow connectivity and rainbow connectivity problem
are due to a series of reductions starting from the vertex coloring problem. Our study on
parameterized version of the rainbow connectivity problem shows a linear kernel when we
want to maximize the number of pairs which are rainbow connected using two colors. We
initiate the study of rainbow connectivity in directed graphs. Further, we show that the
problem of deciding whether a directed graph can be rainbow connected using at most 2
colors is NP-hard.

6 Acknowledgements

The first and the second author would like to thank Deepak Rajendraprasad and Dr. L. Sunil
Chandran for the useful discussions on the topic.

References
1 P. Ananth, M. Nasre, and K. K. Sarpatwar. Hardness and Parameterized Algorithms on

rainbow connectivity problem. CoRR, abs/1105.0979, 2011.
2 M. Basavaraju, L.S. Chandran, D. Rajendraprasad, and A. Ramaswamy. Rainbow Connec-

tion number and radius. Arxiv preprint arXiv:1011.0620, 2010.
3 Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster. On Rainbow Connection. The

Electronic Journal of Combinatorics, 15(R57):1, 2008.
4 S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster. Hardness and Algorithms for

Rainbow Connection. Journal of Combinational Optimization, 21(3):330–347, 2011.
5 L.S. Chandran, A. Das, D. Rajendraprasad, and N.M. Varma. Rainbow connection number

and connected dominating sets. EUROCOMB, 2011.
6 G. Chartrand, G.L. Johns, K.A. McKeon, and P. Zhang. Rainbow connection in graphs.

Math. Bohem, 133(1):85–98, 2008.
7 R. G. Downey and M.R. Fellows. Parameterized complexity. Monographs in computer

science. Springer, 1999.
8 J. Flum and M. Grohe. Parameterized complexity theory. Texts in theoretical computer

science. Springer, 2006.
9 M. Krivelevich and R. Yuster. The rainbow connection of a graph is (at most) reciprocal

to its minimum degree. J. Graph Theory, 63:185–191, March 2010.
10 H. Li, X. Li, and S. Liu. The (strong) rainbow connection numbers of cayley graphs of

abelian groups. Arxiv preprint arXiv:1011.0827, 2010.
11 X. Li and Y. Sun. On strong rainbow connection number. Arxiv preprint arXiv:1010.6139,

2010.

FSTTCS 2011

Dependence logic with a majority quantifier∗

Arnaud Durand1, Johannes Ebbing2, Juha Kontinen3, and
Heribert Vollmer2

1 Université Paris Diderot, IMJ, CNRS UMR 7586, Case 7012, 75205 Paris
cedex 13, France, durand@logique.jussieu.fr

2 Leibniz Universität Hannover, Theoretical Computer Science, Appelstr. 4,
30167 Hannover, Germany, {ebbing,vollmer}@thi.uni-hannover.de

3 University of Helsinki, Department of Mathematics and Statistics, P.O. Box
68, 00014, Finland, juha.kontinen@helsinki.fi.

Abstract
We study the extension of dependence logic D by a majority quantifier M over finite structures.
We show that the resulting logic is equi-expressive with the extension of second-order logic by
second-order majority quantifiers of all arities. Our results imply that, from the point of view of
descriptive complexity theory, D(M) captures the complexity class counting hierarchy.

1998 ACM Subject Classification F.1.1 Computability theory, Relations between models; F.1.3
Complexity hierarchies; F.2.2 Computations on discrete structures; F.4.1 Computability theory,
Computational logic, Model theory;

Keywords and phrases dependence logic, counting hierarchy, majority quantifier, second order
logic, descriptive complexity, finite model theory

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.252

1 Introduction

We study the extension of dependence logic D by a majority quantifier M over finite struc-
tures. Dependence logic [19] extends first-order logic by dependence atomic formulas

=(t1, . . . , tn)

the intuitive meaning of which is that the value of the term tn is completely determined by
the values of t1, . . . , tn−1. While in first-order logic the order of quantifiers solely determines
the dependence relations between variables, in dependence logic more general dependencies
between variables can be expressed. Historically dependence logic was preceded by partially
ordered quantifiers (Henkin quantifiers) of Henkin [8] and Independence-Friendly (IF) logic of
Hintikka and Sandu [9]. It is known that both IF logic and dependence logic are equivalent to
existential second-order logic ESO in expressive power. From the point of view of descriptive
complexity theory, this means that dependence logic captures the class NP.

The framework of dependence logic has turned out be flexible to allow interesting general-
izations. For example, the extensions of dependence logic in terms of so-called intuitionistic
implication and linear implication was introduced in [1]. In [23] it was shown that extending
D by the intuitionistic implication makes the logic equivalent to full second-order logic SO.

∗ The third author was supported by grants 127661 and 138163 of the Academy of Finland. The second
and fourth author were supported by a grant from DAAD within the PPP programme. The fourth
author was also supported by DFG grant VO 630/6-2.

© A. Durand, J. Ebbing, J. Kontinen, and H. Vollmer;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 252–263

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.252
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Durand, J. Ebbing, J. Kontinen, and H. Vollmer 253

Recently, new variants of the dependence atomic formulas have been introduced in [7]
and [6]. Also a modal version of dependence logic was introduced in [20] and has been
studied in [14] and [15]. In this paper we are concerned with introducing a new quantifier to
dependence logic: the majority quantifier. Adding majority and, more generally, counting
capabilities to logical formalisms or computational devices has deserved a lot of attention in
theoretical computer science. Understanding the power of counting is an important problem
both in logic and in computational complexity:

The circuit class TC0, the class of problems solvable by polynomial-size constant-depth
circuits with majority gates, is at the current frontier for lower bound techniques (see,
e.g., [21]). We have strict separations of classes within TC0, but above TC0 we have
essentially no lower bounds. By a diagonalization it follows that TC0 is different from the
second level of the exponential-time hierarchy and that uniform TC0 is strictly included
in the class PP of probabilistic polynomial time [2], but a separation from a lower class
seems to be far away. In particular, the question if TC0 equals NC1 (logarithmic-depth
circuits with bounded fan-in gates) is considered the P-NP problem of circuit complexity.

The counting-hierarchy (the oracle hierarchy built upon PP) can be characterized us-
ing majority quantifiers in just the same way as by Wrathall’s theorem existential and
universal quantifiers characterize the polynomial hierarchy [17].

By Toda’s theorem, one majority quantifier is as powerful as the whole polynomial hier-
archy [16].

Here we suggest a definition of a majority quantifier for dependence logic. The proposed
semantics mimics that of the existential and universal quantifiers in D. The present paper
is devoted to a first study of the resulting logic, denoted by D(M). We examine some of its
basic properties, prove strong normal forms (some of our technically most involved proofs
are found here), and show in our main result, that dependence logic with the majority
quantifier leads to a new descriptive complexity characterization of the counting hierarchy:
D(M) captures CH.

Engström [5] has also studied generalized quantifiers in dependence logic. He considered
different conservative extensions of D—informally this means that he extends D by gener-
alized quantifiers in a first-order manner. From a descriptive complexity point of view, his
logics do not lead out of NP, i.e., ESO, assuming the quantifier in question is ESO-definable
(e.g., the majority quantifier). Our approach and results differ from that of Engström since
we are in a sense extending dependence logic by a dependence majority quantifier, whose
semantics is defined in close analogy with the semantics of ∃ and ∀ in dependence logic. The
results of our paper show that our extension behaves like an extension of SO by second-order
generalized quantifiers.

This article is organized as follows. In Sect. 2 we defined dependence logic and discuss
some basic results on it. Then we introduce a majority quantifier for the dependence logic
setting and discuss the basic properties of D(M). In Subsect. 2 we discuss the complexity
class counting hierarchy and the second-order majority quantifiers Mostk that have been
used to characterize it in [10]. In Sect. 3, we introduce second-order majority quantifiers
Mostk

f ranging over functions and in Sect. 4 we show that, for sentences the logics SO(Mostf)
(the extension of second-order logic SO by Mostk

f for k ≥ 1) and D(M) are equivalent. Due
to space restrictions, some proofs have to be omitted in this paper, but can be found in the
full version at http://arxiv.org/abs/1109.4750.

FSTTCS 2011

http://arxiv.org/abs/1109.4750

254 Dependence logic with a majority quantifier

2 Preliminaries

In this section we first define dependence logic and discuss its basic properties. Then we
define the counting hierarchy and the logic corresponding to it.

2.1 Dependence Logic
Dependence logic (D) extends the syntax of first-order logic by new dependence atomic
formulas. In this article we consider only formulas of D that are in negation normal form.

I Definition 2.1 ([19]). Let τ be a vocabulary. The τ -formulas of dependence logic (D[τ])
is defined by extending FO[τ], defined in terms of ∨, ∧, ¬, ∃ and ∀, by atomic dependence
formulas

=(t1, . . . , tn), (1)

where t1, . . . , tn are terms.

The meaning of the formula (1) is that the value of the term tn is functionally determined
by the values of the terms t1, . . . , tn−1. The formula =() is interpreted as >. The semantics
of D will be formally presented shortly.

I Definition 2.2. Let φ ∈ D. The set Fr(φ) of free variables of a formula φ is defined as for
first-order logic, except that we have the new case

Fr(=(t1, . . . , tn)) = Var(t1) ∪ · · · ∪Var(tn),

where Var(ti) is the set of variables occurring in term ti. If Fr(φ) = ∅, we call φ a sentence.

The semantics of D is formulated using the concept of a Team. Let A be a model with
domain A. Assignments of A are finite mappings from variables into A. The value of a term
t in an assignment s is denoted by tA〈s〉. If s is an assignment, x a variable, and a ∈ A, then
s(a/x) denotes the assignment (with domain dom(s) ∪ {x}) that agrees with s everywhere
except that it maps x to a.

I Definition 2.3. Let A be a set and {x1, . . . , xk} a finite (possibly empty) set of variables.

1. A team X of A with domain dom(X) = {x1, . . . , xk} (we call A the co-domain of X) is
any set of assignments s : {x1, . . . , xk} → A.

2. The relation rel(X) ⊆ Ak corresponding to X is defined as

rel(X) = {(s(x1), . . . , s(xk)) : s ∈ X}.

3. For a function F : X → A, we define

X(F/x) = {s(F (s)/x) : s ∈ X}
X(A/x) = {s(a/x) : s ∈ X and a ∈ A}.

We will next define the semantics of dependence logic. Below, atomic formulas and their
negations are called literals.

I Definition 2.4 ([19]). Let A be a model and X a team of A. The satisfaction relation
A |=X φ is defined as follows:

1. If φ is a first-order literal, then A |=X φ iff for all s ∈ X we have A |=s φ.

A. Durand, J. Ebbing, J. Kontinen, and H. Vollmer 255

2. A |=X=(t1, . . . , tn) iff for all s, s′ ∈ X such that
tA1 〈s〉 = tA1 〈s′〉, . . . , tAn−1〈s〉 = tAn−1〈s′〉, we have tAn 〈s〉 = tAn 〈s′〉.

3. A |=X ¬ =(t1, . . . , tn) iff X = ∅.
4. A |=X ψ ∧ φ iff A |=X ψ and A |=X φ.
5. A |=X ψ ∨ φ iff X = Y ∪ Z such that A |=Y ψ and A |=Z φ .
6. A |=X ∃xψ iff A |=X(F/x) ψ for some F : X → A.
7. A |=X ∀xψ iff A |=X(A/x) ψ.
Above, we assume that the domain of X contains the variables free in φ. Finally, a sentence
φ is true in a model A (in symbols: A |= φ) if A |={∅} φ. Above, A |=s φ denotes satisfaction
in first-order logic.

Let us then recall some basic properties of dependence logic that will be needed later. The
following lemma shows that the truth of a D-formula depends only on the interpretations of
variables occurring free in the formula. Below, for V ⊆ dom(X), X � V is defined by

X � V := {s � V | s ∈ X} and
s � V := {(a, s(a)) | a ∈ dom(s) ∩ V }.

I Lemma 2.5 ([19]). Suppose V ⊇ Fr(φ). Then A |=X φ if and only if A |=X�V φ.

All formulas of dependence logic also satisfy the following strong monotonicity property
called Downward Closure.

I Proposition 2.6 ([19]). Let φ be a formula of dependence logic, A a model, and Y ⊆ X

teams. Then A |=X φ implies A |=Y φ.

On the other hand, the expressive power of sentences of D coincides with that of existential
second-order sentences:

I Theorem 2.7 ([19]). D = ESO.

Finally, we note that dependence logic is a conservative extension of first-order logic.

I Definition 2.8. A formula φ of D is called a first-order formula if it does not contain
dependence atomic formulas as subformulas.

First-order formulas of dependence logic satisfy the so-called flatness property:

I Theorem 2.9 ([19]). Let φ be a first-order formula of dependence logic. Then for all A
and X:

A |=X φ if and only if for all s ∈ X we have A |=s φ.

2.2 Dependence logic with a majority quantifier
The main topic of the present paper is the study of a logic obtained from D by the intro-
duction of a majority quantifier M. We denote this extended logic by D(M). It is formally
defined by extending the syntax and semantics of dependence logic by the following clause:

A |=X Mxφ(x) iff for at least |A||X|/2 many functions F : X → A we have A |=X(F/x) φ(x).

Analogously to D the logic D(M) has the so-called empty team property:

I Proposition 2.10. For all models A and formulas φ of D(M), it holds that A |=∅ φ.

FSTTCS 2011

256 Dependence logic with a majority quantifier

Proof. The claim is proved using induction on φ. J

We also observe that D(M) satisfies the downward closure property (compare to Proposition
2.6).

I Proposition 2.11. Let φ be a formula of D(M), A a model, and Y ⊆ X teams. Then
A |=X φ implies A |=Y φ.

Proof. The claim is proved using induction on φ. We consider the case where φ is Mxψ.
The other cases are proved exactly as for dependence logic (see Proposition 3.10 in [19]). By
the induction assumption, ψ satisfies the claim. Let A, X and Y be as above and suppose
that |A| = n, |X| = m, and |Y | = m− 1. Let us assume A |=X φ. Then for at least (nm)/2
many functions F : X → A it holds that A |=X(F/x) ψ. Since ψ satisfies the claim, it holds
that if A |=X(F/x) ψ, then A |=Y (F ′/x) ψ, where

F ′ = F � Y. (2)

Note that, in the worst case, at most n different functions F gives rise to the same reduct
F ′ in (2). Therefore, the number of functions F : Y → A satisfying A |=Y (F/x) ψ is at least
(nm)/2n = nm−1/2 and hence A |=Y φ. It is easy to see that the analogous argument can
be used with any Y ⊆ X. J

A well-studied property in the context of dependence logic is that of coherence, defined
as follows. A formula φ is called k-coherent if and only if for all structures A and teams X
it holds that

A |=X φ⇔ for every k-element subteam X ′ ⊆ X it holds that A |=X′ φ.

1-coherent formulas are also called flat.

I Proposition 2.12. There is a formula φ ∈ D(M) without dependence atoms such that φ
is not k-coherent for any k ∈ N.

We also note that the analogue of Proposition 2.5 does not hold for D(M).

I Proposition 2.13. The truth of a D(M)-formula φ may depend on the interpretations of
variables that do not occur free in φ.

2.3 Second-order Majority Quantifiers and the Counting Hierarchy
In this section we define the counting hierarchy and the relevant generalized quantifiers.

I Definition 2.14. Let k ≥ 1. We define the k-ary second-order generalized quantifier Mostk

binding a k-ary relation symbol X in a formula φ. Assume A is a structure with domain A
such that |A| = n. Then the semantics of this quantifier is defined as follows:

A |= MostkXφ(X) ⇐⇒
∣∣{B ⊆ Ak | A |= φ(B)

}∣∣ ≥ 2nk

/2.

We will also make use of the so-called k-ary second-order Rescher quantifier, defined as
follows:

A |= RkX,Y (φ(X), ψ(Y)) ⇐⇒
∣∣{B ⊆ Ak | A |= φ(B)

}∣∣ ≥ ∣∣{B ⊆ Ak | A |= ψ(B)
}∣∣.

A. Durand, J. Ebbing, J. Kontinen, and H. Vollmer 257

It is quite easy to see that the Mostk-quantifier can be defined in terms of the quantifier
Rk. In [10] it was shown that the k-ary Rescher quantifier Rk can be defined in first order
logic with Mostk+1, and, for k ≥ 2, already with Mostk. It is worth noting that in [10] the
quantifiers Mostk and Rk are interpreted as strict majority and strict inequality, respectively.
All the results of [10] that we use also hold under the "non-strict" interpretation adopted in
this article.

The counting hierarchy (CH) is the analogue of the polynomial hierarchy, defined as the
oracle hierarchy using as building block probabilistic polynomial time (the class PP) instead
of NP:

1. C0P = P,
2. Ck+1P = PPCkP,
3. CH =

⋃
k∈N CkP.

The counting hierarchy was first defined by Wagner [22] but the above equivalent formulation
is due to Torán [17]. The class PP consists of languages L for which there is a polynomial
time-bounded nondeterministic Turing machine N such that, for all inputs x, x ∈ L iff more
than half of the computations of N on input x accept.

In [10] it was shown that the extension FO(Most) of FO by the quantifiers Mostk, for
k ∈ N, describes exactly the problems in the counting hierarchy. The proof therein used the
fact that the second-order existential quantifier can be simulated by Mostk and first-order
logic.

I Theorem 2.15. FO(Most) = SO(Most) = CH.

By the above remark we see that in the previous theorem the Most quantifiers can be
replaced by Rescher quantifiers.

3 Majority over Functions

For our main result that compares second-order logic and dependence logic with majority-
quantifiers, it turns out to be helpful to consider a version of the Most-quantifier that ranges
over functions instead of relations.

I Definition 3.1. Let k ≥ 1. We define the k-ary second-order generalized quantifier Mostk
f

binding a k-ary function symbol g in a formula φ. Assume A is a structure with domain A
such that |A| = n. Then

A |= Mostk
f g φ(g) ⇐⇒

∣∣{f : Ak → A | A |= φ(f)
}∣∣ ≥ nnk

/2.

We denote by SO(Mostf) the extension of SO by the quantifiers Mostk
f for all k ≥ 1. The

following elementary properties of SO(Mostf) will be useful.

I Proposition 3.2. The following equivalences hold:

1. (φ ∨Mostk
f g ψ) ≡ Mostk

f g (φ ∨ ψ), if g does not appear free in φ,
2. (φ ∧Mostk

f g ψ) ≡ Mostk
f g (φ ∧ ψ), if g does not appear free in φ.

Note that since also ¬Mostk
f g ψ is equivalent to Mostk

f g ¬ψ, Proposition 3.2 allows us to
transform formulas of SO(Mostf) to prenex normal form. The equivalences of Proposition
3.2 obviously hold also for the relational majority quantifiers Mostk.

The next proposition states the intuitively obvious fact that the extensions of SO by the
quantifiers Mostk or alternatively by Mostk

f , for k ∈ N, are equal in expressive power.

FSTTCS 2011

258 Dependence logic with a majority quantifier

I Proposition 3.3. SO(Most) = SO(Mostf).

Proof. We prove the claim by an argument analogous to Theorem 3.4 in [10]. We will show
how to express the quantifier Mostk

f in the logic SO(Most) implying SO(Mostf) ≤ SO(Most).
The converse inclusion is proved analogously.

Let us consider a formula of the form Mostk
f gφ(g) ∈ SO(Mostf). Let A be a structure.

We may assume that A is ordered (we can existentially quantify it) and hence there is a
FO-formula δ(x, y) defining the lexicographic ordering of the set Ak+1. We can construct a
formula χ(X,Y) which, for A1, A2 ⊆ Ak+1, defines the lexicographic ordering (A1 ≤l A2) of
k + 1-ary relations induced by δ(x, y).

It is now fairly straightforward to express Mostk
f gφ(g) in the logic SO(Most). Let

G = {B ⊆ Ak+1 | B is the graph of some g and A |= φ(g)},
Gc = {B ⊆ Ak+1 | B is the graph of some g and A 6|= φ(g)}.

It now suffices to express |G| ≥ |Gc| in the logic SO(Most). For a D ⊆ Ak+1, define the set
IS(D) (the “initial segment” determined by D) by

IS(D) = {D′ ⊆ Ak+1| D′ /∈ G ∪Gc and D′ ≤l D}.

The condition |G| ≥ |Gc| can be now expressed by

∀D
(
|Gc ∪ IS(D)| ≥ 2nk+1

/2⇒ |G ∪ IS(D)| ≥ 2nk+1
/2
)
.

It is straightforward to express this in the logic SO(Most). J

The following lemma will be needed in the proof of the next proposition.

I Lemma 3.4. Let k ≥ 1. There exists an ESO sentence χ(g), where g is k-ary, such that
for all A with domain |A| = n, χ(g) is satisfied by exactly dnnk

/2e − 2nk−1 many k-ary
functions g none of which is a characteristic function of some k-ary relation.

The next proposition gives a useful normal form for sentences of the logic SO(Mostf).

I Proposition 3.5. Every sentence of SO(Mostf) is equivalent to a sentence of the form

∃h1Mostk
f g1 · · ·Mostk

f gl ∃h
2
θ,

where the function symbols in h
1, and gi for 1 ≤ i ≤ l, are k-ary (k ≥ 3), and θ is a

universal first-order sentence.

Proof. Note that by Proposition 3.3 it suffices to show that every sentence of the logic
SO(Most) can be transformed to this form. The result in [10] shows (as pointed out in Lemma
10.5 in [11]) that, in the presence of built-in relations {<,+,×}, sentences of SO(Most) can
be assumed to have the form

Mosti1Y1 · · ·MostilYl ψ, (3)

where ψ is first-order. Furthermore, when l in (3) is fixed, we get a fragment of SO(Most)
characterizing the lth level of CH, i. e., the class ClP.

We will next show how to transform any sentence of the form (3) to the required form.
The first step is to quantify out the built-in relations {<,+,×} to get a sentence of the form

∃X<∃X+∃X×Mosti1Y1 · · ·MostilYl ψ
∗. (4)

A. Durand, J. Ebbing, J. Kontinen, and H. Vollmer 259

The relations X<, X+, and X× can be axiomatized as part of ψ∗ (compare to case 2 of
Proposition 3.2). Then we modify the sentence (4) to change the arities of all the quantified
relations to some big enough k. We need only to replace all occurrences, say Yi(t1, . . . , tij

),
of the quantified relation symbols in ψ∗ by Yi(t1, . . . , tij , 0, . . . , 0). (Note that the needed
constant 0 can be defined using the linear order.) Increasing the arity of the second-order
existential quantifiers in (4) is clearly unproblematic. For the majority quantifiers Mostij ,
we note that for any structure A of cardinality n and B ⊆ Av, the number of k-ary relations
D ⊆ Ak such that

{a ∈ Av | (a, 0, . . . , 0) ∈ D} = B (5)

is 2nk−nv , which is independent of B. Furthermore, obviously the truth of ψ∗ with respect
to a tuple of k-ary relations D1, . . . , Dl+3 only depends on whether ψ∗(B1, . . . , Bl+3) holds,
where Bi is the restriction of Di defined analogously to (5). This fact allows us to increase
also the arity of the majority quantifiers without changing the meaning of the sentence (4).

Let us then show how to transform the relational quantifiers in (4) into function quanti-
fiers. We claim that it is possible to replace ψ∗(X<, X+, X×, Y1, . . . , Yl) by a formula of the
form

θ(g) ∨ (∀x(
∧

1≤i≤l

gi(x) ∈ {0, 1}) ∧ ψ′(g</X<, g+/X+, g×/X×, g1/Y1, . . . , gl/Yl)), (6)

where g = (g<, g+, g×, g1, . . . , gl), the new function symbols are all k-ary and ψ′ is obtained
from ψ∗ by substituting subformulas Z(t1, . . . , tk) by the corresponding g(.)(11, . . . , tk) = 1,
where Z ∈ {Y1, . . . , Yl, X<, X+, X×}.

The formula θ(g) is a ESO-formula that accepts certain dummy functions in order to
shift the border of acceptance from (2|A|k)/2 (half of k-ary relations) to |A||A|k/2 (half of
k-ary functions). The logical form of θ is

χ(g1) ∨ χ(g2) ∨ · · · ∨ χ(gl),

where χ(g) is defined in Lemma 3.4. Note that we repeatedly use case 1 of Lemma 3.2 to
gather all the formulas χ(gi) into θ which is placed after the block of all majority quantifiers.

To prove the claim we finally transform the formula (6) into Skolem normal form to get
a sentence of the form

∃g<∃g+∃g×Mostk
f g1 · · ·Mostk

f gl ∃gψ′, (7)

where ψ′ is a universal FO-sentence. J

4 SO(Most) = D(M)

In this section we show that the logics SO(Mostf) (and thus, by the previous section,
SO(Most)) and D(M) are equivalent with respect to sentences.

We will first show a compositional translation mapping formulas of D(M) into sentences
of SO(Mostf). This translation is analogous to the translation from D into ESO of [19].

I Lemma 4.1. Let τ be a vocabulary. For every D(M)[τ]-formula φ there is a τ ∪ {S}-
sentence ψ of SO(Mostf) such that for all models A and teams X with dom(X) = Fr(φ) it
holds that

A |=X φ ⇐⇒ (A, rel(X)) |= ψ.

FSTTCS 2011

260 Dependence logic with a majority quantifier

Proof. For technical reasons to be motived shortly, we will actually prove a slightly more
general result showing that for every D(M)[τ]-formula φ and every finite set of variables
{y1, . . . , yn} ⊇ Fr(φ) there is a SO(Mostf)[τ ∪ S]-sentence ψ such that for all A and teams
X with dom(X) = {y1, . . . , yn} it holds that

A |=X φ ⇐⇒ (A, rel(X)) |= ψ.

We will prove the claim using induction on the structure of D(M)-formulas. In the following
we write φ(y1, . . . , yn) to mean that Fr(φ) ⊆ {y1, . . . , yn}. The quantifiers Rk can be uni-
formly defined in the logic SO(Most), hence by the results of the previous section, also in
SO(Mostf). Therefore, we may freely use the quantifiers Rk in the translation.

Atomic formulas and their negations are translated exactly in the same way as in the
analogous translation from D into ESO in [19]. The cases γ := ∃ynφ(y1, . . . , yn) and γ :=
∀ynφ(y1, . . . , yn) are also translated as in [19]. Suppose then that γ := (φ ∨ ψ)(y1, . . . , yn)
and that φ∗(S) and ψ∗(S) already exist by induction hypothesis. We translate γ as follows:

γ∗(S) := ∃Y ∃Z(φ∗(Y/S) ∧ ψ∗(Z/S) ∧ ∀y1 . . . ∀yn(S(y)→ R(y) ∨ T (y))). (8)

Note that γ∗(S) is defined as in [19]. The only difference is that in the case of dependence
logic the sentence (8) can be written using a single sentence φ∗(S) (and ψ∗(S)) that translates
φ over teams with domain Fr(φ) (see Proposition 2.5). In the case of D(M) the behavior
of φ and ψ over teams X with dom(X) = {y1, . . . , yn} does not in general reduce to their
behavior over X � Fr(φ) and X � Fr(ψ) (see Proposition 2.13). Therefore, to formulate the
sentence (8), we need sentences φ∗(S) and ψ∗(S) that are correct translations of φ and ψ
with respect to teams with domain {y1, . . . , yn}.

The case γ := (φ ∧ ψ)(y1, . . . , yn) is also analogous to [19]. It remains to consider the
case where our formula γ is of the form

γ := Mynφ(y1, . . . , yn) (9)

and φ is a formula for which we have already a translation into an SO(Mostf)[τ ∪S] sentence
φ∗(S). We claim that γ can be translated as follows:

γ∗(S) := Rn Y, Z(θ1(Y), θ2(Z)) (10)

where

θ1(Y) := φ∗(Y/S) ∧ ∀y1 . . . ∀yn−1∃=1ynY (y) ∧ ∀y1 . . . ∀yn−1(∃ynY (y)↔ S(y′))
θ2(Z) := ¬φ∗(Z/S) ∧ ∀y1 . . . ∀yn−1∃=1ynZ(y) ∧ ∀y1 . . . ∀yn−1(∃ynZ(y)↔ S(y′))
and y′ := y1, . . . , yn−1

The following equivalence is now obvious for all A and X:

A |=X γ ⇔ (A, rel(X)) |= γ∗(S).

J

Next we will show that, for sentences, Lemma 4.1 can be reversed.

I Lemma 4.2. Let τ be a vocabulary and φ ∈ SO(Mostf)[τ]. Then there is a sentence
ψ ∈ D(M)[τ] such that for all models A:

A |= φ ⇐⇒ A |= ψ.

A. Durand, J. Ebbing, J. Kontinen, and H. Vollmer 261

Proof. By Proposition 3.5 we may assume that φ is of the form:

∃h1Mostk
f g1 · · ·Mostk

f gn ∃h
2∀x1 · · · ∀xmψ, (11)

where the function symbols in h1 and g1, . . . , gn are k-ary, and ψ is quantifier free. Before
translating this sentence into D(M), we will first apply certain reductions to it. First of
all, we make sure that the functions gi have only occurrences of the form gi(x) in ψ where
x = (x1, . . . , xk). We can achieve this by existentially quantifying new names fi for these
symbols and passing on to the sentence

∃h1Mostk
f g1 · · ·Mostk

f gn ∃h
2∃f1 · · · ∃fn∀x1 · · · ∀xm(

∧
1≤j≤n

gj(x) = fj(x) ∧ ψ∗), (12)

where ψ∗ is obtained from ψ by replacing all occurrences of gi by fi for 1 ≤ j ≤ n. Analog-
ously, we may also assume that the functions h in h1 have only occurrences h(x1, . . . , xk) in
ψ. Here m can always be made at least k.

The next step is to transform the quantifier-free part ψ∗ to satisfy the condition that for
each of the function symbols h in h2 (also fi) there is a unique tuple x of pairwise distinct
variables such that all occurrences of it in ψ∗ are of the form h(x) (fi(x)). In order to achieve
this, we might have to introduce new existentially quantified functions and also universal
first-order quantifiers (see Theorem 6.15 in [19]), but the quantifier structure of the sentence
(11) does not change.

We will now assume that the sentence (11) has the properties discussed above:

1. The function symbols h ∈ h1 and gi have only occurrences of the form h(x1, . . . , xk) and
gi(x1, . . . , xk) in ψ, respectively.

2. For each h in h2 (fi, for 1 ≤ i ≤ n) there is a unique tuple x of pairwise distinct variables
such that all occurrences of h in ψ∗ are of the form h(x) (fi(x)).

We will now show how the sentence (11) can be translated into D(M). For the sake of
bookkeeping, we assume that h1 = h1 . . . hp, h

2 = hp+1 . . . hr, and that hi appears in ψ only
as hi(xi). We claim now that the following sentence of D(M) is a correct translation for
(11):

∀x1 · · · ∀xk∃y1 · · · ∃ypMz1 · · ·Mzn∀xk+1 · · · ∀xm∃yp+1 · · · ∃yr(
∧

p+1≤j≤r

=(xi, yi) ∧ θ), (13)

where θ is obtained from ψ by replacing all occurrences of the term gi(x1, . . . , xk) by the
variable zi and, similarly, each occurrence of hi(xi) by yi.

Let us then show that the sentence φ (see (11)) and sentence (13) are logically equivalent.
Let A be a structure and let h1, . . . ,hr and g1, . . . ,gn interpret the corresponding function
symbols. We will show that the following holds:

(A,h,g) |=X ψ ⇔ A |=X∗ θ, (14)

where X = {∅}(A/x1) · · · (A/xm) and

X∗ = {∅}(A/x1) · · · (A/xk) (H1/y1) · · · (Hp/yp)
(G1/z1) · · · (Gn/zn) (A/xk+1) · · · (A/xm)

(Hp+1/y1) · · · (Hr/yr),

FSTTCS 2011

262 Dependence logic with a majority quantifier

where the supplement functions Hi and Gi are defined using the functions hi and gi as
follows:

Hi(s) = hi(s(x1), . . . , s(xk)) for 1 ≤ i ≤ p,
Hi(s) = hi(s(xi)) for p+ 1 ≤ i ≤ r,
Gi(s) = gi(s(x1), . . . , s(xk)) for 1 ≤ i ≤ n,

and where s(xi) is the tuple obtained by pointwise application of s. The claim in (14) is
now proved using induction on the structure of the quantifier-free formula ψ. Note that
ψ is a first-order formula of dependence logic; hence, by Theorem 2.9, (14) holds iff the
equivalence holds for each s ∈ X (equivalently s ∈ X∗ since the values of the universally
quantified variables functionally determine the values of all the other variables) individually.
We can now show, using induction on the construction of ψ, that for all s ∈ X∗ it holds
that

A |=s θ ⇐⇒ (A,h,g) |=s′ ψ, (15)

where s′ = s � {x1, . . . , xm}. The key to this result is the fact that, for every s, the
interpretation of the variables zi and yi agree with the interpretation of the terms hi(xi)
and g(x1, . . . , xk), respectively.

Finally, we note that there is a one-to-one correspondence between all possible inter-
pretations h1, . . . ,hr and g1, . . . ,gn for the function symbols and teams X∗ satisfying the
dependence atomic formulas in (13). Therefore, sentence φ (see (11)) and sentence (13) are
logically equivalent. J

5 Conclusion and Open Questions

We have seen that extending dependence logic by a majority quantifier increases the ex-
pressive power of dependence logic considerably. One particular consequence of our result
is that D(M) is closed under classical negation on the level of sentences. Note further that,
for open formulas, this does not hold because of the downward closure property of formulas.

Several open questions remain and we now discuss some of them. Firstly, Proposition
2.12 shows that the fragment of D(M) without dependence atoms does not satisfy the flatness
property. It would be interesting to pin down the exact expressive power of sentences of
D(M) without dependence atoms.

The second open question concerns the open formulas of D(M). In [12] it was shown
that the open formulas of D correspond to the downwards monotone properties of NP (see
[12] for the exact formulation). We conjecture that the open formulas of D(M) correspond
in an analogous manner to the downwards monotone properties of CH.

The majority quantifier is only one particular example of so-called generalized quanti-
fiers (or, Lindström quantifiers), introduced in [13] and studied extensively in the context
of descriptive complexity theory (see surveys [18] and [4]). In [3], second-order Lindström
quantifiers were introduced and some results concerning their expressive power were ob-
tained. We consider it an interesting study to enrich in a similar way dependence logic by
further generalized quantifiers and relate the obtained logics to those studied in [3].

References

1 S. Abramsky and J. Väänänen. From IF to BI. Synthese, 167(2):207–230, 2009.

A. Durand, J. Ebbing, J. Kontinen, and H. Vollmer 263

2 E. Allender. The permanent requires large uniform threshold circuits. Chicago J. Theoret.
Comput. Sci., pages Article 7, 19 pp. (electronic), 1999.

3 H.-J. Burtschick and H. Vollmer. Lindström quantifiers and leaf language definability. Int.
J. Found. Comput. Sci., 9(3):277–294, 1998.

4 H.-D. Ebbinghaus and J. Flum. Finite model theory, 2nd edition. Perspectives in Math-
ematical Logic. Springer-Verlag, 1999.

5 F. Engström. Generalized quantifiers in dependence logic. arXiv:1103.0396.
6 P. Galliani. Inclusion and exclusion dependencies in team semantics: On some logics of

imperfect information. arXiv:1106.1323.
7 E. Grädel and J. Väänänen. Dependence and independence. To appear in Studia Logica.
8 L. Henkin. Some remarks on infinitely long formulas. In Infinitistic Methods (Proc. Sympos.

Foundations of Math., Warsaw, 1959), pages 167–183. Pergamon, Oxford, 1961.
9 J. Hintikka and G. Sandu. Informational independence as a semantical phenomenon. In

Logic, methodology and philosophy of science, VIII (Moscow, 1987), volume 126 of Stud.
Logic Found. Math., pages 571–589. North-Holland, Amsterdam, 1989.

10 J. Kontinen. A logical characterization of the counting hierarchy. ACM Trans. Comput.
Log., 10(1), 2009.

11 J. Kontinen and H. Niemistö. Extensions of MSO and the monadic counting hierarchy. Inf.
Comput., 209(1):1–19, 2011.

12 J. Kontinen and J. Väänänen. On definability in dependence logic. J. Log. Lang. Inf.,
18(3):317–332, 2009.

13 P. Lindström. First order predicate logic with generalized quantifiers. Theoria, 32:186–195,
1966.

14 P. Lohmann and H. Vollmer. Complexity results for modal dependence logic. In A. Dawar
and H. Veith, editors, Computer Science Logic, 24th International Workshop, CSL 2010,
19th Annual Conference of the EACSL, Brno, Czech, volume 6247 of Lecture Notes in
Computer Science, pages 411–425. Springer, 2010.

15 M. Sevenster. Model-theoretic and computational properties of modal dependence logic.
J. Log. Comput., 19(6):1157–1173, 2009.

16 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877,
1991.

17 J. Torán. Complexity classes defined by counting quantifiers. J. Assoc. Comput. Mach.,
38(3):753–774, 1991.

18 J. Väänänen. Generalized quantifiers, an introduction. In Generalized quantifiers and
computation (Aix-en-Provence, 1997), volume 1754 of Lecture Notes in Comput. Sci., pages
1–17. Springer, Berlin, 1999.

19 J. Väänänen. Dependence logic: A New Approach to Independence Friendly Logic,
volume 70 of London Mathematical Society Student Texts. Cambridge University Press,
Cambridge, 2007.

20 J. Väänänen. Modal dependence logic. In K. Apt and R. van Rooij, editors, New Per-
spectives on Games and Interaction, volume 5 of Texts in Logic and Games, pages 237–254.
Amsterdam University Press, 2008.

21 H. Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical
Computer Science. Springer Verlag, Berlin Heidelberg, 1999.

22 K. Wagner. The complexity of combinatorial problems with succint input representation.
Acta Informatica, 23:325–356, 1986.

23 F. Yang. Expressing second-order sentences in intuitionistic dependence logic. To appear
in Studia Logica.

FSTTCS 2011

Modal Logics Definable by Universal
Three-Variable Formulas
Emanuel Kieroński∗, Jakub Michaliszyn∗, and Jan Otop

Institute of Computer Science
University of Wrocław
{kiero,jmi,jotop}@cs.uni.wroc.pl

Abstract
We consider the satisfiability problem for modal logic over classes of structures definable by
universal first-order formulas with three variables. We exhibit a simple formula for which the
problem is undecidable. This improves an earlier result in which nine variables were used. We also
show that for classes defined by three-variable, universal Horn formulas the problem is decidable.
This subsumes decidability results for many natural modal logics, including T, B, K4, S4, S5.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases modal logic, decidability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.264

1 Introduction

Modal logic for almost a hundred year has been an important topic in many academic
disciplines, including philosophy, mathematics, linguistics, and computer science. Currently
it seems to be most intensively investigated by computer scientists. Among numerous
branches in which modal logic, sometimes in disguise, finds applications, are hardware and
software verification, cryptography and knowledge representation.

Modal logic was introduced by philosophers to study modes of truth. The idea was to
extend propositional logic by some new constructions, of which two most important were ♦ϕ
and �ϕ, originally read as ϕ is possible and ϕ is necessary, respectively. A typical question
was, given a set of axioms A, corresponding usually to some intuitively acceptable aspects of
truth, what is the logic defined by A, i.e. which formulas are provable from A in a Hilbert-like
system.

One of the most important steps in the history of modal logic was inventing a formal
semantics based on the notion of the so-called Kripke structures. Basically, a Kripke
structure is a directed graph, called a frame, together with a valuation of propositional
variables. Vertices of this graph are called worlds. For each world truth values of all
propositional variables can be defined independently. In this semantics, ♦ϕ means ϕ is true
in some world connected to the current world; and �ϕ, equivalent to ¬♦¬ϕ, means ϕ is true
in all worlds connected to the current world.

It appeared that there is a beautiful connection between syntactic and semantic approaches
to modal logic [12]: logics defined by axioms can be equivalently defined by restricting classes
of frames. E.g., the axiom ♦♦P → ♦P (if it is possible that P is possible, then P is possible),
is valid precisely in the class of transitive frames; the axiom P → ♦P (if P is true, then P
is possible) – in the class of reflexive frames, P → �♦P (if P is true, then it is necessary

∗ Partially supported by Polish Ministry of Science and Higher Education grant N N206 37133.

© E. Kieroński, J. Michaliszyn, and J. Otop;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 264–275

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.264
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

E. Kieroński, J. Michaliszyn, and J. Otop 265

that P is possible) – in the class of symmetric frames, and the axiom ♦P → �♦P (if P is
possible, then it is necessary that P is possible) – in the class of Euclidean frames.

Thus we may think that every modal formula ϕ defines a class of frames, namely the
class of those frames in which ϕ is valid. A formula ϕ is valid in a frame K if for any possible
truth-assignment of propositional variables to the worlds of K, ϕ is true at every world.
While this definition involves quantification over sets of worlds, many important classes of
frames, in particular all the classes we mentioned above, can be defined by simple first-order
formulas. For a given first-order sentence Φ over the signature consisting of a single binary
symbol R we define KΦ to be the set of those frames which satisfy Φ.

In this paper we are interested in the satisfiability problem for modal logic over classes
of frames definable by universal first-order formulas. The first result in this area was that
there exists a universal first-order formula with equality Φ, such that the global satisfiability
problem for modal logic over KΦ is undecidable [6]. By global satisfiability we mean the
problem of determining if there exists a Kripke structure such that a given modal formula ϕ
is true at every world of this structure. That result has been recently improved in [8] in two
aspects: by removing equality and globalness. Namely, the authors exhibited a formula Φ′
without equality, such that the standard, local, satisfiability problem for modal logic over
KΦ′ is undecidable.

The formula from [8] uses nine variables. A natural question arises, how many variables are
necessary to obtain undecidability. Note that transitive, reflexive, symmetric, or equivalence
frames are definable by formulas with just three variables. The satisfiability problem for
modal logic over those classes is known to be decidable [9]. It appears however that there
exists a universal first-order formula without equality with only three variables defining the
class of frames over which satisfiability problem for modal logic is undecidable. Exhibiting
such a formula is the first contribution of our paper.

I Theorem 1. There exists a three-variable universal formula Γ′, without equality, such that
the local satisfiability problem for modal logic over KΓ′ is undecidable.

Our formula, despite the fact that it uses much smaller number of variables, is also simpler
than the formula from [8]. Actually, if we only want to show the undecidability of global
satisfiability then we can use a formula Γ which is just a single, universally quantified clause
consisting of six literals.

We emphasize that our result is optimal with respect to the number of variables. Indeed,
if Φ is an arbitrary (not necessarily universal) first-order sentence with two variables, then
the satisfiability problem for modal logic over KΦ can be reduced to the satisfiability problem
for the two-variable fragment of first-order logic, FO2, using the standard translation of
modal logic into FO2. The latter problem is known to be decidable [10, 4]. For details about
the standard translation see e.g. [2].

Decidable classes of frames we mentioned earlier can be defined by three-variable first-
order sentences even if we further restrict the language to universal Horn formulas, UHF.
Universal Horn formulas were considered in [7], where a dichotomy result was proved, that
the satisfiability problem for modal logic over the class of structures defined by an UHF
formula (with an arbitrary number of variables) is either in NP or PSpace-hard. In the same
paper decidability is shown for a rich subclass of UHF, including in particular all formulas
which imply reflexivity. However, the problem remained open for formulas involving variants
of transitivity. The authors of [7] conjecture that the problem is decidable, and in PSpace
for all universal Horn formulas. Our second contribution is confirming this conjecture for the
case of formulas with at most three-variables, UHF3.

FSTTCS 2011

266 Modal Logics Definable by Universal Three-Variable Formulas

I Theorem 2. Let Φ be a UHF3 sentence. Then the local and the global satisfiability problems
for modal logic over KΦ are decidable.

This theorem extends the decidability results for the classes we mentioned earlier in this
introduction, in particular for modal logics T, B, K4, S4, S5. It also works for some interesting
classes of frames, for which, up to our knowledge, decidability has not been established so
far. An example is the class defined by ∀xyz(xRy ∧ yRz → zRx).

We provide a full classification of UHF3 sentences, with respect to the complexity of
satisfiability of modal logic over the classes of frames they define. It appears, that except for
the trivial case of inconsistent formulas for which the problem is in P, local satisfiability is
either NP-complete or PSpace-complete, and global satisfiability is NP-complete, PSpace-
complete, or ExpTime-complete.

2 Preliminaries

As we work with both first-order logic and modal logic we help the reader by distinguishing
them in our notation: we denote first-order formulas with Greek capital letters, and modal
formulas with Greek small letters. We assume that the reader is familiar with first-order and
propositional logic.

Modal logic extends propositional logic with the operator ♦ and its dual �. Formulas
of modal logic are interpreted in Kripke structures, which are triples of the form 〈W,R, π〉,
where W is a set of worlds, 〈W,R〉 is a directed graph called a frame, and π is a function
that assigns to each world a set of propositional variables which are true at this world. We
say that a structure 〈W,R, π〉 is based on the frame 〈W,R〉.

The semantics of modal logic if defined recursively. A modal formula ϕ is (locally) satisfied
in a world w of a model M = 〈W,R, π〉, denoted as M, w |= ϕ if (i) ϕ is a variable and
ϕ ∈ π(w), (ii) ϕ = ϕ1 ∨ ϕ2 and M, w |= ϕ1 or M, w |= ϕ2, (iii) ϕ = ¬ϕ′ and M, w 6|= ϕ′,
or (iv) ϕ = ♦ϕ′ and there exists a world v ∈ W such that (w, v) ∈ R and M, v |= ϕ′. We
abbreviate ¬♦¬ϕ by �ϕ. By |ϕ| we denote the length of ϕ measured as the total number of
occurrences of propositional variables. We say that a formula ϕ is globally satisfied in M,
denoted as M |= ϕ, if for all worlds w of M, we have M, w |= ϕ.

For a given class of frames K, we say that a formula ϕ is locally (resp. globally) K-
satisfiable if there exists a frame K ∈ K, a structure M based on K, and a world w ∈ W
such that M, w |= ϕ (resp. M |= ϕ). We define the local (resp. global) satisfiability problem
K-SAT (resp. global K-SAT) as follows. For a given modal formula, is this formula locally
(resp. globally) K-satisfiable?

For a given formula ϕ, a Kripke structure M, and a world w ∈W we define the type of w
(with respect to ϕ) in M as tpϕ

M(w) = {ψ : M, w |= ψ and ψ is subformula of ϕ}. We write
tpM(w) if the formula is clear from the context. Note that |tpϕ

M(w)| < |ϕ|.
The set of universal Horn formulas with three variables without equality, UHF3, is defined

as the set of those Φ which are of the form ∀xyz.Φ1∧Φ2∧. . .∧Φi, where each Φi is a Horn clause.
A Horn clause is a disjunction of literals of which at most one is positive. We usually present
Horn clauses as implications. For example, the formula ∀xyz.(xRy∧yRz ⇒ xRz)∧(xRx⇒ ⊥)
defines the set of transitive and irreflexive frames. We often skip the quantifiers and represent
such formulas as sets of clauses, e.g.: {xRy ∧ yRz ⇒ xRz, xRx⇒ ⊥}. We assume without
loss of generality that each Horn clause is of the form Ψ ⇒ ⊥, Ψ ⇒ xRx, or Ψ ⇒ xRy.
We define Ψ(v1, v2, v3) as the instantiation of Ψ with x = v1, y = v2, and z = v3, e.g.
(xRy ∧ yRz)(a, b, c) = aRb ∧ bRc. We denote by Φp the set of the clauses of Φ containing a
positive literal, i.e. all clauses of Φ except those of the form Ψ⇒ ⊥.

E. Kieroński, J. Michaliszyn, and J. Otop 267

Figure 1 The structure GN. Its universe is N × N.
Reflexive arrows are omitted for clarity.

Figure 2 Completing the
grid. Dotted arrows are en-
forced by Γ and τ .

3 Undecidability

In this section we work with signatures consisting of a single binary symbol R, and a number
of unary symbols, including Pij , for 0 ≤ i, j ≤ 2. Structures over such signatures can be
naturally viewed as Kripke structures in which R is the accessibility relation, and unary
relations describe valuations of propositional variables. To simplify our notation we assume
that subscripts in Pij are always taken modulo 3, e.g. if i = 2, j = 2, then Pi+1,j+1 denotes
P00.

Let
Γ = ∀xyz.¬xRy ∨ yRx ∨ ¬xRz ∨ zRx ∨ yRz ∨ zRy.

First, we prove that global KΓ-SAT is undecidable. Then we use the trick from [8] and show
that also local KΓ′ -SAT is undecidable, for Γ′ being a modification of Γ, using still only three
variables.

3.1 General idea
Note that Γ can be rewritten as ∀xyz.(xRy ∧ ¬yRx ∧ xRz ∧ ¬zRx)→ (yRz ∨ zRy), i.e. it
says, that if there are one-way connections from a world x to worlds y, z, then there is also a
connection (not necessarily one-way) between y and z. The structure GN illustrated in Fig. 1
(we assume that this structure is reflexive) is a model of Γ. Note that it is important that
some connections are two-way. In GN we can define the horizontal adjacency relation by the
following formula with free variables x, y:

∨
ij(Pijx∧ Pi+1,jy ∧ xRy). Analogously, we define

the vertical adjacency:
∨

ij(Pijx ∧ Pi,j+1y ∧ xRy). GN can be now viewed as an expansion
of the standard grid on N× N.

To get the undecidability we construct a modal formula τ , capturing some properties
of GN, such that any model M |= τ from KΓ locally looks like a grid. Namely, τ says that
every element satisfying Pij has three R-successors: one in Pi+1,j , one in Pi,j+1, and one in
Pi+1,j+1, and forbids connections from Pi+1,j+1 to Pi,j+1, Pi+1,j , and Pij . If we consider
now any element a in a model, we see that τ enforces the existence of its horizontal successor
ah, its vertical successor av and its upper-right diagonal successor ad (see Fig. 2). By τ , the
connections to these successors are one-way, so we need, by Γ, connections between ah and

FSTTCS 2011

268 Modal Logics Definable by Universal Three-Variable Formulas

ad, and av and ad. Again, by τ , these connections has to go from ah to ad, and from av to
ad, so ad is indeed a horizontal successor of av, and a vertical successor of ah.

Below we present a more detailed proof covering also the case of finite satisfiability,
i.e. satisfiability in the class of finite models. The technique we employ is quite standard. It
is similar e.g. to the technique used in [11].

3.2 Domino systems
In the proof we use some well known results on domino systems.

I Definition 3. A domino system is a tuple D = (D,DH , DV), where D is a set of domino
pieces and DH , DV ⊆ D×D are binary relations specifying admissible horizontal and vertical
adjacencies. We say that D tiles N× N if there exists a function t : N× N→ D such that
∀i, j ∈ N we have (t(i, j), t(i+ 1, j)) ∈ DH and (t(i, j), t(i, j + 1)) ∈ DV . Similarly, D tiles
Zk ×Zl, for k, l ∈ N, if there exists t : Zk ×Zl → D such that (t(i, j), t(i+ 1 mod k, j)) ∈ DH

and (t(i, j), t(i, j + 1 mod l)) ∈ DV .

The following lemma comes from [1, 5].

I Lemma 4. The following problems are undecidable:

(i) For a given domino system D determine if D tiles N× N.
(ii) For a given domino system D determine if there exists k ∈ N such that D tiles Zk ×Zk.

3.3 Grid definition
We capture some properties of GN by a modal formula τ .

τ = τ0 ∧
∧

0≤i,j≤2
(τ♦ij ∧ τ

�
ij),

where τ0 says that each element satisfies one of Pij , τ♦ij ensure that all elements have
appropriate horizontal, vertical and upper-right diagonal successors, and τ�ij forbid reversing
the horizontal, vertical and upper-right diagonal arrows.

τ♦ij = Pij → (♦Pi+1,j ∧ ♦Pi,j+1 ∧ ♦Pi+1,j+1),

τ�ij = Pij → �(¬Pi−1,j ∧ ¬Pi,j−1 ∧ ¬Pi−1,j−1).

Note that τ�ij allow for reflexive edges.

3.4 Domino encoding
We encode an instance of the domino problem by a modal formula in a standard way. For a
given domino system D = (D,DH , DV) we define

λD = λ0 ∧
∧

0≤i,j≤2
(λH

ij ∧ λV
ij).

For every d ∈ D we use a fresh propositional letter Pd. λ0 says that each world contains
a domino piece, λH

ij and λV
ij say that pairs of elements satisfying horizontal and vertical

adjacency relations respect DH and DV , respectively.

λH
ij =

∧
d∈D

((Pd ∧ Pij)→ �(Pi+1,j →
∨

d′:(d,d′)∈DH

Pd′)),

E. Kieroński, J. Michaliszyn, and J. Otop 269

λV
ij =

∧
d∈D

((Pd ∧ Pij)→ �(Pi,j+1 →
∨

d′:(d,d′)∈DV

Pd′)).

The following lemma establishes the undecidability of the global satisfiability and the
global finite satisfiability problems for modal logic over KΓ.

I Lemma 5. Let D be a domino system.

(i) D tiles N× N iff there exists M ∈ KΓ such that M |= τ ∧ λD.
(ii) D tiles some Zk × Zk iff there exists a finite M ∈ KΓ such that M |= τ ∧ λD.

Proof. As in the case of symbols Pij , when referring to τ�ij or τ♦ij we assume that subscripts
are taken modulo 3.

Part (i), ⇒ Let t be a tiling of N× N. We construct M by expanding GN in such a way
that for every i, j ∈ N the element (i, j) satisfies Pt(i,j). It is readily checked that M is as
required.

Part (i), ⇐ We explain how to construct a function f : N× N→M , such that for every
i, j ∈ N: (a) M |= Pij(f(i, j)), (b) M |= f(i, j)Rf(i+ 1, j), (c) M |= f(i, j)Rf(i, j + 1).

First we show how to define f on N× {0}. Let f(0, 0) = c for an arbitrary element c of
M satisfying P00. Such c exists owing to τ0 and τ♦ij . Assume that for some i > 0 we have
defined f(i− 1, 0) = a, and let ah be an R-successor of a satisfying Pi0. Such ah exists owing
to τ♦i−1,0. Define f(i, 0) = ah.

Assume now that f is defined for N × [0, . . . , j − 1] for some j > 0. We extend this
definition to N × {j}. Let f(0, j − 1) = a. By the inductive assumption a satisfies P0,j−1.
Choose av to be an R-successor of a satisfying P0j . Such av exists by τ♦0,j−1. Set f(0, j) = av.

Assume that we have defined f(i− 1, j − 1) = a, f(i− 1, j) = av, and f(i, j − 1) = ah.
By the inductive assumptions M |= Pi−1,j−1(a) ∧ Pi−1,j(av) ∧ Pi,j−1(ah) ∧ aRah ∧ aRav.
Choose ad to be an R-successor of a satisfying Pij . Such ad exists by τ♦i−1,j−1. By τ�ij , ah,
av and ad cannot be connected to a, so Γ enforces R-connections between ah and ad, and
between av and ad. Since τA

ij forbids connection from ad to ah, and from ad to av, it has to
be that M |= ahRad ∧ avRad. This finishes definition of f with the desired properties.

We define a tiling t : N×N by setting t(i, j) = d for such d that f(i, j) satisfies Pd (there
is at least one such d owing to λ0). Properties (a), (b), (c) of f and the formulas λH

ij , λ
V
ij

imply that t is a correct tiling.

Part (ii) ⇒ Let l = 3k for some k ∈ Z. We define Gl to be the quotient of GN by the
relation ≈: (i, j) ≈ (i′, j′) iff i ≡ i′ mod l and j ≡ j′ mod l. Gl can be seen as an expansion
of the standard grid on Zl × Zl torus. It is readily checked that for every k ∈ N we have
G3k |= Γ and G3k |= τ .

If D tiles Zk×Zk then it also tiles Z3k×Z3k. Let t be a tiling of Z3k×Z3k. We construct
M by expanding G3k in such a way that for every i, j ∈ Z3k the element (i, j) satisfies Pt(i,j).
Again, checking that M is as required is straightforward.

Part (ii) ⇐ We want to define for some k, l ∈ Z a function f : Zk × Zl → M satisfying:
(a) M |= Pij(f(i, j)), (b) M |= f(i, j)Rf(i+ 1 mod k, j), (c) M |= f(i, j)Rf(i, j + 1 mod l).
We define f as a partial function on N×N and then restrict it to an appropriate domain.

We first define f on N× {0}, exactly as in the proof of Part (i), ⇐. Since M is finite this
time, it has to be that f(k, 0) = f(k′, 0) for some k > k′. To simplify the presentation we
assume k′ = 0, but this assumption is not relevant. Observe that for i ∈ [0, k) we have
M |= f(i, 0)Rf(i+1 mod k, 0). We extend the definition of f to [0, k)×N inductively. Assume
that f is defined on [0, k)×{0, . . . , j − 1}. We define it on [0, k)×{j}. For each i ∈ [0, k) we

FSTTCS 2011

270 Modal Logics Definable by Universal Three-Variable Formulas

find an element ai
d in M such that M |= Pi+1,j(ai

d) ∧ f(i, j − 1)Rai
d. Such ai

d exists owing
to τ♦i,j−1. We set f(i+ 1 mod k, j) = ai

d. Now Γ and formulas of the type τ� enforce for all
i ∈ [0, k) that M |= f(i, j − 1)Rf(i, j), and M |= f(i, j)Rf(i+ 1 mod k, j).

Finiteness of M implies now that for some l > l′ we have f�[0, k)× {l} = f�[0, k)× {l′}.
Again for simplicity we assume that l′ = 0. Observe that at this moment f is as desired on
Zk × Zl. We define a tiling t : Zk × Zl by setting t(i, j) = d for such d that f(i, j) satisfies
Pd (there is at least one such d owing to λ0). Properties (a), (b), (c) of f and the formulas
λH

ij and λV
ij imply that t is a correct tiling of Zk × Zl. This implies that there exists also a

correct tiling of Zm × Zm for m = gcd(k, l).
J

3.5 Local satisfiability
Observe that our proof of the undecidability of global satisfiability over KΓ works for the
subclass of reflexive models. This allows us to use the trick from [8] to cover also the case
of local satisfiability. We enforce by a modal formula the existence of an irreflexive world
and, by a first-order formula, we make it connected to all reflexive worlds. Such a universal
world can be then used to reach all relevant elements in the model. The class of structures is
defined by a formula Γ′, which says that each world with an incoming edge is reflexive and
has an incoming edge from all irreflexive worlds, and enforces Γ for all reflexive worlds:

Γ′ = ∀xyz.((xRy ∧ ¬zRz)→ (yRy ∧ zRy))∧
((xRx ∧ yRy ∧ zRz)→ (¬xRy ∨ yRx ∨ ¬xRz ∨ zRx ∨ yRz ∨ zRy)).

In the modal formula we use a fresh symbol PU to distinguish an irreflexive world. Now,
for a given domino system D we can show that PU ∧ �¬PU ∧ ♦> ∧ �(τ ∧ λD) is locally
(finitely) satisfiable over KΓ′ iff D covers N× N (some Zk × Zk). This proves Theorem 1.

See subsection 5.6 of [8] for details of the outlined trick.

4 Decidability

In this section, we prove Theorem 2. The general idea of the proof is standard: we are going
to show that for every UHF3 formula Φ and every modal formula ϕ, if ϕ is KΦ-satisfiable
then it is also KΦ-satisfiable in a “nice” model.

We start from an arbitrary model M |= ϕ based on a frame from KΦ and unravel it into
a model M0 whose frame is a tree with the degree of its nodes bounded by |ϕ|. Clearly the
frame of M0 is not necessarily a member of KΦ. In the next step we add to M0 the edges
implied by the Horn clauses of Φ. This is performed in countably many stages, until the
least fixed point is reached. We observe that the resulting structure, M∞, is still a model of
ϕ, and its frame belongs to KΦ.

Then we show that every model which can be obtained in the described way falls into one
of the four classes, which we call the class of semi-trees, transitive-trees, clique-unions, and
tripartitions.1 Moreover, for a given UHF3 formula Φ there exists a single class of models,
such that every KΦ-satisfiable modal formula ϕ has a model from this class.

Finally, we argue that for a given modal formula ϕ, checking if it has a model from one
of our four classes is decidable. If ϕ is KΦ-satisfiable in a clique-union or in a tripartition it

1 We choose such names for simplicity. In fact, in transitive trees transitivity may fail near the end of a
path, and clique-unions may have heads and tails. See Definition 7.

E. Kieroński, J. Michaliszyn, and J. Otop 271

can be shown that it is also KΦ-satisfiable in a clique-union or a tripartition of polynomially
bounded size, so we can simply guess such a small model and verify it; if ϕ is KΦ-satisfiable
in a semi-tree or in a transitive-tree then we use some adaptations of the standard techniques
for satisfiability of modal logics over the class of all frames, and over the class of transitive
frames, respectively.

4.1 Minimal tree-based models
We say that an edge (w1, w2) is a consequence of Φ in 〈W,R〉 if for some w3 ∈ W and
Ψ1 ⇒ Ψ2 ∈ Φ we have R |= Ψ1(w1, w2, w3), and Ψ2(w1, w2, w3) = w1Rw2. We define the
consequence operator as follows.

ConsΦ,W (R) = R ∪ {(w1, w2) : (w1, w2) is a consequence of Φ in 〈W,R〉}

We are going to use this operator in stages, starting from a tree and adding edges required
by Φ. We define the closure operator as the least fixed-point of Cons:

ClosureΦ,W (R) =
⋃

i>0 Consi
Φ,W (R)

For a tree T = 〈W,R〉, we now define the minimal T-based model of Φ as CΦ(T) =
〈W,ClosureΦ,W (R)〉. Note that CΦ(T) is the smallest model of Φp containing all edges
from R.

I Lemma 6. Let ϕ be a modal formula and let Φ ∈ UHF3. If ϕ is KΦ-satisfiable, then there
exists a tree T in which the degree of its nodes is bounded by |ϕ|, such that ϕ has a model
based on the frame CΦ(T).

Proof. Let M = 〈W,R, π〉 , u0 ∈W be such that M |= Φ and M, u0 |= ϕ.
We construct M0 = 〈W0, R0, π0〉 by an unraveling of M as follows. W0 is a subset of the

set of finite sequences of elements of W . We define W0 and R0 inductively. Initially, we put
(u0) ∈W0. Assume that (u0, . . . , uk) ∈W0. Let ♦ψ1, . . . ,♦ψs be all the formulas of the form
♦ψ from tpM(uk). There exist u1

k+1, . . . , u
s
k+1 ∈ W , such that for every i ∈ {1, . . . , s} we

have M |= ukRu
i
k+1 and ψi ∈ tpM(ui

k+1). For each such i we put (u0, . . . , uk, u
i
k+1) into W0

and add ((u0, . . . , uk), (u0, . . . , uk, u
i
k+1)) to R0. We define π0 as π0((u0, . . . , uk)) = π(uk).

Observe thatM0 = 〈W0, R0〉 is a tree in which the degree of the nodes is bounded by |ϕ|.
Let f : W0 →W be defined as f((u0, . . . , uk)) = uk. By a straightforward induction the

reader may verify that, for every ~u ∈W0 we have tpM0(~u) = tpM(f(~u)). This implies that
M0, (u0) |= ϕ.

Now, in countably many stages we add to M0 the edges implied by Φ. We define a
sequence of frames (Mi)i>0 and models (Mi)i>0 sharing the same universe W0 and mapping
π0. For K > 0 letMK = 〈W0,ConsK

Φ,W0
(R0)〉, MK = 〈MK , π0〉. Let M∞ be the natural

limit M∞ = 〈CΦ(M0), π0〉.
We show by induction over K, that for each ~u1, ~u2 ∈ W0 if MK |= ~u1R~u2, then M |=

f(~u1)Rf(~u2). It follows that for each ~u1, ~u2 ∈W0 if M∞ |= ~u1R~u2, then M |= f(~u1)Rf(~u2).
For K = 0 the conclusion is a straightforward consequence of the definition of M0. Assume
that MK satisfies the inductive hypothesis. For each ~u1, ~u2 ∈W0, if MK+1 |= ~u1R~u2, then
eitherMK |= ~u1R~u2 and by the inductive assumptionM |= f(~u1)Rf(~u2), or for some ~u3 ∈W0
and Ψ1 ⇒ Ψ2 ∈ Φ, we have MK |= Ψ1(~u1, ~u2, ~u3), and Ψ2(~u1, ~u2, ~u3) = ~u1R ~u2. In this case,
MK |= Ψ1(~u1, ~u2, ~u3) implies by the inductive assumption that M |= Ψ1(f(~u1), f(~u2), f(~u3)).
Since M |= Ψ1 ⇒ Ψ2, we have M |= f(~u1)Rf(~u2).

Let M∞ = 〈W0, R∞, π0〉. The structures M0 and M∞ have the same carrier and
R0 ⊆ R∞. We show that for each ~u ∈ W0 we have tpM∞(~u) = tpM0(~u). It implies that

FSTTCS 2011

272 Modal Logics Definable by Universal Three-Variable Formulas

M∞, (u0) |= ϕ. Since the labeling of the worlds is the same, it is enough to show that in M0
and M∞ each world is connected with the worlds that satisfy the same subformulas. We
show that by induction.

Clearly, for every edge (~u,~v) from R∞ \R0 and a subformula ♦ψ of ϕ, if a world ~v satisfies
ψ in M∞, then by the inductive assumption we have that ψ ∈ tpM0(~v) = tpM(f(~v)), and
since M |= f(~u)Rf(~v) we have that ♦ψ ∈ tpM(f(~u)) = tpM0(~u). See the full version of this
paper for a detailed proof.

Finally, we have to prove that CΦ(M0) |= Φ. By definition CΦ(M0) satisfies every
Ψ1 ⇒ Ψ2 ∈ Φp. Suppose that CΦ(M0) does not satisfy Ψ⇒ ⊥ ∈ Φ. For some ~w1, ~w2, ~w3 we
have CΦ(M0) |= Ψ(~w1, ~w2, ~w3), but then M |= Ψ(f(~w1), f(~w2), f(~w3)). This contradicts the
assumption that M |= Φ. J

4.2 Catalogue of models
A well known result shows that every satisfiable modal formula is satisfied in a finite tree.
This tree-model property is crucial for the robust decidability of modal logics. Standard
restrictions of classes of frames lead to similar results, stating that some “nice” models exist
for all satisfiable formulas. For example, every formula satisfiable over transitive structures
has a model which is a transitive tree.

Here we generalize those results. We introduce four classes of models and show that for
each formula Φ all formulas satisfiable over KΦ have models in one of those classes.

I Definition 7. We say that a graph 〈W,R〉 is
a semi-tree if and only if there exists R0 ⊆ R such that 〈W,R0〉 is a tree and R is
contained in the reflexive, symmetric closure of R0.
a transitive-tree if and only if there exists R0 ⊆ R such that 〈W,R0〉 is a tree, R is contained
in the reflexive, transitive closure of R0, and for each directed path (u0, u1, . . . , uk) in
〈W,R〉 and each 2 ≤ i ≤ j ≤ k − 2 we have an edge from ui to uj .
a tripartition if and only if W can be partitioned into three independent sets I1, I2, I3
such that for d ∈ Ii and e ∈ Ij we have that dRe ⇐⇒ j = i+ 1 mod 3.
a clique-union if and only if W can be partitioned into Head, Tails, C1, . . . , Ck, where
C1, . . . , Ck are disjoint cliques, Heads is a semi-tree of height at most 2, Tails is a forest
of semi-trees of height at most 2, and there are no edges from C1 ∪ . . . ∪Ck to Head and
from Tails to Head ∪ C1 ∪ . . . ∪ Ck.

I Lemma 8. Let Φ ∈ UHF3. One of the following conditions holds:
For each tree T , the structure CΦ(T) is a semi-tree.
For each tree T , the structure CΦ(T) is a transitive tree.
For each tree T , the structure CΦ(T) is a tripartition.
For each tree T , the structure CΦ(T) is a clique-union.

This lemma, together with Lemma 6 imply that for every Φ ∈ UHF3 modal logic has one
of: semi-tree model property, transitive tree model property, tripartite model property, clique-
union model property over KΦ, i.e. every satisfiable formula has a model in one particular
class. The proof of Lemma 8 starts from the analysis of the possible shapes of CΦ(I), for
the four-element tree I consisting of a root a, its two children b, d and a child c of b. It
appears that studying what happens on this simple tree allows to see what can happen on
arbitrary trees. The whole proof goes by a careful analysis of cases. Details are given in the
full version of this paper. Here we only show some examples.

E. Kieroński, J. Michaliszyn, and J. Otop 273

Figure 3 A closure for Φ = {xRz ∧ zRy ⇒ yRx} – three independent sets.

I Example 9. Consider the formula Φ = {xRz ∧ zRy ⇒ yRx} and the tree T = 〈W,R〉 at
the left side of Fig. 3. In the middle we present CΦ(T) – red edges belong to ConsΦ(R), blue
to Cons2

Φ(R), and yellow to Cons3
Φ(R). Observe that each world from the level i of the tree

is connected to all the worlds from the levels i+ 1 and i− 2. On the right side of the figure
we redraw the structure in a way underlining the partition into the three independent sets.

Figure 4 A closure for Φ = {xRz ∧ zRy ⇒ yRy, xRx ∧ xRy ∧ xRz ⇒ yRz} – a clique-union
(Tails = ∅ in this example).

I Example 10. Consider the formula Φ = {ϕ1, ϕ2}, where ϕ1 = xRz ∧ zRy ⇒ yRy and
ϕ2 = xRx ∧ xRy ∧ xRz ⇒ yRz, and the tree at the left side of Fig. 4. The formula ϕ1
enforces the following property: each world that has a predecessor that has a predecessor is
reflexive. The formula ϕ2 makes the relation R Euclidean except for the non-reflexive worlds.
As you can see at the right side of the figure, the fragment on which R is Euclidean collapses
into a clique.

I Example 11. Consider the formula Φ = {ϕ1, ϕ2}, where ϕ1 = xRy ∧ yRz ⇒ yRx and
ϕ2 = xRy ∧ yRx⇒ xRz, and the tree at the left side of Fig. 5. The formula ϕ1 enforces R
to be symmetric, except for the edges that go to the worlds with no successors. The formula
ϕ2 enforces connections from each world symmetrically connected to some other world to all
other worlds. As you can see at the right side of the figure, all worlds except for the leaves of
the tree form a clique.

4.3 Decidability procedures and complexity
In this subsection we sketch procedures deciding satisfiability of modal logics over classes
definable by UHF3, and discuss the complexity. We exclude from our considerations formulas

FSTTCS 2011

274 Modal Logics Definable by Universal Three-Variable Formulas

Figure 5 A closure for Φ = {xRy ∧ yRz ⇒ yRx, xRy ∧ yRx⇒ xRz} – a clique with tails.

allowing only for paths of lenght bounded by a constant, e.g. xRy ∧ yRz → ⊥. Clearly, the
satisfiability problem over classes of frames defined by such formulas is NP-complete.
Tripartitions and clique unions. It appears that in these two cases we can prove the
following polynomial model property.

I Lemma 12. For a given UHF3 formula Φ and a modal formula ϕ if ϕ has a model in KΦ
which is a tripartition or a clique union then it has a finite model of the same kind of size
polynomially bounded by |ϕ|.

Consider first the case of tripartitions. For every subformula ♦ψ of ϕ, and every class of
the partition Ii, if ψ is true at some elements of Ii, then we mark one such element. We also
mark an element satisfying ϕ. We remove all unmarked elements. Since for a pair of classes
of the partition they are either not connected or connected universally this procedure does
not affect types of elements, so they still satisfy the same subformulas of ϕ.

The case of clique-unions is slightly more complicated. Recall that models from this class
except cliques may also contain heads and tails, which cause that sometimes for a subformula
♦ψ of ϕ we need more than one element satisfying ψ in a clique. However, the number of
such elements may be bounded polynomially in |ϕ|. Similarly, we can also bound the number
of cliques and tails. Technical details can be found in the full version of this paper.

In both cases the outlined arguments work for both local and global satisfiability. The
decision procedure is to guess for a given formula ϕ a model of polynomial size and verify
it. This establishes NP-upper bound. The matching lower bound follows from a trivial
reduction from the boolean satisfiability problem.
Semi-trees. Here we can use standard approaches to satisfiability of modal logic over the
class of all frames. In the case of local satisfiability we can bound the depth of tree-models
and the degree of their nodes linearly in |ϕ| and then check the existence of such models in
a depth-first search manner in PSpace. (see e.g. [9]2). The lower bound comes from the
standard reduction of QBF (see also [9]).

In the case of global satisfiability we can enforce models of depth exponential with respect
to the length of the formula. The existence of models can be checked by an alternating
procedure which first guesses the type of the root, then guesses types of its children, and
universally repeats the procedure for the children. This algorithm works in alternating
polynomial space, and thus the problem is in ExpTime. A matching lower bound can be
obtained as in [3].

2 Please note that while the cited result does not consider reflexivity and symmetry, there are only some
minor changes needed to cover these cases.

E. Kieroński, J. Michaliszyn, and J. Otop 275

Table 1 Complexity of modal logics defined by consistent UHF3 formulas.

A property implied by a formula Global satisfiability Local satisfiability
Polynomial model property NP-c NP-c
Semi-tree model property ExpTime-c PSpace-c
Transitive-tree model property PSpace-c PSpace-c

Transitive trees. This case can be treated similarly to the case of satisfiability over the
class of transitive frames, i.e. the case of logic K4 (see [9]). There are slight differences
because in our case transitivity may fail at the last two elements of a path, however this
detail does not cause real problems. We can also simply enforce infinite models (consider
e.g. the class of irreflexive, transitive models and a modal formula > ∧ ♦> ∧�♦>), so the
length of paths cannot be bounded. However, we can bound polynomially the number of
types on a path, which allows to show PSpace-completeness in both global and local cases.

Theorem 2 follows from the discussion above. The complexity results are summarized in
Table 1.

References
1 R. Berger. The undecidability of the domino problem. Mem. AMS, 66, 1966.
2 Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cam-

bridge Tracts in Theoretical Comp. Sc. Cambridge University Press, Cambridge, 2001.
3 Cheng-Chia Chen and I-Peng Lin. The complexity of propositional modal theories and

the complexity of consistency of propositional modal theories. In Logical Foundations of
Computer Science, volume 813 of Lecture Notes in Computer Science, pages 69–80. 1994.

4 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for
two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

5 Yu. Sh. Gurevich and I. O. Koryakov. Remarks on berger’s paper on the domino problem.
Siberian Mathematical Journal, 13:319–321, 1972.

6 Edith Hemaspaandra. The price of universality. Notre Dame Journal of Formal Logic,
37(2):174–203, 1996.

7 Edith Hemaspaandra and Henning Schnoor. On the complexity of elementary modal logics.
In Susanne Albers and Pascal Weil, editors, STACS, volume 1 of LIPIcs, pages 349–360.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2008.

8 Edith Hemaspaandra and Henning Schnoor. A universally defined undecidable unimodal
logic. In Filip Murlak and Piotr Sankowski, editors, MFCS, volume 6907 of Lecture Notes
in Computer Science, pages 364–375. Springer, 2011.

9 Richard E. Ladner. The computational complexity of provability in systems of modal
propositional logic. Siam Journal on Computing, 6:467–480, 1977.

10 Michael Mortimer. On languages with two variables. Mathematical Logic Quarterly,
21(1):135–140, 1975.

11 Martin Otto. Two variable first-order logic over ordered domains. Journal of Symbolic
Logic, 66:685–702, 1998.

12 H. Sahlqvist. Completeness and correspondence in the first and second order semantics for
modal logic. Proceedings of the Third Scandinavian Logic Symposium, 1973.

FSTTCS 2011

The First-Order Theory of Ground Tree Rewrite
Graphs
Stefan Göller1 and Markus Lohrey∗2

1 Department of Computer Science, University of Bremen
2 Department of Computer Science, University of Leipzig

Abstract
We prove that the complexity of the uniform first-order theory of ground tree rewrite graphs is in
ATIME(22poly(n)

, O(n)). Providing a matching lower bound, we show that there is a fixed ground
tree rewrite graph whose first-order theory is hard for ATIME(22poly(n)

, poly(n)) with respect to
logspace reductions. Finally, we prove that there is a fixed ground tree rewrite graph together
with a single unary predicate in form of a regular tree language such that the resulting structure
has a non-elementary first-order theory. For a long version of this paper with complete proofs
see [11].

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.4.2 Grammars and Other Re-
writing Systems

Keywords and phrases ground tree rewriting systems, first-order theories, complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.276

1 Introduction

Pushdown systems (PDS) are natural abstractions of sequential recursive programs. Moreover,
the positive algorithmic properties of their transition graphs (pushdown graphs) make them
attractive for the verification of sequential recursive programs. In particular, the model-
checking problem for MSO (monadic second-order logic) and hence for most temporal logics
(e.g. LTL, CTL) is decidable over pushdown graphs and precise complexity results are known
(cf. [3, 14, 19, 20]). Ground tree rewrite systems [4, 8, 13] (GTRS), which are also known
as ground term rewrite systems, generalize PDS from strings to trees. While the rules of a
PDS rewrite a prefix of a given word, the rules of a GTRS rewrite a subtree of a given tree.
GTRS can model (on an abstract level) concurrent programs with the ability to spawn new
subthreads that are hierarchically structured, which in turn may terminate and return some
values to their parents.

The transition graphs of GTRS (ground tree rewrite graphs) do not share all the nice
algorithmic properties of pushdown graphs. For instance, the infinite grid is easily seen to
be a ground tree rewrite graph, which implies that MSO is undecidable over GTRS. This
holds even for most linear-time and branching-time temporal logics such as LTL and CTL
(cf. [13, 17]). On the positive side, reachability, recurrent reachability, fair termination and
certain fragments of LTL are decidable (cf. [4, 7, 13, 16, 17]). Moreover, first-order logic
(FO) and first-order logic with reachability predicates are decidable [8]. This implies that
model-checking of the CTL-fragment EF is decidable for GTRS; the precise complexity was
recently clarified in [10].

∗ The second author is supported by the DFG project GELO.

© S. Göller and M. Lohrey;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 276–287

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.276
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Göller and M. Lohrey 277

While model-checking FO with reachability predicates is clearly non-elementary over
GTRS (this holds already for the infinite binary tree, which is a pushdown graph [15]),
the precise complexity of model-checking FO over GTRS is open, although the problem
is known to be decidable since more than 20 years [8]. The algorithm provided in [8] has
non-elementary complexity due to an exponential blowup when dealing with negation.

The main contribution of this paper solves this problem. We prove that (i) the first-
order theory of every ground tree rewrite graph belongs to ATIME(22poly(n)

, O(n)) (doubly
exponential alternating time, where the number of alternations is bounded linearly) and (ii)
that there exists a fixed ground tree rewrite graph with an ATIME(22poly(n)

, poly(n))-complete
first-order theory. The upper bound of ATIME(22poly(n)

, O(n)) even holds uniformly, which
means that the GTRS may be part of the input. The complexity class ATIME(22poly(n)

, poly(n))
appears also in other contexts. For instance, Presburger Arithmetic (the first-order theory of
(N,+)) is known to be complete for ATIME(22poly(n)

, poly(n)) [1].
The upper bound of ATIME(22poly(n)

, poly(n)) is shown by the method of Ferrante and
Rackoff [9]. Basically, the idea is to show the existence of a winning strategy of the duplicator
in an Ehrenfeucht-Fraïssé game, where the duplicator chooses “small” elements. This method
is one of the main tools for proving upper bounds for FO-theories. We divide the upper
bound proof into two steps. In a first step, we reduce the FO-theory for a ground tree rewrite
graph to the FO-theory for a very simple word rewrite graph, where all word rewrite rules
replace one symbol by another symbol. The alphabet consists of all trees, whose size is
bounded by a singly exponential function in the input size (hence, the alphabet size is doubly
exponential in the input size; this is the reason for the doubly exponential time bound).
Basically, we obtain a word over this alphabet from a tree t by cutting off some prefix-closed
set C in the tree and taking the resulting sequence of trees. Intuitively, the set C consists of
all nodes u of t such that the subtree rooted in u is “large”. Here, “large” has to be replaced
by a concrete value m ∈ N such that a sequence of n rewrite steps applied to a tree t cannot
touch a node from the upward-closed set C. Clearly, m depends on n. In our context, n will
be exponential in the input size and so will m. In a second step (see the long version [11]),
we provide an upper bound for the FO-theory of a word rewrite graph of the above form.

For the lower bound, we show in this extended abstract only hardness for 2NEXP (doubly
exponential nondeterministic time) using a (22n × 22n) tiling problem (completeness for
ATIME(22poly(n)

, poly(n)) is shown in the long version [10] using an alternating version of this
tiling problem). In this problem, we are given a word w of length n over some fixed set
of tiles, and it is asked, whether this word can be completed to a tiling of an array of size
(22n × 22n), where the word w is an initial part of the first row. There exists a fixed set of
tiles, for which this problem is 2NEXP-complete. From this fixed set of tiles, we construct a
fixed GTRS such that the following holds: From a given word w of length n over the tiles, one
can construct (in logspace) a first-order formula that evaluates to true in our fixed ground
tree rewrite graph if and only if the word w is a positive instance of the (22n × 22n) tiling
problem. Our construction is inspired by [10], where it is shown that the model-checking
problem for a fragment of the logic EF (consisting of those EF-formulas, where on every
path of the syntax tree at most one EF-operator occurs) over GTRS is PNEXP-complete.

We finally state that there exists a fixed ground tree rewrite graph together with a single
unary predicate in form of a regular tree language such that the resulting structure has
a non-elementary first-order theory. This result is shown by a reduction from first-order
satisfiability of finite binary words, which is non-elementary [15]. It should be noted that
the first-order theory of a pushdown graph extended by regular unary predicates still has
an elementary first-order theory: it is an automatic structure of bounded degree, hence its

FSTTCS 2011

278 The First-Order Theory of Ground Tree Rewrite Graphs

first-order theory belongs to 2EXPSPACE [12]. However, we remark that ground tree rewrite
graphs are not of bounded degree, hence the result from [12] for tree-automatic structures
of bounded degree (stating that their first-order theories belong to 3EXPTIME) cannot be
applied to obtain an elementary upper bound in our setting.

2 Preliminaries

Let N = {0, 1, . . .} be the set of non-negative integers. For i, j ∈ N we define the interval
[i, j] = {i, i+ 1, . . . , j} and [j] = [0, j]. For an alphabet A (possibly infinite), we denote with
A+ = A∗ \ {ε} the set of all non-empty words over A. The length of the word w ∈ A∗ is
denoted by |w|. For B ⊆ A, we denote with |w|B the number of occurrences of symbols
from B in the word w. Let f : A → B be a mapping. For A′ ⊆ A, we denote with
f�A′ : A′ → B the restriction of f to A′. For sets A,B,C (where A and B may have a
non-empty intersection) and two mappings f : A→ C and g : B → C, we say that f and g
are compatible if f�(A ∩B) = g�(A ∩B). Finally, for mappings f : A→ C and g : B → C

with A ∩ B = ∅, we define f] g : A ∪ B → C as the mapping with (f] g)(a) = f(a) for
a ∈ A and (f] g)(b) = g(b) for b ∈ B.

We will deal with alternating complexity classes, see [5] for more details. For functions t(n)
and a(n) with a(n) ≤ t(n) for all n ≥ 0 let ATIME(t(n), a(n)) denote the class of all problems
solvable on an alternating Turing-machine in time t(n) with at most a(n) alternations. We
note that ATIME(t(n), t(n)) is contained in DSPACE(t(n)) if t(n) ≥ n [5].

2.1 Labelled graphs and first-order logic
A (directed) graph is a pair (V,→), where V is a set of nodes and→ ⊆ V×V is a binary relation.
A labelled graph is a tuple G = (V,Σ, { a−→| a ∈ Σ}), where V is a set of nodes, Σ is a finite set of
actions, and a−→ is a binary relation on V for all a ∈ Σ. We note that (labelled) graphs may have
infinitely many nodes. We also write v ∈ G for v ∈ V . For u, v ∈ V , we define dG(u, v) as the
length of a shortest undirected path between u and v in the graph (V,

⋃
a∈Σ

a−→). For n ∈ N and
u ∈ V let Sn(G, u) = {v ∈ V | dG(u, v) ≤ n} be the sphere of radius n around u. Moreover, for
u1, . . . , uk ∈ V let Sn(G, u1, . . . , uk) =

⋃
1≤i≤k Sn(G, ui). We identify Sn(G, u1, . . . , uk) with

the subgraph of G induced by the set Sn(G, u1, . . . , uk), where in addition every ui (1 ≤ i ≤ k)
is added as a constant. For two labelled graphs G1 and G2 and nodes u1, . . . , uk ∈ G1,
v1, . . . , vk ∈ G2, we will consider isomorphisms f : Sn(G1, u1, . . . , uk)→ Sn(G2, v1, . . . , vk).
Such an isomorphism has to map ui to vi. We write Sn(G1, u1, . . . , uk) ∼= Sn(G2, v1, . . . , vk)
if there is an isomorphism f : Sn(G1, u1, . . . , uk)→ Sn(G2, v1, . . . , vk). The following lemma
is straightforward.

I Lemma 1. Let G1,G2 be labelled graphs with the same set of actions. Let u ∈ Gk1,
v ∈ Gk2, u ∈ G1, and v ∈ G2 such that u 6∈ S2n+1(G1, u) and v 6∈ S2n+1(G1, v). Finally,
let f : Sn(G1, u) → Sn(G2, v) and f ′ : Sn(G1, u) → Sn(G2, v) be isomorphisms. Then
f] f ′ : Sn(G1, u, u)→ Sn(G2, v, v) is an isomorphism as well.

Later, we have to lift a relation → from a set A to a larger set. We will denote this new
relation again by →. Two constructions will be needed. Assume that → is a binary relation
on a set A and let A ⊆ B. We lift → to the set B+ of non-empty words over B as follows:
For all u, v ∈ B+, we have u→ v if and only if there are x, y ∈ B∗ and a, b ∈ A such that
a→ b and u = xay, v = xby. Note that this implies |u| = |v|. The second construction lifts
→ ⊆ A × A from A to N × A as follows: For a, b ∈ A and m,n ∈ N let (m, a) → (n, b) if
and only if m = n and a→ b. Note that (N×A,→) consists of ℵ0 many disjoint copies of

S. Göller and M. Lohrey 279

(A,→). Finally, for a labelled graph G = (V,Σ, { a−→| a ∈ Σ}), we define the labelled graph
G+ = (V +,Σ, { a−→| a ∈ Σ}). By the above definition, a−→ is lifted to a relation on V +.

We will consider first-order logic (FO) with equality over labelled graphs. Thus, for a set
Σ of actions, we have for each a ∈ Σ a binary relation symbol a(x, y) in our language. The
meaning of a(x, y) is of course x a−→ y. If ϕ(x1, . . . , xn) is a first-order formula with free
variables x1, . . . , xn, G = (V,Σ, { a−→| a ∈ Σ}) is a labelled graph, and v1, . . . , vn ∈ V , then
we write G |= ϕ(v1, . . . , vn) if ϕ evaluates to true in G, when variable xi is instantiated by vi
(1 ≤ i ≤ n). The first-order theory of a labelled transition graph G is the set of all first-order
sentences (i.e., first-order formulas without free variables) ϕ with G |= ϕ. The quantifier
rank of a first-order formula is the maximal number of nested quantifiers in ϕ.

2.2 Trees and ground tree rewrite systems

Let � denote the prefix order on N∗, i.e., x � y for x, y ∈ N∗ if there exists z ∈ N∗ with
y = xz. A set D ⊆ N∗ is called prefix-closed if for all x, y ∈ N∗, x � y ∈ D implies x ∈ D. A
ranked alphabet is a collection of finite and pairwise disjoint alphabets A = (Ai)i∈[k] for some
k ≥ 0 such that A0 6= ∅. For simplicity we identify A with

⋃
i∈[k]Ai. A ranked tree over the

ranked alphabet A is a mapping t : Dt → A, where (i) Dt is non-empty, finite, and prefix-
closed, and (ii) for each x ∈ Dt with t(x) ∈ Ai we have x1, . . . , xi ∈ Dt and xj 6∈ Dt for each
j > i. By TrA we denote the set of all ranked trees over the ranked alphabet A. Let t ∈ TrA.
Elements of Dt are called nodes. A leaf of t is a node x with t(x) ∈ A0. An internal node of
t is a node, which is not a leaf. We also refer to ε ∈ Dt as the root of t. Let size(t) = |Dt| be
the size of the tree t. It is easy to show that |{t ∈ TrA | size(t) ≤ n}| ≤ |A|n. For x ∈ [1, k]∗
we define xDt = {xy ∈ [1, k]∗ | y ∈ Dt} and x−1Dt = {y ∈ [1, k]∗ | xy ∈ Dt}. By t↓x we
denote the subtree of t with root x; it is defined by Dt↓x = x−1Dt and t↓x(y) = t(xy). For a
second tree s ∈ TrA and x ∈ Dt we denote by t[x/s] the tree that is obtained by replacing t↓x
in t by s. More formally, Dt[x/s] = (Dt \ xDt↓x) ∪ xDs, t[x/s](y) = t(y) for y ∈ Dt \ xDt↓x ,
and t[x/s](xz) = s(z) for z ∈ Ds.

Let C be a prefix-closed subset of Dt. We define the string of subtrees t \C as follows: If
C = ∅, then t \ C = t. If C 6= ∅, then t \ C = t↓v1 · · · t↓vm , where v1, . . . , vm is a list of all
nodes from ((C · N) ∩Dt) \ C in lexicographic order. Intuitively, we remove from the tree t
the prefix-closed subset C and list all remaining maximal subtrees. For n ∈ N and a tree t
we define the prefix-closed subset up(t, n) ⊆ Dt as up(t, n) = {v ∈ Dt | size(t↓v) > n}. Note
that t \ up(t, n) is a list of all maximal subtrees of size at most n in t.

A ground tree rewrite system (GTRS) is tuple R = (A,Σ, R), where A is a ranked
alphabet, Σ is finite set of actions, and R ⊆ TrA × Σ × TrA is a finite set of rewrite rules.
A rule (s, a, t) is also written as s a7−→ t. The corresponding ground tree rewrite graph is
G(R) = (TrA,Σ, {

a−→| a ∈ Σ}), where for each a ∈ Σ, we have t a−→ t′ if and only if there
exists a rule (s a7−→ s′) ∈ R and x ∈ Dt such that t↓x = s and t′ = t[x/s′]. The following two
lemmas are not very hard to prove.

I Lemma 2. Let R = (A,Σ, R) be a GTRS and let r be the maximal size of a tree that appears
in R. Let s and t be ranked trees such that dG(R)(s, t) ≤ n. Then size(t) ≤ size(s) + r · n.

I Lemma 3. Let R = (A,Σ, R) be a GTRS and let r be the maximal size of a tree that
appears in R. Let t be a ranked tree, k ∈ N, and let C ⊆ up(t, r · k) be prefix-closed. Then
we have Sk(G(R), t) ∼= Sk(G(R)+, t \ C) (where G(R)+ is defined in Section 2.1).

FSTTCS 2011

280 The First-Order Theory of Ground Tree Rewrite Graphs

3 An ATIME(22poly(n)
, O(n)) upper bound

In this section we will prove the following result:

I Theorem 4. The problem of checking G(R) |= ϕ for a given GTRS R = (A,Σ, R) and an
FO-sentence ϕ over the signature of G(R) belongs to the class ATIME(22poly(n)

, O(n)).

It suffices to prove Thm. 4 for the case that the ranked alphabet A contains a symbol of
rank at least two. A ground tree rewrite graph, where all symbols have rank at most 1 is in
fact a suffix rewrite graph, i.e., pushdown graph. But every pushdown graph is first-order
interpretable in a full |Γ|-ary tree Γ∗ (with Γ finite), where the defining first-order formulas
can be easily computed from the pushdown automaton. Finally, the first-order theory of a
full tree Γ∗ (with |Γ| ≥ 2) is complete for the class ATIME(2O(n), O(n)) [6, 18].

The proof of Thm. 4 will be divided into two steps. In a first step, we reduce the
FO-theory for a given ground tree rewrite graph to the FO-theory for a very simple word
rewrite graph of the form G+, where G is a finite labelled graph. Note that if V is the set
of nodes of G, then V + is the set of nodes of G+. Moreover, every edge in G+ replaces a
single symbol in a word by another symbol. In our reduction, the size of the set V is doubly
exponential in the input size (which is the size of the input formula plus the size of the
input GTRS). In a second step, we solve the FO-theory of a simple word structure G+ on an
alternating Turing machine. More precisely, in the long version [11] of this paper, we prove:

I Theorem 5. There exists an alternating Turing-machine M , which accepts all pairs (G, ϕ),
where G is a finite labelled graph and ϕ is an FO-sentence over the signature of G with
G+ |= ϕ. Moreover, M runs in time O(n` · |ϕ|), where n is the number of nodes of G and `
is the quantifier rank of ϕ. Moreover, the number of alternations is bounded by O(`).

The proof of Thm. 5 uses an application of the method of Ferrante and Rackoff [9], which is
one of most successful techniques for proving upper bounds for the complexity of first-order
theories. In the rest of this section, we will derive Thm. 4 from Thm. 5.

Fix a GTRS R = (A,Σ, R). We restrict to the case A1 6= ∅ 6= A2; the general case (see
[11]) is technically more complicated, but the main idea is the same. Let G = G(R) and let

ϕ = Q`x` · · ·Q1x1 Q0x0 : ψ

be a FO-sentence of quantifier rank `+ 1, where Q0, . . . , Q` ∈ {∀,∃} and ψ is quantifier-free.
We want to check, whether G |= ϕ. Let r be the maximal size of a tree that appears in R,
and let p ≥ 2 the maximal rank of a symbol from A. Let us define the following subsets of
TrA (where 0 ≤ i ≤ `):

U = {t ∈ TrA | size(t) ≤ r · (p+ 1) · 4` + 1},
Vi = {t ∈ TrA | size(t) ≤ r · 4i} ⊆ U and
Wi = {α(u1, . . . , uq) | q ≥ 1, α ∈ Aq, u1, . . . , uq ∈ Vi} \ Vi ⊆ U.

Intuitions on these sets will be given below. Note that size(t) ≤ r · p · 4i + 1 for all t ∈Wi.
We consider the set U as a finite alphabet and the sets Vi and Wi as subalphabets. Note
that |U | ≤ |A|r·(p+1)·4`+1. On the set (N × U+) ∪ U we define a labelled graph with the
set of actions Σ. Take an action σ ∈ Σ. By our lifting constructions from Section 2.1, the
binary relation σ−→ on TrA is implicitly lifted to a binary relation on Tr+

A and N× Tr+
A. Since

(N× U+) ∩ U = ∅, σ−→ can be viewed as a binary relation on (N× U+) ∪ U ; simply take the
disjoint union of the relations on (N× U+) and U . We define the labelled graph

S1 = ((N× U+) ∪ U, Σ, { σ−→| σ ∈ Σ}).

S. Göller and M. Lohrey 281

For 0 ≤ i ≤ ` and nodes si+1, . . . , s` ∈ (N× U+) ∪ U define the following nodes sets in S1:

Li = (N× V ∗i WiV
∗
i) ∪ Vi, Li(si+1, . . . , s`) = Li ∪ S3·4i(S1, si+1, . . . , s`).

Finally, define the FO-sentence (with relativized quantifiers)

ϕ1 = Q`x` ∈ L` Q`−1x`−1 ∈ L`−1(x`) · · · Q0x0 ∈ L0(x1, . . . , x`) : ψ (1)

over the signature of S1 Note that in ϕ1 the constraint set for a variable xi depends on the
values for the already quantified variables xi+1, . . . , x`. Based on the following lemma, we
show that G |= ϕ if and only if S1 |= ϕ1.

I Lemma 6. Assume that 0 ≤ i ≤ `,
s = (si+1, . . . , s`) ∈ ((N × U+) ∪ U)`−i with sj ∈ Lj ∪ S3·4j (S1, sj+1, . . . , s`) for all
j ∈ [i+ 1, `],
t = (ti+1, . . . , t`) ∈ Tr`−iA , and
f : S4i+1(S1, s)→ S4i+1(G, t) is an isomorphism such that f�S4i+1(S1, sj) is the identity
for all j ∈ [i+ 1, `] with tj ∈ Vi+1 or sj ∈ Vi+1.1

Then, the following holds:

(a) For all ti ∈ TrA there exists si ∈ Li∪S3·4i(S1, s) and an isomorphism g : S4i(S1, si, s)→
S4i(G, ti, t) such that f and g are compatible and g�S4i(S1, sj) is the identity for all
j ∈ [i, `] with tj ∈ Vi or sj ∈ Vi.

(b) For all si ∈ Li∪S3·4i(S1, s) there exists ti ∈ TrA and an isomorphism g : S4i(S1, si, s)→
S4i(G, ti, t) such that f and g are compatible and g�S4i(S1, sj) is the identity for all
j ∈ [i, `] with tj ∈ Vi or sj ∈ Vi.

Before we prove the lemma, let us provide some intuition. For case (a) we will basically
distinguish two cases: In case ti is “close” to some tree in the tuple t, then the simulating
si can safely be chosen as ti itself. In case ti is “far” to all trees in t, we distinguish two
cases: Either the size of ti exceeds r · 4i or not. If it does, then si will be chosen as a pair
from {n} × V ∗i WiV

∗
i for some fresh number n that does not appear as a first component of

any element in t, and where the second component of si consists basically of ti \ C for some
prefix-closed subset C of ti’s nodes. Intuitively, this means that si does not have to be “too
big” in order to simulate ti: only “small” subtrees of ti have to be accounted for. Lemma 3
will be crucial. In case |ti| ≤ r · 4i, we can prove that we can set si = ti ∈ Vi. For case (b)
we can proceed similarly, but the main crux is that for each element si ∈ N× V ∗i WiV

∗
i we

can build a tree ti ∈ TrA such that the spheres of radius 4i around si and ti are isomorphic.

PROOF (of Lemma 6). Let f : S4i+1(S1, s) → S4i+1(G, t) be an isomorphism such that
f�S4i+1(S1, sj) is the identity for all i+ 1 ≤ j ≤ ` with tj ∈ Vi+1 or sj ∈ Vi+1. Let us first
prove statement (a). Let ti ∈ TrA. We distinguish two cases:

Case 1. ti ∈ S3·4i(G, t). Thus, ti belongs to the range of the isomorphism f . Moreover,
S4i(G, ti, t) ⊆ S4i+1(G, t). Then, we set si = f−1(ti) ∈ S3·4i(S1, s). We define g as the
restriction of f to the set S4i(S1, si, s) ⊆ S4i+1(S1, s). Now, assume that ti ∈ Vi, i.e.,
size(ti) ≤ r ·4i. We have to show that g�S4i(S1, si) is the identity. Let tj (j > i) be such that
dG(ti, tj) ≤ 3·4i. Lemma 2 implies size(tj) ≤ size(ti)+r ·3·4i ≤ r ·4i+r ·3·4i = r ·4i+1. Hence,
tj ∈ Vi+1 and f�S4i+1(S1, sj) is the identity by assumption. Since S4i(S1, si) ⊆ S4i+1(S1, sj),
it follows that g�S4i(S1, si) is the identity too. If si ∈ Vi, then we can argue analogously.

1 For i = `, f is the isomorphism between empty sets.

FSTTCS 2011

282 The First-Order Theory of Ground Tree Rewrite Graphs

Case 2. ti 6∈ S3·4i(G, t). Thus, ti 6∈ S2·4i+1(G, t). We will find si ∈ Li and an isomorphism
f ′ : S4i(S1, si) → S4i(G, ti) such that si 6∈ S3·4i(S1, s). Then, Lemma 1 implies that g =
(f�S4i(S1, s))] f ′ is an isomorphism from S4i(S1, si, s) to S4i(G, ti, t), which is compatible
with f . Moreover, we will show that if ti ∈ Vi or si ∈ Vi, then f ′ is the identity. In order
to define si, let ti \ up(ti, r · 4i) = u1 · · ·um. Thus u1, . . . , um ∈ Vi. Choose a number n ∈ N
such that n does not appear as a first component of a pair from {si+1, . . . , s`} ∩ (N× U+).

Case 2.1. size(ti) > r · 4i. Then there exists a symbol α ∈ A of rank q ≥ 1, an index
1 ≤ j ≤ m−q+1, and a prefix-closed subset C ⊆ up(ti, r·4i) such that α(uj , . . . , uj+q−1) ∈Wi

and ti \ C = u1u2 · · ·uj−1α(uj , . . . , uj+q−1)uj+q · · ·um. We have ti \ C ∈ V ∗i WiV
∗
i . Let

si = (n, ti \ C) ∈ Li. Due to the choice of n, we have si 6∈ Sρ(S1, s) for all ρ. Moreover,
Lemma 2 and the definition of the set U implies that the sphere of radius 4i around every tree
from u1, u2, . . . , uj−1, α(uj , . . . , uj+q−1), uj+q, . . . , um is completely contained in U . With
Lemma 3 (setting k = 4i), we get S4i(S1, si) ∼= S4i(G, ti) via an isomorphism f ′. Finally,
size(ti) > r · 4i and si 6∈ U . Hence, neither si ∈ Vi nor ti ∈ Vi.

Case 2.2. size(ti) ≤ r · 4i. Hence, m = 1 and ti = u1. We set si = ti = u1 ∈ Vi ⊆ Li. Thus
size(si) = size(ti) ≤ r · 4i. We have S4i(G, ti) ⊆ U , which implies S4i(S1, si) = S4i(G, ti).
Assume that si ∈ S3·4i(S1, s). We will deduce a contradiction. Let j > i such that
dS1(si, sj) ≤ 3 ·4i. Since si ∈ U , we must have sj ∈ U as well (there is no path in S1 between
the sets U and N× U+). Moreover, Lemma 2 implies size(sj) ≤ size(si) + r · 3 · 4i ≤ r · 4i+1,
i.e., sj ∈ Vi+1. Hence, f�S4i+1(S1, sj) is the identity and ti ∈ S3·4i(G, tj), a contradiction.
We can finally choose for f ′ the identity isomorphism on S4i(S1, si) = S4i(G, ti). This proves
(a).

Let us now prove (b). Let si ∈ Li ∪ S3·4i(S1, s). Again, we distinguish two cases.

Case 1. si ∈ S3·4i(S1, s). This implies S4i(S1, si, s) ⊆ S4i+1(S1, s). We set ti = f(si) ∈
S3·4i(G, t). We can conclude as in Case 1 for point (a) above.

Case 2. si 6∈ S3·4i(S1, s). Hence, si ∈ Li. We will find ti ∈ TrA and an isomorphism
f ′ : S4i(S1, si) → S4i(G, ti) such that ti 6∈ S3·4i(G, t). Then, Lemma 1 implies that the
mapping g = (f�S4i(S1, s))] f ′ is an isomorphism from S4i(S1, si, s) to S4i(G, ti, t), which
is compatible with f . Moreover, we will show that if ti ∈ Vi or si ∈ Vi, then f ′ is the identity.

Case 2.1. si ∈ Vi ⊆ TrA. We set ti = si. Hence, size(ti) ≤ r ·4i and one can argue analogously
to Case 2.2 in the proof for statement (a).

Case 2.2. si ∈ N × V ∗i WiV
∗
i . Let si = (n,w) where w ∈ V ∗i WiV

∗
i . Hence, w = u1 · · ·um

with u1, . . . , um ∈ Vi ∪Wi. Moreover, there is a unique index j such that uj ∈Wi. Assume
that uj = α(u′1, . . . , u′q) with α ∈ A and q ≥ 1. By the definition of the set Wi we have
u′1, . . . , u

′
q ∈ Vi. Since we assume that A1 6= ∅ 6= A2, we can choose for ti a tree with the

following properties:
ti \up(ti, r · 4i) = u1 · · ·uj−1u

′
1 · · ·u′quj+1 · · ·um. For this, we connect all trees u1, . . . , um

to one tree using a chain of binary symbols, starting from uj ∈Wi.
ti 6∈ S3·4i(G, t). This can be enforced by adding a long enough chain of unary symbols to
the root.

With Lemma 3, the first point implies S4i(S1, si) ∼= S4i(G, ti). Moreover, since ti contains a
subtree from Wi, we have ti 6∈ Vi. J

Using the classical back-and-forth argument from the proof of the Ehrenfeucht-Fraïssé-
Theorem, we can deduce the following lemma from Lemma 6.

I Lemma 7. Assume that −1 ≤ i ≤ `,

S. Göller and M. Lohrey 283

s = (si+1, . . . , s`) ∈ ((N×U+)∪U)`−i with sj ∈ Lj ∪ S3·4j (sj+1, . . . , s`) for j ∈ [i+ 1, `],
t = (ti+1, . . . , t`) ∈ Tr`−iA , and
f : S4i+1(S1, s)→ S4i+1(G, t) is an isomorphism such that f�S4i+1(S1, sj) is the identity
for all j ∈ [i+ 1, `] with tj ∈ Vi+1 or sj ∈ Vi+1.

Then, for every quantifier-free FO-formula ψ over the signature of G and all Q0, . . . , Qi ∈
{∀,∃} we have: S1 |= Qixi ∈ Li(s) · · ·Q0x0 ∈ L0(x1, . . . , xi, s) : ψ(x0, . . . , xi, s) if and only
if G |= Qixi · · ·Q0x0 : ψ(x0, . . . , xi, t).

Setting i = ` in Lemma 7, it follows G |= ϕ if and only if S1 |= ϕ1, where ϕ1 is from (1).
It now requires rather easy but technical arguments to compute a finite labelled graph G′

with doubly exponentially (in our input size) many nodes and a first-order sentence ϕ′ (of
polynomial size and quantifier rank O(`)) such that S1 |= ϕ1 if and only if (G′)+ |= ϕ′. To
get rid of the direct product with N in the node set of S1, we use the simple fact that for an
arbitrary graph (V,→), ((V ∪ {$})+ \ {$}+,→) (where $ 6∈ V is a new symbol) is isomorphic
to (N× V +,→); here we use the lifting constructions from Section 2.1. Then, Thm. 4 can be
easily derived from Thm. 5. We refer to [11] for details.

4 A lower bound

In the long version of this paper [11], we prove the following lower bound:

I Theorem 8. There is a fixed GTRS R such that the first-order theory of G(R) is hard for
ATIME(22poly(n)

, poly(n)) under logspace reductions.

In this section, we will sketch a proof for the slightly weaker lower bound of 2NEXP. This
will be achieved using a tiling problem. Tiling problems turned out to be an important
tool for proving lower bounds in logic, see e.g. [2]. So, let us start with a few definitions
concerning tiling systems. A tiling system is a tuple S = (Θ,H,V), where Θ is a finite set of
tile types, H ⊆ Θ×Θ is a horizontal matching relation, and V ⊆ Θ×Θ is a vertical matching
relation. A mapping σ : [0, k − 1]× [0, k − 1]→ Θ (where k ≥ 0) is a k-solution for S if for
all x, y ∈ [0, k − 1] the following holds: (i) if x < k − 1, σ(x, y) = θ, and σ(x + 1, y) = θ′,
then (θ, θ′) ∈ H, and (ii) if y < k − 1, σ(x, y) = θ, and σ(x, y + 1) = θ′, then (θ, θ′) ∈ V. Let
Solk(S) denote the set of all k-solutions for S. Let w = θ0 · · · θn−1 ∈ Θn be a word and let
k ≥ n. With Solk(S,w) we denote the set of all σ ∈ Solk(S) such that σ(x, 0) = θx for all
x ∈ [0, n− 1]. For a fixed tiling system S, its (22n × 22n) tiling problem asks for a given word
w ∈ Θn, whether Sol22n (S,w) 6= ∅ holds. Using the standard encoding of Turing machine
computations by tilings, it follows easily that there exists a fixed tiling system S0 whose
(22n × 22n) tiling problem is 2NEXP-hard under logspace reductions; see also [2]. Let us fix
such a tiling system S0 = (Θ0,H0,V0) for the rest of the section.

We now define a fixed GTRS R0 = (A,Σ, R) and prove that the first-order theory of
G(R0) is 2NEXP-hard under logspace reductions. We define A0 = {♥,1,1†,1‡,O,O†,O‡},
A1 = Θ0, A2 = {•}, and Σ = {`, r, h, u,m†,m‡, } ∪Θ0 ∪ A0. The set of rewrite rules R is
given as follows:

X
X7−→ X for all X ∈ A0 θ(X‡)

θ7−→ θ(X‡) for all θ ∈ Θ0, X ∈ {1,O}

X
m†7−→ X† for all X ∈ {1,O} •(♥,♥) u7−→ ♥

X†
m‡7−→ X‡ for all X ∈ {1,O} •(♥, X‡)

r7−→ X‡ for all X ∈ {1,O}

X†
h7−→ ♥ for all X ∈ {1,O} •(X‡,♥) `7−→ X‡ for all X ∈ {1,O}

FSTTCS 2011

284 The First-Order Theory of Ground Tree Rewrite Graphs

For the rest of this section we fix G0 = G(R0) and an input w = θ0 · · · θn−1 ∈ Θn
0 of the

(22n × 22n) tiling problem for S0. Our goal is to compute in logspace from w a first-order
sentence ϕ over Σ such that Sol22n (S0, w) 6= ∅ if and only if G0 |= ϕ. We will need the
following lemma, which goes back to the work of Fischer and Rabin.

I Lemma 9. Given a subset of actions Γ ⊆ Σ and the binary representation of j ∈ [0, 2n+1],
one can compute in logspace a first-order formula Γj(x, y) such that for all t, t′ ∈ TrA we
have G0 |= Γj(t, t′) if and only if there is a path of length j from t to t′ in the graph
(TrA,

⋃
γ∈Γ

γ−→).

If Γ = {γ}, we write γj(x, y) for the formula Γj(x, y). For Γ1, . . . ,Γk ⊆ Σ and j1, . . . , jk ∈ N,
we write [Γj1

1 · · ·Γ
jk

k](x, y) for ∃x0, . . . , xk :
(
x0 = x ∧ xk = y ∧

∧k
i=1 Γji

i (xi−1, xi)
)
.

A tree t ∈ TrA is a tile tree if t = θ(t′) for some θ ∈ Θ0 and t′ ∈ Tr{O,1,•} such that
{1, 2}n+1 is the set of leaves of t′. Fix a tile tree t = θ(t′). Then t has precisely 2n+1 = 2 · 2n
leaves. For a leaf λ of t let lex(λ) ∈ [0, 2n+1 − 1] be the position of λ among all leaves w.r.t.
the lexicographic order (starting with 0). The intention is that t represents the θ-labeled grid
element (M,N) ∈ [0, 22n − 1]2, where each leaf λ that is a left (resp. right) child represents
the b lex(λ)

2 c
th least significant bit of the 2n-bit binary presentation of M (resp. N): In case λ

is a left child, then t(λ) = O (resp. t(λ) = 1) if and only if the b lex(λ)
2 c

th least significant
bit of M equals 0 (resp. 1) and analogously if λ is a right child this corresponds to N . We
say a leaf λ of a tree t is marked (resp. selected) if t(λ) = X† (resp. t(λ) = X‡) for some
X ∈ {O,1}. A marked tile tree is a tree that can be obtained from a tile tree t by marking
every leaf of t. For the rest of this section, let D = 2n+1 − (n+ 2).

I Lemma 10. One can compute in logspace a first-order formula marked(x) such that for
every tree t ∈ TrA\{O‡,1‡,♥} with precisely 2n+1 marked leaves we have: G0 |= marked(t) if
and only if the marked leaves of t are the leaves of some (unique) marked tile subtree of t.

Proof. The formula marked(x) states that once we select any of the 2n+1 marked leaves, we
can execute from the resulting tree some sequence in the language h2n+1−1uD{`, r}n+1Θ0.
Formally, we define marked(x) = ∀y(m‡(x, y)→ ∃z : [h2n+1−1uD{`, r}n+1Θ0](y, z)). Let us
explain the intuition behind this. Assume that we select exactly one of the 2n+1 marked
leaves of t, and let t′ be the resulting tree. First, note that by executing the sequence h2n+1−1

from t′, we replace each of the marked leaves of t′ with the symbol ♥, reaching a tree t′′.
Second, by executing uD from t′′ we reach (in case t contains a marked tile subtree) a tree
t′′′, which has the form of a chain where the lowest leaf is labeled with O‡ or 1‡ and all other
leaves are labeled with ♥. Next, we can “shrink” the chain t′′′ to the tree θ(X‡) by executing
some sequence from {`, r}n+1. To θ(X‡) we can finally apply the action θ ∈ Θ0 ⊆ Σ. J J

A grid tree is a tree t for which every leaf is inside a subtree of t that is a tile tree. The
following lemma can be proven similarly as Lemma 10.

I Lemma 11. One can compute in logspace a first-order formula grid(x) such that for all
t ∈ TrA we have G0 |= grid(t) if and only if t is a grid tree.

A marked grid tree is a tree that can be obtained from a grid tree t by replacing exactly one
tile subtree of t by some marked tile tree. A selected grid tree is a tree that can be obtained
from a marked grid tree t by selecting precisely one marked leaf of t. For each i ∈ [1, n+ 1]
we define the logspace computable FO-formula

biti(x) = ∃y : [h2n+1−1uD{`, r}i−1r](x, y).

S. Göller and M. Lohrey 285

It is not hard to see that for every selected grid tree t with selected leaf λ we have that
the ith least significant bit of lex(λ) is 1 if and only if G0 |= biti(t). Next, compute for
each ◦ ∈ {<,=} in logspace a first-order formula ϕ◦(x, y) such that for every two selected
grid trees t1 and t2 with selected leaves λ1 and λ2 we have G0 |= ϕ◦(t1, t2) if and only if
lex(λ1) ◦ lex(λ2). We define

ϕ<(x, y) =
∨

j∈[1,n+1]

(
(¬bitj(x) ∧ bitj(y)) ∧

∧
1≤i<j

(biti(x)↔ biti(y))
)

and ϕ=(x, y) = ¬ϕ<(x, y) ∧ ¬ϕ<(y, x). Recall that the marked tile subtree of a marked grid
tree t represents a θ-labeled grid element (M,N) ∈ [0, 22n − 1]2 for some θ ∈ Θ0. Let us
define M(t) = M , N(t) = N , and Θ0(t) = θ.

I Lemma 12. One can compute in logspace first-order formulas ϕθ(x), ϕiM (x, x′), ϕiN (x, x′),
where θ ∈ Θ0 and i ∈ {0, 1} such that for all marked grid trees t and t′ the following holds:

(1) G0 |= ϕθ(t) if and only if Θ0(t) = θ and
(2) G0 |= ϕiY (t, t′) (where Y ∈ {M,N}) if and only if Y (t) + i = Y (t′)

Proof. For point (1), let ϕθ(x) = ∃y : [m‡h2n+1−1uD{`, r}n+1θ](x, y). For point (2), we
only construct the formula ϕ1

M (x, x′). For a selected grid tree z, the formula l(z) =
∃u, v(h(z, u) ∧ `(u, v)) expresses that the selected leaf is a left child. Then define

ϕ1
M (x, y) = ∃x′, y′(m‡(x, x′)∧m‡(y, y′)∧ϕ=(x′, y′)∧O‡(x′, x′)∧1‡(y′, y′)∧ l(x′)∧ψ1∧ψ2).

Thus, we select a position p ∈ [0, 2n− 1] that is set to 0 (resp. 1) in the binary representation
of M(t) (resp. M(t′)). The formula ψ1(x, y, x′, y′) is the conjunction

∀z((m‡(x, z)∧ϕ<(z, x′)∧ l(z))→ 1‡(z, z)) ∧ ∀z((m‡(y, z)∧ϕ<(z, y′)∧ l(z))→ O‡(z, z)).

It expresses that each bit at some position that is smaller than p is set to 1 (resp. 0) in M(t)
(resp. M(t′)). Finally, the formula ψ2(x, y, x′, y′) is

∀u, v ((m‡(x, u) ∧m‡(y, v) ∧ ϕ=(u, v) ∧ ϕ<(x′, u) ∧ l(u))→ (1‡(u, u)↔ 1‡(v, v))).

It expresses that the binary representations of M(t) and M(t′) agree on each position
> p. J J

Recall that w = θ0 · · · θn−1. We define the formula sol(x) as the conjunction of grid(x) and
the following formulas, where mark(z1, z2) abbreviates m2n+1

† (z1, z2) ∧marked(z2):
Grid element (j, 0) is labeled by θj for all j ∈ [0, n− 1]:

∃y0, . . . , yn−1(
∧

j∈[0,n−1]

(mark(x, yj) ∧ ϕθj
(yj)) ∧ ∀z(m‡(y0, z)→ O‡(z, z)) ∧

∧
j∈[1,n−1]

(ϕ1
M (yj−1, yj) ∧ ϕ0

N (yj−1, yj)))

If we mark a tile subtree of x that corresponds to the grid element (M,N) andM < 22n−1,
a tile subtree of x that corresponds to (M+1, N) satisfies the horizontal matching relation:

∀y((mark(x, y) ∧ ∃z(m‡(y, z) ∧O‡(z, z) ∧ l(z)))→

∃y′(mark(x, y′) ∧ ϕ1
M (y, y′) ∧ ϕ0

N (y, y′) ∧
∨

(θ,θ′)∈H0

(ϕθ(y) ∧ ϕθ′(y′))))

FSTTCS 2011

286 The First-Order Theory of Ground Tree Rewrite Graphs

Analogously, we express that the vertical matching relation is respected and for each grid
element there is at most one tile type.

It follows by construction that Sol22n (S0, w) 6= ∅ if and only if G0 |= ∃x : sol(x). Thus, the
first-order theory of G0 is indeed 2NEXP-hard under logspace reductions.

We conclude with a non-elementary lower bound for ground tree rewrite graphs with an
additional unary predicate. For a GTRS R = (A,Σ, R) and a set of trees L ⊆ TrA, we denote
with (G(R), L) the structure that results from the labelled graph G(R) by adding the set L
as an additional unary predicate. Note that if L is a regular set of trees, then (G(R), L) is a
tree-automatic structure, and hence has a decidable first-order theory. On the other hand, a
reduction from satisfiability for first-order logic over binary words (see [11]) shows:

I Theorem 13. There exists a fixed GTRS R1 = (A,Σ, R) and a fixed regular tree language
L ⊆ TrA such that the first-order theory of (G(R1), L) is non-elementary.

References
1 L. Berman. The complexity of logical theories. Theoret. Comput. Sci., 11:71–77, 1980.
2 E. Börger, E. Grädel, and Y. Gurevich. The classical decision problem. Springer, 2001.
3 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:

Application to model-checking. In Proc. CONCUR’97, LNCS 1243, pages 135–150. Springer,
1997.

4 W. S. Brainerd. Tree generating regular systems. Inform. and Control, 14(2):217–231,
1969.

5 A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133,
1981.

6 K. J. Compton and C. W. Henson. A uniform method for proving lower bounds on the
computational complexity of logical theories. Ann. Pure Appl. Logic, 48(1):1–79, 1990.

7 J.-L. Coquidé, M. Dauchet, R. Gilleron, and S. Vágvölgyi. Bottom-up tree pushdown auto-
mata: Classification and connection with rewrite systems. Theor. Comput. Sci., 127(1):69–
98, 1994.

8 M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In
Proc. LICS’90, pages 242–248. IEEE Computer Society, 1990.

9 J. Ferrante and C. Rackoff. The Computational Complexity of Logical Theories. Number
718 in Lecture Notes in Mathematics. Springer, 1979.

10 S. Göller and A. W. Lin. The complexity of verifying ground tree rewrite systems. In
Proc. LICS 2011, pages 279-288. IEEE Computer Society, 2011.

11 S. Göller and M. Lohrey. The first-order theory of ground tree rewrite graphs. arXiv.org,
2011. http://arxiv.org/abs/1107.0919.

12 D. Kuske and M. Lohrey. Automatic structures of bounded degree revisited. In Proc. CSL
2009, LNCS 5771, pages 364–378. Springer, 2009.

13 C. Löding. Infinite Graphs Generated by Tree Rewriting. PhD thesis, RWTH Aachen, 2003.
14 D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and second-order

logic. Theor. Comput. Sci., 37:51–75, 1985.
15 L. J. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD

thesis, Department of Electrical Engineering, MIT, 1974.
16 S. Tison. Fair termination is decidable for ground systems. In Proc. RTA’89, LNCS 355,

pages 462–476. Springer, 1989.
17 A. W. To. Model Checking Infinite-State Systems: Generic and Specific Approaches. PhD

thesis, LFCS, School of Informatics, University of Edinburgh, 2010.
18 H. Vogel. Turing machines with linear alternation, theories of bounded concatenation and

the decision problem of first-order theories,. Theoret. Comput. Sci., 23:333–337, 1983.

http://arxiv.org/abs/1107.0919

S. Göller and M. Lohrey 287

19 I. Walukiewicz. Model checking CTL properties of pushdown systems. In Proc. FSTTCS
2000, LNCS 1974, pages 127–138. Springer, 2000.

20 I. Walukiewicz. Pushdown processes: Games and model-checking. Inf. Comput., 164(2):234–
263, 2001.

FSTTCS 2011

Layer Systems for Proving Confluence∗

Bertram Felgenhauer, Harald Zankl, and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, Austria

Abstract
We introduce layer systems for proving generalizations of the modularity of confluence for first-
order rewrite systems. Layer systems specify how terms can be divided into layers. We establish
structural conditions on those systems that imply confluence. Our abstract framework cov-
ers known results like many-sorted persistence, layer-preservation and currying. We present a
counterexample to an extension of the former to order-sorted rewriting and derive new sufficient
conditions for the extension to hold.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases Term rewriting, Confluence, Modularity, Persistence

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.288

1 Introduction

In this paper we revisit the celebrated modularity result of confluence, due to Toyama [13]. It
states that the union of two confluent rewrite systems is confluent, provided the participating
rewrite systems do not share function symbols. This result has been reproved several times,
using category theory [10], ordered completion [6], and decreasing diagrams [14]. In practice,
modularity is of limited use. More useful techniques, in the sense that rewrite systems can
be decomposed into smaller systems that share function symbols and rules, are based on
type introduction [2], layer-preservation [11], and commutativity [12].

Type introduction [16] restricts the set of terms that have to be considered to the well-
typed terms according to any many-sorted type discipline which is compatible with the rewrite
system under consideration. A property of rewrite systems for which type introduction is
correct is called persistent and Aoto and Toyama [2] showed that confluence is persistent.
In [1] they extended the latter result by considering an order-sorted type discipline. However,
we show that the conditions imposed in [1] are not sufficient for confluence.

The proofs in [11] and [1,2] are adaptations of the proof of Toyama’s modularity result
by Klop et al. [9]. A more complicated proof using concepts from [9] has been given by
Kahrs, who showed in [7] that confluence is preserved under currying [8]. In this paper we
introduce layer systems as a common framework to capture the results of [2, 7, 11,13] and
to identify appropriate conditions to restore the persistence of confluence for order-sorted
rewriting [1]. Layer systems identify the parts that are available when decomposing terms.
The key proof idea remains the same. We treat each such layer independently from the others
where possible, and deal with interactions between layers separately. The main advantage of
and motivation for our proof is that the result becomes reusable; instead of checking every
detail of a complex proof, we have to check a couple of comparatively simple, structural
conditions on layer systems instead.

The remainder of this paper is organized as follows. In the next section we recall
preliminaries. Section 3 presents a counterexample to [1, Theorem 4.12]. Layer systems are

∗ This research was supported by the Austrian Science Fund (FWF) P22467-N23.

© Bertram Felgenhauer, Harald Zankl, and Aart Middeldorp;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 288–299

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.288
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. Felgenhauer, H. Zankl, and A. Middelorp 289

introduced in Section 4 and in Section 5 we develop conditions that guarantee the confluence
of rewrite systems if a compatible layer system exists. In Section 6 we instantiate the abstract
setting to cover the applications mentioned earlier before concluding in Section 7. Proofs can
be found in an accompanying technical report [5] but key lemmata are presented to indicate
the overall proof idea.

2 Preliminaries

We assume familiarity with rewriting [3]. A signature consists of function symbols F and
variables V. Each f ∈ F has a fixed arity arity(f). We assume that V is infinite. The set of
terms over the signature 〈F ,V〉 is denoted by T (F ,V). The sets of variables and function
symbols occurring in a term t are denoted by Var(t) and Fun(t), respectively. The positions
of a term t are strings of natural numbers, ε for the root, and ip if t = f(t1, . . . , ti, . . . , tn)
and p is a position of ti. Pos(t) is the set of all positions of t. For positions p, q, r we write
p < q if p is a proper prefix of q, p 6 q if p < q or p = q, p ‖ q if neither p < q nor q 6 p.
If p 6 q then r = q \ p denotes the unique position such that pr = q. Given terms t and
s, t|p is the subterm at position p of t, t(p) is the root symbol of t|p and t[s]p denotes the
result of replacing t|p by s in t. For X ⊆ F ∪ V, we let PosX(t) = {p ∈ Pos(t) | t(p) ∈ X}.
A substitution is a map σ : V → T (F ,V) which extends homomorphically to terms.

A rewrite rule is a pair of terms (`, r) ∈ T (F ,V)2, written ` → r such that ` /∈ V and
Var(`) ⊇ Var(r). A term rewrite system (TRS) is a set of rewrite rules. The rewrite relation
induced by a TRS R is denoted →R. We write ←, →=, →+ and →∗ to denote the inverse,
the reflexive closure, the transitive closure and the reflexive and transitive closure of a
relation →, respectively. A relation → is confluent if ∗← ·→∗ ⊆ →∗ · ∗← and terminating if
→+ is well-founded. A TRS R inherits these properties from →R.

Next we recall many-sorted terms. Let S be a set of sorts. A signature 〈F ,V〉 is
S-sorted, if every n-ary f ∈ F is equipped with a sort declaration α1 × · · · × αn → α

where α1, . . . , αn, α ∈ S and every x ∈ V has exactly one sort α ∈ S. We let Vα = {x ∈
V | x has sort α}, and require that Vα is infinite for all α ∈ S. The set of many-sorted
terms, TS(F ,V), is the union of the sets Tα(F ,V) for α ∈ S that are inductively defined as
follows: Vα ⊆ Tα(F ,V) and f(t1, . . . , tn) ∈ Tα(F ,V) whenever f ∈ F has sort declaration
α1 × · · · × αn → α and ti ∈ Tαi(F ,V) for all 1 6 i 6 n. If t ∈ Tα(F ,V) for some α ∈ S
then we say that t has sort α and write sort(t) = α. A many-sorted (or S-sorted) TRS
consists of an S-sorted signature and a set R of rewrite rules between many-sorted terms
of the same sort. A property P of TRSs is called persistent if a many-sorted TRS has the
property P if and only if its underlying (unsorted) TRS has the property P . To obtain
(S,�)-order-sorted terms, we equip the sorts of an S-sorted signature with a partial order �.
Each set Tα(F ,V) of S-sorted terms of sort α is extended with f(t1, . . . , tn) whenever f ∈ F
has sort declaration α1 × · · · ×αn → α and, for all 1 6 i 6 n, ti ∈ Tβi(F ,V) for some sort βi
with αi � βi. A variable occurrence x = t|p ∈ Vα is called strictly bound if p = ε or its sort
exactly matches that of its context, i.e., αi = βi above.

3 A Counterexample

The result claimed in [1] states that the underlying unsorted TRS R of a confluent (S,�)-
order-sorted TRS R is confluent (on arbitrary terms) provided the strict part of � is
well-founded, sort(`) � sort(r) and variable occurrences are strictly bound in ` and r for
every rewrite rule ` → r ∈ R. Below we give a counterexample to this claim (we derive a
corrected criterion in Section 6).

FSTTCS 2011

290 Layer Systems for Proving Confluence

I Example 3.1. Consider the TRS R consisting of c(x)→ x and the following rewrite rules:

f(x, y)→ F(x, c(x), y) f(x,O)→ A F(x, y,O)→ g(x, y) F(x, y, y)→ g(x,O)
g(x, y)→ G(x, c(x), y) g(x,O)→ B G(x, y,O)→ f(x, y) G(x, y, y)→ f(x,O)

We take S = {0, 1, 2} as sorts with 1 � 0 and the signature given by

f, g : 0× 1→ 2 A,B : 2 c : 0→ 1 F,G : 0× 1× 1→ 2 O, y : 1 x : 0

All rules except for c(x)→ x are many-sorted and sort-preserving, while sort(c(x)) = 1 �
0 = sort(x) for c(x)→ x. Hence R satisfies the aforementioned constraints from [1].

The rewrite relation defined by R is essentially finite: since c does not occur in any
left-hand side of any rewrite rule but c(x) → x, we can apply this rule to any term and
remove all occurrences of c, without interfering with any other future rewrite steps. The
remaining order-sorted terms are flat terms (i.e., of depth 1 or 0), and there are only finitely
many of those up to variable renaming. The interesting part of the rewrite relation looks as
follows:

A

f(x,O)

OO

��

G(x, x, x)oo G(x, c(x), x)oo

F(x, c(x),O) // F(x, x,O) // g(x, x)

OO
f(x, x)

��

G(x, x,O)oo G(x, c(x),O)oo

F(x, c(x), x) // F(x, x, x) // g(x,O)
��

OO

B

Note that x cannot be replaced by O anywhere, since this would make the terms ill-sorted.
Hence R is confluent on TS(F ,V). However, the corresponding unsorted TRS R is not
confluent, since A← f(O,O)→∗ g(O,O)→ B for normal forms A and B.

4 Layer Systems

The existing proofs of modularity and its generalizations work by dividing terms into a top
context (or native part) and principal subterms (aliens). This process can be characterized
by the set of terms that are allowed as top contexts. We call this set a layer system. Layers
are contexts, which can be represented by terms with holes. We use a fresh constant � to
denote such holes. Terms with holes can be merged.

I Definition 4.1. The partial function merge t : T (F ∪ {�},V)2 → T (F ∪ {�},V) satisfies:
� t t = t t� = t for t ∈ T (F ∪ {�},V),
x t x = x for x ∈ V,
f(s1, . . . , sn) t f(t1, . . . , tn) = f(u1, . . . , un) if f ∈ F and si t ti = ui for 1 6 i 6 n.

I Example 4.2. We have f(h(�),�)t f(�, g(y)) = f(h(�), g(y)) but f(h(�), g(x))t f(�, g(y))
and f(h(�),�) t f(g(�),�) are undefined (different non-hole symbols cannot be merged).

I Definition 4.3. A layer system is a set of terms L ⊆ T (F ∪ {�},V) satisfying:
1. � ∈ L, V ⊆ L, and f(�, . . . ,�) ∈ L for f ∈ F .
2. L allows replacing holes by variables and vice versa: If t[�]p ∈ L then {x ∈ V | t[x]p ∈ L}

is an infinite set. Furthermore, if t[x]p ∈ L and x ∈ V then t[�]p ∈ L.
3. L is closed under merging at function positions in F : If s, t ∈ L, p ∈ PosF (t), and

u := t|p t s is defined then t[u]p ∈ L.
4. LT := L ∩ T (F ,V) is closed under →R: If s ∈ LT and s→R t then t ∈ LT .

B. Felgenhauer, H. Zankl, and A. Middelorp 291

Requiring that L is closed under →R would imply Definition 4.3(4), but the weaker
condition helps applications. For example, in the case of order-sorted persistence we do not
have to worry about holes at positions with incompatible types, simplifying the proof that
order-sorted terms form a layer system under certain conditions on R (cf. Theorem 6.2).

For pretty much the same reason, we do not require that holes can be replaced by any
variable in Definition 4.3(2)—for example, in the order-sorted case, we would otherwise have
to treat variables as essentially untyped, complicating that application.

Definition 4.3(3) allows one to merge two layers into a larger one. This is essential to
obtain a least layered representation (cf. Theorem 5.2(4)) while Definition 4.3(1) ensures that
any term can be layered (cf. Lemma 4.10(1)), by starting a new layer at every symbol.

We fix some layer system L that we want to use for layering terms. A key element of our
proof is that this layering is made explicit using the notion of split terms.

I Definition 4.4. A split term t̂ is a pair t̂ = 〈t, P 〉 made of a term t ∈ T (F ,V) and a set of
so-called special positions P ⊆ Pos(t) of t̂. We write Pt̂ for the special positions of t̂. We
call t the underlying term of t̂ and often denote it by t. A special position is called principal
if it is a minimal special position with respect to <. A split term 〈t, P 〉 is simple if P = ∅,
special if ε ∈ P and normal if ε /∈ P . The set of split terms is denoted by T̂ (F ,V).

We identify a term t with the unique corresponding simple split term 〈t,∅〉.

I Definition 4.5. We define split counterparts to standard operations on terms.
subterm t̂|p := 〈t|p, {q \ p | q ∈ Pt̂ with q > p}〉. Note that if p is special then t̂|p is special.
modifying special positions at the root t̂|− := 〈t, Pt̂ \ {ε}〉 and ε(t̂) := 〈t, Pt̂ ∪ {ε}〉. We let

t̂|p− := (t̂|p)|− and we will also use the notation t̂|p∗ to denote one of t̂|p or t̂|p−. If p is a
principal position of t̂, then t̂|p− is a principal subterm of t̂.

replacing subterms t̂[ŝ]p := 〈t[s]p, {q | q ∈ Pt̂ with q 6> p} ∪ {pq | q ∈ Pŝ}〉. For a set of
pairwise parallel positions Q ⊆ Pos(t) we also write t̂[ŝq]q∈Q for the split term obtained
from t̂ by replacing t|q by ŝq for each q ∈ Q.

substitution If σ : V → T̂ (F ,V) then σ(t̂) = t̂[σ(t|p)]p∈PosV (t).

Next we introduce two natural ways to represent split terms.

I Definition 4.6. A split context is a split term Ĉ = 〈C,P 〉 ∈ T̂ (F ∪ {�},V) such that
P = {p ∈ Pos(C) | C|p = �}. We define Ĉ as the unique split context with underlying
term C. For a split context Ĉ with n holes and normal terms t̂i we denote by ĈJt̂1, . . . , t̂nK
the split term obtained by replacing the holes in Ĉ by t̂1 to t̂n from left to right.

It is easy to see that any split term t̂ can be uniquely represented as t̂ = ĈJt̂1, . . . , t̂nK.
The corresponding split context is the top layer of t̂.

I Definition 4.7. Let t̂ be a split term. The top layer L̂(t̂) of t̂ is obtained by replacing all its
principal subterms by �. It is a split context as all remaining special positions are holes. We
write L(t̂) for the corresponding unsplit context. The rank of a split term t̂ = ĈJt̂1, . . . , t̂nK
is defined recursively by rank(t̂) = 1 + max {0, rank(t̂i) | 1 6 i 6 n}.

The rank is useful for inductive proofs since principal subterms have smaller rank than
the term itself. Next we use layer systems to restrict how terms can be split.

I Definition 4.8. A split term t̂ is layered according to L or just layered if L(t̂) ∈ L and
L(t̂|p−) ∈ L for all p ∈ Pt̂. The layers of t̂ are the unsplit contexts L(t̂) and L(t̂|p−) for p ∈ Pt̂.
For a layered term ŝ, a layer s′ ∈ LT and a substitution σ we say that σ(s′) designates ŝ if
σ(s′) = ŝ, σ(x) 6= x implies σ(x) is special, and σ(x) = x for x ∈ Var(s).

FSTTCS 2011

292 Layer Systems for Proving Confluence

f
g
h
b

h
a

(a) Pt̂ = ∅

f
g
h
b

h
a

(b) Pt̂ = {1, 11, 21}

f
g
h
b

h
a

(c) Pt̂ = {1, 11, 111, 21}

f
g
h
b

h
a

(d) Pt̂ = Pos(t)

Figure 1 Some split terms for t = f(g(h(b)), h(a)).

Designation is similar to the division of terms into a cap and an alien substitution in [6].

I Example 4.9. Figure 1 shows some split terms. Layers are colored alternately between
(dark) blue and (light) red with the top layer (if non-empty) marked blue. Figure 1(a) depicts
a simple term. The term in Figure 1(d) is special, the others are normal. In Figure 1(b) the
principal positions are 1 and 21 with 〈g(h(b)), {1}〉 and 〈a,∅〉 as the corresponding principal
subterms. The ranks of the terms in Figures 1(c) and 1(d) are 4 and 5 and the top layers
are 〈f(�, h(�)), {1, 21}〉 and 〈�, {ε}〉, respectively. For suitable L, the term in Figure 1(b) is
designated by σ(f(x, h(y))) with σ(x) = 〈g(h(b)), {ε, 1}〉 and σ(y) = 〈a, {ε}〉.

I Lemma 4.10. We state some fundamental properties of layered terms.
1. For any term s the split term 〈s,Pos(s)〉 is layered.
2. If t̂ is layered and p ∈ Pt̂ then t̂|p and t̂|p− are layered.
3. If t̂1 = 〈t, P1〉 and t̂2 = 〈t, P2〉 are layered then 〈t, P1 ∩ P2〉 is layered.

As a consequence of Lemma 4.10, every term t has a least layered representation t̂L, which
can be defined as t̂L := 〈t,

⋂
{P | 〈t, P 〉 is layered according to L}〉.

I Example 4.11. Consider the {0, 1}-sorted signature with f : 0×1→ 0, g : 0→ 1, h : 1→ 1,
a : 0, b : 1, and let L := TS(F ∪ {�},V) where holes can appear anywhere in terms, both
with sort 0 and 1. The term in Figure 1(a) is not layered according to L, the others are.
Figure 1(b) depicts t̂L, i.e., a new layer starts if and only if a subterm does not match the
sort of the context.

I Lemma 4.12. Any layered term ŝ is designated by some σ(s′) with s′ = L(ŝ)[~x] ∈ L,
xi ∈ V.

Designations will be used to simulate so-called outer rewrite steps (cf. Definition 5.1) by
rewrite steps inside LT . Lemma 4.12 is a first step towards this goal.

5 Layer Systems for Confluence

In this section we first turn to rewriting split terms and then impose conditions on layer
systems such that a TRS R is confluent if it is confluent on LT . The overall idea is to start
with rewrite sequences on terms, turn them to rewrite sequences on layered terms, which
enjoy confluence, and map the resulting joining sequences back to (unsplit) terms.

I Definition 5.1. Let ŝ and t̂ be split terms. A rule step ŝ →p,`→r t̂ satisfies ` → r ∈ R,
ŝ|p− = σ(`) and t̂ = ŝ[σ(r)]p for some substitution σ. We also write ŝ →R t̂. A rule step
ŝ→p,`→r t̂ is inner, ŝ→i t̂, if p > q for some q ∈ Pŝ, and outer, ŝ→o t̂, otherwise. A fusion
step ŝ t̂ satisfies s = t and Pŝ ⊇ Pt̂. It is proper, ŝ

6=
 t̂, if Pŝ) Pt̂. The union of →R and

 is denoted by R.

B. Felgenhauer, H. Zankl, and A. Middelorp 293

Rule steps correspond to normal rewrite steps. Since ` and r are (simple) terms, matching
is constrained to a single layer of a term, and the result of the rewrite step will only modify
that layer and possibly permute, erase or duplicate special subterms below the layer.

Fusion steps, on the other hand, allow adjacent layers to be merged into a single one. Note
that even when starting from a least layered representation, ŝL →R t̂ may result in a term t̂

that allows a proper fusion step. In the classical modularity setting this may happen after
applying a collapsing rule. In many previous proofs from the literature, fusion was implicit.
By making fusion explicit, we can capture the phenomena that destroy modularity more
precisely, and, perhaps more importantly, we can delay fusion in joining rewrite sequences
until we can comfortably deal with it.

I Lemma 5.2. Rewriting on split terms has the following properties.
1. If ŝ R t̂ then σ(ŝ) R σ(t̂) for any (split) substitution σ.
2. If ŝ→o t̂ then every principal subterm of t̂ is a principal subterm of ŝ.
3. If ŝ R t̂ then rank(ŝ) > rank(t̂).
4. If t̂ is layered then t̂ t̂L.

We extend fusion steps to substitutions: σ τ if σ(x) τ(x) for all x ∈ V.

I Lemma 5.3. Let ŝ and t̂ be split terms. If ŝ ŝ′ then t̂[ŝ]p t̂[ŝ′]p for any p ∈ Pos(t).
For split substitutions σ and σ′, if σ σ′ then σ(t̂) σ′(t̂).

We impose suitable additional constraints on the layer system L to prove that if →R is
confluent on LT then →R is confluent. The converse is trivial, cf. Definition 4.3(4).

I Definition 5.4. A layer system L is weakly consistent with a TRS R if for all `→ r ∈ R:
1. ` ∈ L,
2. t[t|pq′]pq ∈ L whenever t ∈ L, `|q = `|q′ ∈ V and t|p can be obtained from ` by replacing

variables by terms—where different instances of the same variable may be replaced by
different terms. (For left-linear TRSs this means that ` matches t|p.)

Definition 5.4(2) always holds for left-linear systems, but both conditions are essential for
general systems. The next example shows how Definition 5.4(1,2) may fail for non-confluent
systems.

I Example 5.5. Consider the non-confluent R = {f(f(x)) → a, f(f(x)) → b}. Then L =
V ∪ {�, a, b, f(�)} ∪ {f(x) | x ∈ V} is a layer system such that →R is confluent on LT . We
have f(f(x)) /∈ L, so it violates Definition 5.4(1).

Next consider R = {f(x, x) → a, f(a, x) → b} with L = {f(x, y), f(a, x), x, a, b | x, y ∈
V ∪ {�}}. This is a layer system satisfying Definition 5.4(1) and →R is confluent on LT .
However, since t = `′ = f(a, x) can be obtained from ` = f(x, x) by replacing the first x by a,
by Definition 5.4(2), we should have t[`′|1]2 = f(a, a) ∈ L.

As a final example, considerR = {f(x, x, y)→ g(x, y), f(x, y, z)→ a}, and L = {f(x, y, z) |
x ∈ V1∪{�}, y ∈ V2∪{�}, z ∈ V∪{a,�}}∪{a, x, g(x, y) | x, y ∈ V∪{�}}, where V1,V2 ⊆ V
are disjoint and infinite. Again, →R is confluent on LT but not on T (F ,V). In this case,
s = f(a, a, a) has ŝL = 〈s, {1, 2}〉 and ŝL →R t̂ = 〈g(a, a), {1}〉, but t̂ is not layered. In
this case, L violates Definition 5.4(2); taking t = f(x1, x2, a) ∈ L and ` = f(x, x, y) implies
t[t|1]2 = f(x1, x1, a) ∈ L, i.e., x1 ∈ V1 ∩ V2 = ∅.

In the remainder of this section we assume that L is a layer system.

I Lemma 5.6. Let L be weakly consistent with R. If ŝ→p,`→r t̂ is an outer rule step then
we can designate ŝ by σ(s′) so as to find t′ ∈ LT such that s′ →p,`→r t

′ and t̂ = σ(t′).

FSTTCS 2011

294 Layer Systems for Proving Confluence

Lemma 5.6 extends Lemma 4.12 to cover outer rewrite steps. It is a key ingredient for
Lemma 5.7, which shows that we can map arbitrary rewrite steps on terms to layered terms.

I Lemma 5.7. Let L be weakly consistent with R.
1. If ŝ is layered and ŝ→R t̂ then t̂ is layered.
2. If s→p,`→r t then ŝL →p,`→r · t̂L.

In order to prove the key Lemma 5.10, we introduce the relation ∝→∗i . Note that because
∝ and →∗i are both reflexive and transitive, so is ∝→∗i .

I Definition 5.8. Let ~t = (ti)i∈I and ~u = (ui)i∈I be vectors. We write ~t ∝ ~u if ti = tj
implies ui = uj for all i, j ∈ I. If ŝ = ĈJ~s K, ŝ →∗i t̂ (hence t̂ = ĈJ~t K for a suitable ~t) and
~s ∝ ~t, we write ŝ ∝→∗i t̂.

I Lemma 5.9. If →R is confluent on layered terms of rank less than n then for layered
terms of rank at most n (1) ∗i← · →∗i ⊆

∝→∗i ·∗i
∝←, and (2) ∗o← ·

∝→∗i ⊆
∝→∗i · ∗o←.

I Lemma 5.10. Let L be weakly consistent with R. If →R is confluent on LT and →o is
confluent on layered terms then →R is confluent on layered terms.

Lemma 5.10 is proved by induction on the rank using Lemma 5.9. It is used to conclude
confluence of →R for both our main results, Theorems 5.13 and 5.27, which we develop in
Sections 5.1 and 5.2 below.

5.1 Left-Linear Systems
In this section we deal with a left-linear TRS R and a layer system L weakly consistent
with R. We want to show that R is confluent if R is confluent on LT .

I Lemma 5.11. If →R is confluent on LT then →o is confluent on layered terms.

Consequently, →R is confluent on layered terms by Lemma 5.10. The next lemma deals
with the interaction of rewriting and fusion steps.

I Lemma 5.12. On layered terms · ⊆ · and · →∗R ⊆ →∗R · .

Combining Lemmata 5.7 (to map rewrite sequences to layered terms), 5.10, 5.11 and 5.12
(for confluence of rewriting layered terms), we obtain our main result for left-linear TRSs.

I Theorem 5.13. Let R be a left-linear TRS and L a layer system that is weakly consistent
with R. If R is confluent on LT then R is confluent.

The above result also holds for non-duplicating TRSs, but the proof is considerably more
involved. It can be found in our technical report [5].

5.2 General Systems
In this section we consider the case of general TRSs that may be non-left-linear. When this
happens, we can conclude confluence of R if L is consistent with R.

I Definition 5.14. A layer system L is called consistent with a TRS R if it is weakly
consistent with R and conditions 3 and 4 hold.
3. Let s, t ∈ L \ (V ∪ {�}) with s →p,`→r t and q ∈ PosV(`), q′ ∈ PosV(r) such that

`|q = r|q′ . Furthermore let t′ ∈ L be obtained from t by replacing some holes by terms
from T (F ∪ {�},V). Then s[t′|pq′]pq ∈ L.

B. Felgenhauer, H. Zankl, and A. Middelorp 295

4. Let s, t ∈ L with s→p,`→r t and q ‖ p. If t|q ∈ V ∪ {�} and t[t′]q ∈ L then s[t′]q ∈ L.

Let us examine the effect of conditions 3 and 4 of Definition 5.14. In order to deal with
non-left-linear systems we have to restrict layer systems further. One key step in our proof
(and the original proof in [9]) is the construction of witnesses. It is interesting to see how
this fails in the counterexample from Section 3, if we define layers to be order-sorted terms,
which results in a weakly consistent layer system:

F
O c

O
O

→R F
O O O

6=
 F

O O O

Here we have a fusion step that is enabled by a rewrite step above the layer being fused.
This phenomenon, fusion from above, defeats any attempt to build a witness in a bottom up
fashion as the proof does.

The additional constraints for consistency prevent fusion from above. They demand that
any subterm that can be fused with a layer after a rewrite step inside that layer could already
have been fused before the rewrite step.

I Example 5.15. In the counterexample from Section 3, if we let L be the set of order-sorted
terms closed under replacing variables by holes, we have L 3 s = F(�, c(�),O) →2,c(x)→x
F(�,�,O) = t ∈ L and t′ = F(�,O,O) ∈ L. With q = 1, q′ = ε we conclude from
Definition 5.14(3) that s[t′|2]21 = F(�, c(O),O) ∈ L. Since this term is not order-sorted, we
see that L is not consistent with the given TRS.

As the example shows, condition 3 of Definition 5.14 needs careful consideration when
the TRS R has collapsing rules: If s→p,`→r t, then the subterm s|pq replaces s|p completely
in the reduct. That is, any subterm u that can occur in place of the left-hand side of the rule
application, σ(`) = s|p (meaning that s[u]p ∈ L) must also be allowed at s|pq, i.e., s[u]pq ∈ L.

From now on we assume that L is consistent with R.

I Lemma 5.16. For layered terms ŝ and t̂, if ŝ→o t̂ then ŝL →o t̂L or both ŝL →o ε(t̂L) and
rank(ŝL) > rank(t̂L).

I Lemma 5.17. If →R is confluent on LT then →o is confluent on layered terms.

Lemma 5.17 enables us to use Lemma 5.10 again, but we still have to deal with fusion
steps. The remainder of this section is based on the simplified proof by Klop et al. [9].

I Definition 5.18. A term t̂ is called inner preserved if û|− = û′|− whenever t̂→∗R û û′.
The term t̂ is preserved if û = û′ under the same condition.

Note that the principal subterms of an inner preserved term are inner preserved as well.
On inner preserved terms, fusion steps can only affect the root special position, so do not
interact with rewrite steps in any essential way. Hence from Lemmata 5.17 and 5.10 we have:

I Lemma 5.19. The relation R is confluent on inner preserved terms.

I Definition 5.20. A proper fusion step â 6= b̂ is inner, denoted by â→c b̂, if min(Pâ) =
min(Pb̂), i.e., only non-principal positions are removed. Let →i,c = →i ∪→c. We define
ŝ
∝→∗i,c t̂ if ĈJ~s K = ŝ→∗i,c t̂ = ĈJ~t K (the top context is not affected by →i,c) and ~s ∝ ~t.

The relation ∝→∗i,c is different from ∝→∗i introduced earlier in that it includes inner fusion
steps. The overall intention is the same: ∝→∗i,c only affects principal subterms of a term and
rewrites equal principal subterms in the same way.

FSTTCS 2011

296 Layer Systems for Proving Confluence

I Lemma 5.21. Let the relation R be confluent on terms of rank less than n. If ŝ has
rank n and t̂ ∗

b,i← ŝ→∗i,c û then t̂ ∝→∗i,c · ∗
b,i

∝← û.

I Definition 5.22. A witness of a term ŝ is an inner preserved term t̂ such that ŝ ∗i t̂,
where i = ∪→i.

We can apply Lemma 5.19 to witnesses. Lemma 5.24 states that witnesses always do
exist. An important step in its proof is Lemma 5.23, which allows us to replace principal
subterms of a term by preserved reducts.

I Lemma 5.23. For every inner preserved term t̂ there exists a preserved term û with
t̂ ∗R û.

I Lemma 5.24. If R is confluent on terms of rank less than n then every term t̂ with
rank(t̂) 6 n has a witness ṫ.

I Lemma 5.25. Let R be confluent on terms t̂ with rank(t̂) < n. If ŝ R t̂ and rank(ŝ) = n

then ṡ ∗R · ∗R ̇t.

Therefore we can construct witnesses for all terms in a conversion between two layered
terms by Lemma 5.24, then join consecutive witnesses using Lemma 5.25, and finally use
Lemma 5.19 to join the witnesses of the outermost terms, proving Lemma 5.26.

I Lemma 5.26. The relation R is confluent if R is confluent on LT .

Since by Lemma 5.7 we can map rewrite sequences to layered terms, Lemma 5.26 implies
our main result for arbitrary TRSs.

I Theorem 5.27. Let R be a TRS and L a layer system that is consistent with R. If R is
confluent on LT then R is confluent.

6 Applications

In this section we present three applications of layer systems.

Layer-Preservation: Let TX(F ,V) denote the set of terms with root symbol from X. Let
C := F1 ∩ F2, D1 := F1 \ F2 and D2 := F2 \ F1.

I Theorem 6.1 (Ohlebusch [11]). Let R1 and R2 be TRSs such that R1 ⊆ T (C,V)2 ∪
TD1(F1,V)2, R2 ⊆ T (C,V)2 ∪ TD2(F2,V)2 and R1 ∩ T (C,V)2 = R2 ∩ T (C,V)2. The union
R1 ∪R2 is confluent if and only if R1 and R2 are confluent.

Proof Sketch. Let L := T (C ∪{�},V)∪TD1(F1 ∪{�},V)∪TD2(F2 ∪{�},V). It is straight-
forward (but somewhat tedious) to verify that with the given constraints, this is a layer
system that is consistent with R1 ∪R2. Confluence follows by Theorem 5.27. J

Order-Sorted Persistence: Note that many-sorted persistence [1] arises as a special case
of Theorem 6.2 by making sorts mutually incomparable, which in turn entails Toyama’s
classical modularity result [13]. The conditions are easy to implement, as outlined in [15].

I Theorem 6.2. Let R be an (S,�)-order-sorted TRS. Assume the following conditions:
1. R is compatible with S, i.e., for ` → r ∈ R the terms ` and r are order-sorted with

variable occurrences strictly bound in ` and sort(`) � sort(r).

B. Felgenhauer, H. Zankl, and A. Middelorp 297

2. If R is non-left-linear then for `→ r ∈ R, variable occurrences in r are strictly bound as
well. Furthermore, for collapsing rules (r ∈ V) the sort of r must be maximal.

If R is confluent on order-sorted terms then R is confluent on all terms.

Proof Sketch. The proof idea is to use L = TS(F ,V) as a layer system, after closing it under
replacing variables by holes. Conditions (1) and (2) of Theorem 6.2 ensure weak consistency
and consistency of L with R, respectively. Condition (1) also makes L closed under (unsorted)
rewriting, by only allowing variables x to be assigned terms t having sort(t) � sort(x) when
matching rules. Theorems 5.13 and 5.27 conclude the proof. J

Actually, condition (2) in the above theorem can be weakened to non-left-linear and
duplicating TRSs, see [5].

There are a couple of notable differences between Theorem 6.2 and [1, Theorem 4.12].
First, the maximality constraint on the sorts of collapsing rules in the general case is new,
and indeed rules out the counterexample from Section 3. Second, we have weaker constraints
on left-linear systems. Finally, we do not require the order on sorts to be well-founded. (This
is needed in [1] because every step that weakens the sort of a special subterm is treated as
destructive, while in our approach only actual fusion steps must be considered.)

Theorem 6.2 is strictly stronger than many-sorted persistence, as the next example shows.

I Example 6.3 (adapted from [1]). Consider the TRS R consisting of the rewrite rules

1: f(x,A)→ G(x) 2 : f(x, f(x,B))→ B 3: G(C)→ C 4: F(x)→ F(G(x))

and the sorts S = {0, 1, 2} with 1 � 0 and the signature given by A,B : 1, C : 0, F : 0→ 2,
G : 0 → 0, f : 0 × 1 → 1 and x : 0. It is straightforward to check that the requirements
of Theorem 6.2 are fulfilled. In the order-sorted TRS, only rules (1), (2) and (3) can be
applied to terms of sort 1 and their derivatives, rules (3) and (4) can be applied to terms
derived from terms of sort 2 and only rule (3) can be applied to terms of sort 0. Hence,
since R1 = {(1), (2), (3)} (which is terminating and has no critical pairs), R2 = {(3), (4)}
(which is orthogonal), and R3 = {(3)} (orthogonal) are confluent, R is confluent. No such
decomposition can be obtained with many-sorted persistence. Consider a most general
signature making all rules many-sorted: A,B,C, x : 0, F : 0→ 1, G : 0→ 0, and f : 0× 0→ 0.
Since terms of sort 1 can have subterms of sort 0, no decomposition is possible.

The weaker conditions in Theorem 6.2 for left-linear TRSs are beneficial.

I Example 6.4. Consider the TRS R consisting of the rewrite rules

c(x)→ x f(A)→ f(f(c(0))) g(B)→ g(g(c(0)))

the sorts S = {0, 1, 2} with 1, 2 � 0 and the signature given by 0, x : 0, c : 0 → 0,
A : 1, f : 1 → 1, B : 2 and g : 2 → 2. This satisfies the conditions of Theorem 6.2
for left-linear systems, and we can decompose the system into the component induced
by sort 1: {c(x) → x, f(A) → f(f(c(0)))} and sort 2: {c(x) → x, g(B) → g(g(c(0)))}. If
we add the restrictions for non-left-linear systems, the collapsing rule c(x) → x enforces
c : α → α for a maximal sort α. Hence also the argument of f and g has sort α, and
α � sort(A), sort(B), sort(f(x)), sort(g(x)), sort(0). So the component induced by α contains
all rules.

FSTTCS 2011

298 Layer Systems for Proving Confluence

Currying: Currying is a transformation of TRSs that introduces partial applications. It is
useful in the construction of polynomial-time procedures for deciding properties of TRSs as,
for example, in [4]. Kahrs [7] proved that confluence is preserved by this transformation.

I Definition 6.5. Let R be a TRS over a signature 〈F ,V〉. Let F ′ = F ∪ {Ap} where
Ap is a binary function symbol and all function symbols in F become constants. The
curried version of R operates on T (F ′,V) and is defined as Cu(R) = {Cu(`) → Cu(r) |
` → r ∈ R}. Here Cu(t) = t if t is a variable or a constant and Cu(f(t1, . . . , tn)) =
Ap(· · ·Ap(f,Cu(t1)) · · ·,Cu(tn)) (with n occurrences of Ap). Let F ′′ = F ′ ∪ {fi | f ∈ F , 0 6
i < arity(f)}, where fi has arity i. The partial parametrization PP(R) of R is defined as the
union of R and U , where U consists of all uncurrying rules:

Ap(fi(x1, . . . , xi), xi+1)→ fi+1(x1, . . . , xi+1)

for all f ∈ F and 0 6 i < arity(f), with the convention that fn = f if n = arity(f).

Note that →U is terminating and confluent (because U is orthogonal). Partial paramet-
rization is closely related to currying: by [7, Proposition 3.1] and [8, Theorem 2.2], PP(R) is
confluent if and only if Cu(R) is confluent.

I Theorem 6.6. If R is confluent then PP(R) is confluent.

Proof Sketch. Consider the term t = Ap(· · ·Ap(fi(t1, . . . , ti), ti+1) · · ·, tm) where f ∈ F ,
which is a curried function application of f with m arguments. Let t′i be the →U normal
form of ti and n = arity(f). If m < n, the →U normal form of t will be fm(t′1, . . . , t′m),
and we call the function application partial. Otherwise, m ≥ n, and the →U normal form
of t is Ap(· · ·Ap(f(t′1, . . . , t′n), t′n+1) · · ·, t′m). We call Ap(· · ·Ap(fi(t1, . . . , ti), ti+1) · · ·, tn) a
saturated function application, and tn+1 to tm extra arguments of f . We define L = L1∪L2∪L3
where

L1 = {t | t→∗U u with u ∈ T (F ∪ {�},V)},
L2 = {t | t→∗U fn(x1, . . . , xn), f ∈ F , xi ∈ V ∪ {�}, n < arity(f)},
L3 = {Ap(x1, x2) | xi ∈ V ∪ {�}}.

The idea is to start a new layer for any partial function application (L2), any Ap that binds
extra arguments and thus remains in the →U normal form of t (L3), and for each extra
argument, but not for any saturated function applications that appear as arguments of other
saturated function applications (L1). It can be shown that L is indeed a layer system that is
consistent with R. J

7 Conclusion

In this paper we have presented an abstract layer framework that covers several known
results about the modularity and persistence of confluence. The framework enabled us to
correct the result claimed in [1] on order-sorted persistence, and, by weaker conditions for
left-linear systems, to increase its applicability. We also showed how Kahrs’ confluence result
for curried systems is obtained as an instance of our layer framework. Furthermore, we have
incorporated a decomposition technique due to Theorem 6.2 into CSI [15], our confluence
prover.

As future work, we plan to investigate how to apply layer systems to other properties
of TRSs, like termination or having unique normal forms. Since the applications in this
paper use regular languages for the layer system L, we also plan to investigate how the
consistency conditions translate into restrictions on tree automata. Another interesting

B. Felgenhauer, H. Zankl, and A. Middelorp 299

question is whether van Oostrom’s constructive modularity proof [14] can be adapted for
layer systems. Finally, we worked out the technical details of our main results to prepare for
future certification efforts in a theorem prover like Isabelle.

Acknowledgments
We thank the anonymous reviewers for their helpful and detailed comments.

References
1 T. Aoto and Y. Toyama. Extending persistency of confluence with ordered sorts. Technical

Report IS-RR-96-0025F, School of Information Science, JAIST, 1996.
2 T. Aoto and Y. Toyama. Persistency of confluence. Journal of Universal Computer Science,

3(11):1134–1147, 1997.
3 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
4 H. Comon, G. Godoy, and R. Nieuwenhuis. The confluence of ground term rewrite systems

is decidable in polynomial time. In Proc. 42nd Annual Symposium on Foundations of
Computer Science, pages 298–307, 2001.

5 B. Felgenhauer, H. Zankl, and A. Middeldorp. Layer systems for proving confluence. Tech-
nical report, University of Innsbruck, 2011. Available at http://cl-informatik.uibk.ac.
at/software/csi/layerframework_report.pdf.

6 J.-P. Jouannaud and Y. Toyama. Modular Church-Rosser modulo: The complete picture.
International Journal of Software and Informatics, 2(1):61–75, 2008.

7 S. Kahrs. Confluence of curried term-rewriting systems. Journal of Symbolic Computation,
19(6):601–623, 1995.

8 R. Kennaway, J.W. Klop, M. Ronan Sleep, and F.-J. de Vries. Comparing curried and
uncurried rewriting. Journal of Symbolic Computation, 21(1):15–39, 1996.

9 J.W. Klop, A. Middeldorp, Y. Toyama, and R. de Vrijer. Modularity of confluence: A
simplified proof. Information Processing Letters, 49:101–109, 1994.

10 C. Lüth. Compositional term rewriting: An algebraic proof of Toyama’s theorem. In Proc.
7th International Conference on Rewriting Techniques and Applications, volume 1103 of
Lecture Notes in Computer Science, pages 261–275, 1996.

11 E. Ohlebusch. Modular Properties of Composable Term Rewriting Systems. PhD thesis,
Universität Bielefeld, 1994.

12 B.K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM,
20(1):160–187, 1973.

13 Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems.
Journal of the ACM, 34(1):128–143, 1987.

14 V. van Oostrom. Modularity of confluence constructed. In Proc. 4th International Joint
Conference on Automated Reasoning, volume 5195 of Lecture Notes in Computer Science,
pages 348–363, 2008.

15 H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proc. 23rd In-
ternational Conference on Automated Deduction, volume 6803 of Lecture Notes in Artificial
Intelligence, pages 499–505, 2011.

16 H. Zantema. Termination of term rewriting: Interpretation and type elimination. Journal
of Symbolic Computation, 17(1):23–50, 1994.

FSTTCS 2011

http://cl-informatik.uibk.ac.at/software/csi/layerframework_report.pdf
http://cl-informatik.uibk.ac.at/software/csi/layerframework_report.pdf

The Semi-stochastic Ski-rental Problem
Aleksander Mądry1 and Debmalya Panigrahi2

1 Microsoft Research New England
Cambridge, MA, USA
madry@mit.edu

2 Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA, USA
debmalya@mit.edu

Abstract
In this paper, we introduce the semi-stochastic model for dealing with input uncertainty in
optimization problems. This model is a hybrid between the overly pessimistic online model and
the highly optimistic stochastic (or Bayesian) model. In this model, the algorithm can obtain
only limited stochastic information about the future (i.e. about the input distribution)—as the
amount of stochastic information we make available to the algorithm grows from no information
to full information, we interpolate between the online and stochastic models. The central question
in this framework is the trade-off between the performance of an algorithm, and the stochastic
information that it can access. As a first step towards understanding this trade-off, we consider
the ski-rental problem in the semi-stochastic setting. More precisely, given a desired competitive
ratio, we give upper and lower bounds on the amount of stochastic information required by a
deterministic algorithm for the ski-rental problem to achieve that competitive ratio.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases online optimization, stochastic algorithm

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.300

1 Introduction

In many real-world optimization problems, the input to the problem is not known at the
outset, but is revealed slowly during the execution of the optimization algorithm. For
example, in the facility location problem, where the goal is to select a minimum-cost set of
locations for setting up facilities that can serve all clients, the exact set of clients is often not
known in advance. Traditionally, such problems have been modeled by the online framework,
where the algorithm is required to satisfy a (growing) set of constraints, while attempting to
optimize the objective function. For example, in the facility location problem, the algorithm
will need to ensure that at any stage, the facilities set up can serve the client requests received
till that stage, while minimizing the cost of facilities. The performance of online algorithms
is usually measured using the notion of competitive ratio, which is the maximum — taken
over all the possible input sequences — of the ratio of the objective function in the solution
produced by the algorithm to that of the optimal offline solution (i.e. the optimal solution
when the entire input is known in advance).

After an initial period of vibrant research activity in online algorithms (see [1] for a survey),
there has been a slight lull in recent years, partly due to the inherent pessimism of the online
model, which rendered a lot of natural optimization tasks unnecessarily hard. For example,
in the facility location problem, while the exact composition of the clientele is typically not

© Aleksander Mądry and Debmalya Panigrahi;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 300–311

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.300
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Mądry and D. Panigrahi 301

known in advance, a rough estimate of the clientele distribution is possible to obtain from e.g.
market surveys. This has motivated the development of the stochastic optimization model
(sometimes called the Bayesian model) in recent times, where the probability distribution over
possible input sequences is known in advance, though the exact input sequence is unknown.
The performance of such online algorithms is typically measured using one of the following
two metrics:

Expectation of ratio (EoR). The expected value of the competitive ratio of the
algorithm when the input is drawn from the worst-case distribution.
Ratio of expectation (RoE). The ratio of the expected value of the objective function
in the algorithmic solution to the expected value of the objective function in the offline
optimal solution, when the input is drawn from the worst-case distribution.

In recent years, algorithms have been developed for stochastic versions of various fun-
damental optimization problems (see related work for some examples). However, in many
situations, the stochastic optimization setting is overly optimistic. For example, in the
facility location problem described above, while it is possible to obtain a rough estimate of
the clientele distribution, such information typically comes from market surveys which are
expensive to conduct. In particular, to obtain fine-grained information, one needs to conduct
surveys using a large sample, thereby incurring significant cost. In essence, there is a cost
associated with obtaining stochastic information about the input for an online optimization
problem, and this cost grows as the algorithm seeks more detailed information about the
distribution from which the input is drawn. In this correspondence, we take a step toward
understanding this trade-off between the performance of an online algorithm and the cost it
needs to pay to obtain stochastic information about the input.

We propose a model for stochastic optimization of online problems based on the following
two-stage game between the algorithm and the adversary. In the first stage, which comprises
multiple rounds, the algorithm gathers stochastic information from the adversary about
the distribution of the input. Each round comprises a query asked by the algorithm about
the input distribution that the adversary answers. The algorithm is adaptive, i.e. it can
choose its next query based on the answers given by the adversary to its previous queries.
However, the maximum number of queries that the algorithm can ask is given in advance —
we call this the query budget of the algorithm. The first stage ends when the algorithm has
exhausted its query budget. The second stage comprises an instance of the online problem
where the adversary now presents the actual input sequence, which must be drawn from
some distribution that is consistent with the stochastic information provided during the first
stage. This allows the algorithm to use the information it acquired in the first stage to guide
its choices. We call this the semi-stochastic model for optimization problems.

As in stochastic optimization, the performance of an algorithm in the semi-stochastic
model can be measured using either the EoR or the RoE metrics. However, we need to be
careful about how we define a worst-case distribution. The performance of the algorithm for
a fixed distribution over the input space is defined as its competitive ratio for the worst-case
sequence of (truthful) answers given by the adversary to the queries asked by the algorithm
in the first stage. In other words, given a fixed distribution over the inputs that the adversary
knows but the algorithm does not, one can visualize the first stage as a game where the
algorithm aims to minimize its expected competitive ratio (which is measured using either
the EoR or the RoE metric) and the adversary aims to maximize it. The overall performance
of the algorithm is the worst-case performance over all distributions over the input space,
where the performance for a fixed distribution is as described above.

The semi-stochastic model may be viewed as a hybrid between the pessimistic online

F S T T C S 2 0 1 1

302 The Semi-stochastic Ski-rental Problem

model and the optimistic stochastic model. In particular, if the algorithm has zero query
budget, then we obtain the online model, while if the query budget is infinite, then we get
the stochastic model. The goal of introducing this model is to study the trade-off between
the query budget given to an online algorithm and its performance. As described earlier, a
large query budget typically implies a large cost of obtaining such fine-grained information
about the input distribution and might not be useful unless it improves the performance of
the algorithm significantly.

It is instructive at this point to compare the semi-stochastic model to the well-known
computational learning paradigm. The goal in computational learning is to learn a hypothesis
class (i.e. a subspace of some fixed space) given the labeling of a few sample points from this
space (i.e. whether each point is in the subspace or not). Typically, one is interested in the
trade-off between the size of the sample and the accuracy of the guessed hypothesis. At a
high level, one may interpret the semi-stochastic model as an extension of the computational
learning paradigm to optimization problems. Here, our goal is to learn the input distribution
to an optimization problem for the purpose of designing an algorithm with small competitive
ratio while minimizing the amount of information about the distribution that we explicitly
ask for in the form of queries.

It is important to note that we have not specified the exact nature of queries that the
adversary is allowed to ask in the first stage. In principle, a particular instantiation of our
model might allow for extremely powerful queries thereby letting a semi-stochastic algorithm
gain more information about the input distribution than a corresponding stochastic algorithm
that has access to the input distribution via a computationally bounded process, e.g. a
polynomial number of samples. However, we expect that in most interesting instantiations of
the semi-stochastic model, including the one that we will consider in this paper, the algorithm
will be limited to some class of computationally bounded queries, i.e. queries that can be
answered (to the desired accuracy) using polynomial amount of information regarding the
input distribution.

1.1 An application: The ski-rental problem
Perhaps the most fundamental of online problems, the ski-rental problem is defined as follows.
Suppose one wants to go skiing, but does not know the exact number of days that she would
like to ski. Given this uncertainty, she needs to decide every morning whether she would like
to buy a pair of skis that cost b for the entire season, or rent skis for the day paying 1. Overall,
she would like to minimize her expenditure. The ski-rental problem (or its slight variants)
have been used to solve various online problems, e.g. TCP acknowledgement, Bahncard
problem, etc [14]. It is well-known that the ski-rental problem has a simple 2-competitive
deterministic algorithm, and this is optimal for deterministic algorithms. Karlin et al [15]
showed that the competitive ratio can be improved to e

e−1 in expectation, if the online
algorithm is allowed to be randomized, and that this is optimal for randomized algorithms.

In this paper, we analyze the ski-rental problem in the semi-stochastic model as a first step
towards investigating more complicated online problems. First, we note that if we employ
the RoE performance metric in this problem, then we encounter the following difficulty. The
adversary can create a distribution where an arbitrarily small probability mass is at x 6= 0
and all the remaining probability mass is at 0. (Unless otherwise stated, x will represent
the duration of skiing which is the only input parameter for the ski-rental problem.) Then,
in any reasonable query model, the algorithm will require an unbounded query budget to
achieve any RoE value less than the trivial 2. We therefore focus on the EoR metric; in the
remainder of the paper, the competitive ratio of an algorithm in the semi-stochastic model

A. Mądry and D. Panigrahi 303

will refer to the EoR metric. Further, as is standard in the literature (see e.g. [14]), we
consider a continuous version of this problem. This allows us, in particular, to scale the
price of the skis and assume wlog that b = 1—we adopt this convention from now on. The
input is represented by a probability density function p(x) such that

∫∞
0 p(x)d(x) = 1. Any

deterministic strategy for this problem is parameterized by the value k ≥ 0 such that skis
are rented as long as x < k and bought at x = k. We denote this strategy by S(k), and its
competitive ratio is given by

r(k) :=
{ ∫ k

0 p(x)dx+ (1 + k)
∫∞
k

p(x)
min{x,1}dx if k ≤ 1∫ 1

0 p(x)dx+
∫ k

1 xp(x)dx+ (1 + k)
∫∞
k
p(x)dx if k > 1.

Before proceeding further, we need to define our query model, i.e. the allowed set of
queries that the algorithm can ask the adversary in the first stage. We consider the setting
where each query is a quantile query, i.e. the algorithm gives a value 0 < y < 1, and the
adversary in response gives a number ` such that

∫ `
0 p(x)dx = y. Note that after the algorithm

has asked a set of q queries, it can partition [0,∞) into a set of q+1 non-overlapping intervals
such that the probability mass in each interval is known but the distribution within an
interval is unknown to the algorithm. If the algorithm asks a large number of queries, then
these intervals are fine-grained and therefore the algorithm has detailed information about the
input distribution whereas if its query budget is small, then it obtains a very coarse-grained
description of this distribution.

Note that the existence of the e
e−1 -competitive randomized algorithm implies that for

any input distribution, there exists a deterministic strategy S(k) that achieves a competitive
ratio of e

e−1 . If not, then the corresponding distribution can be used with Yao’s minimax
principle [23] to prove a randomized lower bound greater than e

e−1 contradicting the algorithm
of Karlin et al. Our goal, in this paper, is to determine the minimum query budget of a
deterministic semi-stochastic algorithm that has a competitive ratio of e

e−1 + ε for any ε > 0.
(Of course, we are interested in small fractions ε, since there is an online deterministic strategy
that has a competitive ratio of 2.) To this end, we prove the two following theorems.

I Theorem 1 (Lower Bound). There exists a universal constant C > 0 such that for any
constant ε ∈

(
0, e−2

4(e−1)

]
,1 if the algorithm has a quota of q < C

ε queries in the first stage,
then for any deterministic strategy S(k) chosen in the second stage, there exists an input
distribution D that has the following properties:

The distribution D has the same quantiles as those provided by the adversary in the first
stage.
The expected competitive ratio of the algorithm S(k) for input distribution D is greater
than e

e−1 + ε.

I Theorem 2 (Upper Bound). For any ε > 0, there is a polynomial-time deterministic
algorithm with query budget O

(1
ε3/2

)
that has a competitive ratio of e

e−1 + ε.
We find the lower bound somewhat surprising. Note that for most input distributions, an
algorithm needs to know only some parts of the distribution in detail, but can do with
more coarse-grained information about the other parts. Therefore, it is conceivable that an

1 The range of ε in the theorem can be increased from
[
0, e−2

4(e−1)

]
to
[
0, α(e−2)

e−1

]
for any α < 1 with the

only change being in the value of the constant C. At α = 1, the lower bound must fail since there exists
a 2-competitive deterministic online algorithm. Thus, limα→0 C =∞. Since we are primarily interested
in the asymptotic behavior of the lower bound for small ε, and to maintain simplicity of notation, we
consider the representative value of α = 1/4 in the rest of the paper.

F S T T C S 2 0 1 1

304 The Semi-stochastic Ski-rental Problem

adaptive algorithm recognizes which parts of the distribution it needs to query in greater
detail and therefore makes do with less than polynomial in 1/ε queries overall. However,
our lower bound proves that even when the algorithm is adaptive, it still requires a large
(polynomial in 1/ε) number of queries to pinpoint — up to an accuracy of ε — the parts of
the input distribution that are more critical.

1.2 Our Techniques
Our algorithm for proving the upper bound obtains a set of equi-spaced quantiles in the first
stage by asking the corresponding queries. Once it has obtained these quantiles, it assumes an
arbitrary density function on each of the inter-quantile intervals, and computes the optimal
deterministic algorithm for this assumed input distribution. We would then need to claim
that no matter how much the actual density function in each inter-quantile interval differs
from the assumed one, the performance of the algorithm does not degrade significantly. It
turns out that for most natural choices of the assumed density function in each interval, this
claim does not hold, i.e. the adversary can change the input distribution while not changing
any of the quantiles to degrade the competitive ratio of the algorithm significantly. However,
our crucial observation is that the claim would hold if the value of k in the deterministic
strategy is large enough, i.e. the adversary can significantly degrade the performance of the
algorithm only if it selects a small value of k. To make the algorithm robust to this possibility,
our algorithm deliberately chooses a large enough value of k that might be sub-optimal for
the assumed distribution. To prove that the sub-optimality arising from this choice of k can
be absorbed in our competitive ratio, we show for any input distribution, there always exists
a large enough value of k that is almost optimal.

Interestingly, our proof of the lower bound is somewhat related to the problem we
highlighted above. Namely, it is established by making the adversary answer all the queries
of the algorithm according to a certain distribution that penalizes strategies that buy skis
later, forcing the algorithm to choose a strategy that buys relatively early. Next, we show
that in this case, unless the algorithm is able to pinpoint the distribution beyond k (where
the algorithm’s chosen strategy is S(k)) up to accuracy O(ε), the adversary can always
modify the distribution to make the algorithm suffer a large competitive ratio, while retaining
compatibility with the stochastic information provided earlier to the algorithm.

1.3 Related Work
The term stochastic optimization has been used to mean various algorithmic models in the
literature. As described above, we use it to imply that the algorithm knows the distribution
of the input but not the input itself. Various optimization problems have been studied in this
model previously, including facility location [19], network design problems [20, 9], secretary-
type problems [2, 17, 16, 18], matching [10, 8, 5, 3], packing and covering problems [6, 7, 11],
etc. Another closely related model where significant progress has been reported in recent
years is two-stage stochastic optimization with recourse (see [21] for a survey). Here, the
algorithm has a choice of buying resources at a lower cost with only stochastic knowledge
of the input, or at a higher cost with knowledge of the actual input. Various other models
that lie between the online model and the stochastic model have also been considered in the
literature, especially for online problems with multiple inputs. Among these, the two most
important models are perhaps the i.i.d. from unknown distribution model where each input is
drawn independently and identically from a distribution that is not known to the algorithm,
and the random permutation model where the input sequence is a random permutation on

A. Mądry and D. Panigrahi 305

an adversarially chosen input set. In the ski-rental problem, there is only one input, and
therefore, these multi-input models are not relevant.

A class of problems that have some similarity with the questions that we are exploring
are multi-armed bandit (MAB) problems (see e.g. [4]). These problems model the classical
“exploration-vs-exploitation” trade-off in decision problems. The particular variant of this
problem that is most similar to our problem is the budgeted learning problem [12, 13], where a
budgeted exploration phase is followed by an exploitation phase. However, the typical setup in
these problems is that one has to choose from multiple options, each of which has an unknown
associated reward, and the algorithm needs to explore the options within a stipulated budget
so that it can maximize revenue (or minimize regret) later in the exploitation phase. On the
other hand, our model pertains to optimization problems, and the goal of the exploration
phase is to gain sufficient knowledge about the input space for optimizing the objective
function in the exploitation phase.

1.4 Roadmap

In section 2, we prove the lower bound on the query complexity of the ski-rental problem
in the semi-stochastic model (Theorem 1); the corresponding upper bound (Theorem 2)
appears in section 3. Finally, in section 4, we give some directions for future work on the
semi-stochastic model.

2 A Lower Bound on the Competitive Ratio of Semi-Stochastic
Algorithms for the Ski-rental Problem

In this section, our goal is to prove Theorem 1, i.e. to give a lower bound on the number
of queries that any semi-stochastic algorithm needs to ask in order to have an expected
competitive ratio of at most e

e−1 + ε. As earlier, we will assume wlog that the cost of buying
skis is 1, and S(k) will represent the deterministic strategy that rents skis until the duration
of skiing x reaches k, at which point skis are bought.

Consider a probability distribution D0 on the input given by the following density function
for 0 ≤ x ≤ 1: D0(x) =

(
e
e−1

)
xe−x. In addition, we have a probability mass of 1

e−1 at
x = +∞.2 For any 0 ≤ δ < 1, consider the distribution Dδ created by scaling the density
function of D0 by 1− δ in the range 0 ≤ x ≤ 1, and shifting the surplus probability mass
of δ

(
e−2
e−1

)
to +∞ . The density function for this distribution in the range 0 ≤ x ≤ 1 is

given by Dδ(x) = (1− δ)
(

e
e−1

)
xe−x. In addition, there is a probability mass of 1+(e−2)δ

e−1
at x = +∞. The next lemma lower bounds the expected competitive ratio of deterministic
strategies for distribution Dδ.

I Lemma 3. For any k ≥ 0 and 0 ≤ δ < 1, the expected competitive ratio of strategy
S(k) where the input has distribution Dδ is e

e−1 + δ
(
k − 1

e−1

)
if 0 ≤ k ≤ 1 and at least

e
e−1 + δk(1− 1

e−1) if k > 1.

2 We can use Dirac delta function [22] to define the density function at x = +∞ in a mathematically
precise manner, but we will ignore this technicality throughout the paper and assume a probability
mass of 1

e−1 at x = +∞.

F S T T C S 2 0 1 1

306 The Semi-stochastic Ski-rental Problem

Proof. For 0 ≤ k ≤ 1, the expected competitive ratio of strategy S(k) is

e(1− δ)
e− 1

(∫ k

0
xe−xdx+

∫ 1

k

(1 + k)e−xdx
)

+
(

1 + k

e− 1

)
(1+δ(e−2)) = e

e− 1+δ
(
k − 1

e− 1

)
.

On the other hand, if k > 1, then the expected competitive ratio of strategy S(k) is∫ 1

0

e(1− δ)
e− 1 xe−xdx+

(
1 + k

e− 1

)
(1 + δ(e− 2)) ≥ e

e− 1 + δk

(
1− 1

e− 1

)
. J

This lemma implies that as δ grows, the distribution Dδ favors strategies S(k) for small
values of k by making their expected competitive ratio less than e

e−1 , while making the
expected competitive ratio of strategies S(k) with large values of k worse. This property of
distribution Dδ will be crucial in our lower bound construction.

We are now ready to prove our lower bound. We will use the following fact.
I Fact 1. For any t ≥ 0 and 0 ≤ ∆ ≤ 1,

∫ t+∆
t

(
x
t − 1

)
e−xdx ≥ e−t

t ∆2.

Proof. We have∫ t+∆

t

(x
t
− 1
)
e−xdx = e−t

t

(
1− e−∆(1 + ∆)

)
≥ e−t

t
(1− (1−∆)(1 + ∆)) = e−t

t
∆2. J

Proof of Theorem 1. In the first round, for any query asked by the algorithm, the adversary
returns the corresponding quantile of the distribution Dδ for some δ whose value (that will
depend only on ε) we will fix later. This partitions the entire input interval [0,∞) into
contiguous non-overlapping intervals with the quantiles representing the boundaries between
adjacent intervals. Let these quantiles be y0 = 0, y1, . . . , yq, where yi ≤ yi+1 for each i.
Note that for each interval [yi, yi+1], the algorithm knows the probability that the input is
contained in it, though it does not know the exact distribution.

For notational convenience, we assume wlog that the strategy S(k) chosen by the algorithm
satisfies k = ys for some 0 ≤ s ≤ q.3 Based on the values of yis and the choice of k, the
adversary chooses the actual distribution D of the input. This distribution is obtained from
Dδ by concentrating the entire probability mass in each interval (yi, yi+1) where i ≥ s, at a
value y+

i that is infinitesimally close to (but greater than) yi, while leaving the probability
distribution of x < ys and that of x = +∞ unchanged. Formally, the input distribution D is
given by the following density function, where yq+1 is any finite value that is greater than
max{1, yq}:

D(x) =

∫ yi+1

y+
i

Dδ(x)dx for each x = y+
i , where s ≤ i ≤ q

Dδ(x) if x ≤ ys or x = +∞
0 otherwise.

Note that by construction, the quantiles y1, y2, . . . , yq hold for distribution D as well.
First, note that the expected competitive ratio of strategy S(ys) for distribution Dδ is

at most as much as that for distribution D. Further, the difference between these expected

3 If the algorithm chooses ys < k < ys+1 for some s, then the adversary uses the same distribution as
that for k = ys except that the probability mass in the interval (ys, ys+1) is concentrated at x+ rather
than at y+

s . Clearly, the expected competitive ratio of the algorithm for this input distribution is worse
than the expected competitive ratio for the corresponding input distribution if the algorithm had chosen
k = ys.

A. Mądry and D. Panigrahi 307

competitive ratios is only due to the difference in the probability density function in the
range ys < x ≤ 1. Let yr be the maximum value of yi that is less than 1. The difference in
the expected competitive ratios is then given by

(1− δ)
(

e

e− 1

)(r−1∑
i=s

(1 + ys)
∫ yi+1

yi

(
1
yi
− 1
x

)
xe−xdx+

∫ 1

yr

(
1
yi
− 1
x

)
xe−xdx

)

= e(1− δ)
e− 1

q∑
i=s

∫ zi+1

zi

(
x

zi
− 1
)
e−xdx, (1)

where zi = min(yi, 1).
We now have two cases. First, suppose ys > e

2(e−1) . Then, the expected competitive ratio
of strategy S(ys) when the input has distribution D is at least the expected competitive ratio
when the input has distribution Dδ, which in turn is greater than e

e−1 + e−2
2(e−1)δ by Lemma 3.

Now, let δ = 2(e−1)
e−2 ε; then the ratio is greater than e

e−1 + ε.
The other case is when ys ≤ e

2(e−1) . Then, equation (1) and Lemma 3 imply that the
expected competitive ratio of strategy S(ys) when the input has distribution D is at least

e

e− 1 + δ

(
ys −

1
e− 1

)
+ e(1− δ)

e− 1

q∑
i=s

∫ zi+1

zi

(
x

zi
− 1
)
e−xdx

≥ e

e− 1 −
δ

e− 1 + e(1− δ)
e− 1

q∑
i=s

e−zi

zi
∆2
i , where ∆i := zi+1 − zi ≥ 0

≥ e

e− 1 −
2ε
e− 2 + 1

2(e− 1)

q∑
i=s

∆2
i

≥ e

e− 1 −
2ε
e− 2 + 1

2(e− 1)
(
∑q
i=s ∆i)

2

q − s

≥ e

e− 1 −
2ε
e− 2 + (e− 2)2ε

8(e− 1)3C
.

The first inequality follows from Fact 1; the second one from zi ≤ 1 and δ = 2(e−1)
e−2 ε; the

third one from 1− δ ≥ 1/2 since ε ≤ e−2
4(e−1) ; the fourth one from the fact that for any set of

l numbers d1, . . . , dl,
∑l
i=1 d

2
i ≥

(∑l

i=1
di
)2

l ; and the fifth one from
∑q
i=s ∆i ≥ e−2

2(e−1) since

ys ≤ e
2(e−1) , and from q − s ≤ q ≤ C/ε. Finally, we choose C < 1

8e

(
e−2
e−1

)3
to ensure that

the above competitive ratio is greater than e
e−1 + ε. J

3 A Semi-stochastic Algorithm for the Ski-rental Problem

In this section, we will prove Theorem 2 by giving an algorithm that asks O
(1
ε3/2

)
quantile

queries in the first stage, and then chooses a deterministic strategy (based on the quantiles
revealed in the first stage) that has an expected competitive ratio of e

e−1 + ε. We describe
the algorithm with a parameter δ that we will fix later. As mentioned in the introduction,
we will assume wlog that the cost of buying skis is 1. Recall that any deterministic strategy
can be described by a single parameter k which represents the strategy of renting skis until
the duration of skiing x reaches k. At that point, skis are bought. As earlier, we denote this
strategy by S(k).

F S T T C S 2 0 1 1

308 The Semi-stochastic Ski-rental Problem

In the first stage, the algorithm asks 1/δ − 1 queries for quantiles δ, 2δ, . . . , 1− δ. This
partitions the input space [0,∞) into a set of 1/δ contiguous, non-overlapping intervals,
each of which has a probability mass of δ.
The algorithm now assumes that the probability mass of each interval described above is
concentrated at the right boundary of the interval, i.e. at its maximum value. For the
last interval, this corresponds to assuming that there is δ mass of the input distribution
at infinity.
With the above assumption about the distribution, the algorithm outputs the deterministic
strategy S(k) that minimizes the expected competitive ratio subject to the constraint
that δ1/3 ≤ k ≤ 1. The only possible values of k are the values of the quantiles that are
in the above range and δ1/3. Therefore, k can be found in time polynomial in 1/δ.

We will now analyze the expected competitive ratio of this strategy S(k). We will use the
following fact.
I Fact 2. For any 0 ≤ a ≤ 1, 1 + 1

(1+a)e1−a−1 ≤
e
e−1 (1 + a2).

Proof. We have

1+ 1
(1 + a)e1−a − 1 = e(1− (1 + a)e−α)

((1 + a)e1−a − 1)(e− 1) + e

e− 1 ≤
e

e− 1
(
2− (1 + a)e−a

)
≤ e

e− 1(1+a2).

The penultimate step follows from that fact that ((1 + a)e1−a − 1) ≥ 1 for 0 ≤ a ≤ 1, while
the last step follows from the fact that for any z, e−z ≥ 1− z. J

The next theorem is crucial.

I Theorem 4. For any distribution over the input, the best deterministic strategy S(k)
subject to the constraint that α ≤ k ≤ 1 for some fixed 0 ≤ α ≤ 1 has an expected competitive
ratio of at most e

e−1 (1 + α2).

Proof. Let the worst-case input distribution for an algorithm that selects the best strategy in
the above range (i.e. the input distribution for which the competitive ratio of the algorithm is
the worst) be called the nemesis distribution. Our goal is to construct a nemesis distribution
and show that the expected competitive ratio of the algorithm is at most e

e−1 (1 + α2) for
this distribution.

Let P : [0,∞)→ [0, 1] be the probability density function corresponding to the nemesis
distribution. Our first claim is that the nemesis distribution has no probability mass in
the range [0, α], i.e.

∫ α
0 P(x)dx = 0. Suppose not; then, let

∫ α
0 P(x)dx = δ > 0. Let the

expected competitive ratio of the algorithm for this input be r. Since the strategy S(γ) for
any γ ≥ α is optimal for the probability mass of δ in the range [0, α], it follows that

δ +
∫ γ

α

P(x)dx+ (1 + γ)
∫ 1

γ

P(x)
x

dx+ (1 + γ)
∫ ∞

1
P(x)dx ≥ r

for all α ≤ γ ≤ 1. Now, consider an alternative distribution which is identical to the previous
distribution, except that this probability mass of δ is shifted from the range [0, α] to the
range [1,∞] (the exact change in the density function can be arbitrary as long as the above
property is satisfied). Now, for any strategy S(γ) satisfying α ≤ γ ≤ 1 that the algorithm
can produce, the competitive ratio is∫ γ

α

P(x)dx+ (1 + γ)
∫ 1

γ

P(x)
x

dx+ (1 + γ)
∫ ∞

1
P(x)dx+ (1 + γ)δ

>

∫ γ

α

P(x)dx+ (1 + γ)
∫ 1

γ

P(x)
x

dx+ (1 + γ)
∫ ∞

1
P(x)dx+ δ

≥ r.

A. Mądry and D. Panigrahi 309

This contradicts the definition of a nemesis distribution; hence
∫ α

0 P(x)dx = 0.
Let P∞ =

∫∞
1 P(x)dx. Then the expected competitive ratio of strategy S(γ) (where

α ≤ γ ≤ 1) can be thought of as a function of γ,

r(γ) =
∫ γ

α

P(x)dx+ (1 + γ)
∫ 1

γ

P(x)
x

dx+ (1 + γ)P∞.

It follows from standard arguments (see e.g. [15, 14]) that for a nemesis distribution, r(γ)
must be invariant of γ. Let r′(γ) = dr

dγ and r′′(γ) = d2r
dγ2 . Then,

r′(γ) =
∫ 1

γ

P(x)
x

dx− P(γ)
γ

+ P∞, and

r′′(γ) = −P(γ)
γ
− P

′(γ)
γ

+ P(γ)
γ2 ,

where P ′(γ) = dP
dγ . For the invariance property to hold, r′′(γ) = r′(γ) = 0, which gives

P(γ) = P∞γe1−γ . Then, the overall probability mass is given by∫ ∞
0
P(x)dx = eP∞

∫ 1

α

xe−xdx+P∞ = −eP∞
(2
e
− (1 + α)e−α

)
+P∞ = P∞

(
(1 + α)e1−α − 1

)
.

Since
∫∞

0 P(x)dx = 1, it follows that P∞ = 1
(1+α)e1−α−1 . Therefore, the probability density

function for the nemesis distribution is

P(x) =
{

0 if x < α(
1

(1+α)e1−α−1

)
xe1−x if α ≤ x ≤ 1.

There is also a probability mass of 1
(1+α)e1−α−1 in the range [1,∞]; the exact density function

in this range is inconsequential.
Note that by our derivation, the expected competitive ratio of any strategy in the range

[α, 1] is identical; hence, the expected competitive ratio of the strategy S(k) chosen by the
algorithm is given by (we calculate the competitive ratio of S(1))

1− P∞ + 2P∞ = 1 + P∞ = 1 + 1
(1 + α)e1−α − 1 ≤

e

e− 1(1 + α2),

by Fact 2. J

We now use this theorem to obtain a bound on the competitive ratio of the algorithm
given above.

I Theorem 5. The competitive ratio of the algorithm given above is at most e
e−1 + 2e−1

e−1 δ
2/3.

Proof. Consider a game between the algorithm and an adversary where the adversary needs
to initially present the quantiles queried by the algorithm, then the algorithm outputs a
strategy S(k) according to the description above, and finally the adversary reveals the actual
distribution that is consistent with the quantiles it displayed initially. The goal of the
adversary is to maximize the expected competitive ratio of the algorithm for the distribution
that she reveals at the end. In the last step, the adversary has freedom to define any
probability density function in the interval between every pair of adjacent quantiles as long
as the total probability mass in any such interval is δ. We consider the options available
to the adversary in the three ranges [0, k], [k, 1] and [1,∞). The actual probability density
function in the first and last of these ranges does not change the expected competitive ratio

F S T T C S 2 0 1 1

310 The Semi-stochastic Ski-rental Problem

of the strategy S(k). However, in the range [k, 1], the adversary would move the entire
probability mass in each individual interval to the quantile at its left boundary, thereby
maximally increasing the expected competitive ratio of S(k). This would decrease the cost
of the optimal offline solution to the maximum extent while not changing the cost of the
algorithmic solution. The net effect of these changes is that the actual input distribution has
a δ probability mass at k instead of at 1. Thus, the difference of the expected competitive
ratio of strategy S(k) for the actual input distribution and that for the assumed distribution
is at most δ

(1+k
k − (1 + k)

)
≤ δ

k ≤ δ
2/3 since k ≥ δ1/3. By the above theorem, the expected

competitive ratio of strategy S(k) for the assumed distribution is at most e
e−1 (1 + δ2/3).

Therefore, the competitive ratio of the algorithm for the actual input distribution is at most
e
e−1 + 2e−1

e−1 δ
2/3. J

Finally, we note that Theorem 2 follows from the above theorem by replacing δ with[(
e−1
2e−1

)
ε
]3/2

.

4 Conclusion and Future Work

In this paper, we introduced a new model for online optimization problems that we call the
semi-stochastic model. This framework offers a hybrid between the excessively pessimistic
online model and the overly optimistic stochastic model. As a first step towards understanding
optimization problems in this setting, we presented an algorithm for the ski-rental problem
that gives a trade-off between the amount of stochastic information available to the algorithm
and its performance. Perhaps more surprisingly, we also gave a lower bound on the query
complexity for algorithms in this model that loosely matches the upper bound. Our lower
bound holds for the powerful class of adaptive algorithms.

This initial result opens up the possibility of studying a plethora of online problems in
the semi-stochastic model. Our model does not impose any restriction on the type of queries
that the algorithm is allowed to ask of the adversary. So, it would be interesting to consider
other query models as well. For example, as discussed in the introduction, in certain (e.g.
computational learning) situations, natural queries might correspond to sampling inputs.

A somewhat different direction of future research would be to investigate the robustness
of stochastic algorithms. One interpretation of our semi-stochastic algorithms is that they
are robust to changes in the input distribution modulo the satisfaction of a set of parameters
(corresponding to the answers given to the queries). Following up in this direction, it would
be interesting to investigate the sensitivity of known stochastic algorithms to changes in
the input distribution, and if they turn out to be sensitive, to design algorithms that are
robust to such changes. The ultimate goal in this direction of research would be to obtain
algorithms that degrade gracefully with changes in the input distribution, with the best
stochastic algorithm and the best online algorithm being the two ends of the spectrum.

5 Acknowledgement

We would like to thank Sudipto Guha, Adam Kalai, Kamesh Munagala and R. Ravi for useful
discussions on our problem. We also thank an anonymous referee for detailed comments that
helped improve the presentation of the paper.

A. Mądry and D. Panigrahi 311

References
1 Susanne Albers and Stefano Leonardi. On-line algorithms. ACM Comput. Surv., 31(3es):4,

1999.
2 Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems,

and online mechanisms. In SODA, pages 434–443, 2007.
3 Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan, and Atri

Rudra. When LP is the cure for your matching woes: Improved bounds for stochastic
matchings - (extended abstract). In ESA (2), pages 218–229, 2010.

4 Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 1995.
5 Ning Chen, Nicole Immorlica, Anna R. Karlin, Mohammad Mahdian, and Atri Rudra.

Approximating matches made in heaven. In ICALP (1), pages 266–278, 2009.
6 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Adaptivity and approximation for

stochastic packing problems. In SODA, pages 395–404, 2005.
7 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the stochastic

knapsack problem: The benefit of adaptivity. Math. Oper. Res., 33(4):945–964, 2008.
8 Jon Feldman, Aranyak Mehta, Vahab S. Mirrokni, and S. Muthukrishnan. Online stochastic

matching: Beating 1-1/e. In FOCS, pages 117–126, 2009.
9 Naveen Garg, Anupam Gupta, Stefano Leonardi, and Piotr Sankowski. Stochastic analyses

for online combinatorial optimization problems. In SODA, pages 942–951, 2008.
10 Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with

applications to adwords. In SODA, pages 982–991, 2008.
11 Fabrizio Grandoni, Anupam Gupta, Stefano Leonardi, Pauli Miettinen, Piotr Sankowski,

and Mohit Singh. Set covering with our eyes closed. In FOCS, pages 347–356, 2008.
12 Sudipto Guha and Kamesh Munagala. Approximation algorithms for budgeted learning

problems. In STOC, pages 104–113, 2007.
13 Sudipto Guha and Kamesh Munagala. Model-driven optimization using adaptive probes.

In SODA, pages 308–317, 2007.
14 Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP acknowledgment and

other stories about e/(e-1). Algorithmica, 36(3):209–224, 2003.
15 Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel Dominic Sleator. Competi-

tive snoopy caching. Algorithmica, 3:77–119, 1988.
16 Robert Kleinberg. Geographic routing using hyperbolic space. In INFOCOM, pages 1902–

1909, 2007.
17 Robert D. Kleinberg. A multiple-choice secretary algorithm with applications to online

auctions. In SODA, pages 630–631, 2005.
18 Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hyper-

graphs. In ICALP (2), pages 508–520, 2009.
19 Adam Meyerson. Online facility location. In FOCS, pages 426–431, 2001.
20 Adam Meyerson, Kamesh Munagala, and Serge A. Plotkin. Designing networks incremen-

tally. In FOCS, pages 406–415, 2001.
21 Chaitanya Swamy and David B. Shmoys. Approximation algorithms for 2-stage stochastic

optimization problems. SIGACT News, 37(1):33–46, 2006.
22 Wikipedia. Dirac delta function — Wikipedia, the free encyclopedia.
23 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity

(extended abstract). In FOCS, pages 222–227, 1977.

F S T T C S 2 0 1 1

Streamability of Nested Word Transductions∗

Emmanuel Filiot1, Olivier Gauwin2, Pierre-Alain Reynier3, and
Frédéric Servais4

1 Université Libre de Bruxelles
2 Université de Mons
3 LIF, Aix-Marseille Univ & CNRS, France
4 Hasselt University and Transnational University of Limburg

Abstract
We consider the problem of evaluating in streaming (i.e. in a single left-to-right pass) a nested
word transduction with a limited amount of memory. A transduction T is said to be height
bounded memory (HBM) if it can be evaluated with a memory that depends only on the size
of T and on the height of the input word. We show that it is decidable in coNPTime for a
nested word transduction defined by a visibly pushdown transducer (VPT), if it is HBM. In this
case, the required amount of memory may depend exponentially on the height of the word. We
exhibit a sufficient, decidable condition for a VPT to be evaluated with a memory that depends
quadratically on the height of the word. This condition defines a class of transductions that
strictly contains all determinizable VPTs.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases nested word, visibly pushdown transducer, streaming, XML

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.312

1 Introduction

Memory analysis is an important tool for ensuring system robustness. In this paper we
focus on the analysis of programs processing nested words [2], i.e., words with a recursive
structure, like program traces, XML documents, or more generally unranked trees. On huge
inputs, a streaming mode is often used, where the nested word is read only once, from left
to right. This corresponds to a depth-first left-to-right traversal when the nested word is
considered as a tree. For such programs, dynamic analysis problems have been addressed
in various contexts. For instance, runtime verification detects dynamically, and as early as
possible, whether a property is satisfied by a program trace [17, 6]. On XML streams, some
algorithms outputting nodes selected by an XPath expression at the earliest possible event
have also been proposed [7, 12]. These algorithms allow minimal buffering [3].

In this paper, we investigate static analysis of memory usage for a special kind of pro-
grams on nested words, namely programs defined by transducers. We assume that the
transducers are functional and non-deterministic. Non-determinism is required as input
words are read from left to right in a single pass and some actions may depend on the
future of the stream. For instance, the XML transformation language XSLT uses XPath
for selecting nodes where local transformations are applied, and XPath queries relies on

∗ Partially supported by the ESF project GASICS, by the FNRS, by the ANR project ECSPER (JC09-
472677), by the PAI program Moves funded by the Federal Belgian Government and by the FET project
FOX (FP7-ICT-233599).

© Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 312–324

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.312
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais 313

non-deterministic moves along tree axes, such as a move to any descendant. We require our
transducers to be functional, as we are mainly interested by transformation languages like
XSLT, XQuery and XQuery Update Facility, for which any transformation maps each XML
input document to a unique output document.

Visibly pushdown transducers (VPTs) form a subclass of pushdown transducers adequate
for dealing with nested words and streaming evaluation, as the input nested word is pro-
cessed from left to right. They are visibly pushdown automata [2] extended with arbitrary
output words on transitions. VPTs capture interesting fragments of the aforementioned
XML transformation languages that are amenable to efficient streaming evaluation, such as
all editing operations (insertion, deletion, and relabeling of nodes, as used for instance in
XQuery Update Facility) under all regular tests. Like for visibly pushdown automata, the
stack behavior of VPTs is imposed by the type of symbols read by the transducer. Those
restrictions on stack operations allow to decide functionality and equivalence of functional
VPTs in PTime and ExpTime respectively [11].

Some transductions defined by (functional and non-deterministic) VPTs cannot be eval-
uated efficiently in streaming. For instance, swapping the first and last letter of a word can
be defined by a VPT as follows: guess the last letter and transform the first letter into the
guessed last letter, keep the value of the first letter in the state, and transform any value in
the middle into itself. Any deterministic machine implementing this transformation requires
to keep the entire word in memory until the last letter is read. It is not reasonable in practice
as for instance XML documents can be very huge.

Our aim is thus to identify decidable classes of transductions for various memory re-
quirements that are suitable to space-efficient streaming evaluation. We first consider the
requirement that a transducer can be implemented by a program using a bounded memory
(BM), i.e. computing the output word using a memory independent of the size of the input
word. However when dealing with nested words in a streaming setting, the bounded memory
requirement is quite restrictive. Indeed, even performing such a basic task as checking that
a word is well-nested or checking that a nested word belongs to a regular language of nested
words requires a memory dependent on the height (the level of nesting) of the input word
[19]. This observation leads us to the second question: decide, given a transducer, whether
the transduction can be evaluated with a memory that depends only on the size of the
transducer and the height of the word (but not on its length). In that case, we say that
the transduction is height bounded memory (HBM). This is particularly relevant to XML
transformations as XML documents can be very long but have usually a small depth [5].
HBM does not specify how memory depends on the height. A stronger requirement is thus
to consider HBM transductions whose evaluation can be done with a memory that depends
polynomially on the height of the input word.

Contributions First, we give a general space-efficient evaluation algorithm for functional
VPTs. After reading a prefix of an input word, the number of configurations of the (non-
deterministic) transducer as well as the number of output candidates to be kept in memory
may be exponential in the size of the transducer and the height of the input word (but not
in its length). Our algorithm produces as output the longest common prefix of all output
candidates, and relies on a compact representation of sets of configurations and remaining
output candidates (the original output word without the longest common prefix). We prove
that it uses a memory linear in the height of the input word, and linear in the maximal
length of a remaining output candidate.

We prove that BM is equivalent to subsequentiability for finite state transducers (FSTs),
which is known to be decidable in PTime. BM is however undecidable for arbitrary push-

FSTTCS 2011

314 Streamability of Nested Word Transductions

down transducers but we show that it is decidable for VPTs in coNPTime.
Like BM, HBM is undecidable for arbitrary pushdown transductions. We show, via a non-

trivial reduction to the emptiness of pushdown automata with bounded reversal counters,
that it is decidable in coNPTime for transductions defined by VPTs. In particular, we show
that the previously defined algorithm runs in HBM iff the VPT satisfies some property, which
is an extension of the so called twinning property for FSTs [9] to nested words. We call it the
horizontal twinning property, as it only cares about configurations of the transducers with
stack contents of identical height. This property only depends on the transduction, i.e. is
preserved by equivalent transducers.

When a VPT-transduction is height bounded memory, the memory needed may be expo-
nential in the height of the word. We introduce a refinement of the twinning property that
takes the height of the configurations into account, hence called matched twinning property.
A VPT satisfying this property is called twinned. We prove that the evaluation of twinned
transductions with our algorithm uses a memory quadratic in the height of the input word.
We show that it is decidable in coNPTime whether a VPT is twinned. Moreover, the most
challenging result of this paper is to show that being twinned depends only on the trans-
duction and not on the VPT that defines it. Thus, this property indeed defines a class of
transductions. As a consequence of this result, all subsequentializable VPTs are twinned,
because subsequential VPTs trivially satisfy the matched twinning property. The class of
twinned transductions captures a strictly larger class than subsequentializable VPTs while
staying in the same complexity class for evaluation, i.e. polynomial space in the height of
the input word when the transducer is fixed.

Related Work In the XML context, visibly pushdown automata based streaming pro-
cessing has been extensively studied for validating XML streams [16, 4, 19]. The validation
problem with bounded memory is studied in [4] when the input is assumed to be a well-
nested word and in [19] when it is assumed to be a well-formed XML document (this problem
is still open). Querying XML streams has been considered in [13]. It consists in selecting a
set of tuples of nodes in the tree representation of the XML document. For monadic queries
(selecting nodes instead of tuples), this can be achieved by a functional VPT returning the
input stream of tags, annotated with Booleans indicating selection by the query. However,
functional VPTs cannot encode queries of arbitrary arities. The setting for functional VPTs
is in fact different to query evaluation, because the output has to be produced on-the-fly
in the right order, while query evaluation algorithms can output nodes in any order: an
incoming input symbol can be immediately output, while another candidate is still to be
confirmed. This makes a difference with the notion of concurrency of queries, measuring
the minimal amount of candidates to be stored, and for which algorithms and lower bounds
have been proposed [3]. VPTs also relate to tree transducers [11], for which no comparable
work on memory requirements is known. However, the height of the input word is known to
be a lower bound for Core XPath filters [13]. As VPTs can express them, this lower bound
also applies when evaluating VPTs. When allowing two-way access on the input stream,
space-efficient algorithms for XML validation [15] and querying [18] have been proposed.

2 Visibly Pushdown Languages and Transductions

Words and nested words In this paper, we consider nested words accessed in streaming.
Their nesting structure is thus discovered on-the-fly, so we consider a finite alphabet Σ
partitioned into three disjoint sets Σc, Σr and Σι, denoting respectively the call, return and
internal alphabets. We denote by Σ∗ the set of (finite) words over Σ and by ε the empty

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais 315

word. The length of a word u is denoted by |u|. For all words u, v ∈ Σ∗, we denote by
u∧ v the longest common prefix of u and v. More generally, for any non-empty finite set of
words V ⊆ Σ∗, the longest common prefix of V , denoted by lcp(V), is inductively defined
by lcp({u}) = u and lcp(V ∪ {u}) = lcp(V) ∧ u. The set of well-nested words Σ∗wn is the
smallest subset of Σ∗ such that Σ∗ι ⊆ Σ∗wn and for all c ∈ Σc, all r ∈ Σr, all u, v ∈ Σ∗wn,
cur ∈ Σ∗wn and uv ∈ Σ∗wn. Let u = α1 . . . αn ∈ Σ∗ be a prefix of a well-nested word. A
position i ∈ {1, . . . , n} is a pending call if αi ∈ Σc and for all j ≥ i, αi . . . αj 6∈ Σ∗wn. The
height of u is the maximal number of pending calls on any prefix of u, i.e.

h(u) = max1≤i≤n|{k | 1 ≤ k ≤ i, αk is a pending call of α1 . . . αi}|
For instance, h(crcrcc) = h(ccrcrr) = 2. In particular, for well-nested words, the height
corresponds to the usual height of the nesting structure of the word.

Given two words u, v ∈ Σ∗, the delay of u and v, denoted by ∆(u, v), is the unique pair of
words (u′, v′) such that u = (u∧v)u′ and v = (u∧v)v′. For instance, ∆(abc, abde) = (c, de).
Informally, in a word transduction, if there are two output candidates u and v during the
evaluation, we are sure that we can output u ∧ v and ∆(u, v) is the remaining suffixes we
still keep in memory.
Visibly pushdown transducers (VPTs) As finite-state transducers extend finite-state
automata with outputs, visibly pushdown transducers extend visibly pushdown automata [2]
with outputs [11]. To simplify notations, we suppose that the output alphabet is Σ, but our
results still hold for an arbitrary output alphabet. Informally, the stack behavior of a VPT
is similar to the stack behavior of visibly pushdown automata (VPA). On a call symbol, the
VPT pushes a symbol on the stack and produces some output word (possibly empty), on
a return symbol, it must pop the top symbol of the stack and produce some output word
(possibly empty) and on an internal symbol, the stack remains unchanged and it produces
some output word. Formally:

I Definition 1. A visibly pushdown transducer (VPT) on finite words over Σ is a tuple
T = (Q, I, F,Γ, δ) where Q is a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q

the set of final states, Γ is the stack alphabet, δ = δc] δr] δι the (finite) transition relation,
with δc ⊆ Q× Σc × Σ∗ × Γ×Q, δr ⊆ Q× Σr × Σ∗ × Γ×Q, and δι ⊆ Q× Σι × Σ∗ ×Q.

A configuration of a VPT is a pair (q, σ) ∈ Q×Γ∗. A run of T on a word u = a1 . . . al ∈ Σ∗
from a configuration (q, σ) to a configuration (q′, σ′) is a finite sequence ρ = {(qk, σk)}0≤k≤l
such that q0 = q, σ0 = σ, ql = q′, σl = σ′ and for each 1 ≤ k ≤ l, there exist vk ∈ Σ∗ and
γk ∈ Γ such that either (qk−1, ak, vk, γk, qk) ∈ δc and σk = σk−1γk or (qk−1, ak, vk, γk, qk) ∈
δr and σk−1 = σkγk, or (qk−1, ak, vk, qk) ∈ δι and σk = σk−1. The word v = v1 . . . vl is
called an output of ρ. We write (q, σ) u/v−−→ (q′, σ′) when there exists a run on u from (q, σ)
to (q′, σ′) producing v as output. We denote by ⊥ the empty word on Γ. A configuration
(q, σ) is accessible (resp. is co-accessible) if there exist u, v ∈ Σ∗ and q0 ∈ I (resp. qf ∈ F)
such that (q0,⊥) u/v−−→ (q, σ) (resp. such that (q, σ) u/v−−→ (qf ,⊥)). A transducer T is reduced
if every accessible configuration is co-accessible. Given any VPT, computing an equivalent
reduced VPT can be performed in polynomial time [8]1. A transducer T defines the binary
word relation JT K = {(u, v) ∈ Σ∗ × Σ∗ | ∃q ∈ I, q′ ∈ F, (q,⊥) u/v−−→ (q′,⊥)}.

A transduction is a binary relation R ⊆ Σ∗ × Σ∗. We say that a transduction R is a
VPT-transduction if there exists a VPT T such that R = JT K. For any input word u ∈ Σ∗,
we denote by R(u) the set {v | (u, v) ∈ R}. Similarly, for a VPT T , we denote by T (u) the

1 The reduction of VPAs in [8] trivially extends to VPTs.

FSTTCS 2011

316 Streamability of Nested Word Transductions

ip3 p2 p1 q3q1 q2
c/a, γr/c, γr/c, γ c/b, γ r/c, γ r′/c, γ

c/a, γr/c, γ c/b, γ r/c, γ

c/b, γc/a, γ

Figure 1 A functional VPT with Σc = {c}, Σr = {r, r′} and Σι = {a, b}

set JT K(u). A transduction R is functional if for all u ∈ Σ∗, R(u) has size at most one. If R
is functional, we identify R(u) with the unique image of u if it exists. A VPT T is functional
if JT K is functional, and this can be decided in PTime [11]. The class of functional VPTs is
denoted by fVPT. The domain of T (denoted by Dom(T)) is the domain of JT K. The domain
of T contains only well-nested words, which is not necessarily the case of the codomain.

I Example 2. Consider the VPT T of Fig. 1 represented in plain arrows. The left and right
parts accept the same input words except for the last letter of the word. The domain of T is
Dom(T) = {cnrn | n ≥ 2} ∪ {ccnrnr′ | n ≥ 1}. Any word cnrn is translated into ancn, and
any word ccnrnr′ is translated into bn+1cn+1. Therefore the translation of the first sequence
of calls depends on the last letter r or r′. This transformation cannot be evaluated with
a bounded amount of memory, but with a memory which depends on the height n of the
input word.

Finite state transducers (FSTs) A finite state transducer (FST) on an alphabet Σ is a
tuple (Q, I, F, δ) where Q is a finite set, I, F ⊆ Q and δ ⊆ Q×Σ×Σ∗×Q with the standard
semantics. This definition corresponds to the usual definition of real-time FSTs, as there is
no ε-transitions. We always consider real-time FSTs in this paper, so we just call them FSTs.

A subsequential FST (resp. VPT) is a pair (T,Ψ) where T is an (input) deterministic FST
(resp. VPT) and Ψ : F → Σ∗. The outputs of u by (T,Ψ) are the words v.Ψ(q) whenever
there is a run of T on u producing v and ending up in some accepting state q.

Given an integer k ∈ N and a VPT T , one can define an FST, denoted by FST(T, k),
which is the restriction of T to input words of height less than k. The transducer is naturally
constructed by taking as states the configurations (q, σ) of T such that |σ| ≤ k.
Turing Transducers In order to formally define the complexity classes for evaluation
that we target, we introduce a deterministic computational model for word transductions
that we call Turing Transducers. Turing transducers have three tapes: one read-only left-to-
right input tape, one write-only left-to-right output tape, and one standard working tape.
Such a machine naturally defines a transduction: the input word is initially on the input
tape, and the result of the transduction is the word written on the output tape after the
machine terminates in an accepting state. We denote by JMK the transduction defined by
M . The space complexity is measured on the working tape only.

3 Online Evaluation Algorithm of VPT-Transductions

We present an online algorithm LcpIn to evaluate functional word transductions defined
by fVPTs. For clarity, we present this algorithm under some assumptions, without loss
of generality. First, input words of our algorithms are words u ∈ Σ∗ concatenated with
a special symbol $ /∈ Σ, denoting the end of the word. Second, we only consider input
words without internal symbols, as they can easily be encoded by successive call and return
symbols. Third, input words are supposed to be valid, in the sense that they produce an
output. It is indeed easy to extend our algorithms in order to raise an error message when
the input is not in the domain, i.e. when no run of the VPT applies on the input.

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais 317

q0 q1

c/a, γ1

c/b, γ2

r1/ε, γ1

r1/ε, γ1

r2/ε, γ2

(a) VPT T1.

#

(q0, ⊥, 0)

(q0, γ1, 1)(q0, γ2, 1)

a b

(b) After reading c.

#

(q0, ⊥, 0)

(q0, γ1, 1) (q0, γ2, 1)

(q0, γ1, 2) (q0, γ2, 2)

a b

a

b a

b

(c) After reading cc.

#

(q0, ⊥, 0)

(q1, γ1, 1)(q1, γ2, 1)

aa ba

(d) After reading ccr1.

Figure 2 Data structure used by LcpIn.

The core task of this algorithm is to maintain the configuration for each run of the fVPT
T on the input u, and produce its output on-the-fly. Therefore, the algorithm LcpIn only
applies on reduced fVPTs. Indeed, as T is reduced, functionality ensures that, for a given
input word u, and for every accessible configuration (q, σ) of T , there is at most one v such
that (qi,⊥) u/v−−→ (q, σ) with qi ∈ I. Hence, a configuration is a triple (q, σ, w) where q is the
current state of the run, σ its corresponding stack content, and w the part of the output
that has been read but not output yet. We call such a configuration d-configuration and
write Dconfs(T) = Q×Γ∗×Σ∗ for the set of d-configurations of T . Algorithm LcpIn relies
on two main features.
Compact representation First, the set of current d-configurations is stored in a compact
structure that shares common stack contents. Consider for instance the VPT T1 in Fig. 2a.
After reading cc, current d-configurations are {(q0, γ1γ1, aa), (q0, γ1γ2, ab), (q0, γ2γ1, ba),
(q0, γ2γ2, bb)}. Hence after reading cn, the number of current d-configurations is 2n. How-
ever, the transition used to update a d-configuration relates the stack symbol and the out-
put word. For instance, the previous set is the set of tuples (q0, η1η2, α1α2) where (ηi, αi)
is either (γ1, a) or (γ2, b). Based on this observation, we propose a data structure avoid-
ing this blowup. As illustrated in Fig. 2b to 2d, this structure is a directed acyclic graph
(DAG). Nodes of this DAG are tuples (q, γ, i) where q ∈ Q, γ ∈ Γ and i ∈ N is the depth
of the node in the DAG. Each edge of the DAG is labelled with a word, so that a branch
of this DAG, read from the root # to the leaf, represents a d-configuration (q, σ, v): q is
the state in the leaf, σ is the concatenation of stack symbols in traversed nodes, and v

is the concatenation of words on edges. For instance, in the DAG of Fig. 2c, the branch
−→ (q0,⊥, 0) b−→ (q0, γ2, 1) a−→ (q0, γ1, 2) encodes the d-configuration (q0, γ2γ1, ba) of the
VPT of Fig. 2.(a). However, this data structure cannot store any set of accessible d-
configurations of arbitrary functional VPTs: at most one delay w has to be assigned to
a d-configuration. This is why we need T to be reduced.
Computing outputs Second, after reading a prefix u′ of a word u, LcpIn will have
output the common prefix of all corresponding runs, i.e. lcpin(u′, T) = lcp(reach(u′)) where
reach(u′) = {v | ∃(q0, q, σ) ∈ I×Q×Γ∗, (q0,⊥) u′/v−−−→ (q, σ)}. When a new input symbol is
read, the DAG is first updated. Then, a bottom-up pass on this DAG computes lcpin(u′, T)
in the following way. For each node, let ` be the largest common prefix of labels of outgoing
edges. Then ` is removed from these outgoing edges, and concatenated at the end of labels
of incoming edges. At the end, the largest common prefix of all output words on branches
is the largest common prefix of words on edges outgoing from the root node #.

Let out6=(u′) be the maximal size of outputs of T on u′ where their common prefix is

FSTTCS 2011

318 Streamability of Nested Word Transductions

removed: out6=(u′) = maxv∈reach(u′) |v| − |lcpin(u′, T)| and outmax
6= (u) its maximal value over

prefixes of u: outmax
6= (u) = maxu′ prefix of u out6=(u′). To summarize, one can in polyno-

mial time reduce T if necessary, and then build the Turing transducer associated with the
algorithm LcpIn. We prove the following complexity result:

I Proposition 3. Given an fVPT T , one can build in PTime a Turing transducer, denoted
LcpInTT(T), which, on an input stream u ∈ Σ∗, runs in space complexity O((h(u) + 1) ·
outmax
6= (u)).

In addition, when T is reduced, we can detail how the constant depends on the size of T . The
space used by LcpInTT(T) for computing T (u) is in O(|Q|2 · |Γ|2 · (h(u) + 1) · outmax

6= (u)).

4 Bounded Memory Evaluation Problems

Bounded Memory Transductions

We first consider transductions that can be evaluated with a constant amount of memory if
we fix the machine that defines the transduction:

I Definition 4. A (functional) transduction R ⊆ Σ∗×Σ∗ is bounded memory (BM) if there
exists a Turing transducerM and K ∈ N such that JMK = R and on any input word u ∈ Σ∗,
M runs in space complexity at most K.

It is not difficult (see [10]) to verify that for FST-transductions, bounded memory is
characterized by subsequentializability, which is decidable in PTime [20]. Moreover, BM is
undecidable for pushdown transducers, since it is as difficult as deciding whether a pushdown
automaton defines a regular language. For VPTs, BM is quite restrictive as it imposes to
verify whether a word is well-nested by using a bounded amount of memory. This can be
done only if the height of the words of the domain is bounded by some constant which
depends on the transducer only:

I Proposition 5. Let T be a functional VPT with n states.

1. JT K is BM iff (i) for all u ∈ Dom(T), h(u) ≤ n2, and (ii) FST(T, n2) is BM;
2. It is decidable in coNPTime whether JT K is BM.

Sketch. The first assertion is obvious by using simple pumping techniques to show that
bounded memory implies bounded height. In the sequel, we define the class of height
bounded memory transductions, and show it is decidable in coNPTime. On words of
bounded height, this class collapses with bounded memory transductions. J

Height Bounded Memory Transductions

As we have seen, bounded memory is too restrictive to still benefit from the extra express-
iveness of VPT compared to FST, namely the ability to recognize nested words of unbounded
height. In this section, we define a notion of bounded memory which is well-suited to VPTs.

I Definition 6. A (functional) transduction R ⊆ Σ∗×Σ∗ is height bounded memory (HBM)
if there exists a Turing transducer M and a function f : N→ N such that JMK = R and on
any input word u ∈ Σ∗, M runs in space at most f(h(u)).

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais 319

Note that this definition ensures that the machine cannot store all the input words on the
working tape in general. The VPT in Fig. 2a is not in BM, but is in HBM: the stack content
suffices (and is necessary) to determine the output. When the structured alphabet contains
only internal letters, HBM and BM coincide, thus it is undecidable whether a pushdown
transducer is HBM. The remainder of this section is devoted to the proof that HBM is
decidable for fVPTs.

BM functional FST-transductions (or equivalently subsequentializable FSTs) are charac-
terized by the so called twinning property [9], which is decidable in PTime [20]. We introduce
a similar characterization of HBM fVPTs-transductions, called the horizontal twinning prop-
erty (HTP). The restriction of the horizontal twinning property to FSTs is equivalent to the
usual twinning property for FSTs (see [10]). Intuitively, the HTP requires that two runs on
the same input cannot accumulate increasing output delay on loops.

I Definition 7. Let T be an fVPT. T satisfies the horizontal twinning property (HTP) if for
all u1, u2, v1, v2, w1, w2 ∈ Σ∗ such that u2 is well-nested, for all q0, q

′
0 ∈ I, for all q, q′ ∈ Q,

and for all σ, σ′ ∈ Γ∗ such that (q, σ) and (q′, σ′) are co-accessible,

if

 (q0,⊥) u1/v1−−−−→ (q, σ) u2/v2−−−−→ (q, σ)
(q′0,⊥) u1/w1−−−−→ (q′, σ′) u2/w2−−−−→ (q′, σ′)

(1) then ∆(v1, w1) = ∆(v1v2, w1w2).

I Example 8. Consider the VPT of Fig. 1 (including dashed arrows). It does not satisfy
the HTP, as the delays increase when looping on crcr... Without the dashed transitions, the
HTP is satisfied.

I Lemma 9. The HTP is decidable in coNPTime for fVPTs.

Proof. First, let us show that an fVPT T does not satisfy the HTP if and only if there exist
u1, u2, v1, v2, w1, w2 ∈ Σ∗, q0, q

′
0 ∈ I, q, q′ ∈ Q, and σ, σ′ ∈ Γ∗ such that (q, σ) and (q′, σ′)

are co-accessible, satisfy (1), and such that either we have (i) |v2| 6= |w2|, or (ii) |v2| = |w2|,
|v1| ≤ |w1| and not v1v2 � w1w2. Indeed, one can easily check that it is a necessary
condition. To prove that it is a sufficient condition, suppose we have elements that satisfy
(1) with ∆(v1, w1) 6= ∆(v1v2, w1w2) but conditions (i) and (ii) do not hold. Wlog, we
can assume that |v1| ≤ |w1|, therefore we have |v2| = |w2|, |v1| ≤ |w1|, v1v2 � w1w2 and
∆(v1, w1) 6= ∆(v1v2, w1w2). One can verify (see [10]) that there exists k ∈ N such that
replacing u2 with u′2 = u2

k yields a system that satisfies (ii).
Second, let T be an fVPT, we define a pushdown automaton with bounded reversal

counters [14], A, such that the language of A is empty if and only if T satisfies the HTP. More
precisely, A accepts the words u = u1u2u3 ∈ Dom(T) such that there exist v1, v2, w1, w2 ∈
Σ∗, q0, q

′
0 ∈ I, q, q′ ∈ Q, and σ, σ′ ∈ Γ∗ that satisfy (1) and either (i) or (ii). A simulates

in parallel any two runs of T on the input word (product automaton). It guesses the end of
u1 and stores the states q and q′ of the first and second run (in order to be able to check
that the simulated runs of T are in state q, resp. q′ after reading u2). Non-deterministically,
it checks whether (i) or (ii) holds. To check (i), it uses two counters, one for each run. It
does so by, after reading u1, increasing the counters by the length of the output word of
each transition of the corresponding run. Then, when reaching the end of u2 it checks that
both counters are different (by decreasing in parallel both counters and checking they do
not reach 0). Similarly, using two other counters, A checks that (ii) holds as follows. Note
that condition (ii) implies that there is a position p such that the p-th letter a1 of v1v2 and
the p-th letter a2 of w1w2 are different. The automaton A guesses the position p ∈ N of
the mismatch, and initializes both counters to the value p. Then, while reading u1u2, it
decreases each counter by the length of the output words of the corresponding run. When

FSTTCS 2011

320 Streamability of Nested Word Transductions

a counter reaches 0, A stores the output letter of the corresponding run. Finally, A checks
that a1 6= a2, and that both configurations are co-accessible. T satisfies the HTP iff the
language of A is empty. The latter is decidable in coNPTime [11]. J

We now show that HTP characterizes HBM fVPTs-transductions and therefore by Lemma 9
we get:

I Theorem 10. Let T be an fVPT. Then JT K is HBM iff the HTP holds for T , which
is decidable in coNPTime. In this case, the Turing transducer LcpInTT(T) runs, on an
input stream u, in space complexity exponential in the height of u.

We can state more precisely the space complexity of LcpInTT(T) when T is reduced. In
this case, it is in O(|Q|4 · |Γ|2h(u)+2 ·(h(u)+1) ·M), whereM = max{|v| | (q, a, v, γ, q′) ∈ δ}.

Sketch. We prove that JT K is HBM iff the HTP holds for T . To prove that the HTP is a
necessary condition to be in HBM, we proceed by contradiction. We find a counter-example
for the HTP and we let K be the height of the input word of this counter-example. It implies
that the twinning property for FSTs does not hold for FST(T,K), and therefore FST(T,K)
is not BM by Proposition 5. In particular, T is not HBM.
For the converse, it can easily be shown that when T satisfies the HTP, the procedure of [8]
that reduces T preserves the HTP satisfiability. In particular, there is a one-to-one mapping
between the runs of T and the runs of its reduction that preserves the output words. We
then show that for any input word u ∈ Σ∗, the maximal delay outmax

6= (u) between the outputs
of u is bounded by (|Q| · |Γ|h(u))2M . This is done by a pumping technique “by width” that
relies on the property ∆(vv′, ww′) = ∆(∆(v, w) · (v′, w′)) for any words v, v′, w, w′. Thus for
an input word for which there are two runs that pass by the same configurations twice at
the same respective positions, the delay of the output is equal to the delay when removing
the part in between the identical configurations. Finally we apply Proposition 3. J

HBM is tight Theorem 10 shows that the space complexity of a VPT in HBM is at most
exponential. We give here an example illustrating the tightness of this bound. The idea is
to encode the tree transduction f(t, a) 7→ f(t, a) ∪ f(t, b) 7→ f(t, b) by a VPT, where t is a
binary tree over {0, 1} and t is the mirror of t, obtained by replacing the 0 by 1 and the 1
by 0 in t. Thus taking the identity or the mirror depends on the second child of the root f .
To evaluate this transformation in a streaming manner, one has to store the whole subtree
t in memory before deciding to transform it into t or t. The evaluation of this transduction
cannot be done in polynomial space as there are a doubly exponential number of trees of
height n, for all n ≥ 0.
HBM vs Subsequentializable fVPTs We have seen that a functional transduction
defined by an FST T is BM iff T is subsequentializable. We give an example illustrating
that for VPTs, being subsequentializable is too strong to characterize HBM. Consider the
VPT of Fig. 1 defined by the plain arrows. The transduction it defines is in HBM by
Proposition 3, as at any time the delay between two outputs is bounded by the height of
the input: outmax

6= (u)≤2h(u). However it is not subsequentializable, as the transformation
of c into a or b depends on the last return.

5 Quadratic Height Bounded Memory Evaluation

In the previous section, we have shown that a VPT-transduction is in HBM iff the horizontal
twinning property holds, and if it is in HBM, the algorithm of Section 3 uses a memory

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais 321

at most exponential in the height of the word, and this bound is tight. To avoid this
exponential cost, we identify in this section a subclass of HBM containing transductions for
which the evaluation algorithm of Section 3 uses a memory quadratic in the height of the
word. Therefore, we strengthen the horizontal twinning property by adding some properties
for well-matched loops. Some of our main and challenging results are to show the decidability
of this property and that it depends only on the transduction, i.e. is preserved by equivalent
transducers. We show that subsequential VPTs satisfy this condition and therefore our class
subsumes the class of subsequentializable transducers.

The property is a strengthening of the horizontal twinning property that we call the
matched twinning property (MTP). Intuitively, the MTP requires that two runs on the
same input cannot accumulate increasing output delay on well-matched loops. They can
accumulate delay on loops with increasing stack but this delay has to be caught up on the
matching loops with descending stack.

I Definition 11. Let T = (Q, I, F,Γ, δ) be an fVPT. T satisfies the matched twinning
property (MTP) if for all ui, vi, wi ∈ Σ∗ (i ∈ {1, . . . , 4}) such that u3 is well-nested, and
u2u4 is well-nested, for all i, i′ ∈ I, for all p, q, p′, q′ ∈ Q, and for all σ1, σ2 ∈ ⊥.Γ∗, for all
σ′1, σ

′
2 ∈ Γ∗, such that (q, σ1) and (q′, σ2) are co-accessible:

if

 (i,⊥) u1/v1−−−−→ (p, σ1) u2/v2−−−−→ (p, σ1σ
′
1) u3/v3−−−−→ (q, σ1σ

′
1) u4/v4−−−−→ (q, σ1)

(i′,⊥) u1/w1−−−−→ (p′, σ2) u2/w2−−−−→ (p′, σ2σ
′
2) u3/w3−−−−→ (q′, σ2σ

′
2) u4/w4−−−−→ (q′, σ2)

then ∆(v1v3, w1w3) = ∆(v1v2v3v4, w1w2w3w4). We say that a VPT T is twinned whenever
it satisfies the MTP.

Note that any twinned VPT also satisfies the HTP (with u3 = u4 = ε).

I Example 12. The VPT of Fig. 1 with plain arrows does not satisfy the MTP, as the
delay between the two branches increases when iterating the loops. Consider now the VPT
obtained by replacing r by r′ in the transition (q1, r, c, γ, q2). It is obviously twinned, as
we cannot construct two runs on the same input which have the form given in the premises
of the MTP. However this transducer is not subsequentializable, as the output on the call
symbols cannot be delayed to the matching return symbols.

As for the HTP, we can decide the MTP using a reduction to the emptiness of a pushdown
automaton with bounded reversal counters. A complete proof can be found in [10].

I Lemma 13. The matched twinning property is decidable in coNPTime for fVPTs.

The most challenging result of this paper is to show that the MTP only depends on the
transduction and not on the transducer that defines it. The proof relies on fundamental
properties of word combinatorics that allow us to give a general form of the output words
v1, v2, v3, v4, w1, w2, w3, w4 involved in the MTP, that relates them by means of conjugacy
of their primitive roots. The proof gives a deep insight into the expressive power of VPTs
which is also interesting on its own. As many results of word combinatorics, the proof is a
long case study, so that we give it in [10] only.

I Theorem 14. Let T1, T2 be fVPTs such that JT1K = JT2K. T1 is twinned iff T2 is twinned.

Sketch. We assume that T1 is not twinned and show that T2 is not twinned either. By
definition of the MTP there are two runs of the form (i1,⊥) u1/v1−−−−→ (p1, σ1) u2/v2−−−−→ (p1, σ1β1) u3/v3−−−−→ (q1, σ1β1) u4/v4−−−−→ (q1, σ1)

(i′1,⊥) u1/v
′
1−−−−→ (p′1, σ′1) u2/v

′
2−−−−→ (p′1, σ′1β′1) u3/v

′
3−−−−→ (q′1, σ′1β′1) u4/v

′
4−−−−→ (q′1, σ′1)

FSTTCS 2011

322 Streamability of Nested Word Transductions

such that (q1, σ1) and (q′1, σ′1) are co-accessible and ∆(v1v3, v
′
1v
′
3) 6= ∆(v1v2v3v4, v

′
1v
′
2v
′
3v
′
4).

We will prove that by pumping the loops on u2 and u4 sufficiently many times we will get
a similar situation in T2, proving that T2 is not twinned. It is easy to show that there exist
k2 > 0, k1, k3 ≥ 0, wi, w′i ∈ Σ∗, i ∈ {1, . . . , 4}, some states i2, p2, q2, i

′
2, p
′
2, q
′
2 of T2 and some

stack contents σ2, β2, σ
′
2, γ
′
2 of T2 such that we have the following runs in T2:(i2,⊥)

u1u
k1
2 /w1−−−−−−→ (p2, σ2)

u
k2
2 /w2−−−−−→ (p2, σ2β2)

u
k3
2 u3u

k3
4 /w3−−−−−−−−−→ (q2, σ2β2)

u
k2
4 /w4−−−−−→ (q2, σ2)

(i′2,⊥)
u1u

k1
2 /w′

1−−−−−−→ (p′
2, σ

′
2)

u
k2
2 /w′

2−−−−−→ (p′
2, σ

′
2β

′
2)

u
k3
2 u3u

k3
4 /w′

3−−−−−−−−−→ (q′
2, σ

′
2β

′
2)

u
k2
4 /w′

4−−−−−→ (q′
2, σ

′
2)

such that (q1, σ1) and (q2, σ2) are co-accessible with the same input word u5, and (q′1, σ′1)
and (q′2, σ′2) are co-accessible with the same input word u′5. Now for all i ≥ 0, we let

V (i) = v1(v2)k1+ik2+k3v3(v4)k1+ik2+k3 W (i) = w1(w2)iw3(w4)i
V ′(i) = v′1(v′2)k1+ik2+k3v′3(v′4)k1+ik2+k3 W ′(i) = w′1(w′2)iw′3(w′4)i
D1(i) = ∆(V (i), V ′(i)) D2(i) = ∆(W (i),W ′(i))

In other words, D1(i) (resp. D2(i)) is the delay in T1 (resp. T2) accumulated on the input
word u1(u2)k1+ik2+k3u3(u4)k1+ik2+k3 by the two runs of T1 (resp. T2). There is a relation
between the words V (i) and W (i). Indeed, since T1 and T2 are equivalent and (q1, σ1) and
(q2, σ2) are both co-accessible by the same input word, for all i ≥ 1, either V (i) is a prefix
of W (i) or W (i) is a prefix of V (i). We have a similar relation between V ′(i) and W ′(i).

We prove in [10] the following intermediate results: (i) there exists i0 ≥ 0 such that for all
i, j ≥ i0 such that i 6= j, D1(i) 6= D1(j); (ii) for all i, j ≥ 1, if D1(i) 6= D1(j), then D2(i) 6=
D2(j). The proofs of those results rely on fundamental properties of word combinatorics
and a non-trivial case study that depends on how the words v1(v2)k1+ik2+k3v3(v4)k1+ik2+k3

and w1(w2)iw3(w4)i are overlapping. Thanks to (i) and (ii), we clearly get that D2(i0) 6=
D2(i0 + 1), which provides a counter-example for the matched twinning property. J

Subsequential transducers have at most one run per input word, so we get the following:

I Corollary 15. Subsequentializable VPTs are twinned.

The MTP is not a sufficient condition to be subsequentializable, as shown for instance
by Example 12. Therefore the class of transductions defined by transducers which satisfy
the MTP is strictly larger than the class of transductions defined by subsequentializable
transducers. However, these transductions are in the same complexity class for evaluation,
i.e. polynomial space in the height of the input word for a fixed transducer:

I Theorem 16. Let T be an fVPT. If T is twinned, then the Turing transducer LcpInTT(T)
runs, on an input stream u, in space complexity quadratic in the height of u.

We can state more precisely the space complexity of LcpInTT(T) when T is reduced. In this
case, it is in O

(
|Q|4 · |Γ|2|Q|4+2 · (h(u) + 1)2 ·M

)
, where M = max{|v| : (q, a, v, γ, q′) ∈ δ}.

Sketch. Like for the HTP, when T satisfies the MTP, also does the reduced VPT returned
by the reduction procedure of [8]. We use a pumping technique to show that for any word
u ∈ Σ∗ on which there is a run of T , we have outmax

6= (u) ≤ (h(u) + 1)q(T) for some function
q, whenever the MTP holds for T . This is done as follows: any such word can be uniquely
decomposed as u = u0c1u1c2 . . . cnun with n ≤ h(u), each ui is well-nested and each ci is a
call. Then if the ui are long enough, we can pump them vertically and horizontally without
affecting the global delay, by using the property ∆(vv′, ww′) = ∆(∆(v, w).(v′, w′)). Then
we can apply Proposition 3. J

E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais 323

6 Conclusion and Remarks

This work investigates the streaming evaluation of nested word transductions, and in partic-
ular identifies an interesting class of VPT-transductions which subsumes subsequentializable
transductions and can still be efficiently evaluated. The following inclusions summarize the
relations between the different classes of transductions we have studied:

BM fVPTs (Subsequentializable VPTs(twinned fVPTs (HBM fVPTs(fVPTs

Moreover, we have shown that BM, twinned and HBM fVPTs are decidable in coNPTime.
Further Directions An important asset of the class of twinned fVPTs w.r.t. the class of
subsequentializable VPTs is that it is decidable. It would thus be interesting to determine
whether or not the class of subsequentializable VPTs is decidable. In addition, we also plan
to extend our techniques to more expressive transducers, such as those recently introduced
in [1], which extend VPTs with global variables and are as expressive as MSO-transductions,
and can therefore swap or reverse sub-trees. Another line of work concerns the extension of
our evaluation procedure, which holds for functional transductions, to finite valued trans-
ductions.
Acknowledgements The authors would like to thank Jean-François Raskin and Stijn
Vansummeren for their comments on a preliminary version of this work.

References
1 R. Alur and L. D’Antoni. Streaming tree transducers. CoRR, abs/1104.2599, 2011.
2 R. Alur and P. Madhusudan. Adding nesting structure to words. JACM, 56(3):16:1–16:43,

2009.
3 Z. Bar-Yossef, M. Fontoura, and V. Josifovski. Buffering in query evaluation over XML

streams. In PODS, pages 216–227. ACM-Press, 2005.
4 V. Bárány, C. Löding, and O. Serre. Regularity problems for visibly pushdown languages.

In STACS, pages 420–431, 2006.
5 D. Barbosa, L. Mignet, and P. Veltri. Studying the XML web: Gathering statistics from

an xml sample. World Wide Web, 8:413–438, 2005.
6 A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL. ACM

TOSEM, 20, 2011.
7 M. Benedikt and A. Jeffrey. Efficient and expressive tree filters. In FSTTCS, volume 4855

of LNCS, pages 461–472. Springer Verlag, 2007.
8 M. Caralp, P.-A. Reynier, and J.-M. Talbot. A polynomial procedure for trimming visibly

pushdown automata. Technical Report hal-00606778, HAL, CNRS, France, 2011.
9 C. Choffrut. Une Caractérisation des Fonctions Séquentielles et des Fonctions Sous-

Séquentielles en tant que Relations Rationnelles. Theor. Comput. Sci., 5(3):325–337, 1977.
10 E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. Streamability of Nested Word Trans-

ductions. Technical Report inria-00566409, HAL, CNRS, France, 2011.
11 E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais, and J.-M. Talbot. Properties of visibly

pushdown transducers. In MFCS, volume 6281 of LNCS, pages 355–367. Springer, 2010.
12 O. Gauwin, J. Niehren, and S. Tison. Earliest query answering for deterministic nested

word automata. In FCT, volume 5699 of LNCS, pages 121–132. Springer, 2009.
13 M. Grohe, C. Koch, and N. Schweikardt. Tight lower bounds for query processing on

streaming and external memory data. Theor. Comput. Sci., 380:199–217, July 2007.
14 T. Harju, O. H. Ibarra, J. Karhumaki, and A. Salomaa. Some decision problems concerning

semilinearity and commutation. JCSS, 65, 2002.

FSTTCS 2011

324 Streamability of Nested Word Transductions

15 C. Konrad and F. Magniez. Validating XML documents in the streaming model with
external memory. Technical Report 1012.3311, arXiv, 2010.

16 V. Kumar, P. Madhusudan, and M. Viswanathan. Visibly pushdown automata for stream-
ing XML. In WWW, pages 1053–1062. ACM-Press, 2007.

17 O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal Methods in
System Design, 19(3):291–314, 2001.

18 P. Madhusudan and M. Viswanathan. Query automata for nested words. In MFCS, volume
5734 of LNCS, pages 561–573. Springer Berlin / Heidelberg, 2009.

19 L. Segoufin and C. Sirangelo. Constant-memory validation of streaming XML documents
against DTDs. In ICDT, pages 299–313, 2007.

20 A. Weber and R. Klemm. Economy of description for single-valued transducers. Inf.
Comput., 118(2):327–340, 1995.

The update complexity of selection and related
problems
Manoj Gupta1, Yogish Sabharwal2, and Sandeep Sen3

1 Indian Institute of Technology, New Delhi
gmanoj@iitd.ernet.in

2 IBM Research – India, New Delhi
ysabharwal@in.ibm.com

3 Indian Institute of Technology, New Delhi
ssen@iitd.ernet.in

Abstract
We present a framework for computing with input data specified by intervals, representing un-
certainty in the values of the input parameters. To compute a solution, the algorithm can query
the input parameters that yield more refined estimates in form of sub-intervals and the objective
is to minimize the number of queries. The previous approaches address the scenario where every
query returns an exact value. Our framework is more general as it can deal with a wider variety
of inputs and query responses and we establish interesting relationships between them that have
not been investigated previously. Although some of the approaches of the previous restricted
models can be adapted to the more general model, we require more sophisticated techniques for
the analysis and we also obtain improved algorithms for the previous model.

We address selection problems in the generalized model and show that there exist 2-update
competitive algorithms that do not depend on the lengths or distribution of the sub-intervals and
hold against the worst case adversary. We also obtain similar bounds on the competitive ratio
for the MST problem in graphs.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.2.2 Nonnumerical Algorithms
and Problems

Keywords and phrases Uncertain data, Competitive analysis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.325

1 Introduction
A common scenario in many computational problems is uncertainty about the precise values
of one or more parameters. Many different models have been considered in the database
community for dealing with uncertain data. In one of the commonly used models, the un-
certain parameters are represented by probability distributions (for a comprehensive survey,
see[1]). In another model, the uncertain parameters are represented by interval ranges,
wherein the parameter may take on any value within the specified interval (see [12]). In this
paper, we focus on the latter model. More formally, we consider the model wherein we want
to compute a function f(x1, x2 . . . xn) where some (or all) xi’s are not fully known. The xi’s
are typically known to lie in some range (interval). Any assignment of xi = x′i consistent
with the known range of xi is a feasible realization. The algorithm can make queries about
xi. This problem has been studied before [12, 9]. A common assumption made in the exist-
ing literature is that the exact value of xi is returned by a single query. However, in many
applications, a query about xi may only yield a more refined estimate of the xi. As a matter
of fact, in many such applications, it is not even possible to obtain the exact value of the

© M. Gupta, Y. Sabharwal, and S. Sen;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 325–338

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.325
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

326 The update complexity of selection and related problems

parameter. As an example, consider the case of handling satellite data such as maps. Due to
the large amount of data involved, the data is often stored hierarchically at different scales of
resolutions. Typically the data is presented at the highest level of resolution. Depending on
the area of interest, data may be retrieved for the next level of resolution for a smaller area
(zoom in) by performing a query. Now consider a query to find the closest hospital. Based
on the highest scale of resolution, the distances to the hospitals can be determined within
a certain range of uncertainty. If the closest hospital cannot be resolved at this level, then
further queries are required for certain hospitals to determine which amongst them is the
closest. These queries proceed down the hierarchical scales of resolution until it is resolved
which is the closest hospital.

Let us illustrate this model using the problem of finding minimum when the exact values
are not known but each element is associated with a real interval [`i, ri]. Consider the
three elements x1 = [3, 17], x2 = [14, 19], x3 = [15, 20]. Clearly any of these can be the
minimum element as these are mutually overlapping intervals. Suppose a query returns the
exact value, then with three queries, we obtain the complete information and the problem
is trivially solved. But the interesting question is - are three queries necessary ? Suppose
our first query yields that x1 = 10, then clearly we do not need to make any further queries.
On the other hand, the query may yield x1 = 16, so that we are forced to make further
queries. In a more general situation, where a query may return a sub-interval, we may obtain
x1 = [8, 16] that doesn’t yield any useful information about the identity of the minimum
element. On the other hand, if the query returns [8, 10], then we can conclude x1 to be the
minimum even though we do not know the exact value of x1.

It is natural to compare the number of queries made by the algorithm w.r.t. a hypothet-
ical OPT which can be thought of as a non-deterministic strategy that makes the minimum
queries for any feasible realization of the input. Moreover, the algorithm must contain a
certificate of correctness of the final answer, viz., that no more queries are necessary regard-
less of the number of unresolved parameters. This also brings up the related verification
problem, i.e., given an incompletely specified problem, does it contain sufficient information
for a solution to be computed (without further queries).

1.1 Related Previous Work
Kahan [10] described a technique for maintaining data structures for online problems like
flight-path collisions using predictive estimates to obtain higher efficiency. The estimates
could be used to prune objects that couldn’t provably affect the solution and only those
critical objects were updated that could affect the answer. Kahan’s work laid the foundations
for later work on kinetic data structures but in his paper, he focussed on describing a
framework for minimizing updates of critical objects. Kahan compared the efficiency of his
data structures with respect to a non-deterministic optimal algorithm, or more specifically,
the competitive ratio in the online setting. If our algorithm makes qS(n) queries for an input
S of size n, then it has competitive ratio c 1 iff for some constant α > 0,

qS(n) ≤ c ·OPT (S) + α

where OPT may be thought of as a non-deterministic algorithm (coined as lucky in [10])
Note that OPT has an unfair advantage in being able to guess the optimal sequence of

1 So strictly speaking, the algorithm could take exponential time but may have a bounded competitive
ratio.

M. Gupta, Y. Sabharwal, and S. Sen 327

queries and ensure that it can be verified in collusion with an adversary controlling the
output of the queries.
For instance, if the given intervals are x1 = [2, 6], x2 = [2, 6], x3 = [2, 6], i.e., all of them
are identical, OPT may guess the answer to be x3 and if the query yields x3 = 2, then it
is verified. On the other hand, an algorithm has no means of distinguishing between the
xi’s. Even use of randomization does not appear to provide any significant advantage in
this scenario. Kahan [10] tackled this issue (without acknowledging as much) by changing
the problem definition to that of reporting all values that are equal to the minimum.

Khanna and Tan [12] also used the competitive ratio as a measure of efficiency of their
algorithms but their parameterization didn’t yield O(1) bounds. Their algorithms for selec-
tion was related to the clique number (maximum clique size) of the input. They compare
with Non-deterministic optimal and show that, no on-line algorithm can achieve a better
competitive ratio than the clique number.

A somewhat different model was used by Erlebach et al.[9], who showed how to compute
an exact minimum spanning tree for graph with interval data using minimal number of
queries. The final answer is a combinatorial description (in this case a spanning tree) and
not necessarily the weight of the spanning tree. Erlebach et al.[9] proved that their algorithm
has competitive ratio 2 when the edge weights are initially specified as open intervals. One
limitation of their result is the critical use of the property of open intervals which is used
to weaken the advantage of OPT in guessing and verifying the answer. Their results on
constant competitive ratio do not hold for closed or semi-closed intervals.

A recent motivation for this line of work came from caching problems in distributed
databases, (Olston and Widom [13]), where local cached copies are used for faster query
processing where the cached values are intervals that are guaranteed to contain the actual
value called the master value. Their work showed trade-off between the number of queries
and the precision ∆ of the actual answer. This model was further explored in the work
of [6, 5] that tackled fundamental problems like median-finding and shortest-paths. They
distinguished between the offline (oblivious) and online (adaptive) queries including weighted
versions where queries could have varying costs for different intervals. Unlike the previous
work, they compared their efficiency with respect to a worst case optimal rather than a non-
deterministic input-specific optimal. Therefore their results cannot be compared effectively
with the previous work. Other approaches like [2, 11] minimize the worst case deviation
from actual values or minimizing queries to get improved estimates of the expected solution
when the distribution is known [7, 8].

2 Our contributions

In this paper, we generalize the query model in several directions. We classify models based
on the types of the inputs allowed and the return type of the queries. The input may
specify a combination of points (P), open intervals (I) and/or closed intervals (C). This
leads to 7 variations , namely, O, C, P, OC, OP, CP and OCP. Similarly queries on intervals
(open/closed) may yield points (P), open intervals (I) and/or closed intervals (C)2. This also
leads to seven variations. These models are specified in Figure 1. We denote the models by
X-Y where X denotes the type of the input allowed in the input instance and Y denotes
the query return types where X and Y can take values from O, C, P, OC, OP, CP and

2 We can also handle semi-closed intervals but we have avoided further classification as they don’t lead
to any interesting results.

FSTTCS 2011

328 The update complexity of selection and related problems

O C OC P OP CP OCP
O Category-1 (Note α) (Note α) (Note α) (Note α) (Note α) (Note α)
C (Note α) Category-1 (Note α) (Note α) (Note α) (Note α) (Note α)
OC (Note α) (Note α) Category-1 (Note α) (Note α) (Note α) (Note α)
P trivial - - - - - -
OP Category-2 (Note α) (Note α) OP-P OP-OP (Note α) (Note α)
CP (Note α) Category-2 (Note α) Category-3 (Note α) Category-3 (Note α)
OCP (Note α) (Note α) Category-2 Category-3 (Note α) (Note α) Category-3

Figure 1 Models for studying uncertain data problems (see note for α below). The allowed input
types listed along the rows and the query return types listed along the columns. (The pure input
point model is trivial as no queries are required).

OCP (here the literals O, C and P correspond to open intervals, closed intervals and points
respectively). Thus for instance OP-P denotes the model wherein the input can consist of
open intervals as well as points and the queries can only return points.
(Note α): Although there are 49 models possible, many of them are unnatural as they can
lead to a change of the input type after some initial queries. The framework of such models
can be covered under the framework of another suitable model. For instance, a problem
under the O-P model would convert to OP-P model after a single query and is thus better
studied under the OP-P model. Similarly, the OC-C model can be covered under the OC-OC
model.

We categorize the valid models into 5 different categories (See Figure 1). The competitive
ratios are based on this categorization of the models. Category-1 corresponds to the models
where the input and query return types are only intervals (O-O, C-C, OC-OC models).
Category-2 corresponds to the models where the input may contain points by the queries
only return intervals (OP-O, CP-C, OCP-OC models). Category-3 corresponds to the models
where the input may contain closed intervals and the query may return points. The other
two categories correspond to the OP-P and OP-OP models themselves.

Our main results can be summarized as follows
1. We first generalize the models to practical scenarios wherein queries may return sub-

intervals as answers rather than exact values. The sub-intervals need not have any
properties with respect to lengths or distributions. In other words, with further queries,
we obtain increasingly refined estimates of the values until sufficient information has
been obtained, i.e., the verification problem can be solved. We show that the witness
based approach used in the previous models can be adapted to the models considered in
this paper. More specifically, we establish interesting relationships between the various
models (see Figure 2).

2. We study the selection problem of finding the kth smallest value and present update
competitive algorithms with different guarantees for the different models for this problem.
We also study the update complexity of minimum spanning tree problem under the
different models that is closely related to the extremal selection problem (finding the
heaviest edge in a cycle – also called the Red rule).

3. We also show that by deviating from the witness based approach studied in prior litera-
ture, we can actually obtain improved bounds for the selection problem. These algorithms
attain an additive overhead from optimal, that is similar to a competitive ratio of unity
for some cases and are interesting in their own right.

4. Given that closed intervals have not been successfully handled in prior literature[9] lead-
ing to unbounded competitive ratios, is it possible to characterize the problem more
precisely? For instance, do we run into the same issues if we allow queries to return

M. Gupta, Y. Sabharwal, and S. Sen 329

intervals? One approach for addressing issues with closed intervals is to output all the
optimal solutions[10]. It can be quite expensive to output all the solutions. Is there an
alternate framework that addresses the issues with closed intervals without determining
all the solutions.
We show that this problem is a characteristic of models that allow closed intervals in
the input and points to be returned in the queries. We extend our models to handle
closed intervals by using the notion of lexicographically smallest solution (in case multiple
solutions exist). This is a natural version in many problems where the initial ordering
is important and we will show later that this has the desired effect of limiting non-
deterministic guessing powers of OPT .

Another interesting variation could be assigning cost to a query depending on the the
precision of the answer given but we have not addressed this version in this paper. There is
a growing body of work that addresses the problem of computing exact answer with minimal
queries [3, 4] and coping with more generalized queries is an important and fundamental
direction of algorithmic research.

Problem Competitive Models Comment Source
ratio
OPT + 1 OCP-P Report all solutions Kahan [10]

Extremal OPT + 1 OP-P Value this paper
selection 2 ·OPT Category-1,2 & OP-OP this paper

2 ·OPT Category-3 lex first this paper
OPT + 1 OCP-P Report all solutions Kahan [10]
t ·OPT CP-P t = clique no. Khanna-Tan [12]

K-selection OPT + k OP-P Value, ≤ k ·OPT this paper
2 ·OPT Category-1 element this paper
2 · (OPT + k) OP-OP this paper
2 ·OPT Category-3 Value, lex first this paper
2 ·OPT OP-P Erlebach et al.[9]
OPT + C OP-P C ≤ OPT this paper

MST C = no. of red rule
2 ·OPT Category-1,2 & OP-OP this paper
2 ·OPT Category-3 lex first this paper

Figure 2 Known results in prior literature and our new results.

3 Problem Definition

We consider a problem P where we are given an instance P = (C,A) that consists of
• an ordered set of data C = {c1, c2, . . . , cn} called a configuration; and
• an ordered set of data A = {a1, a2, . . . an} called areas of uncertainty such that ci ∈ ai ∀i.
The configuration C is not known to us – only the areas of uncertainty, A, are known. As an
example consider the problem, P, of finding the index of the minimum element. An example
instance is given by Pex = (C,A) where C is the ordered set of points C = {3, 7, 10} and A
is the ordered set of intervals (areas of uncertainties) A = {(2, 6), (5, 8), (9, 11)}.

We focus our discussion to problems where the input is Real data. Thus, the configuration
consists of points on the Real line <, and the areas of uncertainty may be intervals on the
Real line. The concepts can be extended to higher-dimensional problems.

Verifier: We are also given a verifier V for the problem P, that takes as input the
areas of uncertainty, A and returns whether a solution of the problem P can be determined

FSTTCS 2011

330 The update complexity of selection and related problems

from A or not. For the example instance, Pex, described above, the verifier would return
false as it cannot determine a solution from the given areas of uncertainty. However, if the
intervals were A = {(2, 5), (6, 8), (9, 11)}, then the verifier would return true as clearly the
first interval has to contain the minimum.

Order-Invariance: An important characteristic of the problems we study is that the
result of the verifier is only dependent on the ordering of the areas of uncertainty. More
formally, consider two instances P = (C,A) and P ′ = (C ′, A′) where A = {a1, a2, . . . , an}
and A′ = {a′1, a′2, . . . , a′n} for the same problem P. We say that P and P ′ are order-equivalent
if for every pair of indices i, j ∈ {1, 2, . . . , n}, it can be determined that ai ≤ aj iff it can be
determined that a′i ≤ a′j . We say that a problem P is order-invariant if the verifier returns
the same value for any two order-equivalent configuration instances. It is easy to verify
that the problems such as selection (finding minimum, finding kth-minimum) and minimum
spanning tree are order-invariant.

Update operations: We are allowed to perform update operations on the areas. Per-
forming an update operation on area ai results in knowledge of the area to a greater degree of
accuracy. More precisely, performing an update operation on ai in the instance P = (C,A),
where A = {a1, a2, . . . , ai−1, ai, ai+1, . . . , an} results in another instance P ′ = (C,A′), where
A′ = {a1, a2, . . . , ai−1, a

′
i, ai+1, . . . , an} such that a′i is completely contained in ai. An im-

portant characteristic of the models that we consider is that the results of updates on an area
are independent of updates on any other area. That is, given a multi-set S = {i1, i2, . . . , ik}
of indices of the areas, applying updates on the corresponding areas results in the same
instance, irrespective of the sequence in which these updates are applied. We refer to this
as the update independence property.

Solution: Our goal is to solve the problem P by performing minimum number of up-
dates, i.e., perform the minimum number of updates that result in an instance for which the
verifier returns true. For a problem instance P = (C,A), a solution, S, is defined to be a
multi-set of indices {i1, i2, . . . , ik} such that performing updates on the areas ai1 , ai2 , . . . , aik

results in a problem instance P ′ = (C,A′) for which V (A′) returns true, i.e., a solution of
the problem can be determined from A without performing any more updates. In this case,
we say that S solves the problem instance P . Let S(P) denote the set of all such solutions.
An optimal solution is a solution, S ∈ S(P) such that any other solution in S(P) has at
least as many indices, i.e., |S| ≤ |S′| for all solutions, S′ ∈ S(P). Therefore, an optimal
solution corresponds to a smallest set of indices that need to be updated in order to solve
the problem.

As mentioned before, the OP-P and the CP-P models have been studied before. We shall
show now show that the algorithms for the OP-P model can be generalized for the many
other models for problems that are order-invariant. These update competitive algorithms
are based on the concept of witness sets. We discuss these concepts in Section 4; these
concepts are borrowed from [4] and presented here with modifications suitable to discuss all
our models. Then we discuss how to extend these algorithms to other models.

4 The Witness Set Framework

For a problem instance P = (C,A), a set W is said to be a witness set of P if for every
solution S ∈ S(P), W ∩ S 6= φ. Thus, no algorithm can solve P without querying any area
from W .

Suppose that we have an algorithm, WALG, that given any instance P = (V,A) of the
problem, finds a witness-set of size at most k. Then there exists a k-update competitive

M. Gupta, Y. Sabharwal, and S. Sen 331

algorithm for the problem. The algorithm is presented in Figure 3. It simply keeps applying
algorithm WALG to find a witness set of size at most k and updates all the areas in the witness
set. It keeps doing this until the problem is solved.

Algorithm SOLVE(Problem Instance P , Verifier V , Witness Algorithm WALG)
Input: - problem instance P = (C,A),

- a verifier algorithm V for the given problem,
- a witness algorithm WALG for the given problem.

Output: k-update competitive solution to problem instance P

Initialize solution S = {};
If (V (A) returns false) /* problem instance is not yet solved */

W = WALG(P);
Update the areas in W to reduce the problem instance P to P ′ ;
S = S ∪ SOLVE(P ′, V, WALG);

Endif;
Output S;

Figure 3 Algorithm to determine k-update competitive solution given witness algorithm

The following lemma shows that the solution returned by this algorithm is k-update
competitive. Note that this result is independent of the model under consideration. The
witness algorithm and verifier however are dependent on the underlying model.

I Theorem 1. The solution returned by the algorithm in Figure 3 is k-update competitive
for the problem instance P .
Proof omitted.

Witness Algorithms For Different Models. Witness algorithms have been proposed
for several problems under the OP-P model. The following theorem shows that the same
witness algorithms can be used for various other models as well.

I Theorem 2. A witness algorithm for a problem under the OP-P model is also a witness
algorithm for the same problem under the category-1, category-2 and OP-OP models (i.e.,
O-O, C-C, OC-OC, OP-O, CP-C, OCP-OC and OP-OP models).
Proof omitted.

I Corollary 3. Algorithm 3 is k-update competitive under the category-1, category-2 and
OP-OP models with the same witness algorithms as that for the OP-P model.
Proof omitted.

We make an important observation here. While the reduction might seem straightfor-
ward, it is important to note many of these reductions are only one-way reduction. For
instance, we can reuse the witness algorithm for the OP-P model for the OP-O model but
not vice-versa. We demonstrate this later for the k-min selection problem, where we show
that while it is possible to design a 2-update competitive algorithm under the OP-P model,
it is not possible to design an algorithm that is better than k-update competitive under the
OP-O model using witness sets.

Another important observation we make is that prior literature has shown that no al-
gorithm can give bounded update complexity guarantees for the selection problem under
the CP-P models. However, we have derived constant factor update-competitive algorithms
for models involving closed intervals (i.e., the CP-C, C-C, OC-OC and OCP-OC models).
This highlights the fact that the problem is not in dealing with closed intervals but rather
with the combination of allowing closed intervals in the input and simultaneously allowing
queries to return points for such closed intervals.

FSTTCS 2011

332 The update complexity of selection and related problems

5 The selection problem

In an instance P = (C,A) of the k-Min problem, C = {p1, p2, · · · , pn} is an ordered set of
points in <, and A = {a1, a2, · · · , an} is an ordered set of intervals on <. The nature of the
intervals is determined by the model under consideration. The goal is to find the index of
the kth smallest element in C.

We denote by lj and uj , the lower and upper ends of the interval aj respectively. To
avoid overloading of notations, we will assume that lj and uj always refer to the latest known
values for the interval ranges, considering all the updates that have already been performed.

5.1 1-Min
In this section we look at the special case when k = 1, i.e., we are interested in finding the
index of the smallest value interval.
Witness Algorithm And Verifier. We first present the witness algorithm for the OP-P
model. Consider an instance P = (C,A). The witness algorithm chooses the interval with
the “smallest l-value” and the along with the interval with the next “smallest l-value” and
returns them as the witness set. The verifier simply determines if some interval can be
determined to be smaller than all the other intervals. Let S = {1..n} denote the set of
indices of the intervals. For any subset S′ ⊆ S, we define orderl(S′) to be a permuta-
tion of indices in S′ in increasing order of the lower values of the corresponding intervals,
i.e., orderl(S′) =< j1, j2, · · · , jm >, such that lj1 ≤ lj2 ≤ · · · ≤ ljm

. Similarly define
orderu(S′) =< j1, j2, · · · , jm >, such that uj1 ≤ uj2 ≤ · · · ≤ ujm

.
The witness algorithm and the verifier are formally presented in Figure 4.

Witness Algorithm:
1. Let < p1, p2, · · · , p|S | > = orderl(S)
2. Return ap1 and ap2 as the witness set

Verifier:
1. Let < p1, p2, · · · , p|S | > = orderl(S)
2. If x ≤ y for all x ∈ ap1 and y ∈ apj , j 6= 1,

return the interval with index p1
as the solution

Else return false

Figure 4 Witness Algorithm and Verifier for 1-Min under the OP-P model

Note that an interval is declared to be the smallest interval only when no other interval
can contain a smaller value. Therefore the algorithm always outputs the correct interval.
Competitiveness. The following lemma shows that the algorithm is 2-update competitive
under the OP-P model.

I Lemma 4. The set W = {p1, p2} returned by the algorithm of Figure 4 is a witness set
for the 1-Min problem under the OP-P model.
Proof omitted.

It follows from Theorem 2 and Corollary 3 that we can derive 2-update competitive
algorithms for the category-1, category-2 and OP-OP models.
Tight Example. We now show that the update-competitive bound of 2 is tight for all the
models that allow the queries to return intervals, i.e., for the category-1, category-2 and
OP-OP models (but not the OP-P model). This is demonstrated by the following example.
We are given intervals A = {a0, a1, a2, . . . , an} where a0 = (1, 5) and aj = (3, 7) for all
1 ≤ j ≤ n. We argue that any algorithm can be forced to perform 2n queries while the OPT

M. Gupta, Y. Sabharwal, and S. Sen 333

can determine the interval containing the minimum with only n queries. Let S represent
the set of intervals A \ {a0}, i.e., S = {a1, a2, . . . , an}.

Suppose that the algorithm has already performed 2n−1 queries. The adversary behaves
as follows. For the first n− 1 queries on a0 it returns the interval (1 + iε, 5) in the ith query,
where ε is a small value < 1/(2n). For the first n − 1 queries on intervals from the set S
it returns the interval (6, 7). The remaining actions of the adversary are based on whether
the algorithm performs n queries on a0 or whether it queries n intervals from S. Note that
in performing 2n − 1 queries, the algorithm must encounter one of these cases. These are
considered in the following 2 cases:
• Case 1: The algorithm makes n queries to a0.
In this case the adversary continues to return the interval (1 + iε, 5) for the ith query on
a0 where i ≤ 2n−1 and it returns the interval (6, 7) for each subsequent interval queried
from S. Note that in this case, on performing 2n − 1 queries, the algorithm could not
have queried all the intervals from S. Therefore at the end of 2n− 1 queries, as there is
overlap between interval a0 and the unqueried intervals from S, the algorithm is forced
to make 2n queries. The OPT on the other hand can just query all the intervals in S.
The adversary will return the interval (6, 7) for OPT on the remaining intervals. Thus,
OPT is able to determine that a0 contains the minimum element by just performing n
queries.

• Case 2: The algorithm makes n queries to intervals in S.
In this case, the adversary returns (3, 4) for the last (nth) interval queried in S. For any
subsequent queries to a0, the adversary continues to return (1 + iε, 5) for the ith query.
Note that in this case, the adversary performs less than n queries on a0. Therefore at
the end of 2n − 1 queries, as there is overlap between interval a0 and the last queried
intervals from S, the algorithm is forced to make 2n queries. The OPT on the other
hand can just query all the intervals in a0. The adversary will return the value (2, 3)
for OPT on its nth query to a0 (recall that in this case the algorithm did not perform n

queries on a0). Thus, OPT is able to determine that a0 contains the minimum element
by just performing n queries.
It is surprising that though this tight example demonstrates that we cannot obtain better

than 2-update competitive algorithms for these models, it is possible to obtain a 1-update
competitive algorithm for the OP-P model; however, this is obtained by an approach different
from the Witness Set framework. This is discussed in more detail in Section 6.

5.2 K-Min
We now generalize the 1-min algorithm presented above to the kth-min problem, but under
the O-O model. We later discuss issues related to handling points under the OP-P model.
Witness Algorithm And Verifier. We now present a witness algorithm and verifier for
this problem under the O-O model.

We say intervals ai and aj are disjoint if ∀x ∈ ai, y ∈ aj , x ≤ y or vice-verse. The witness
algorithm checks if the first k − 1 interval are disjoint with the last n − k + 1 interval. If
that is the case, it returns the witness set of the 1-Min algorithm. Else it chooses apk

and
an interval from S′ with largest u value(aq1) as the witness set.

The verifier takes the first k−1 intervals(S′) depending on their l values. The verifier
checks if these k − 1 intervals are disjoint from the apk

. Then it takes the last n − k

intervals(S \ (S′ ∪ apk
)) and checks if all of them disjoint with apk

. If both the condition
holds, it returns apk

else it returns false.

FSTTCS 2011

334 The update complexity of selection and related problems

Witness Algorithm:
1. Let < p1, p2, · · · , pn > = orderl(S)
2. Let S′ = {p1, .., pk−1}
3. If x ≤ y ∀ x ∈ ai, i ∈ S′ and ∀ y ∈ S \ S′

return witness set of 1-Min algorithm
4. Else

let < q1, q2, · · · , q|S′| > = orderu(S′)
return apk and aq1 as the witness set

Verifier:
1. Let < p1, p2, · · · , pn > = orderl(S)
2. Let S′ = {p1, .., pk−1}
3. If (x ≤ y ∀ x ∈ ai, i ∈ S′ and ∀ y ∈ apk)

and (x ≥ y ∀ x ∈ ai, i ∈ S \ (S′ ∪ apk)
and ∀ y ∈ apk)
return apk

else return false

Figure 5 Witness and Verifier Algorithm for K-Min under the O-O model

Competitiveness. The following lemma shows that the algorithm is 2-update competitive
for the O-O model. It follows using proofs similar to Theorem 2 and Corollary 3 that we
can derive 2-update competitive algorithms for the other category-1 models.

I Lemma 5. The witness set W returned by the algorithm of Figure 5 is a witness set for
the k-Min problem under the O-O model.
Proof omitted.

Tight Example. It is not difficult to construct examples similar to that discussed for the 1-
Min algorithm to show that the update-competitive bound of 2 is tight under the category-1
models.

It is interesting to note here that while a 2-update competitive algorithm can be designed
for the k-min problem under the category-1 models, no algorithm can be better than k-
update competitive for this problem under models that allow points, i.e., the category-2
and OP-P models. This is illustrated by the following example3. Suppose we have 2k areas
of which k are open intervals of the form (0, 5) and k are fixed points of the value 3. For
the first k − 1 intervals queried by any algorithm, the adversary returns 1 and for the kth

interval, the adversary returns 4 (or interval (3.5,4.5) as the case may be), thereby forcing
k queries. However, OPT only needs to update the interval with value 4 and can thereafter
return any of the k fixed points of value 3 as the kth smallest.

However, in the next section we show that it is possible to design algorithms for the k-
Min problem under these models that allow for points, obtaining update competitive bounds
with additive factor k (i.e., the algorithm performs k more updates than OPT). This however
is achieved by bypassing the Witness set framework.

6 Bypassing the Witness Set framework

While the witness set framework, studied in prior literature, provides a general method
for solving problems with data uncertainty under the update complexity models, it has its
limitations. We demonstrate this by presenting algorithms that require to perform only k
more queries than OPT for the kth-Min selection problem. Note that, for the 1-Min problem
this implies a 1-update competitive algorithm, as only one query more than OPT is required
to be performed.

3 This was pointed out by an anonymous reviewer of a previous version

M. Gupta, Y. Sabharwal, and S. Sen 335

6.1 1-Min
Consider the following algorithm. We note here that the set of intervals returned by the

“Witness” Algorithm:
1. Let < p1, p2, · · · , p|S | > = orderl(S)
2. Let A = {ap1} and B = {p2, · · · , p|S |}
3. Return interval in A.

Verifier:
1. Let < p1, p2, · · · , p|S | > = orderl(S)
2. If x ≤ y for all x ∈ ap1 and y ∈ apj , j 6= 1,

return the interval with index p1 as
the solution

Else return false

Figure 6 “Witness” Algorithm and Verifier for 1-Min under the OP-P model

“witness” algorithm is not a true witness set. However, we stick to the terminology for the
sake of consistency. The algorithm remains the same, it updates the intervals returned by
the “witness” algorithm until we obtain a solution.

I Lemma 6. Let cOP T be the total number of queries made by OPT to find 1-Min, then
total number of queries made by algorithm in Figure 6 is at most cOP T + 1 in the OP-P
model.
Proof omitted.

Note that this simple algorithm for 1-Min in OP-P model fails for the OP-O model.
Consider the following example. Let there be two intervals I1= (2,20) and I2 = (19,21)
Suppose at the ith query of I1, we get a new interval (di, 20), where di < 19, so I1 and I2
will always intersect if we just query I1. The algorithm in Figure 6 always queries I1, so it
takes huge number of queries to find 1-Min. But if we just query I2, it returns a subinterval
(20.5,21). This is what OPT does and uses just one query to find the answer.

6.2 k-Min
Consider the algorithm in Figure 7 for k-selection in the OP-P model which generalizes the
result of the algorithm in Figure 6.

“Witness” Algorithm:
1. Let < p1, p2, · · · , pn > = orderl(S)
2. Let S′ = {p1, .., pk}
3. let < q1, q2, · · · , qk > = orderu(S′)

Let S′max = aqk . Query S′max.
4. If x ≤ y ∀ x ∈ ai, i ∈ S′ and ∀ y ∈ S \ S′

return the “witness set” of the
1-Max algorithm of S′ (of Figure 6).

Verifier:
1. Let < p1, p2, · · · , pn > = orderl(S)
2. Let S′ = {p1, .., pk−1}
3. If (x ≤ y ∀ x ∈ ai, i ∈ S′ and ∀ y ∈ apk)

and (x ≥ y ∀ x ∈ ai, i ∈ S \ (S′ ∪ apk)
and ∀ y ∈ apk)
return apk

else return false

Figure 7 Witness and Verifier Algorithm for K-Min under the OP-P model

I Lemma 7. The algorithm of Figure 7 uses atmost cOP T + min{k, n − k} queries where
cOP T is the minimum number of queries required by the OPT.
Proof omitted.

Now let us consider the OP-OP model. Note that since we have 2 · OPT algorithms
for the OP-O model and an OPT + k algorithm for the OP-P model, we can derive a
2 · (OPT + k) algorithm for the OP-OP model by combining these 2 algorithms. This is

FSTTCS 2011

336 The update complexity of selection and related problems

done by alternating the witness algorithms of the two models. This ensures that we only
need to perform at most twice the number of queries performed by the algorithms of either
of the two models.

7 Closed intervals with point returning queries

As discussed above, the competitive ratio is unbounded for the special cases where the
input allows for closed intervals and queries may return points (i.e., the category-3 models).
For instance consider the problem of finding the index of the minimum element. Further,
consider the problem instance P = (C,A) where ai = [1, 3] for all 1 ≤ i ≤ n. The adversary
in this case acts as follows; for each of our queries except the last, it returns 2. Finally, for
our last query, say on interval ak, it returns 1. On the other hand, OPT directly queries
interval ak and obtains the optimal solution. This results in an unbounded competitive
ratio.

The primary reason for this anomaly is the possibility of existence of multiple optimal
solutions. In such cases, the adversary is able to get away with few queries by just querying
the necessary intervals that reveal one of the optimal solutions. For any algorithm on the
other hand, it is not able to distinguish from the areas of uncertainty (as shown above)
which are the necessary intervals to query to reveal the optimal solution.

One of the ways that has been suggested in prior literature to deal with this special case
is to require all the optimal solutions to be output. However, it can be quite expensive to
output all these solutions. This raises the question of whether other reasonable conditions
can be laid on the structure of the required output that are not so expensive but reasonable.
We now consider such a condition, which we call the lexicographic condition, for which we
show that this special can be handled. Recall that the sets C and A that define a problem
instance are ordered sets. Thus, the set of indices that define a solution can be considered
as a string (called solution string) defined as follows: the length of the string is n and the ith

element of the string is set to 1 if it defines the solution and 0 otherwise. In the lexicographic
setting, amongst all the optimal solutions, we are interested in finding the solution for which
the solution string has the smallest lexicographic ordering.

Now consider again the example above. Note that, even though OPT queries ak and
determines a solution with optimal solution value, it cannot terminate without making
further queries as it cannot decide whether or not there exists another solution with the
same value but a smaller lexicographic ordering.

We note that new witness algorithms may require to be developed for the lexicographic
variants of the problems. However, we show by case of examples that these are not very
different from the corresponding witness algorithms for the original problems.

It can be shown that once a witness algorithm is developed for a lexicographic variant of
the problem under the CP-P model, the same witness algorithm can be extended to other
models along the same lines as discussed in Section 4.

Now let us consider the lexicographic variant of the 1-Min problem. In order to obtain
the witness algorithm for the lexicographic variant for the category-3 models, the notion of
ordering of intervals, orderl(.), needs to be extended to incorporate lexicographic ordering
and closed intervals. As before, for any subset S′ ⊆ S, we define orderl(S′) to be a
permutation of indices in S′ in increasing order of the lower values of the corresponding
intervals, i.e., orderl(S′) =< j1, j2, · · · , jm >, such that lj1 ≤ lj2 ≤ · · · ≤ ljm

. When
comparing two intervals with the same l-values, say lj and lj′ , ties are resolved as follows:
If aj contains a point x such that x < y for all y ∈ aj′ , then j precedes j′ in the ordering;

M. Gupta, Y. Sabharwal, and S. Sen 337

similarly if aj′ contains such a point, then j′ precedes j; and if neither can be established,
then the lexicographically smaller index precedes the larger one in the ordering. Thus, if
one of the intervals, say aj , is open from the left and another interval, say aj′ , is either
closed from the left or a point, then j′ precedes j in the ordering; in all other cases, the
lexicographic smaller of j and j′ precedes the other in the ordering.

The witness algorithm and verifier are formally presented in Figure 8. Note that the
verifier is also modified so that it can check that the minimum interval can be determined
or not based on the lexicographic ordering.

Witness Algorithm:
1. Let < p1, p2, · · · , p|S| > = orderl(S)
2. Return ap1 and ap2 as the witness set

Verifier:
1. Let < p1, p2, · · · , p|S| > = orderl(S)
2. If (x ≤ y ∀ x ∈ ap1 and y ∈ apj , pj > p1)

and (x < y ∀ x ∈ ap1

and y ∈ apj , pj < p1),
return the interval with index p1
as the solution

Else return false

Figure 8 Witness Algorithm for 1-Min under the CP-P model

The proof of update competitiveness is similar to the case for the original problem.

I Lemma 8. The set W = {p1, p2} returned by the algorithm of Figure 8 is a witness set
for the lexicographic 1-Min problem under the CP-P model.
Proof omitted.

The fact that no algorithm can be better than 2-update competitive for the 1-Min prob-
lem under the CP-P model follows from the same reasoning as for the OP-P model.

We can extend this 2-update competitive algorithm for the other category-3 models using
techniques similar to that in Section 4.

Finally, we can design 2-update competitive algorithms for the k-min version as well
under these models by using similar techniques.

8 Minimum Spanning Tree

In the Lexicographic MST problem, we are given a graph G = (V,E). The edge lengths are
specified with uncertainty. Let E = {e1, e2, . . . , en} be the ordered set of edges. Then the
ordered set C = {v1, v2, · · · , vn} denotes the values of the edge lengths and the ordered set
A = {a1, a2, · · · , an} denotes the intervals within which the edge lengths are known to lie.
The goal is to find the lexicographically smallest MST under the category-3 models.

A 2-update competitive algorithm for the MST problem was given by [9] under the OP-P
model. By applying Theorems 2 and Corollary 3, we conclude that it is 2-update competitive
for the Category-1,2 and OP-OP models as well. The Lexicographic MST problem can be
solved under the Category-3 models with few changes to the algorithm described in [9]. This
gives us the following result.

I Theorem 9. There exists a 2-update competitive algorithm for the Lexicographic MST
problem under the Category-3 models.

Remark: It may be noted that the algorithm described in [9] in conjunction with Lemma 6
can be used to derive an OPT +C update competitive algorithm for the MST problem under
the OP-OP model where C is the number of red-rules applied by the optimal algorithm. Note
that C can be much less than OPT .

FSTTCS 2011

338 The update complexity of selection and related problems

9 Conclusion

We extended the one-shot query model to the more general situation where a query can
return arbitrary sub-intervals as answers and established strong relationships between these
models. Many of the previous results in the restricted model can be generalized based on
this relationship that simplifies the task of designing algorithms for the more general model.
This is far from obvious as the sub-interval query model presents some obvious challenges
because the uncertainty (in the values of any parameter) can take an arbitrary number of
steps to be resolved and can be controlled by an adversary. One drawback of this approach
is that the actual algorithmic complexity is overlooked and we only focus on the competitive
ratio which is justified on the basis of very high cost of a query. For future work, the
algorithmic complexity needs to be incorporated in a meaningful way.

References
1 Charu C. Aggarwal and Philip S. Yu. A survey of uncertain data algorithms and applica-

tions. IEEE Trans. Knowl. Data Eng., 21(5):609–623, 2009.

2 Ionut D. Aron and Pascal Van Hentenryck. On the complexity of the robust spanning tree
problem with interval data. Oper. Res. Lett., 32(1):36–40, 2004.

3 Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael Hoffmann
0002, Matús Mihalák, and L. Shankar Ram. Network discovery and verification. IEEE
Journal on Selected Areas in Communications, 24(12):2168–2181, 2006.

4 Richard Bruce, Michael Hoffmann, Danny Krizanc, and Rajeev Raman. Efficient update
strategies for geometric computing with uncertainty. Theory Comput. Syst., 38(4):411–423,
2005.

5 Tomás Feder, Rajeev Motwani, Liadan O’Callaghan, Chris Olston, and Rina Panigrahy.
Computing shortest paths with uncertainty. In STACS, pages 367–378, 2003.

6 Tomás Feder, Rajeev Motwani, Rina Panigrahy, Chris Olston, and Jennifer Widom. Com-
puting the median with uncertainty. SIAM J. Comput., 32(2):538–547, 2003.

7 Ashish Goel, Sudipto Guha, and Kamesh Munagala. Asking the right questions: model-
driven optimization using probes. In PODS, pages 203–212, 2006.

8 Sudipto Guha and Kamesh Munagala. Model-driven optimization using adaptive probes.
In SODA, pages 308–317, 2007.

9 Michael Hoffmann, Thomas Erlebach, Danny Krizanc, Matús Mihalák, and Rajeev Raman.
Computing minimum spanning trees with uncertainty. In STACS, pages 277–288, 2008.

10 Simon Kahan. A model for data in motion. In STOC, pages 267–277, 1991.

11 A. Kasperski and P. Zielenski. An approximation algorithm for interval data minmax regret
combinatorial optimization problem. Information Processing Letters, 97(5):177–180, 2006.

12 Sanjeev Khanna and Wang Chiew Tan. On computing functions with uncertainty. In
PODS, pages 171–182, 2001.

13 Chris Olston and Jennifer Widom. Offering a precision-performance tradeoff for aggregation
queries over replicated data. In VLDB, pages 144–155, 2000.

A Tight Lower Bound for Streett
Complementation∗

Yang Cai1 and Ting Zhang2

1 MIT Computer Science and Artificial Intelligence Laboratory
The Stata Center, 32-G696, Cambridge, MA 02139 USA
ycai@csail.mit.edu

2 Department of Computer Science, Iowa State University
226 Atanasoff Hall, Ames, IA 50011 USA
tingz@iastate.edu

Abstract
Finite automata on infinite words (ω-automata) proved to be a powerful weapon for modeling
and reasoning infinite behaviors of reactive systems. Complementation of ω-automata is cru-
cial in many of these applications. But the problem is non-trivial; even after extensive study
during the past two decades, we still have an important type of ω-automata, namely Streett
automata, for which the gap between the current best lower bound 2Ω(n lgnk) and upper bound
2Ω(nk lgnk) is substantial, for the Streett index size k can be exponential in the number of states
n. In [4] we showed a construction for complementing Streett automata with the upper bound
2O(n lgn+nk lg k) for k = O(n) and 2O(n2 lgn) for k = ω(n). In this paper we establish a matching
lower bound 2Ω(n lgn+nk lg k) for k = O(n) and 2Ω(n2 lgn) for k = ω(n), and therefore showing
that the construction is asymptotically optimal with respect to the 2Θ(·) notation.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic,
F.4.3 Formal Languages

Keywords and phrases ω-automata, Streett automata, complementation, lower bounds

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.339

1 Introduction

Complementation is a fundamental notion in automata theory. Given an automaton A, the
complementation problem asks to find an automaton B that accepts exactly all words that A
does not accept. Complementation connects automata theory with mathematical logic due
to the natural correspondence between language complementation and logical negation, and
hence plays a pivotal role in solving many decision and definability problems in mathematical
logic.

A fundamental connection between automata theory and the monadic second order logics
was demonstrated by Büchi [1], who started the theory of finite automata on infinite words
(ω-automata) [2]. The original ω-automata are now referred to as Büchi automata and Büchi
complementation was a key to establish that the class of ω-regular languages (sets of ω-words
generated by product ◦, union ∪, star ∗ and limit ω) is closed under complementation [2].

Büchi’s discovery also has profound repercussions in applied logics. Since the ’80s, with
increasing demand of reasoning infinite computations of reactive and concurrent systems,

∗ This research has been supported by NSF CAREER Award CCF-0954132.

© Yang Cai and Ting Zhang;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 339–350

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.339
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

340 A Tight Lower Bound for Streett Complementation

ω-automata have been acknowledged as unifying representation for programs as well as for
specifications [26]. Complementation of ω-automata is crucial in many of these applications.

But complementation of ω-automata is non-trivial. Only after extensive studies in the past
two decades [23, 16, 18, 6, 27, 20] (also see survey [25]), do we have a good understanding
of the complexity of Büchi complementation. But a question about a very important type of
ω-automata remains unanswered, namely the complexity of Streett complementation, where
the gap between the current lower bound and upper bound is substantial. Streett automata
are ones of a kind, because Streett acceptance conditions naturally encode strong fairness
that infinitely many requests are responded infinitely often, a necessary requirement for
meaningful computations [5, 7].

1.1 Related Work

Obtaining nontrivial lower bounds has been difficult. The first nontrivial lower bound for
Büchi complementation is n! ≈ (0.36n)n, obtained by Michel [16, 15]. In 2006, combining
ranking with full automaton technique, Yan improved the lower bound of Büchi complement-
ation to Ω(L(n)) [27], which now is matched tightly by the upper bound O(n2(L(n)) [20],
where L(n) ≈ (0.76n)n. Also established in [27] was a (Ω(nk))n = 2Ω(n lgnk) tight lower
bound (where k is the number of Büchi indices) for generalized Büchi complementation,
which also applies to Streett complementation because generalized Büchi automata are a
subclass of Streett automata. In [3], we proved a tight lower bound 2Ω(nk lgn) for Rabin
complementation (where Rabin index size k can be as large as 2n−ε for any arbitrary but
fixed ε > 0). Several constructions for Streett complementation exist [24, 9, 19, 14, 17], but
all involve at least 2O(nk lgnk) state blow-up, which is significantly higher than the current
best lower bound 2Ω(n lgnk), since the Streett index size k can reach 2n. Determining the
complexity of Streett complementation has been posed as an open problem since the late
’80s [24, 14, 27, 25]. In [4] we showed a construction for Streett complementation with the
upper bound 2O(n lgn+nk lg k) for k = O(n) and 2O(n2 lgn) for k = ω(n). In this paper we
establish a matching lower bound 2Ω(n lgn+nk lg k) for k = O(n) and 2Ω(n2 lgn) for k = ω(n),
and therefore showing that the construction in [4] is essentially optimal at the granularity
of 2Θ(·). This lower bound is obtained by applying two techniques: fooling set and full
automaton.

1.2 Fooling Set

The fooling set technique is a classic way of obtaining lower bounds on nondeterministic
finite automata on finite words (NFA). Let Σ be an alphabet and L ⊆ Σ∗ a regular language.
A set of pairs P = {(xi, yi) | xi, yi ∈ Σ∗, 1 ≤ i ≤ n} is called a fooling set for L , if xiyi ∈ L

for 1 ≤ i ≤ n and xiyj 6∈ L for 1 ≤ i, j ≤ n and i 6= j. If L has a fooling set P , then any
NFA accepting L has at least |P | states [8]. The purpose of a fooling set is to identify runs
with dual properties (called fooling runs): fragments of accepting runs of L , when pieced
together in certain ways, induce non-accepting runs. By an argument in the style of Pumping
Lemma, a small automaton would not be able to distinguish how it arrives at a state, and
hence it cannot differentiate between some accepting runs and some non-accepting ones.

In the setting of ω-automata, a similar technique exists, which we refer to as Michel’s
scheme [16]. A set P = {xi ∈ Σ∗ | 1 ≤ i ≤ n} is called a fooling set for L , if (xi)ω ∈ L for
1 ≤ i ≤ n and ((xi)+(yj)+)ω ⊆ L for 1 ≤ i, j ≤ n and i 6= j [16, 15].

Y. Cai and T. Zhang 341

1.3 Full Automaton
Sakoda and Sipser introduced the full automaton technique [21] (the name was first coined
in [27]) and used it to obtain several completeness and lower bound results on transformations
involving 2-way finite automata [21]. In particular, they proved a classic result of automata
theory: the lower bound of complementing an NFA with n states is 2n.

To establish lower bounds for complementation, one starts with designing a class of
automata An and then a class of words Wn such that Wn are not contained in L (An).
Next one shows that runs of purported complementary automata Cn on Wn exhibit dual
properties by application of the fooling set technique. However, some fooling runs can only
be generated by long and sophisticated words, which are very difficult to be “guessed” right
from the beginning. The ingenuity of the full automaton technique is to remove two levels of
indirections: since the ultimate goal is to construct fooling runs, why should not one start
with runs directly, and build Wn and An later?

Without a priori constraints imposed from An orWn (they do not exist yet), full automata
operate on all possible runs; for a full automaton of n states, every possible unit transition
graph (bipartite graph with 2n vertices) is identified with a letter, and words are nothing
but potential run graphs. Removing the two levels of indirections proved to be powerful. By
this technique, the 2n lower bound proof for complementing NFA was surprisingly short and
easy to understand [21] (a fooling set method was implicit in the proof).

We should note that full automata operate on large alphabets whose size grows exponen-
tially with the state size, but this does not essentially limit its application to automata on
conventional alphabets. By an encoding trick, a large alphabet can be mapped to a small
alphabet with no compromise to lower bound results [22, 27, 3].

1.4 Ranking
For ω-automata, the power of fooling set and full automaton technique was further enhanced
by the use of rankings on run graphs [27, 3]. Since first introduced in [9], rankings have
been shown to a powerful tool to represent properties of run graphs; complementation
constructions for various types of ω-automata were obtained by discovering respective
rankings that precisely characterize those run graphs that contain no accepting path (with
respect to source automata) [12, 13, 14, 6, 10]. With the help of rankings, constructing a
fooling set amounts to designing certain type of rankings. In fact, as shown below, an explicit
description of a fooling set might be very hard to find, but the essential properties the fooling
set induce can be concisely represented by certain type of rankings.

1.5 Our Results
In this paper we establish a lower bound L(n, k) for Streett complementation: 2Ω(n lgn+kn lg k)

for k = O(n) and 2Ω(n2 lgn) for k = ω(n), which matches the upper bound obtained in [4].
This lower bound applies to all Streett complementation constructions that output union-
closed automata (see Section 2), which include Büchi, generalized Büchi and Streett automata.
This bound considerably improves the current best bound 2Ω(n lgnk) [27], especially in the
case k = Θ(n).

Determinization is another fundamental concept in automata theory and it is closely
related to complementation. A deterministic T -automaton can be easily complemented by
switching from T -acceptance condition to the dual co-T condition (e.g., Streett vs. Rabin).
Therefore, the lower bound L(n, k) also applies to Streett determinization if the output

FSTTCS 2011

342 A Tight Lower Bound for Streett Complementation

automata are the dual of union-closed automata. In particular, no construction for Streett
determinization can output Rabin automata with state size asymptotically less than L(n, k).

We can get a slightly weaker result for constructions that output Rabin automata
(which are not union-closed): no construction for Streett complementation can output Rabin
automata with state size n′ ≤ L(n, k) and index size k′ = O(n′), due to the fact that a Rabin
automaton with state n′ and index size k′ can be translated to an equivalent Büchi automaton
with O(n′k′) states. For the same reason, no construction for Streett determinization can
output Streett automata with state size n′ ≤ L(n, k) and index size k′ = O(n′).

Even with the fooling set and full automaton techniques and the assistance of rankings,
a difficulty remains: in the setting of Streett complementation, how large can a fooling
set for a complementary automaton be? The challenge is two-fold. One is to implant
potentially contradictory properties in each member of a fooling set so that complementary
run graphs can be obtained by certain combinations of those members. The other is to avoid
correlations between members of a fooling set so that each member has to be memorized by a
distinct state in a purported complementary automaton. By exploiting the nature of Streett
acceptance conditions, our fooling set is obtained via a type of multi-dimensional rankings,
called Q-rankings, and members in the fooling set are called Q-words. To simultaneously
accommodate potentially contradictory properties in multi-dimension requires handling
nontrivial subtleties. We shall continue this discussion in Section 3 after presenting the
definition of Q-rankings.

1.6 Paper Organization
Section 2 presents notations and basic terminology in automata theory. Section 3 introduces
full Streett automata, Q-rankings and Q-words, and use them to establish the lower bound.
Section 4 concludes with a discussion. Due to space limit, technical proofs are omitted, but
they can be found in the full version of this paper at arXiv:1102.2963.

2 Preliminaries

2.1 Basic Notations
Let N be the set of natural numbers. We write [i..j] for {k ∈ N | i ≤ k ≤ j}, [i..j) for
[i..j − 1], [n] for [0..n). For an infinite sequence %, we use %(i) to denote the i-th component
for i ∈ N, %[i..j] (resp. %[i..j)) to denote the subsequence of % from position i to position j
(resp. j − 1). Similar notations for finite sequences and we use |%| to denote the length of
%. We assume readers are familiar with notations in language theory, such as α ◦ α′, α∗, α+

and αω where α and α′ are sequences and α is finite, and similar ones such as S ◦ S′, S∗, S+

and Sω where S is a set of finite sequences and S′ is a set of sequences.

2.2 Automata and Runs
A finite (nondeterministic) automaton on infinite words (ω-automaton) is a 5-tuple A =
〈Σ, S,Q,∆,F〉, where Σ is an alphabet, S is a finite set of states, Q ⊆ S is a set of initial
states, ∆ ⊆ S × Σ× S is a transition relation, and F is an acceptance condition.

An infinite word (ω-words) over Σ is an infinite sequence of letters in Σ. A run %

of A over an ω-word w is an infinite sequence of states in S such that %(0) ∈ Q and,
〈%(i), w(i), %(i+1)〉 ∈ ∆ for i ∈ N. Finite runs are defined similarly. Let Inf (%) the set of
states that occur infinitely many times in %. An automaton accepts w if there exists a run %

Y. Cai and T. Zhang 343

over w that satisfies F , which usually is defined as a predicate on Inf (%). We use L (A) to
denote the set of ω-words accepted by A and L (A) the complement of L (A).

2.3 Acceptance Conditions and Automata Types
ω-automata are classified according their acceptance conditions. Below we list three types of
ω-automata relevant to this paper. Let F be a subset of Q and G,B two functions I → 2Q
where I = [1..k] is called the index set.

Büchi: 〈F 〉: Inf (%) ∩ F 6= ∅.
Streett: 〈G,B〉I : ∀i ∈ I, Inf (%) ∩G(i) 6= ∅ → Inf (%) ∩B(i) 6= ∅.
Rabin: [G,B]I : ∃i ∈ I, Inf (%) ∩G(i) 6= ∅ ∧ Inf (%) ∩B(i) = ∅.

Note that Streett and Rabin are dual to each other. An automaton A is called union-closed if
when two runs % and %′ are accepting, so is any run %′′ if Inf (%′′) = Inf (%)∪ Inf (%′). It is easy
to verify that both Büchi and Streett automata are union-closed while Rabin automata are
not. Let J ⊆ I. We use 〈G,B〉J to denote the Streett condition with respect to only indices
in J . When J is a singleton, say J = {j}, we simply write 〈G(j), B(j)〉 for 〈G,B〉J . We
can assume that B is injective and the index size k is bound by 2n, because if B(i) = B(i′)
for two different i, i′ ∈ I, then we can shrink the index set I by replacing 〈G,B〉{i,i′} by
〈G(i) ∪G(i′), B(i)〉. The same convention and assumption are used for Rabin condition.

2.4 ∆-Graphs
A ∆-graph (run graph) of an ω-word w under A is a directed graph Gw = (V,E) where
V = S ×N and E = {〈〈s, l〉, 〈s′, l+ 1〉〉 ∈ V × V | s, s′ ∈ S, l ∈ N, 〈s, w(l), s′〉 ∈ ∆ }. By the
l-th level, we mean the vertex set S × {l}. Let S = {s0, . . . , sn−1}. By sl-track we mean the
vertex set {sl} × N. For a subset X of S, we call a vertex 〈s, l〉 an X-vertex if s ∈ X. We
simply use s for 〈s, l〉 when the index is irrelevant.

A ∆-graph Gw of a finite word w is defined similarly. By |Gw| we denote the length of Gw,
which is the same as |w|. Gσ for σ ∈ Σ is called a unit ∆-graph. A path in Gw is called a full
path if the path goes from level 0 to level |Gw|. By Gw ◦ Gw′ , we mean the concatenation of
Gw and Gw′ , which is the graph obtained by merging the last level of Gw with the first level
of Gw′ . Note that Gw ◦ Gw′ = Gw◦w′ .

Let w be a finite word. For l, l′ ∈ N, s, s′ ∈ S we write 〈s, l〉 w−→ 〈s′, l′〉 to mean that there
exists a run % of A such that %[l..l′], the subsequence %(l)%(l + 1) · · · %(l′) of %, is a finite run
of A from s to s′ over w. We simply write s w−→ s′, when omitting level indices causes no
confusion.

2.5 Full Automata
A full automaton 〈Σ, S,Q,∆,F〉 is a finite automaton with the following conditions: Σ =
2S×S , ∆ ⊆ S × 2S×S × S, and for all s, s′ ∈ S, σ ∈ Σ, 〈s, σ, s′〉 ∈ ∆ if and only if
〈s, s′〉 ∈ σ [21, 27, 3]. For full automata, the alphabet Σ and the transition relation ∆ are
completely determined by S. As stated in the introduction, the essence of full automaton
technique is to use run graphs as free as possible, without worrying which word generates
which run graph. Let the functional version of ∆ be δ : Σ→ 2S×S , where for every s, s′ ∈ S
and every σ ∈ Σ, 〈s, s′〉 ∈ δ(σ) if and only if 〈s, σ, s′〉 ∈ ∆. The function δ maps a letter
σ to a unit ∆-graph Gσ, which represents the complete behavior of A over σ (technically
speaking, Gσ, with index dropped, is the graph of δ(σ)). In the setting of full automata, δ is

FSTTCS 2011

344 A Tight Lower Bound for Streett Complementation

simply the identity function on 2S×S . Words and run graphs are essentially the same thing.
From now on we use the two terms interchangeably. For example, for a word w, s w−→ s′ is
equivalent to say that a full path in Gw goes from s to s′.

3 Lower Bound

In this section we define full Streett automata, and related Q-rankings and Q-words, and use
them to establish the lower bound. From now on, we reserve n and k, respectively, for the
effective state size and index size in our construction (except in Theorem 9 and Section 4
where n and k, respectively, mean the state size and index size of a complementation instance).
All related notions are in fact parameterized with n and k, but we do not list them explicitly
unless required for clarity. Let I be [1..k]. We first describe the plan of proof.

For each k, n > 0, we define a full Streett automaton S = (Σ, S,Q,∆,F) and a set of
Q-rankings f : Q→ [1..n]× Ik. For each Q-ranking f , we define a finite ∆-graph Gf , called a
Q-word. We then show that for each f , (Gf)ω 6∈ L (S), yet ((Gf)+(Gf ′)+)ω ⊆ L (S) for every
distinct pair of Q-rankings f and f ′, that is, Q-words constitute a fooling set for L (S). Using
Michel’s scheme [16, 15, 27], we show that if a union-closed automaton C complements S,
then its state size is no less than the number of Q-rankings, because otherwise we can “weave”
the runs of (Gf)ω and (Gf ′)ω in such a way that C would accept a word in ((Gf)+(Gf ′)+)ω,
contradicting ((Gf)+(Gf ′)+)ω ⊆ L (S).

I Definition 1 (Full Streett Automata). Let {S = 〈Σ, S,Q,∆,F〉}n,k>0 be a family of full
Streett automata such that

1.1 S = Q ∪ PG ∪ PB ∪ T where Q, PG, PB and T are pairwise disjoint sets of the following
forms: Q = {q0, · · · , qn−1}, PG = {g1, · · · , gk}, T = {t}, and PB = {b1, · · · , bk}.

1.2 F = 〈G,B〉I such that G(i) = {gi} and B(i) = {bi} for i ∈ I.

Q is intended to be the domain of Q-rankings. PG and PB are pools from which singletons
G(i)’s and B(i)’s are formed. T is to be used for building a bypass track that makes graph
concatenation behaves like a parallel composition so that properties associated with each
subgraph are all preserved in the final concatenation.

I Definition 2 (Q-Ranking). A Q-ranking for S is a function f : Q→ [1..n]× Ik, which is
identified with a pair of functions 〈r, h〉, where r : Q→ [1..n] is one-to-one, and h : Q→ Ik

maps a state to a permutation of I.

For a Q-ranking f = 〈r, h〉, we call r (resp. h) the R-ranking or numeric ranking (resp.
H-ranking or index ranking) of f . We use Q-ranks (resp. R-ranks, H-ranks) to mean values of
Q-rankings (resp. R-rankings, H-rankings). For q ∈ Q, we write h(q)[i] (i ∈ I) to denote the i-
th component of h(q). Let DQ be the set of all Q-rankings and |DQ| be the size of DQ. Clearly,
we have n! R-rankings and (k!)n H-rankings, and so |DQ| = (n!)(k!)n = 2Ω(n lgn+nk lg k).

As stated in the introduction, Q-rankings are essential for obtaining the lower bound. It
turns out that H-rankings are the core of Q-rankings, for (k!)n already begins to dominate n!
when k is larger than lgn. Now we explain the idea behind the design of H-rankings. Recall
that our goal is to have (Gf)ω 6∈ L (S) for any Q-ranking f as well as ((Gf)+(Gf ′)+)ω ⊆ L (S)
for any two different Q-rankings f and f ′. For simplicity, we ignore R-rankings and assume
Q-rankings are just H-rankings. We say that a finite path discharges obligation j if the path
visits B(j) and a finite path owes obligation j if the path visits G(j) but does not visit B(j).
As shown below, for each i ∈ [n], qi-track in Gf is associated with the k-tuple f(qi), which is
a permutation of I, and exactly k full paths in Gf goes from the beginning of qi-track to

Y. Cai and T. Zhang 345

the end of qi-track. We say that those paths on qi-track. For each i ∈ [n] and j ∈ I, the
j-th full path on qi-track owes exactly the obligation f(qi)[j]. Let % = %0 ◦ %1 ◦ · · · be an
infinite path in (Gf)ω where %t (t ≥ 0) is a full path in the t-th Gf . Without R-rankings, our
construction prescribes that all %t start and end at a specific track, say qi-track, and hence
are associated with f(qi). Obligations associated with all %t simply form a subset I ′ of I.
However, we impose an ordering ≺f,i on I ′ (different from the standard numeric ordering)
such that f(qi)[j] ≺f,i f(qi)[j′] if and only if j < j′. The ordering ≺f,i is total thanks to
f(qi) being a permutation of I. Then a condition in our construction guarantees that the
minimum obligation with respect to ≺f,i will never be discharged on %, and therefore %
violates 〈G,B〉I . Since this % is chosen arbitrarily, we have (Gf)ω 6∈ L (S).

Now let G ∈ ((Gf)+(Gf ′)+)ω. To show G ∈ L (S), we construct an infinite path
% = %0 ◦ %1 ◦ · · · in G that satisfies 〈G,B〉I , where %t (t ≥ 0) is a full path in the t-th
subgraph (which is either Gf or Gf ′). Let i be such that f(qi) 6= f ′(qi) (it is always possible
by the assumption f 6= f ′). Different from before, qi-track in Gf is associated with f(qi) and
qi-track in Gf ′ is associated with f ′(qi). Since f(qi) and f ′(qi) are different permutations of
I, a condition in our construction ensures that a full path %f in Gf and a full path %f ′ in Gf ′ ,
both on qi-track, mutually discharge each other’s obligations. So we let all %t in Gf be %f
and all %t in Gf ′ be %f ′ . Since there are infinitely many %f and %f ′ in %, % satisfies 〈G,B〉I ,
giving us G ∈ L (S). Since G is chosen arbitrarily, we have ((Gf)+(Gf ′)+)ω ⊆ L (S). Now
we are read to formally define Q-words.

I Definition 3 (Q-Word). A finite ∆-graph G is called a Q-word if every level of G is ranked
by the same Q-ranking f = 〈r, h〉 and G satisfies the following additional conditions.

3.1 For every q, q′ ∈ Q, if r(q) > r(q′), there exists a full path % from 〈q, 0〉 to 〈q′, |G |〉 such
that % visits all of B(1), . . . , B(k).

3.2 For every q ∈ Q, there exist exactly k full paths %1, . . . , %k from 〈q, 0〉 to 〈q, |G |〉 such
that for every i ∈ I, %i does not visit B(h(q)[j]) for j ≤ i, but visits B(h(q)[j]) for i < j,
and %i does not visit G(h(q)[j]) for j < i, but visits G(h(q)[i]).

3.3 Only Q-vertices have outgoing edges at the first level and incoming edges at the last level.
3.4 For every q, q′ ∈ Q, there exists no full path from 〈q, 0〉 to 〈q′, |G |〉 if r(q) < r(q′).

Property (3.1) concerns with only R-rankings. It says that for every two tracks with different
R-ranks, a path exists that goes from the track with higher rank to the track with the lower
rank, and such a path discharges all obligations in I. So if those (finite) paths occur infinitely
often as fragments of an infinite path %, then % clearly satisfies the Streett condition 〈G,B〉I .
Property (3.2) concerns with only H-rankings. It says that exactly k full “parallel” paths
exist between the two ends of every track, and each owes exactly one distinct obligation in
I. As shown in Theorem 9, Property (3.2) is the core of the whole construction and proof,
because with k increasing, H-rankings contribute more and more to the overall complexity.
Properties (3.3) and (3.4) are merely technical; they ensure that no other full paths exist
besides those prescribed by Properties (3.1) and (3.2). Note that in general more than one
Q-word could exist for a Q-ranking f . We simply pick an arbitrary one and call it the Q-word
of f , denoted by Gf .

I Theorem 4 (Q-Word). A Q-word exists for every Q-ranking.

I Example 5 (Q-Word). Let us consider a full Streett automaton S where n = 3, k = 2,
Q = {q0, q1, q2}, T = {t}, PB = {b1, b2}, PG = {g1, g2}, and the following Q-ranking
f = 〈r, h〉: r(q0) = 2, r(q1) = 1, r(q2) = 3, h(q0) = 〈1, 2〉, h(q1) = 〈1, 2〉, h(q2) = 〈2, 1〉.
Figure 1 shows a Q-word Gf , which consists of two subgraphs Gr and Gh, where Gr in turn

FSTTCS 2011

346 A Tight Lower Bound for Streett Complementation

consists of two parts: G
(1)
r (level 0 to level 3) and G

(2)
r (level 3 to 6), and Gh in turn consists

of three parts: G
(0)
h (level 6 to level 12), G

(1)
h (level 12 to level 18), and G

(2)
h (level 18 to level

24). Gr and Gh are aimed to satisfy Properties (3.1) and (3.2), respectively.
The R-rank (numeric rank) of every level of Gr is (2, 1, 3). In G

(1)
r , a full path %r starts

from 〈q2, 0〉 whose R-rank is the highest. The path visits 〈b1, 1〉, 〈b2, 2〉 and then 〈q0, 3〉
whose R-rank is one less than that of q2. Similarly in G

(2)
r , the path continues from 〈q2, 3〉,

visits 〈b1, 4〉, 〈b2, 5〉 and ends at 〈q1, 6〉 whose R-rank is one less than that of q0.
The H-rank (index rank) of every level of Gh is (〈1, 2〉, 〈1, 2〉, 〈2, 1〉). Let us take a look at

G
(1)
h . A full path %h (marked green except the last edge) starts at 〈q1, 12〉, visits 〈b2, 13〉 and
〈g1, 14〉 (because of h(q1)[1] = 1), and enters t-track (the bypass track {t} × N) at 〈t, 15〉,
from where it stays on t-track till reaching 〈t, 17〉. Another full path %′h (marked red except
the last edge) starts at 〈q1, 12〉 too, takes q1-track to 〈q1, 15〉, and then visits 〈g2, 16〉 (because
of h(q1)[2] = 2), and enters t-track at 〈t, 17〉. Both %h and %′h return to q1-track at 〈q1, 18〉
using the edge 〈〈t, 17〉, 〈q1, 18〉〉 (marked blue). By %0→6, %6→12 and %18→24 (all marked blue)
we denote the q1-tracks in Gr, in G

(0)
h and in G

(2)
h , respectively. It is easy to verify that

Property (3.1) with respect to q2 and q1 is satisfied by both %r ◦ %6→12 ◦ %h ◦ %18→24 and
%r ◦ %6→12 ◦ %h′ ◦ %18→24. Also easily seen is that Property (3.2) with respect to q1 is satisfied
by %0→6 ◦ %6→12 ◦ %h ◦ %18→24 and %0→6 ◦ %6→12 ◦ %h′ ◦ %18→24.

We are ready for the lower bound proof. Let J ⊆ I. We use 〈G,B〉J to denote the Streett
condition with respect to only indices in J . The corresponding Rabin condition [G,B]J
is similarly defined. When J is a singleton, say J = {j}, we simply write 〈G(j), B(j)〉 for
〈G,B〉J and [G(j), B(j)] for [G,B]J . Obviously, if an infinite run satisfies 〈G,B〉J (resp.
[G,B]J), then the run also satisfies 〈G,B〉J′ (resp. [G,B]J′) for J ′ ⊆ J (resp. J ⊆ J ′ ⊆ I).

I Lemma 6. For every Q-ranking f , (Gf)ω 6∈ L (S).

Proof. Let f = 〈r, h〉, G = (Gf)ω and % an infinite path in G . For simplicity, we assume
% only lists states appearing on the boundaries of Gf fragments; for any j ≥ 0, %(j) (resp.
%(j+ 1)) is a state in the first (resp. last) level of the j-th Gf fragment. Let %[j, j+ 1] denote
the finite fragment from %(j) to %(j + 1). Let %[j,∞] denote the suffix of % beginning from
%(j).

By Property (3.3), %(i) ∈ Q for i ≥ 0. By Property (3.4), % eventually stabilizes on
R-ranks in the sense that there exists a j0 such that for any j ≥ j0, r(%(j)) = r(%(j + 1)).
Because every level of G has the same rank, % stabilizes on a (horizontal) track after j0, i.e.,
there exists i ∈ [n] such that %(j) = qi for j ≥ j0. Property (3.2) says that there are exactly
k full paths %1, . . . , %k from 〈qi, 0〉 to 〈qi, |Gf |〉 in Gf . Therefore, %[j0,∞] can be divided into
the infinite sequence %[j0, j0 + 1], %[j0 + 1, j0 + 2], . . ., each of which is one of %1, . . . , %k. Let
k0 ∈ I be the smallest index such that %k0 appears infinitely often in this sequence, i.e., for
some j1 ≥ j0, none of %1, . . . , %k0−1 appears in %[j1,∞]. By Property (3.2) again, %[j1,∞]
visits none of B(h(qi)[1]), . . . , B(h(qi)[k0]), but visits G(h(qi)[k0]) infinitely often (because
%k0 appears infinitely often). In particular, % satisfies [G(t), B(t)] for t = h(qi)[k0] and hence
[G,B]I . Because % is chosen arbitrarily, we have G 6∈ L (S). J

I Lemma 7. For every two different Q-rankings f and f ′, ((Gf)+ ◦ (Gf ′)+)ω ⊆ L (S).

Proof. Let G ∈ ((Gf)+ ◦ (Gf ′)+)ω be an ω-word where both Gf and Gf ′ occur infinitely often
in G . Let f = 〈r, h〉 and f ′ = 〈r′, h′〉. We have two cases: either r 6= r′ or h 6= h′.

If r 6= r′. Since both r and r′ are one-to-one functions from Q to [1..n], there must be
i, j ∈ [n] such that r(qi) > r(qj) and r′(qj) > r′(qi). By Property (3.1), Gf contains a full
path %i→j from 〈qi, 0〉 to 〈qj , |Gf |〉 that visits all of B(1), . . . , B(k). By the same property,

Y. Cai and T. Zhang 347

Gf ′ contains a path %′j→i from 〈qj , 0〉 to 〈qi, |Gf ′ |〉 that also visits all of B(1), . . . , B(k). Then
%i→j ◦ %′j→i is a path in Gf ◦ Gf ′ that visits all of B(1), . . . , B(k). Also by Property (3.2), Gf
(resp. Gf ′) contains a path %i→i (resp. %′i→i) from 〈qi, 0〉 to 〈qi, |Gf |〉 (resp. from 〈qi, 0〉 to
〈qi, |Gf ′ |〉).

Now we define an infinite path %̂ in G as follows. We pick the finite path %i→i in every
Gf fragment and %′i→i in every Gf ′ fragment, except that in the case where a Gf fragment is
followed immediately by a Gf ′ fragment, we pick %i→j in the preceding Gf and %′j→i in the
following Gf ′ . It is easily seen that %̂, in the form ((%i→i)∗ ◦ (%i→j ◦ %′j→i)+ ◦ (%′i→i)∗)ω, visits
all of B(1), . . . , B(k) infinitely often, and hence it satisfies the Streett condition 〈G,B〉I .

If h 6= h′. Then there exist i ∈ [n], j ∈ I such that h(qi)[j] 6= h′(qi)[j] and h(qi)[j∗] =
h′(qi)[j∗] for j∗ ∈ [1..j− 1]. Since both h(qi) and h′(qi) are permutations of I, we have j < k

and {h(qi)[j∗] | j∗ ∈ [j..k] } = {h′(qi)[j∗] | j∗ ∈ [j..k] }. By Property (3.2), in Gf there
exists a path %i→i from 〈qi, 0〉 to 〈qi, |Gf |〉 that visits none of G(h(qi)[j∗]) for j∗ ∈ [1..j − 1],
but visits all of B(h(qi)[j∗]) for j∗ ∈ [j + 1..k]. Similarly, in Gf ′ there exists a path %′i→i
from 〈qi, 0〉 to 〈qi, |Gf ′ |〉 that visits none of G(h′(qi)[j∗]) for j∗ ∈ [1..j − 1], but visits all of
B(h′(qi)[j∗]) for j∗ ∈ [j + 1..k]. Because h(qi) and h′(qi) are different permutations of I,
h′(qi)[j] = h(qi)[j0] for some j0 ∈ [j + 1..k] and h(qi)[j] = h′(qi)[j1] for some j1 ∈ [j + 1..k].
It follows that both {h(qi)[j∗] | j∗ ∈ [j..k] } and {h′(qi)[j∗] | j∗ ∈ [j..k] } are equal to
{h(qi)[j∗] | j∗ ∈ [j+1..k] }∪{h′(qi)[j∗] | j∗ ∈ [j+1..k] }. Therefore %i→i ◦%′i→i (in Gf ◦Gf ′)
visits all of B(h(qi)[j∗]) for j∗ ∈ [j..k].

Now let %̂ be defined as follows: %̂ takes %i→i in every Gf fragment and %′i→i in every Gf ′

fragment. That is, %̂ takes the following form ((%i→i)+ ◦ (%′i→i)+)ω. Recall that h(qi)[j∗] =
h′(qi)[j∗] for j∗ ∈ [1..j−1]. It follows that %̂ does not visit any of G(h(qi)[j∗]) for j∗ ∈ [1..j−1]
because neither %i→i nor %′i→i does. Also since both Gf and Gf ′ occur infinitely often in
G , %̂ contains infinitely many %i→i ◦ %′i→i, which implies that %̂ visits all of B(h(qi)[j∗]) for
j∗ ∈ [j..k] infinitely often. Since h(qi) is a permutation of I, %̂ satisfies 〈G,B〉I .

In either case (whether r 6= r′ or h 6= h′), G contains a path that satisfies 〈G,B〉I , which
means G ∈ L (S). Because G is arbitrarily chosen, we have ((Gf)+ ◦ (Gf ′)+)ω ⊆ L (S). J

The following lemma is the core of Michel’s scheme [16, 15], recast in the setting of full
automata with rankings [27, 3]. Recall that DQ denotes the set of all Q-rankings and |DQ|
denotes the cardinality of DQ.

I Lemma 8. A union-closed automaton that complements S must have at least |DQ| states.

Proof. Let C be a union-closed automaton that complements S. By Lemma 6, for every
Q-ranking f , (Gf)ω ∈ L (C). Let f , f ′ be two different Q-rankings and Gf and Gf ′ the
corresponding Q-words. Let % and %′ be the corresponding accepting runs of (Gf)ω and
(Gf ′)ω, respectively. Also let %0 and %′0, respectively, be the accepting runs of (Gf)ω and
(Gf ′)ω when we treat Gf and Gf ′ as atomic letters, that is, %0 (resp. %′0) only records states
visited at the boundary of Gf (resp. Gf ′) and is a subsequence of % (resp. %′). Obviously,
Inf (%0) ⊆ Inf (%), Inf (%′0) ⊆ Inf (%′), Inf (%0) 6= ∅ and Inf (%′0) 6= ∅. If Inf (%0) ∩ Inf (%′0) = ∅
for any pair of f and f ′, then clearly C has at least |DQ| states because the state set of C
contains |DQ| pairwise disjoint nonempty subsets.

Therefore we can assume that Inf (%0) ∩ Inf (%′0) 6= ∅ for a fixed pair of f and f ′. Let q
be a state in Inf (%0) ∩ Inf (%′0). Because q occurs infinitely often in %, then for some m > 0,
there exists a path in (Gf)m that goes from q to q and visits exactly all states in Inf (%) (or
equivalently speaking, C, upon reading the input word (Gf)m, runs from state q to q, visiting
exactly all states in Inf (%) during the run). By q (Gf)m

−−−−→
! Inf (%)

q we denote the existence of such a

FSTTCS 2011

348 A Tight Lower Bound for Streett Complementation

path. Similarly, we have q
(Gf′)m′

−−−−−→
! Inf (%′)

q for some m′ > 0. Also we have q0
(Gf)m0
−−−−−→ q where q0 is

an initial state of C. Now consider the following infinite run %∗ in the form

q0
(Gf)m0
−−−−−→ q

(Gf)m

−−−−→
! Inf (%)

q
(Gf′)m′

−−−−−→
! Inf (%′)

q
(Gf)m

−−−−→
! Inf (%)

q
(Gf′)m′

−−−−−→
! Inf (%′)

q
(Gf)m

−−−−→
! Inf (%)

q
(Gf′)m′

−−−−−→
! Inf (%′)

q · · ·

which is an accepting run of C for (Gf)m0 ◦ ((Gf)m ◦ (Gf ′)m′)ω because Inf (%∗) = Inf (%) ∪
Inf (%′). However, by Lemma 7, (Gf)m0 ◦ ((Gf)m ◦ (Gf ′)m′)ω ∈ ((Gf)+ ◦ (Gf ′)+)ω ⊆ L (S), a
contradiction. J

I Theorem 9. Streett complementation is in 2Ω(n lgn+kn lg k) for k = O(n) and in 2Ω(n2 lgn)

for k = ω(n), where n and k are the state size and index size of a complementation instance.

Proof. Here we switch to use n0 and k0, respectively, for the effective state size and index
size in our construction S. We have n = 2k0 + n0 + 1. By Lemma 8, the complementation
of S requires |DQ| = 2Ω(n0 lgn0+n0k0 lg k0) states. If k0 ≤ k, we can construct a full Streett
automaton S ′ with state size n and index size k as follows. S ′ is almost identical to S except
that its acceptance condition is defined as F ′ = 〈G′, B′〉I′ (for I ′ = [1..k]) such that for
i ∈ [1..k0], G′(i) = G(i) and B′(i) = B(i) and for i ∈ [k0 + 1, k], G′(i) = B′(i) = ∅. It is
easily seen that S ′ is equivalent to S and hence the complementation lower bound for S also
applies to that for S ′. Now when k = O(n), we can always find n0 and k0 such that k0 ≤ k,
yet n0 = Ω(n) and k0 = Ω(k), and hence we have the lower bound 2Ω(n lgn+kn lg k). When
k = ω(n), we set k0 = n0 so that k0 ≤ k, n0 = Ω(n) and k0 = Ω(n), and hence we have the
lower bound 2Ω(n2 lgn). J

4 Concluding Remarks

In this paper we proved a tight lower bound L(n, k) for Streett complementation. We note
that we can improve the lower bound by two modifications. First, we allow G(i) (resp. B(i))
to be arbitrary subsets of PG (resp. PB). Second, we also use multi-dimensional R-rankings;
the range of r is a set of k-tuples of integers in [1..n]. As a result, both R-ranks and H-ranks
are k-tuples of integers where k can be as large as 2n (the current effective k is bounded
by n). These two modifications require much more sophisticated definition of Q-rankings
and construction of Q-words, but they have no asymptotic effect on L(n, k). The situation
is different from Rabin complementation [3], where Q-rankings are also multi-dimensional
(though different terms other than Q-rankings and Q-words were used), and each component
in a k-tuple (the value of a Q-ranking) is independent from one another, and hence each can
impose an independent behavior on Q-words. Put it in another way, no matter how large the
index set is (the maximum size can be 2n), all dual properties, each of which is parameterized
with an index, can be realized in one Q-word. For Streett complementation, the diminishing
gain when pushing up k made us realize that with increasing number of Q-rankings, more
and more correlations occur between Q-rankings. Exploiting these correlations leads us to
the discovery of the corresponding upper bound.

Acknowledgment
We would like to thank anonymous reviewers for many useful comments, and we are grateful
to Laurel Tweed and Wanwu Wang for carefully proofreading the paper.

Y. Cai and T. Zhang 349

g 2
•

•
•

•
•

•
•

g 1
•

•
•

•
•

•
•

b 2
•

•
•

��•
•

•

��•
b 1

•
•

88 •
•

•
88 •

•

q 0
〈2
,〈

1,
2〉
〉

•
// •

// •
// •

88 // •
// •

// •

q 1
〈1
,〈

1,
2〉
〉

•
+3 •

+3 •
+3 •

+3 •
+3 •

+3 •

q 2
〈3
,〈

2,
1〉
〉

•

FF // •
// •

// •
// •

// •
// •

t
•

•
•

•
•

•
•

00
01

02
03

04
05

06

g 2
•

•
•

•
•

��•
•

g 1
•

•
•

��•
•

•
•

b 2
•

•
77 •

•
•

•
•

b 1
•

•
•

•
•

•
•

q 0
〈2
,〈

1,
2〉
〉

•

AA // •
// •

// •

HH •
•

•

q 1
〈1
,〈

1,
2〉
〉

•
+3 •

+3 •
+3 •

+3 •
+3 •

+3 •

q 2
〈3
,〈

2,
1〉
〉

•
// •

// •
// •

// •
// •

// •
t

•
// •

// •
// •

// •
// •

FF •
06

07
08

09
10

11
12

(A
)

T
he

R
-w

or
d

G
r

(B
)

G
(0

)
h

of
th
e
H
-w

or
d

G
h

g 2
•

•
•

•
•

��•
•

g 1
•

•
•

��•
•

•
•

b 2
•

•
3; •

•
•

•
•

b 1
•

•
•

•
•

•
•

q 0
〈2
,〈

1,
2〉
〉

•
// •

// •
// •

// •
// •

// •

q 1
〈1
,〈

1,
2〉
〉

•

BJ +3 •
+3 •

+3 •

EM •
•

•

q 2
〈3
,〈

2,
1〉
〉

•
// •

// •
// •

// •
// •

// •
t

•
// •

// •
// •

+3 •
+3 •

=E •
12

13
14

15
16

17
18

g 2
•

•
•

��•
•

•
•

g 1
•

•
•

•
•

��•
•

b 2
•

•
•

•
•

•
•

b 1
•

•

EE •
•

•
•

•

q 0
〈2
,〈

1,
2〉
〉

•
// •

// •
// •

// •
// •

// •

q 1
〈1
,〈

1,
2〉
〉

•
+3 •

+3 •
+3 •

+3 •
+3 •

+3 •

q 2
〈3
,〈

2,
1〉
〉

•

FF // •
// •

// •

II •
•

•
t

•
// •

// •
// •

// •
// •

88 •
18

19
20

21
22

23
24

(C
)

G
(1

)
h

of
th
e
H
-w

or
d

G
h

(D
)

G
(2

)
h

of
th
e
H
-w

or
d

G
h

Fi
gu

re
1

Q
-w

or
d

G
f

(f
=

〈r
,h

〉)

FSTTCS 2011

350 A Tight Lower Bound for Streett Complementation

References
1 J.R. Büchi. Weak Second-order Arithmetic and Finite Automata. Mathematical Logic

Quarterly, 6(1-6): 66-92, 1960.
2 J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. 1960

Internat. Congr. Logic, Method. and Philos. Sci., pp. 1-11, 1966.
3 Y. Cai, T. Zhang, and H. Luo. An improved lower bound for the complementation of Rabin

automata. In Proc. 24th LICS, pp. 167-176, 2009.
4 Y. Cai and T. Zhang. Tight upper bounds for Streett and parity complementation. In Proc.

20th CSL, pp. 112-128, 2011.
5 N. Francez and D. Kozen. Generalized fair termination. In Proc. 11th POPL, pp. 46-53,

1984.
6 E. Friedgut and O. Kupferman and M.Y. Vardi. Büchi complementation made tighter.

International Journal of Foundations of Computer Science, 17(4): 851-867, 2006.
7 N. Francez. Fairness. Texts and Monographs in Computer Science. Springer-Verlag, 1986.
8 Ian Glaister and Jeffrey Shallit. A lower bound technique for the size of nondeterministic

finite automata. Information Processing Letters. 59(2): 75-77, 1996.
9 N. Klarlund. Progress measures for complementation of omega-automata with applications

to temporal logic. In Proc. 32th FOCS, pp. 358-367, 1991.
10 O. Kupferman. Avoiding Determinization. In Proc. 21th LICS, pp. 243-254, 2006.
11 R.P. Kurshan. Computer aided verification of coordinating processes: an automata theor-

etic approach. Princeton University Press, 1994.
12 O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM Trans-

actions on Computational Logic, 2(3): 408-429, 2001.
13 O. Kupferman and M.Y. Vardi. From complementation to certification. In 10th TACAS,

LNCS 2988, pp. 591-606, 2004.
14 O. Kupferman and M.Y. Vardi. Complementation constructions for nondeterministic auto-

mata on infinite words. In Proc. 11th TACAS, pp. 206-221, 2005.
15 C. Löding. Optimal bounds for transformations of omega-automata. In Proc. 19th FSTTCS,

LNCS 1738, pp. 97-109, 1999.
16 M. Michel. Complementation is more difficult with automata on infinite words. CNET,

Paris, 1988.
17 N. Piterman. From Nondeterministic Büchi and Streett Automata to Deterministic Parity

Automata. In Proc. 21th LICS, pp. 255-264, 2006.
18 S. Safra. On the complexity of ω-automata. In Proc. 29th FOCS, pp. 319-327, 1988.
19 S. Safra. Exponential Determinization for ω-Automata with Strong-Fairnes Acceptance

Condition. In Proc. 24th STOC, pp. 275-327, 1992.
20 S. Schewe. Büchi complementation made tight. In Proc. 26th STACS, pp. 661-672, 2009.
21 W. Sakoda, M. Sipser. Nondeterminism and the size of two way finite automata. In Proc.

10th STOC, pp. 275-286, 1978.
22 M. Sipser. Lower bounds on the size of sweeping automata. In Proc. 11th STOC, pp. 360-

364, 1979.
23 A. P. Sistla, M.Y. Vardi, and P.Wolper. The complementation problem for Büchi automata

with applications to temporal logic. Theoretical Computer Science, 49:217-327, 1987.
24 S. Safra and M.Y. Vardi. On ω-Automata and Temporal Logics. In Proc. 29th STOC, pp.

127-137, 1989.
25 M.Y. Vardi. The Büchi complementation saga. In Proc. 24th STACS, pp. 12-22, 2007.
26 M.Y. Vardi. and P. Wolper. An automata-theoretic approach to automatic program veri-

fication. In Proc. 1st LICS, pp. 332-334, 1986.
27 Q. Yan. Lower bound for complementation of ω-automata via the full automata technique.

In Proc. 33th ICALP, LNCS 4052, pp. 589-600, 2006.

Parameterized Regular Expressions and Their
Languages
Pablo Barceló1, Leonid Libkin2, and Juan L. Reutter2

1 Department of Computer Science,
University of Chile
pbarcelo@dcc.uchile.cl

2 School of Informatics,
University of Edinburgh
libkin@inf.ed.ac.uk, juan.reutter@ed.ac.uk

Abstract
We study regular expressions that use variables, or parameters, which are interpreted as alphabet
letters. We consider two classes of languages denoted by such expressions: under the possibility
semantics, a word belongs to the language if it is denoted by some regular expression obtained
by replacing variables with letters; under the certainty semantics, the word must be denoted
by every such expression. Such languages are regular, and we show that they naturally arise
in several applications such as querying graph databases and program analysis. As the main
contribution of the paper, we provide a complete characterization of the complexity of the main
computational problems related to such languages: nonemptiness, universality, containment,
membership, as well as the problem of constructing NFAs capturing such languages. We also
look at the extension when domains of variables could be arbitrary regular languages, and show
that under the certainty semantics, languages remain regular and the complexity of the main
computational problems does not change.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Regular expressions, complexity, decision problems, regular languages

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.351

1 Introduction

In this paper we study parameterized regular expressions like (0x)∗1(xy)∗ that combine
letters from a finite alphabet Σ, such as 0 and 1, and variables, such as x and y. These
variables are interpreted as letters from Σ. This gives two ways of defining the language of
words over Σ denoted by a parameterized regular expression e. Under the first – possibility
– semantics, a word w ∈ Σ∗ is in the language L3(e) if w is in the language of some
regular expression e′ obtained by substituting alphabet letters for variables. Under the
second – certainty – semantics, w ∈ L2(e) if w is in the language of all regular expressions
obtained by substituting alphabet letters for variables. For example, if e = (0x)∗1(xy)∗,
then 01110 ∈ L3(e), as witnessed by the substitution x 7→ 1, y 7→ 0. The word 1 is in L2(e),
since the starred subexpressions can be replaced by the empty word. As a more involved
example of the certainty semantics, the reader can verify that for e′ = (0|1)∗xy(0|1)∗, the
word 10011 is in L2(e′), although no word of length less than 5 can be in L2(e′).

These semantics of parameterized regular expressions arise in a variety of applications,
in particular in the fields of querying graph-structured data, and static analysis of programs.
We now explain these connections.

© Pablo Barceló, Leonid Libkin, and Juan Reutter;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 351–362

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.351
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

352 Parameterized Regular Expressions and Their Languages

Applications in graph databases Graph databases, that describe both data and its
topology, have been actively studied over the past few years in connection with such diverse
topics as social networks, biological data, semantic Web and RDF, crime detection and
analyzing network traffic; see [3] for a survey. The abstract data model is essentially an
edge-labeled graph, with edge labels coming from a finite alphabet. This finite alphabet can
contain, for example, types of relationships in a social network or a list of RDF properties.
In this setting one concentrates on various types of reachability queries, e.g., queries that
ask for the existence of a path between nodes with certain properties so that the label of
the path forms a word in a given regular language [4, 7, 8, 10]. Note that in this setting of
querying topology of a graph database, it is standard to use a finite alphabet for labeling
[3].

As in most data management applications, it is common that some information is missing,
typically due to using data that is the result of another query or transformation [1, 5, 9].
For example, in a social network we may have edges a x7−→ b and a′ x7−→ b′, saying that the
relationship between a and b is the same as that between a′ and b′. However, the precise
nature of such a relationship is unknown, and this is represented by a variable x. Such graphs
G whose edges are labeled by letters from Σ and variables from a set W can be viewed as
automata over Σ∪W. In checking the existence of paths between nodes, one normally looks
for certain answers [16], i.e., answers independent of a particular interpretation of variables.

In the case of graph databases such certain answers can be found as follows. Let a, b be
two nodes of G. One can view (G, a, b) as an automaton, with a as the initial state, and b
as the final state; its language, over Σ ∪ W is given by some regular expression e(G, a, b).
Then we can be certain about the existence of a word w from some language L that is the
label of a path from a to b iff w also belongs to L2(e(G, a, b)), i.e., iff L ∩ L2(e(G, a, b)) is
nonempty. Hence, computing L2(e) is essential for answering queries over graph databases
with missing information.
Applications in program analysis That regular expressions with variables appear nat-
urally in program analysis tasks was noticed, for instance, in [20, 21, 23]. One uses the
alphabet that consists of symbols related to operations on variables, pointers, or files, e.g.,
def for defining a variable, use for using it, open for opening a file, or malloc for allocating
a pointer. A variable then follows: def(x) means defining variable x. While variables and
alphabet symbols do not mix freely any more, it is easy to enforce correct syntax with an
automaton. An example of a regular condition with parameters is searching for uninitialized
variables: (¬def(x))∗use(x).

Expressions like this are evaluated on a graph that serves as an abstraction of a program.
One considers two evaluation problems: whether under some evaluation of variables, either
some path, or every path between two nodes satisfies it. This amounts to computing L3(e)
and checking whether all paths, or some path between nodes is in that language. In case of
uninitialized variables one would be using ‘some path’ semantics; the need for the ‘all paths’
semantics arises when one analyzes locking disciplines or constant folding optimizations
[20, 23]. So in this case the language of interest for us is L3(e), as one wants to check
whether there is an evaluation of variables for which some property of a program is true.

Parameterized regular expressions appeared in other applications as well, e.g., in phase-
sequence prediction for dynamic memory allocation [25], or as a compact way to express a
family of legal behaviors in hardware verification [6], or as a tool to state regular constraints
in constraint satisfaction problems [24].

At the same time, however, very little is known about the basic properties of the
languages L2(e) and L3(e). Thus, our main goal is to determine the exact complexity

P. Barceló, L. Libkin, and J. Reutter 353

of the key problems related to languages L2(e) and L3(e). We consider the standard
language-theoretic decision problems, such as membership of a word in the language, lan-
guage nonemptiness, universality, and containment. Since the languages L2(e) and L3(e)
are regular, we also consider the complexity of constructing NFAs, over the finite alphabet
Σ, that define them.

For all the decision problems, we determine their complexity. In fact, all of them are
complete for various complexity classes, from NLogspace to Expspace. We establish
upper bounds on the running time of algorithms for constructing NFAs, and then prove
matching lower bounds for the sizes of NFAs representing L2(e) and L3(e). Finally, we
look at extensions where the range of variables need not be just Σ. Under the possibility
semantics, such languages need not be regular, but under the certainty semantics, we prove
regularity and establish complexity bounds.
Related work There are several related papers on the possibility semantics, notably [11,
14, 18]. Unlike the investigation in this paper, [14, 18] concentrated on the L3(e) semantics
in the context of infinite alphabets. The motivation of [14] comes from the study of infinite-
state systems with finite control (e.g., software with integer parameters). In contrast, for
the applications outlined in the introduction, finite alphabets are more appropriate [3, 8,
20, 21]. Results in [14] show that under the possibility semantics and infinite alphabets, the
resulting languages can also accepted by non-deterministic register automata [18], and both
closure and decidability become problematic. For example, universality and containment
are undecidable over infinite alphabets [14]. In contrast, in the classical language-theoretic
framework of finite alphabets, closure and decidability are guaranteed, and the key questions
are related to the precise complexity of the main decision problems, with most of them
requiring new proof techniques.

An analog of the L2 semantics was studied in the context of graph databases in [5].
The model used there is more complex than the simple model of parameterized regular
expressions. Essentially, it boils down to automata in which transitions can be labeled
with such parameterized expressions, and labels can be shared between different transitions.
Motivations for this model come from different ways of incorporating incompleteness into
the graph database model. Due to the added complexity, lower bounds for the model of [5]
do not extend automatically to parameterized regular expressions, and in the cases when
complexity bounds happen to be the same, new proofs are required.

Different forms of succinct representations of regular languages, for instance with squar-
ing, complement, and intersection, are known in the literature, and both decision problems
[22] and algorithmic problems [12] have been investigated for them. However, it appears
that parameterized regular expressions cannot be used to succinctly define an arbitrary reg-
ular expression, nor any arbitrary union or intersection of them. Thus, the study of these
expressions requires the development of new tools for understanding the lower bounds of
their decision problems.

When we let variables range over words rather than letters, under the possibility seman-
tics L3 we may obtain, for example, pattern languages [17] or languages given by expressions
with backreferences [2]. These languages need not be regular, and some of the problems
(e.g., universality for backreferences) are undecidable [11]. In contrast, we show that under
the certainly semantics L2 regularity is preserved, and complexity is similar to the case of
variables ranging over letters.
Organization Parameterized regular expressions and their languages are formally defined
in Section 2. In Section 3 we define the main problems we study. Complexity of the main
decision problems is analyzed in Section 4, and complexity of automata construction in

FSTTCS 2011

354 Parameterized Regular Expressions and Their Languages

Section 5. In Section 6 we study extensions when domains of variables need not be single
letters.

2 Preliminaries

Let Σ be a finite alphabet, and V a countably infinite set of variables, disjoint from Σ.
Regular expressions over Σ ∪ V will be called parameterized regular expressions. Regular
expressions, as usual, are built from ∅, the empty word ε, symbols in Σ and V, by operations
of concatenation (·), union (|), and the Kleene star (∗). Of course each such expression only
uses finitely many symbols in V. The size of a regular expression is measured as the total
number of symbols needed to write it down (or as the size of its parse tree).

We write L(e) for the language defined by a regular expression e. If e is a parameterized
regular expression that uses variables from a finite set W ⊂ V, then L(e) ⊆ (Σ ∪W)∗. We
are interested in languages L2(e) and L3(e), which are subsets of Σ∗. To define them, we
need the notion of a valuation ν which is a mapping from W to Σ, where W is the set of
variables mentioned in e. By ν(e) we mean the regular expression over Σ obtained from e

by simultaneously replacing each variable x ∈ W by ν(x). For example, if e = (0x)∗1(xy)∗
and ν is given by x 7→ 1, y 7→ 0, then ν(e) = (01)∗1(10)∗.

We now formally define the certainty and possibility semantics for parameterized regular
expressions.

I Definition 1 (Acceptance). Let e be a parameterized regular expression. Then:
L2(e) :=

⋂
{L(ν(e)) | ν is a valuation for e} (certainty semantics)

L3(e) :=
⋃
{L(ν(e)) | ν is a valuation for e} (possibility semantics).

Since each parameterized regular expression uses finitely many variables, the number of
possible valuations is finite as well, and thus both L2(e) and L3(e) are regular languages
over Σ∗.

The usual connection between regular expressions and automata extends to the param-
eterized case. Each parameterized regular expression e over Σ ∪ W, where W is a finite
set of variables in V, can of course be translated, in polynomial time, into an NFA Ae over
Σ ∪W such that L(Ae) = L(e). Such equivalences extend to L2 and L3. Namely, for an
NFA A over Σ ∪ W, and a valuation ν : W → Σ, define ν(A) as the NFA over Σ that is
obtained from A by replacing each transition of the form (q, x, q′) in A (for q, q′ states of A
and x ∈ W) with the transition (q, ν(x), q′). The following is just an easy observation:

I Lemma 2. Let e be a parameterized regular expression, and Ae be an NFA over Σ ∪ V
such that L(Ae) = L(e). Then, for every valuation ν, we have L(ν(e)) = L(ν(Ae)).

Hence, if we define L2(A) as
⋂
ν L(ν(A)), and L3(A) as

⋃
ν L(ν(A)), then the lemma implies

that L2(e) = L2(Ae) and L3(e) = L3(Ae). Since one can go from regular expressions to
NFAs in polynomial time, this will allow us to use both automata and regular expressions
interchangeably to establish our results.

3 Basic Problems

We now describe the main problems we study here. For each problem we shall have two
versions, depending on which semantics – L2 or L3 is used. So each problem will have a
subscript ∗ that can be interpreted as 2 or 3.

We start with decision problems:

P. Barceló, L. Libkin, and J. Reutter 355

Nonemptiness∗ Given a parameterized regular expression e, is L∗(e) 6= ∅?
Membership∗ Given a parameterized regular expression e and a word w ∈ Σ∗, is w ∈
L∗(e)?

Universality∗ Given a parameterized regular expression e, is L∗(e) = Σ∗?
Containment∗ Given parameterized regular expressions e1 and e2, is L∗(e1) ⊆ L∗(e2)?

A special version of nonemptiness is the problem of intersection with a regular language
(used in the database querying example in the introduction):

NonemptyIntReg∗ Given a parameterized regular expression e, and a regular expression
e′ over Σ, is L(e′) ∩ L∗(e) 6= ∅?

The last problem is computational rather than a decision problem:

ConstructNFA∗ Given a parameterized regular expression e, construct an NFA A over
Σ such that L∗(e) = L(A).

4 Decision problems

In this section we consider the five decision problems – nonemptiness, membership, univer-
sality and containment – and provide precise complexity for them.
Restrictions on regular expressions We shall also consider two restrictions on regular
expressions; these will indicate when the problems are inherently very hard or when their
complexity can be lowered in some cases. One source of complexity is the repetition of
variables in expressions like (0x)∗1(xy)∗. When no variable appears more than once in a
parameterized regular expression, we call it simple. Another source of complexity is infinite
languages, so we consider a restriction to expressions of star-height 0, in which no Kleene
star is used: these denote finite languages, and each finite language is denoted by such an
expression.

4.1 Nonemptiness
The problem Nonemptiness3 has a trivial solution, since L3(e) 6= ∅ for every parameterized
regular expression e (except e = ∅). So we study this problem for the certainty semantics;
for the possibility semantics, we look at the related problem Nonemptiness-Automata3,
which, for a given NFA A over Σ ∪ V asks whether L3(A) 6= ∅.

I Theorem 3. The problem Nonemptiness2 is Expspace-complete.
The problem Nonemptiness-Automata3 is NLogspace-complete.

The result for the possibility semantics is by a standard reachability argument. Note
that the bound is the same here as in the case of infinite alphabets studied in [14]. To see
the upper bound for Nonemptiness2, note that there are exponentially many valuations
ν, and each automaton ν(Ae) is of polynomial size, so we can use the standard algorithm
for checking nonemptiness of the intersection of a family of regular languages which can be
solved in polynomial space in terms of the size of its input; since the input to this problem
is of exponential size in terms of the original input, the Expspace bound follows. The
hardness is by a generic (Turing machine) reduction.

In the proof we use the following property of the certainty semantics, which shows a
striking difference with the case of standard regular expressions:

FSTTCS 2011

356 Parameterized Regular Expressions and Their Languages

I Lemma 4. Given a set e1, . . . , ek of parameterized expressions of size at most n ≥ k, it
is possible to build, in time O(k · n) an expression e′ such that L2(e′) is empty if and only
if L2(e1) ∩ · · · ∩ L2(ek) is empty.

The reason the case of the L2(e) semantics is so different from the usual semantics of
regular languages is as follows. It is well known that checking whether the intersection of the
languages defined by a finite set S of regular expressions is nonempty is Pspace-complete
[19], and hence under widely held complexity-theoretical assumptions no regular expression
r can be constructed in polynomial time from S such that L(r) is nonempty if and only
if
⋂
s∈S L(s) is nonempty. Lemma 4, on the other hand, says that such a construction is

possible for parameterized regular expressions under the certainty semantics.
The generic reduction used in the proof of Expspace-hardness of Nonemptiness2 also

provides lower bounds on the minimal sizes of words in languages L2(e) (note that the
language L3(e) always contains a word of the size linear in the size of e).

I Corollary 5. There exists a polynomial p : N→ N and a sequence of parameterized regular
expressions {en}n∈N such that each en is of size at most p(n), and every word in the language
L2(en) has size at least 22n .

The construction is somewhat involved, but it is easy to see the single-exponential bound
(which was hinted at in the first paragraph of the introduction, and which was in fact used in
connection with querying incomplete graph data in [5]). For each n, consider an expression
en = (0|1)∗x1 . . . xn(0|1)∗. If a word w is in L2(en), then w must contain every word in
{0, 1}n as a subword, which implies that its length must be at least 2n + 1.

We can also show that the use of Kleene star has a huge impact on complexity, which is
not at the same time affected by variable repetitions.

I Proposition 6. The problem Nonemptiness2 remains Expspace-hard over the class of
simple regular expressions, but it is Σp2-complete over the class of expressions of star-height
0.

4.2 Membership
It is easy to see that Membership2 can be solved in coNP, and Membership3 in NP:
one just guesses a valuation witnessing w ∈ L(v(e)) or w 6∈ L(v(e)). These bounds turn out
to be tight.

I Theorem 7. The problem Membership2 is coNP-complete.
The problem Membership3 is NP-complete.

Proof sketch: We only sketch the proof of NP-hardness (which also works for simple ex-
pressions). We use a reduction from 3-SAT. Let ϕ =

∧
1≤j≤n(`1j ∨ `2j ∨ `3j) be a 3-CNF

propositional formula over variables {p1, . . . , pm}. That is, each literal `kj , for 1 ≤ j ≤ n and
1 ≤ k ≤ 3, is either pi or ¬pi, for some i ≤ m. From ϕ we construct, in polynomial time,
a simple parameterized regular expression e over alphabet Σ = {a, b, c, d, 0, 1} and variables
xi, x̄i, for 1 ≤ i ≤ m, and a word w over Σ such that ϕ is satisfiable if and only if w ∈ L3(e).

The regular expression e is defined as f∗, where f := a(f1|g1| . . . |fm|gm)b, and the
regular expressions fi and gi are defined as follows. Intuitively, fi (resp. gi) codes the
clauses in which pi occurs positively (resp. negatively). Let j1, . . . , jr enumerate the clauses
where the variable pi appears positively. The expression fi is defined as

fi = (ci | dj1 | . . . | djr) · xi.

P. Barceló, L. Libkin, and J. Reutter 357

The expression gi is defined similarly except using indices of clauses where pi occurs neg-
atively, and the variable x̄i in place of xi. Note that e is a simple expression and can be
constructed in polynomial time from ϕ.

The word w is ac1b ac0b acc1b acc0b . . . acm1b acm0b ad1b add1b . . . adn1b; it too can be
constructed in polynomial time from ϕ. It is now not hard to prove that ϕ is satisfiable if
and only if w ∈ L3(e). 2

Note that for the case of the possibility semantics, the bound is the same as for languages
over the infinite alphabets [14] (for all problems other than nonemptiness and membership,
the bounds will be different). The hardness proof in [14] relies on the infinite size of the
alphabet, but one can find an alternative proof that uses only finitely many symbols. Both
proofs are by variations of 3-SAT or its complement.

The restrictions to expressions without repetitions, or to finite languages, by themselves
do not lower the complexity, but together they make it polynomial.

I Proposition 8. The complexity of the membership problem remains as in Theorem 7 over
the classes of simple expressions, and expressions of star-height 0. Over the class of simple
expressions of star-height 0, Membership3 can be solved in polynomial time (actually, in
time O(nm log2 n), where n is the size of the expression and m is the size of the word).

The log2 n factor appears due to the complexity of the algorithm for converting regular
expressions into ε-free NFAs [15].
Membership for fixed words We next consider a variation of the membership problem:
Membership∗(w) asks, for a parameterized regular expression e, whether w ∈ L∗(e). In
other words, w is fixed. It turns out that for the 3-semantics, this version is efficiently solv-
able, but for the 2-semantics, it remains intractable unless restricted to simple expressions.

I Theorem 9. There is a word w ∈ Σ∗ such that the problem Membership2(w) is
coNP-hard (even over the class of expressions of star-height 0).
For each word w ∈ Σ∗, the problem Membership2(w) is solvable in linear time, if
restricted to the class of simple expressions.
For each word w ∈ Σ∗, the problem Membership3(w) is solvable in time O(n log2 n).

On the other hand, it is straightforward to show that the membership problem for fixed
expressions can be solved efficiently for both semantics.

4.3 Universality
Somewhat curiously, the universality problem is more complex for the possibility semantics
L3. Indeed, consider a parameterized expression e over Σ, with variables in W. For the
certainty semantics, it suffices to guess a word w and a valuation ν : Σ → W such that
w 6∈ L(ν(e)). This gives a Pspace upper bound for this problem, which is the best that we
can do, as the universality problem is Pspace-hard even for complete regular expressions.
On the other hand, when solving this problem for the possibility semantics, one can expect
that all possible valuations for e will need to be analyzed, which increases the complexity
by one exponential. (In fact, when one moves to infinite alphabets, this problem becomes
undecidable [14]). The lower bound proof is again by a generic reduction.

I Theorem 10. The problem Universality2 is Pspace-complete.
The problem Universality3 is Expspace-complete.

FSTTCS 2011

358 Parameterized Regular Expressions and Their Languages

Similarly to the nonemptiness problem (studied in Section 4.1), the Expspace bound
for Universality3 is quite resilient, as it holds even if for simple expressions (note that
it makes no sense to study expressions of star-height 0, as they denote finite languages and
thus cannot be universal).

I Proposition 11. The problem Universality3 remains Expspace-hard over the class of
simple parameterized regular expressions.

4.4 Containment
The bounds for the containment problem are easily obtained from the fact that both
nonemptiness and universality can be cast as its versions. That is, we have:

I Theorem 12. Both Containment2 and Containment3 are Expspace-complete.

Proof: Since Σ∗ ⊆ L3(e) iff Universality3(e) is true, and L2(e) ⊆ ∅ iff
Nonemptiness2(e) is false, we get Expspace-hardness for both containment prob-
lems. To check whether L2(e1) ⊆ L2(e2), we must check that

⋂
ν L(ν(e1)) ∩ L(ν′(e2)) = ∅

for each valuation ν′ on e2. This is doable in Expspace, since one can construct ex-
ponentially many automata for L(ν(e1)) in Exptime, as well as the automaton for the
complement L(ν′(e2)), and checking nonemptiness of the intersection of those is done in
polynomial space in terms of their size, i.e., in Expspace. Since this needs to be done for
exponentially many valuations ν′, the overall Expspace bound follows. The proof for the
L3 semantics is almost identical.

Containment with one fixed expression We look at two variations of the containment
problem, when one of the expressions is fixed: Containment∗(e1, ·) asks, for a parame-
terized regular expression e2, whether L∗(e1) ⊆ L∗(e2); and Containment∗(·, e2) is de-
fined similarly. The reductions proving Theorem 12 show that Containment2(·, e2) and
Containment3(e1, ·) remain Expspace-complete. For the other two versions of the prob-
lem, the proposition below shows that the complexity is lowered by at least one exponential.

I Proposition 13. Containment2(e1, ·) is Pspace-complete.
Containment3(·, e2) is coNP-complete.

4.5 Intersection with a regular language
This problem is a natural analog of the standard decision problem solved in automata-based
verification; we also saw in the introduction that it arises when one computes certain answers
to queries over incompletely specified graph databases.

Checking whether L(e′) ∩ L2(e) 6= ∅ can be done in Expspace using the same brute-
force algorithm as for the nonemptiness problem (intersection of exponentially many regular
languages). Since the nonemptiness problem is a special case with e′ = Σ∗, we get the
matching lower bound by Theorem 3. For L3(e), an NP upper bound is easy: one just
guesses a valuation so that L(e′) ∩ L(ν(e)) 6= ∅. If e′ denotes a single word w, we have
an instance of the membership problem, and hence there is a matching lower bound, by
Theorem 7. Summing up, we have:

I Corollary 14. The problem NonemptyIntReg2 is Expspace-complete.
The problem NonemptyIntReg3 is NP-complete.

P. Barceló, L. Libkin, and J. Reutter 359

5 Computing automata

In this section, we first provide upper bounds for algorithms for building NFAs over
Σ capturing L3(e) and L2(e), and then prove their optimality, by showing matching
lower bounds on the sizes of such NFAs. Recall that we are dealing with the problem
ConstructNFA∗: Given a parameterized regular expression e, construct an NFA A over
Σ such that L(A) = L∗(e).

I Proposition 15. The problem ConstructNFA3 can be solved in single-exponential time,
and the problem ConstructNFA2 can be solved in double-exponential time.

These bounds are achieved by using naive algorithms for constructing automata: namely,
one converts a parameterized regular expression e over variables in a finite set W into an
automaton Ae, and then for |Σ||W| valuations ν computes the automata ν(Ae). This takes
exponential time. To obtain an NFA for L3(e) one simply combines them with a nonde-
terministic choice; for L2(e) one takes the product of them, resulting in double-exponential
time.

We now show that these complexities are unavoidable, as the smallest NFAs capturing
L3(e) or L2(e) can be of single or double-exponential size, respectively. We say that the
sizes of minimal NFAs for L∗ are necessarily exponential (resp., double-exponential) if there
exists a family {en}n∈N of parameterized regular expressions such that:

the size of each en is O(n), and
every NFA A satisfying L(A) = L∗(en) has at least 2n (resp., 22n) states.

I Theorem 16. The sizes of minimal NFAs are necessarily double-exponential for L2, and
necessarily exponential for L3.

Proof sketch: We begin with the double exponential bound for L2. For each n ∈ N, let en
be the following parameterized regular expression over alphabet Σ = {0, 1} and variables
x1, . . . , xn+1:

en = ((0 | 1)n+1)∗ · x1 · · ·xn · xn+1 · ((0 | 1)n+1)∗.

Notice that each en uses n + 1 variables, and is of linear size in n. In or-
der to show that every NFA deciding L2(en) has 22n states, we use the fol-
lowing result from [13]: if L ⊂ Σ∗ is a regular language, and there ex-
ists a set of pairs P = {(ui, vi) | 1 ≤ i ≤ m} ⊆ Σ∗ × Σ∗ such that
(1) uivi ∈ L, for every 1 ≤ i ≤ m, and (2) ujvi /∈ L, for every 1 ≤ i, j ≤ m and i 6= j, then
every NFA accepting L has at least m states.

Given a collection S of words over {0, 1}, let wS denote the concatenation, in lexico-
graphical order, of all the words that belong to S, and let wS̄,n denote the concatenation of
all words in {0, 1}n+1 that are not in S.

Then, define a set of pairs Pn = {(wS , wS̄,n) | S ⊂ {0, 1}n+1 and |S| = 2n}. Since there
are 2n+1 binary words of length n+ 1, there are

(2n+1

2n

)
different subsets of {0, 1}n+1 of size

2n, and thus Pn contains
(2n+1

2n

)
≥ 22n pairs. Moreover, one can show that L2(en) and Pn

satisfy properties (1) and (2) above, which proves the double exponential lower bound.
To show the exponential lower bound for L3, define en = (x1 · · ·xn)∗, and let Pn =

{(w,w) | w ∈ {0, 1}n}. Clearly, Pn contains 2n pairs. All that is left to do is to show that
L3(en) and Pn satisfy properties (1) and (2) above. Details are omitted. 2

Note that the bounds of Theorem 16 apply to simple regular expressions.
The table in Fig. 1 summarizes the main results in Sections 4 and 5.

FSTTCS 2011

360 Parameterized Regular Expressions and Their Languages

`````````````Problem
Semantics Certainty 2 Possibility 3

Nonemptiness Expspace-complete NLogspace-complete
(for automata)

Membership coNP-complete NP-complete
Containment Expspace-complete Expspace-complete
Universality Pspace-complete Expspace-complete
NonemptyIntReg Expspace-complete NP-complete
ConstructNFA double-exponential single-exponential

Figure 1 Summary of complexity results

6 Extending domains of variables

So far we assumed that variables take values in Σ: our valuations were partial maps ν : V →
Σ. We now consider a more general case when the range of each variable is a regular subset
of Σ∗.

Let e be a parameterized regular expression with variables x1, . . . , xn, and let
L1, . . . , Ln ⊆ Σ∗ be nonempty regular languages. We shall write L̄ for (L1, . . . , Ln). A
valuation in L̄ is a map ν : x̄→ L̄ such that ν(xi) ∈ Li for each i ≤ n. Under such a valua-
tion, each parameterized regular expression e is mapped into a usual regular expression ν(e)
over Σ, in which each variable xi is replaced by the word ν(xi). Hence we can still define

L2(e; L̄) =
⋂
{L(ν(e)) | ν is a valuation over L̄}

L3(e; L̄) =
⋃
{L(ν(e)) | ν is a valuation over L̄}

According to this notation, L2(e) = L2(e; (Σ, . . . ,Σ)), and likewise for L3.
Note however that intersections and unions are now infinite, if some of the languages

Li’s are infinite, so we cannot conclude, as before, that we deal with regular languages.
And indeed they are not: for example, L3(xx; Σ∗) is the set of square words, and thus not
regular.

We now consider two cases. If each Li is a finite language, we show that all the complexity
results in Fig. 1 remain true. Then we look at the case of arbitrary regular Li’s. Languages
L3(e; L̄) need not be regular anymore, but languages L2(e; L̄) still are, and we prove that
the complexity bounds from the certainty column of Fig. 1 remain true. For complexity
results, we assume that in the input (e; L̄), each domain Li is given either as a regular
expression or an NFA over Σ.

6.1 The case of finite domains
If all domain languages Li’s are finite, all the lower bounds apply (they were shown when
each Li = Σ). For upper bounds, note that each finite Li contains at most exponentially
many words in the size of either a regular expression or an NFA that gives it, and each such
word is polynomial size. Thus, the number of valuations is at most exponential in the size
of the input, and each valuation can be represented in polynomial time. The following is
then straightforward.

I Proposition 17. If domains Li’s of all variables are finite nonempty subsets of Σ∗, then
both L2(e; L̄) and L3(e; L̄) are regular languages, and all the complexity bounds on the
problems related to them are exactly the same as stated in Fig. 1.



P. Barceló, L. Libkin, and J. Reutter 361

6.2 The case of infinite domains

We have already seen that if just one of the domains is infinite, then L3(e; L̄) need not
be regular (the L3(xx; Σ∗) example). Somewhat surprisingly, however, in the case of the
certainty semantics, we recover not only regularity but also all the complexity bounds.

I Theorem 18. For each parameterized regular expression e using variables x1, . . . , xn and
for each an n-tuple L̄ of regular languages over Σ, the language L2(e; L̄) ⊆ Σ∗ is regular.
Moreover, the complexity bounds are exactly the same as in the 2 column of the table in
Fig. 1.

Proof sketch: We only need to be concerned about regularity of L2(e; L̄) and upper com-
plexity bounds, as the proofs of lower bounds apply for the case when all Li = Σ. For this, it
suffices to prove that there is a finite set U of NFAs so that L2(e; L̄) =

⋂
A∈U L(A). More-

over, it follows from analyzing the proofs of upper complexity bounds, that the complexity
results will remain the same if the following can be shown about the set U :

its size is at most exponential in the size of the input;
checking whether A ∈ U can be done in time polynomial in the size of A;
each A ∈ U is of size polynomial in the size of the input (e; L̄).

To show these, takeAe and from it construct a reduced automatonA′e in which all transitions
(q, xi, q′) are eliminated whenever Li is infinite. We then show that L2(Ae; L̄) = L2(A′e; L̄)
(the definition of L2 extends naturally from regular expressions to automata for arbitrary
domains). This observation generates a finite set U of NFAs which results from applying
valuations with finite codomains to A′e. It is now possible to show that these automata
satisfy the required properties.

7 Future work

For most bounds (except universality and containment), the complexity under the possibil-
ity semantics is reasonable, while for the certainty semantics it is quite high (i.e., double-
exponential in practice). At the same time, the concept of L2(e) captures many query
answering scenarios over graph databases with incomplete information [5]. One of the fu-
ture directions of this work is to devise better algorithms for problems related to the certainty
semantics under restrictions arising in the context of querying graph databases.

Another line of work has to do with closure properties: we know that results of Boolean
operations on languages L2(e) and L3(e) are regular and can be represented by NFAs; the
bounds on sizes of such NFAs follow from the results shown here. However, it is conceivable
that such NFAs can be succinctly represented by parameterized regular expressions. To be
concrete, one can easily derive from results in Section 5 that there is a doubly-exponential
size NFA A so that L(A) = L2(e1) ∩ L2(e2), and that this bound is optimal. However, it
leaves open a possibility that there is a much more succinct parameterized regular expression
e so that L2(e) = L2(e1) ∩ L2(e2); in fact, nothing that we have shown contradicts the
existence of a polynomial-size expression with this property. We plan to study bounds on
such regular expressions in the future.
Acknowledgment We thank Marian Kȩdzierski for helpful comments. Partial support provided
by Fondecyt grant 1110171, EPSRC grant G049165 and FET-Open Project FoX, grant agreement
233599.

FSTTCS 2011



362 Parameterized Regular Expressions and Their Languages

References
1 S. Abiteboul, S. Cluet, T. Milo. Correspondence and translation for heterogeneous data.

TCS 275 (2002), 179–213.
2 A. Aho. Algorithms for finding patterns in strings. Handbook of Theoretical Computer

Science, Volume A: 255-300, 1990.
3 R. Angles, C. Gutiérrez. Survey of graph database models. ACM Comp. Surv. 40(1):(2008).
4 P. Barceló, C. Hurtado, L. Libkin, P. Wood. Expressive languages for path queries over

graph-structured data. In PODS’10, pages 3-14.
5 P. Barceló, L. Libkin, J. Reutter. Querying graph patterns. In PODS’11, pages 199–210.
6 J. Bhadra, A. Martin, J. Abraham. A formal framework for verification of embedded

custom memories of the Motorola MPC7450 microprocessor. Formal Methods in System
Design 27(1-2): 67-112 (2005).

7 D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Containment of conjunctive
regular path queries with inverse. In KR’00, pages 176–185.

8 D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Rewriting of regular expressions
and regular path queries. JCSS, 64(3):443–465, 2002.

9 D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Simplifying schema mappings.
In ICDT 2011.

10 M. P. Consens, A. O. Mendelzon. Low complexity aggregation in GraphLog and Datalog.
TCS 116 (1993), 95–116.

11 D. Freydenberger. Extended regular expressions: succinctness and decidability. in STACS
2011, pages 507-518.

12 W. Gelade, F. Neven. Succinctness of the complement and intersection of regular expres-
sions. In STACS 2008, pages 325–336.

13 I. Glaister, J. Shallit. A lower bound technique for the size of nondeterministic finite
automata. IPL 59:75-77, 1996.

14 O. Grumberg, O. Kupferman, S. Sheinvald. Variable automata over infinite alphabets. In
LATA’10, pages 561–572.

15 C. Hagenah, A. Muscholl. Computing epsilon-free NFA from regular expressions in
O(n log2(n)) time. In MFCS’98, pages 277–285.

16 T. Imielinski, W. Lipski. Incomplete information in relational databases. J. ACM 31 (1984),
761–791.

17 L. Kari, A. Mateescu, G. Paun, A. Salomaa. Multi-pattern languages. TCS 141 (1995),
253-268.

18 M. Kaminsky, D. Zeitlin. Finite-memory automata with non-deterministic reassignment.
IJFCS 21 (2010), 741-760.

19 D. Kozen. Lower bounds for natural proof systems. In FOCS’77, pages 254-266.
20 Y. Liu, T. Rothamel, F. Yu, S. Stoller, N. Hu. Parametric regular path queries. In PLDI’04,

pages 219–230.
21 Y. Liu, S. Stoller. Querying complex graphs. In PADL’06, pages 199–214.
22 A. R. Meyer, L. J. Stockmeyer. Word problems requiring exponential time. In STOC 1973,

pages 1–9.
23 O. de Moor, D. Lacey, E. Van Wyk. Universal regular path queries. Higher-Order and

Symbolic Computation 16(1-2): 15-35 (2003).
24 G. Pesant. A regular language membership constraint for finite sequences of variables. In

CP’04, pages 482–295.
25 X. Shen, Y. Zhong, C. Ding. Predicting locality phases for dynamic memory optimization.

J. Parallel Distrib. Comput. 67(7): 783-796 (2007).



Definable Operations On Weakly Recognizable
Sets of Trees
Jacques Duparc1, Alessandro Facchini2, and Filip Murlak3

1 University of Lausanne, Switzerland
jacques.duparc@unil.ch

2 University of Warsaw, Poland
facchini@mimuw.edu.pl

3 University of Warsaw, Poland
fmurlak@mimuw.edu.pl

Abstract
Alternating automata on infinite trees induce operations on languages which do not preserve
natural equivalence relations, like having the same Mostowski–Rabin index, the same Borel rank,
or being continuously reducible to each other (Wadge equivalence). In order to prevent this,
alternation needs to be restricted to the choice of direction in the tree. For weak alternating
automata with restricted alternation a small set of computable operations generates all definable
operations, which implies that the Wadge degree of a given automaton is computable. The weak
index and the Borel rank coincide, and are computable. An equivalent automaton of minimal
index can be computed in polynomial time (if the productive states of the automaton are given).

1998 ACM Subject Classification F.4.3 Formal languages, F.4.1 Mathematical Logic

Keywords and phrases alternating automata, Wadge hierarchy, index hierarchy

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.363

1 Introduction

The structure of a regular language of infinite trees can be analyzed in terms of recognizing
automata, defining formulas, or topological properties. Each approach defines a hierarchy of
classes of similar languages: the Mostowski–Rabin index hierarchy, the µ-calculus alternation
hierarchy, the Borel hierarchy, the Wadge hierarchy. Sometimes complementary, sometimes
closely related, together they approximate the missing canonical representation of regular
languages. Understanding them has been a goal pursued for decades, bringing spectacular
successes like the Wagner hierarchy for regular languages of infinite words [24], providing a
full characterization of the topological and combinatorial structure of a language in terms
of certain patterns in the recognizing deterministic automaton. Various versions of this
pattern method were successfully applied to deterministic automata on trees, resulting in a
full classification in terms of Wadge equivalence [16, 18], non-deterministic index [19], and
weak alternating index [17].

Owing to the elegant correspondence between certain set-theoretical and ordinal operations
[4], the whole Wadge hierarchy of Borel sets of finite rank can be generated with several
simple operations, starting from the empty set. The pattern method builds on this result. In
order to obtain lower bounds for the Wadge hierarchy of the considered class of automata, it
is often enough to check that some operations are definable within the class [5, 6].

In obtaining upper bounds and computability results, the pattern method relies on certain
compositionality of deterministic automata with respect to the equivalence relations of having

© Jacques Duparc, Alessandro Facchini, and Filip Murlak;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 363–374

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.363
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


364 Definable Operations On Weakly Recognizable Sets of Trees

the same Mostowski–Rabin index, the same Borel rank, or being continuously reducible to
each other (Wadge equivalence). In a deterministic automaton each sub-automaton can be
replaced with any automaton recognizing an equivalent language without influencing the
equivalence class of the whole language. More generally, each automaton can be seen as a
result of an operation performed on sub-automata by means of some connecting automaton.
If the connecting automaton is deterministic, the operation induces an operation on the
equivalence classes of the corresponding languages (see [16, 18], and also [19]). Sometimes,
these operations can be expressed in terms of computable ordinal operations on Wadge
degrees, and the degree of the recognized language can be obtained by bottom up evaluation
starting from the simple sub-automata [16].

For alternating automata this approach fails in general, because the set-theoretical
operation of union, easily simulated within an alternating automaton, is not an operation on
the equivalence classes. Indeed, the union of arbitrarily complicated languages can be the
whole space. Does it mean that the pattern method is confined to deterministic automata?
Recently it has been shown that the method can be extended beyond deterministic automata,
but the class of considered languages was very small [7]. In this paper we introduce a large
syntactic class of the automata inducing operations compatible with the Wadge equivalence—
we call them game automata—and show that it is the largest such class satisfying natural
closure conditions (Sect. 4). We then focus on weak automata, and identify a small set
of operations on Wadge equivalence classes which generate all other definable operations
(Sect. 5). Based on this we show how to compute the Wadge degree and the Borel rank of
weak game automata (Sect. 6). Finally, we prove that the Borel rank and the weak index
coincide for weak game automata, which leads to an algorithm computing the weak index,
and constructing the equivalent automaton with minimal index (Sect. 7).

Due to space limitations many proofs are moved to the full version of the paper [8].

2 Alternating Tree Automata

Let TΣ denote the set of (full infinite binary) trees over an alphabet Σ, i.e., functions
t : t0, 1u˚ Ñ Σ. Given v P dom ptq, by t.v we denote the subtree of t rooted in v.

A alternating tree automaton xΣ, Q, qI , δ, rank y consisting of a finite alphabet Σ, a finite
set of states Q, an initial state qI P Q, a transition function δ : Q ˆ Σ Ñ B`pt0, 1u ˆ Qq,
where B`pt0, 1u ˆ Qq denotes the set of positive boolean formulae over t0, 1u ˆ Q, and a
rank function rank : Q Ñ N. As usual, A accepts t P TΣ iff the player ♦ has a winning
strategy in the induced max-parity game (see [8] for details). To underline this connection,
we write transitions with ˝ and ˛ instead of ^ and _, e.g., δpp, σq “ pp0, pq ˝ p0, qqq ˛ p1, qq,
or p σ

ÝÑ pp0, pq ˝ p0, qqq ˛ p1, qq. The class of all alternating automata is denoted by ATA.
An alternating tree automaton A is
weak (WATA), if for all q, q1 P Q, if q is reachable from q1 and q1 is reachable from q, then
rank pqq “ rank pq1q ;
linear (LATA), if for all q, q1 P Q, if q is reachable from q1 and q1 is reachable from q, then
q “ q1, and for each q P Q either all δpq, σq use only ˝ or all use only ˛ ;
deterministic (DTA), if for all q P Q, σ P Σ, δpq, σq P

 

p0, pq ˝ p1, qq
ˇ

ˇ p, q P Q
(

.

A state q is reachable from p if there exists a path in A from p to q, i.e., a sequence of
states and alphabet symbols p0σ0p1σ1 . . . pk´1σkpk such that p0 “ p, pk “ q, and pi`1 occurs
in δppi, σiq for all i ă k. Throughout the paper we assume that all states are reachable
from the initial state. By convention, J is a singled out all-accepting state, and K is an
all-rejecting state. We assume that all other states are non-trivial, i.e., accept some tree and



J. Duparc, A. Facchini, and F. Murlak 365

reject some tree. For every state q which is not the initial state qI of the automaton A, by
Aq we denote the automaton corresponding exactly to A except the fact that the initial state
now is q and not qI . We say that a state q of A is productive if LpAqq ‰ H.

The (Mostowski–Rabin) index of an automaton is given by pi, jq P t0, 1u ˆ ω, where i is
the minimal and j is the maximal value of rank (scaling down the priorities we can always
assume that the smallest rank is 0 or 1). Classes of languages recognizable with automata of
index pi, jq form the so-called index hierarchy. By a result of Bradfield [3], we know that
the index hierarchy for alternating tree automata, is strict. It is well-known that the class
of weakly recognizable languages forms a strict hierarchy with respect to the index of the
recognizing weak automata (cf. [1]). In the latter case we speak of the weak index hierarchy.

3 Borel classes and Wadge reductions

Consider the space TΣ equipped with the standard Cantor (prefix) topology, that is the
topology where a basic open set is the set all trees that extend a certain finite tree. Recall
that the class of Borel sets of a topological space X is the closure of the class of open sets of
X by countable unions and complementation. For a topological space X, the initial finite
levels of the Borel hierarchy are defined as follows:

Σ0
1pXq is the class of open subsets of X,

Π0
npXq contains complements of sets from Σ0

npXq,
Σ0
n`1pXq contains countable unions of sets from Π0

npXq.
By convention Σ0

0pXq “ tHu and Π0
0pXq “ tXu.

The classes defined above are closed under inverse images of continuous functions. Let C
be one of those classes. A set U is called C-hard, if each set in C is an inverse image of U
under some continuous function. If additionally U P C, U is said to be C-complete. It is well
known that every weakly recognizable tree language is a member of a Borel class of finite
rank ([6, 14]). The rank of a language is the rank of the minimal Borel class the language
belongs to. It can be seen as a coarse measure of complexity of languages.

A much finer measure of the topological complexity is the Wadge degree. If T,U Ď TΣ, we
say that T is continuously (or Wadge) reducible to U , T ďW U in symbols, if there exists a
continuous function f such that T “ f´1pUq. For a Borel class C, T is C-hard if U ďW T for
every U P C. We write T ”W U whenever T ďW U ďW T , and T ăW U , if T ďW U but not
U ďW T . The Wadge hierarchy is the partial order induced by ăW on the ”W -equivalence
classes of Borel sets.

An alternative characterization of continuous reducibility can be given in terms of games.
Let T and U be two arbitrary sets of trees. The Wadge game WpT,Uq is played by two
players, player I and player II. Each player builds a tree, say tI and tII, level by level. In
every round, player I plays first, and both players add one level to their trees. Player II is
allowed to skip her turn, but not forever. Player II wins the game if tI P T ô tII P U .

§ Lemma 1 ([23]). Let T,U Ď TΣ. Then T ďW U iff Player II has a winning strategy in the
game WpT,Uq.

An ordinal number is the order type of a well-ordered set. The least infinite ordinal is
denoted by ω and corresponds to the order-type of the set of all natural numbers. We say
that an ordinal α is countable if there is a bijection between α and ω. The first uncountable
ordinal is denoted by ω1. A subset B of an ordinal α is said to be cofinal if for every a P α
there exists some b P B such that a P b. The cofinality of an ordinal α is thence the smallest
ordinal β that is the order type of a cofinal subset of α.

FSTTCS 2011



366 Definable Operations On Weakly Recognizable Sets of Trees

Recall that a language L is called self dual if it is equivalent to its complement, otherwise
it is called non self dual. From Borel determinacy [13], if T,U Ď TΣ are Borel, then WpT,Uq

is determined. As a consequence, a variant of Martin-Monk’s result (cf. [11]) shows that
ăW is well-founded. Thus, we can associate to every Borel language an ordinal, called the
Wadge degree, i.e. for sets of finite Borel rank, their Wadge degree is inductively defined by:

dW pHq “ dW pH
Aq “ 1,

dW pLq “ suptdW pKq ` 1: K non self dual,K ăW Lu for L ąW H, non self-dual,
dW pLq “ suptdW pKq : K non self dual,K ăW Lu for L self-dual.

For instance, open, non-closed sets have degree 2, just like closed, non-open sets. All clopens
have degree 1. Let exppαq “ ωα1 , and let ω1ε0 “ supnPω expnpω1q, the least fixpoint of the
ordinal exponentiation of base ω1. This is known to be the height of the Wadge hierarchy of all
tree languages (recognizable or not) of finite Borel rank. More precisely, if L is Σ0

n-complete
for n ą 1, then dW pLq “ expn´1p1q for n ą 1 (cf. [4]).

For each degree there are exactly three equivalence classes with the same degree, rep-
resented by U , U A and U˘ “ tt

ˇ

ˇ tpεq “ a, t.0 P Uu Y tt
ˇ

ˇ tpεq ‰ a, t.0 R Uu for some non
self-dual set U and a P Σ. It easy to check that U,U A ăW U˘ and U˘ is self-dual.

For each non self-dual set one can determine its sign, ` or ´, which specifies precisely
the ”W -class [4]. For sets U Ď TΣ with dW pUq of countable cofinality, the sign is ` if U is
Wadge equivalent to the set of trees over Σ Y tcu, c R Σ, which have no c on the leftmost
branch, or the first c is in the node 0i and t.0i P U . The sign is ´ if U is equivalent to the
complement of this set. For instance, H and open, non-closed sets have sign -, while the
whole space and closed, non-open sets have sign `. For sets of cofinality ω1, the definition is
more complicated, but Σ0

n-complete sets have sign ´, and Π0
n-complete sets have sign `. All

self-dual sets by definition have sign ˘. Thus an ordinal α ă ω1ε0 and a sign ε P t`,´,˘u,
determine a ”W -class, denoted rαsε.

4 Game automata

For A,B (over the same alphabet) and an occurrence of a state q in a transition δpp, σq of A,
the substitution AB is obtained by replacing the occurrence of q in δpp, σq with the initial
state of B. The mapping B ÞÑ AB induces an operation on recognized languages, but it need
not preserve coarser equivalence relations, like Wadge equivalence.

As pointed out in the introduction, the operation of union is not compatible with such
equivalence relations. The same is true of intersection.

§ Example 2. Take Σ “ t0, 1, 2u and consider pΣ˚p1` 2qqω and pΣ˚2qω. Clearly, pΣ˚p1`
2qqω ďW pΣ˚2qω as witnessed by the letter-to-letter morphism 0 ÞÑ 0 and 1, 2 ÞÑ 2. The
converse reduction is given by the inclusion. Taking union with Σ˚0ω, we obtain pΣ˚p1`
2qqω YΣ˚0ω “ Σω, and pΣ˚2qω YΣ˚0ω ıW Σω. The language pΣ˚2qω YΣ˚0ω is at the level
∆0

3 of the Borel hierarchy, a deterministic automaton requires three ranks to recognize it,
and an alternating automaton needs two. This makes it much more complex than the whole
space Σω, which can be recognized by a deterministic automaton with a single state, whose
rank is 0. Similarly, intersecting with Σ˚p0` 1qω we obtain Σ˚p0˚1qω, and the empty set,
which have very different complexity.

In order to ensure that substitution is well-behaved, we need to prevent the automata
from simulating union and intersection. We call a transition δpq, aq ambiguous if it contains
two occurrences of some direction d P t0, 1u.



J. Duparc, A. Facchini, and F. Murlak 367

§ Fact 3. Let C Ď ATA be a class of automata over a fixed alphabet with at least two
letters, closed under substitution and containing the one-state all-rejecting and all-accepting
automata. Substitution preserves the Wadge equivalence in C iff no automaton of C has an
ambiguous transition.

Proof. Assume for simplicity that the alphabet contains the symbols 0, 1, 2. Starting from the
all-accepting and all-rejecting automata over the alphabet t0, 1, 2u we can obtain automata
A,AAB,BA recognizing languages L0ω , pL0ω qA, Lp0`1qω , pLp0`1qω q

A respectively, where Lα
stands for the set of trees whose leftmost branch is a word from the language defined by
the expression α. Observe that LpAq ”W LpBq, but LpAq Y LpBAq ıw LpBq Y LpBAq and
LpAq X LpAAq ıw LpBq X LpA

Aq.
Let C P C and let q0σ0q1σ1 . . . qk be path from the initial state q0 to a state qk such that

for some σk, δpqk, σkq is an ambiguous transition. By substituting the all-accepting and
all-rejecting automata, we can assume that δpqi, σiq “ pdi, qi`1q for i ă k and δpqk, σkq “
pdk, p0q ˛ pdk, p1q or δpqk, σkq “ pdk, p0q ˝ pdk, p1q for some states p0, p1. Assume that
δpqk, σkq “ pdk, p0q ˛ pdk, p1q, and let C 1 be the result of replacing the occurrence of p0 with
the initial state of B, and the occurrence of p1 with the initial state of BA. For C 1A, obtained
by replacing the initial state of B with the initial state of A, we have LpC 1Aq ”W LpAqYLpBAq,
and LpC 1q ”W LpBq Y LpBAq, which concludes the proof. For δpqk, σkq “ pdk, p0q ˝ pdk, p1q,
use AA instead of BA. đ

Observe that each non-ambiguous transition has one of the four forms: p0, pq, p1, pq,
p0, pq ˛ p1, qq, or p0, pq ˝ p1, qq.

§ Definition 4. A game automaton (GA) is an alternating automaton without ambiguous
transitions. For notational simplicity, we assume that

δ : Qˆ Σ Ñ
 

p ˛ q
ˇ

ˇ p, q P QztJu
(

Y
 

p ˝ q
ˇ

ˇ p, q P QztKu
(

,

where p ˛ q and p ˝ q is interpreted as p0, pq ˛ p1, qq and p0, pq ˝ p1, qq, respectively.
A weak game automaton (WGA), is a game automaton which is also weak, and a linear

game automaton (LGA) [7], is a game automaton which is linear.

Fact 3 implies that GA it the largest nontrivial subclass of ATA closed under substitution
for which substitution preserves Wadge equivalence, and similarly for WGA Ď WATA. In fact,
a more general property holds for GA.
§ Fact 5. For every GA A,B,B1, every state q of A, and AB , AB1 obtained by replacing an
occurrence of q with the initial state of B and B1 respectively, it holds that
1. LpBq ďW LpB1q implies LpABq ďW LpAB1q,
2. LpAqq ďW LpAq.

LGA

WGA

GA

DTA

WATA

ATA

LATA

Figure 1

Relations between the classes are shown in Fig. 1
with arrows standing for class inclusion. The classes
GA, WGA, and LGA are closed under complementa-
tion: the usual complementation procedure of increas-
ing the ranks by one and swapping existential and
universal transitions works. However they are neither
closed under union nor intersection. For instance, let
Lσ “ tt P Tta,bu : tp0q “ tp1q “ σu. Obviously, La and Lb are LGA-recognizable, but La Y Lb
is not even GA-recognizable. Note that the last example also shows that all the inclusions in
the diagram above are strict.

FSTTCS 2011



368 Definable Operations On Weakly Recognizable Sets of Trees

i

A

B

a

b
i

A B

a
+

A

C

a

c

-

A

C

a

c

Figure 2 Automata constructions for \, ˛, loop`, D.

5 Operations induced by automata

LGA, investigated in [7], can be classified in terms of several simple set theoretic operations
(we assume that the alphabet contains letters a, b, c):

L\M “
 

t
ˇ

ˇ tpεq “ a, t.0 P L
(

Y
 

t
ˇ

ˇ tpεq ‰ a, t.0 PM
(

,

L ˝M “
 

t
ˇ

ˇ t.0 P L^ t.1 PM
(

,

L ˛M “
 

t
ˇ

ˇ t.0 P L_ t.1 PM
(

,

loop´pL,Mq “
ď

nPN

 

t
ˇ

ˇ first c is in 0n, t.0n`1 PM, and t.0`1 P L for all ` ă n
(

,

loop`pL,Mq “
ď

nPN

 

t
ˇ

ˇ first c is in 0n, and t.0n`1 PM or t.0`1 P L for some ` ă n
(

Y

Y
 

t
ˇ

ˇ t.p0nq ‰ c for all n
(

,

@pL,Mq “loop´pL,Mq Y
 

t
ˇ

ˇ t.p0nq ‰ c for all n, and t.0`1 P L for all `
(

,

DpL,Mq “loop`pL,Mq Y
 

t
ˇ

ˇ t.p0nq ‰ c for all n, and t.0`1 P L for some `
(

,

where “first c is in 0n” means that tp0nq “ c and tp0kq ‰ c for all k ă n. Observe that
pL ˝MqA “ LA ˛M A, ploop`pL,MqqA “ loop´pLA,M Aq, and p@pL,MqqA “ DpLA,M Aq.

These operations are definable by LGA: automata realizations for \, ˛, loop`, D are shown
in Fig. 2, and for ˝, loop´, @ they are obtained by replacing ˛ with ˝ and swapping the rank
parities. Like all operations induced by GA, they are compatible with Wadge equivalence.
§ Fact 6. Let op be one of the operations \, ˛, loop`, D, or their duals. Whenever L ”W L1

and M ”W M 1, it holds that oppL,Mq ”W oppL1,M 1q.
Up to Wadge equivalence, these operations are everything LGA are able to express.

§ Fact 7 ([7]). Up to Wadge equivalence, the closure of tJ,Ku under \, ˛, loop`, D, and
their duals (or equivalently, complementation) gives exactly the family of sets recognized
by LGAs. Moreover, for each LGA one can compute an equivalent canonical term over these
operations and K, J.

Since the operations preserve Wadge equivalence, they can be defined in terms of ordinal
arithmetics and signs [4, 7]. For some operations the definitions are very simple, for instance

rγ1s
ε1 \ rγ2s

ε2 “ rmaxpγ1, γ2qs
ε, where ε “

$

’

’

&

’

’

%

ε1 if γ1 ą γ2

˘ if γ1 “ γ2 and ε1 ‰ ε2,

ε2 otherwise

loop`prγsε, r1s´q “
“

sup
k
dW pprγs

εqxkyq
‰`
, where U xky “ U ˛ U ˛ ¨ ¨ ¨ ˛ U

loooooooomoooooooon

k

Dprγsε, r1s´q “ rexpi`1 1s´, for rexpi 1s` ďW rγsε ďW rexpi`1 1s´ .



J. Duparc, A. Facchini, and F. Murlak 369

+

L

M

a b

c

-

+

a, b

a, b, c

c
-

L

M

a b

c

+

-

a, b

a, b, c

c

Figure 3 Operations definable with WGA.

Observe that the second equation, and its dual, imply that for all k

loop`pL,Mq ěW Lxky , loop´pL,Mq ěW Lrks ,

where U rks “ U ˝ U ˝ ¨ ¨ ¨ ˝ U
loooooooomoooooooon

k

. For ˛ the ordinal definition has only been given for ”W -classes

inhabited by LGA-recognizable languages, rΦs “ trαsε
ˇ

ˇ α P Φ, ε P t`,´,˘uu with Φ denoting
the set of ordinals of the form

ř0
n“N βn ` α where α ă ω and each βn is of the form

expnpωqη `
ř1
p“P expnppqkp for some η ă ωω and kp ă ω. Closure of rΦs under \, ˛, loop`,

D (and their duals) was the technical core of the proof of Fact 7.
In this work we want to move to sets recognizable by WGA. Surprisingly, only two really

new operations are introduced, loop-reset`pL,Mq and loop-reset´pL,Mq. The automata
constructions for them are shown in Fig. 3.

By a Wadge game argument we get a simple characterization in terms of ordinal arith-
metics, showing that WGA-definable operations can multiply some Wadge degrees by ω1.

§ Theorem 8. For every Wadge equivalence class rγsε of a Borel language and µ P t`,´u

loop-resetµprγsε, r1sµq “
#

r3sµ if rγsε ”W r1sµ,
“

dW ploop`prγsε, r1s´qqω1
‰µ otherwise ,

where µ “ ` if µ “ ´, µ “ ´ otherwise.

This operation is the source of difference between LGA and WGA, and allows WGA to inhabit
much many Wadge equivalence classes than LGA. Thus, in our algorithm for WGA we
use effective closure for a larger set of ordinals. Let Ω be the set of ordinals of the form
Σ0
i“K exppαiqηi where αK , αK´1, . . . , α0 is a strictly decreasing sequence of ordinals from Φ,

and ηi ă ω for cofαi “ ω1 or cofαi ă ω, and ηi ă ωω for cofαi “ ω.

§ Lemma 9. rΩs is closed under the operations \, loop`, loop-reset`, D (and their duals)
and the result of the operation can be computed effectively.

The proof is by induction, with the base cases covered by the closure property for rΦs.

6 Computing the Wadge degrees of WGA

For game automata, a run (computation tree) over an input tree t is a labeling of the input
tree with states and modes (˝ or ˛), induced by the transition function of the automaton. A
transition taken from a node v determines the mode of v and the states in its children as
follows: the root is labelled with the initial state, and if a node with label σ gets state q and

FSTTCS 2011



370 Definable Operations On Weakly Recognizable Sets of Trees

i

B

Aa i
j

B

A
a

b

C

Figure 4 A simulation (the rank j must not be greater then i).

q
σ
ÝÑ q1 ˝ q2 then v gets the mode ˝, and the left and right children get the states q1 and

q2 respectively. A run ρ is resolved up to a subtree ρ1 if for all v, v0, v1 P dom ρ such that
exactly one node vd belongs to dom ρ1, and for the remaining node vd1 the sub-run ρ.vd1 is
accepting if v’s mode is ˝ and rejecting if it is ˛.

§ Definition 10. A simulation of a run ρ in a run σ is a partial function η : dom ρÑ domσ

such that
dom η is a prefix closed subset of dom ρ (possibly with leaves and infinite branches);
σ is resolved up to the subtree induced by the image of η;
for each v0, v1 P dom η, ηpv0q, ηpv1q are descendants of ηpvq, their closest common
ancestor has the same mode as v , and the highest rank on the path from ηpvq to ηpvdq
is equal to the rank of state in vd for d “ 0, 1;
for each leaf v P dom η, ρ.v is accepting iff σ.ηpvq is accepting.

§ Lemma 11. If there is a game simulation of ρ in σ, then ρ is accepting iff σ is accepting.

Proof. Each strategy in the parity game on ρ can be carried over to σ, and vice versa. đ

§ Definition 12. A simulation of an automaton A in an automaton B consists of a partition
of QA into sets Q1, Q2, Q3 and function η : Q1 YQ2 Ñ QB such that

qAI P Q1 and each transition of A originating in Q1 leads to Q1 YQ2;
whenever q σ

ÝÑA q0 ˝ q1 for some q P Q1 and ˝ P t˛, ˝u, there exist a path π from ηpqq

to some p and paths πi from some pi to ηppiq for i “ 0, 1 such that p τ
ÝÑB p0 ˝ p1 or

p
τ
ÝÑB p1 ˝ p0 and the highest rank on πτπi is equal to rank qi;

for all q P Q2, LpAqq ďW LpBηpqqq.

An example of a simulation is given in Fig. 4. A simulation of A in B immediately
provides a continuous reduction from the set of accepting runs of A to the set of accepting
runs of B. The next lemma follows by noticing that for GAs the set of accepting runs is
Wadge equivalent to the recognized language.

§ Lemma 13. If there exists a simulation of A in B, then LpAq ďW LpBq.

Strongly connected components (SCCs) of automata are defined as for graphs in terms of
reachability. An SCC is trivial if it does not contain any loop. A transition q σ

ÝÑ q1 ˝ q2 is
called branching if q, q1, q2 belong to the same SCC.

§ Lemma 14. For each WGA one can effectively compute a Wadge equivalent WGA over
ta, b, cu without non-trivial loops.

Proof. First we construct an automaton over a larger alphabet. We collapse each strongly
connected component into one state, proceeding by induction on the DAG of SCCs. Let X
be the root SCC, i.e., the SCC containing the initial state qI . By induction hypothesis, we
can assume that all other SCCs consist of a single state.

If there is a branching ˝-transition in X, set qI
a
ÝÑ qI ˝ qI . Otherwise, set qI

ap
ÝÑ qI ˝ p

for all p R X such that q σ
ÝÑ q1 ˝ p or q σ

ÝÑ p ˝ q1 for some q, q1 P X. Define the transitions
via b and bp analogously, replacing ˝ with ˛. Finally, let qI

cp˝p1

ÝÑ p ˝ p1 where p ˝ p1 ranges over



J. Duparc, A. Facchini, and F. Murlak 371

i

A B

C

a b

c

i
B

C

a

b

c

i

A

C

a

c

b
i

C

a b

c

Figure 5 Strongly connected components of WGA over ta, b, cu without non-trivial loops.

p ˝ p1 such that p, p1 R X and q σ
ÝÑ p ˝ p1 for some q P X, ˝ P t˛, ˝u;

p ˝ J such that p R X and q σ
ÝÑ q1 ˝ p or q σ

ÝÑ p ˝ q1 for some q, q1 P X; and
p ˛ K such that p R X and q σ

ÝÑ q1 ˛ p or q σ
ÝÑ p ˛ q1 for some q, q1 P X.

For each state q of the new automaton, extend δpq, σq to all symbols in the alphabet by using
one of already defined transitions.

The original automaton can be simulated in the modified one by taking Q1 “ X,
Q2 “

 

p
ˇ

ˇ q
σ
ÝÑ p ˝ r or q σ

ÝÑ r ˝ p for some q P X, r P Q
(

, and ηpqq “ qI for q P Q1, and
ηppq “ p for p P Q2. For the converse simulation, only change Q1 to tqIu, and for Q2 and η
keep the definitions above.

To reduce the alphabet to ta, b, cu, modify the construction as follows. In the case
where there is no branching ˝-transition in X, add a single transition qI

a
ÝÑ qI ˝ qa,

where qa is the initial state of the automaton recognizing LpAp1q \ LpAp2q \ ¨ ¨ ¨ \ LpApk
q,

where tp1, p2, . . . , pku is the set over which p ranges in the original construction. For b the
modification is analogous, and for c add qI

σ
ÝÑ K ˛ qc, where qc is the initial state of the

automaton recognizing
“

LpAp1q ˝1 LpAp11q
‰

\
“

LpAp2q ˝2 LpAp12q
‰

\ ¨ ¨ ¨ \
“

LpApk
q ˝` LpAp1

`
q
‰

,
where p1 ˝1 p

1
1, p2 ˝2 p

1
2, . . . , p` ˝` p

1
` are the triples over which p ˝ p1 ranges in the original

construction. Observe that these modifications do not influence the Wadge equivalence class
of the recognized language. đ

Thus we can assume that each non-trivial SCC of a given WGA is of one of the four forms
presented in Fig. 5. By a Wadge game argument we can further simplify the automaton.

§ Lemma 15. For each WGA one can compute effectively a Wadge equivalent WGA over
ta, b, cu without non-trivial loops and branching transitions (except those for J, K).

After these simplifications we apply Lemma 9 to compute the Wadge degrees.

§ Theorem 16. For a given WGA one can effectively compute the Wadge equivalence class
of the language it recognizes.

Proof. By Lemma 15, we can assume that the automaton is over ta, b, cu, has no non-trivial
loops, and no branching transitions. By induction on the DAG of SCCs we prove that the
Wadge equivalence class of the recognized language is in rΩs and can be computed effectively.

If the whole automaton consists of a single SCC, the result is r1s` or r1s´ depending on
the rank of the unique state.

To perform the inductive step, it suffices to express the recognized language in terms of
the operations from Lemma 9. If there is no transition from the initial state qI that leads
back to qI , the recognized language can be presented as

“

LpApa
q ˝a LpAp1aq

‰

\
“

LpApb
q ˝b

LpAp1
b
q
‰

\
“

LpApcq ˝c LpAp1cq
‰

, where qI
σ
ÝÑ pσ ˝σ p

1
σ for σ “ a, b, c.

For the rest of the proof we assume that the automaton is of the form shown in the
leftmost part of Fig. 5; we use the notation qIpA,B,Cq. For the remaining possibilities the
computations are analogous. If the rank qI is even, consider the following cases.

FSTTCS 2011



372 Definable Operations On Weakly Recognizable Sets of Trees

1. LpAq ěW @pLpBq,Jq. Then LpAq ąW LpBqrns for every n ă ω, and we have that either
LpqIpA,B,Cqq ”W LpqIpA,B

1, Cqq for some B1 recognizing a Σ0
1-complete language, if

dW pLpBqq ě r2s´, or LpqpA,B,Cqq ”W LpqIpA,J, Cqq otherwise. In the former case the
recognized language is Wadge equivalent to loop-reset`pLpAq, LpCqq, in the latter case it
is Wadge equivalent to loop`pLpAq, LpCqq.

2. LpAq ăW Lp@pB,Jqq. The recognized language is Wadge equivalent to LpqIpK, B,Cqq,
which gives @pLpBq, LpCqq.

3. LpAq ”W Lp@pB,JqqA. In this case, as LpAq ąW LpBqrns for every n ă ω, we conclude
that the recognized language is Wadge equivalent to LpAq ˛ LpqpK, B,Cqq ”W LpAq ˛

@pLpBq, LpCqq.
For rank qI odd, dualize the above argument. đ

7 Borel rank and weak index

As an immediate corollary of Theorem 16 we obtain decidability of the Borel rank problem.

§ Corollary 17. The problem of deciding the Borel rank of a WGA-recognizable language is
decidable.

We will now proceed to prove that the weak index conjecture holds for languages recognized
by WGA. It has long been known that one implication holds.

§ Proposition 18 ([14]). Let A P WGA with index p0, nq (resp. p1, n` 1q). Then it holds
that LpAq P Π0

n (resp. LpAq P Σ0
n).

Using the connections between the structure and topological complexity of automata
explained in the previous sections, we can prove the converse for WGA.

§ Theorem 19. For languages recognizable by WGA, the Borel hierarchy and the weak index
hierarchy coincide.

Proof. By duality and Proposition 18 it suffices to show that each WGA A recognizing a Π0
n

language admits an equivalent WATA of index p0, nq. We proceed by induction on the DAG
of SCCs of the automaton.

If n “ 0, A accepts every tree, so it is equivalent to a single state automaton of index
p0, 0q. If n “ 1, A cannot contain a productive state reachable from a nontrivial rejecting
SCC, so an equivalent p0, 1q automaton can be obtained by setting the rank of all states
reachable from non-trivial rejecting SCCs to 1 and the rank of the remaining states to 0.

Suppose that n ě 2, and let X be the root SCC. If X has rank 0 (we can change it to 0
if X is trivial), by Fact 5 (2) and the induction hypothesis we can present all Aq with q R X
as p0, nq automata and the claim follows.

Suppose X is non-trivial and has rank 1. Assume that X contains a branching ˛-transition.
Then it follows that for all states q, LpAqq is in Σ0

n´1 (otherwise, the whole language would
be Σ0

n hard). In consequence, for all states p R X, Ap can be transformed into an equivalent
WATA of index p1, nq, and we conclude like before.

The remaining case is that of non-trivial X of rank 1, without branching ˛-transitions.
Observe that in this case, there are two reasons why a tree can be rejecting:
1. a path of the computation stays forever in X, and for all ˛ transitions in this path, the

branches leaving X are rejecting;
2. a rejecting path exits X, and for all ˛ transitions in this path, branches leaving X are

rejecting.



J. Duparc, A. Facchini, and F. Murlak 373

By induction hypothesis, all Ap can be transformed to WATA of index p1, nq if q σ
ÝÑ p ˛ q1

or q σ
ÝÑ q1 ˛ p for some q, q1 P X, or p0, nq otherwise. To check that the second condition

does not hold, use A with the rank X changed to 0. For the first condition, use A1 obtained
from A by replacing q σ

ÝÑ p ˝ p1 with q
σ
ÝÑ K ˛ K, q σ

ÝÑ p ˝ q1 with q
σ
ÝÑ J ˛ q1, and

q
σ
ÝÑ q1 ˝ p1 with q

σ
ÝÑ q1 ˛ J for all q, q1 P X, p, p1 R X. The ε-transition introduced to

implement conjunction can be removed by unraveling the first step of the computation,
without changing the ranks. đ

This way the weak index problem reduces to the Borel rank problem. The construction
above in fact gives an effective way of constructing the equivalent WATA of minimal index.

§ Corollary 20. The problem of calculating the exact position in the weak index hierarchy
of a language recognized by a WGA is decidable and an equivalent WATA can be constructed
effectively (in polynomial time if the productive states are given).

8 Conclusions

We have isolated the class of game automata, a wide class of automata inducing operations
on Wadge equivalence classes. For weak game automata we were able to use this property
to describe all definable operations in terms of a small set of generators, and based on this
we gave a procedure calculating the Wadge equivalence class of the language recognized by
any given automaton. Using the structural information provided by the latter result we
proved that the weak index hierarchy and the Borel hierarchy coincide, and gave algorithms
computing the weak index and constructing an equivalent weak alternating automaton of
the minimal index.

The results on the Wadge hierarchy subscribe to the line of reaserch aimed at investigating
the hierarchies for families of languages recognized by various devices (cf. [5, 9, 21]). Usually,
lower bounds on the heights of the hierarchies are easier to obtain, tight upper bounds
are more difficult, and decidability results are scarce [7, 16, 24]. The peculiarity of this
work is that we obtain computability of the Wadge degree without determining explicitly
the inhabited levels of the hierarchy. Some lower bounds are easy to obtain based on our
description of the induced operations and an upper bound is given by rΩs, but giving a full
characterization of the inhabited levels seems to be a nontrivial task.

The class of automata we are considering has limited expressivity, but it seems to capture
many interesting topological phenomena. Even more so in the unrestricted case, as game
automata recognize the game languages recently considered by Arnold and Niwiński [2] in
their study of the Wadge hierarchy of non-Borel regular languages. Currently, we are trying
to drop the weakness restriction. One of the challenges is that for non-Borel languages the
shape of Wadge hierarchy is unknown.

Despite the positive results concerning the hierarchy problems for weak game automata,
and hopefully for non-weak, from the methodological point of view the message of this work
is that we are reaching the limits of the topological approach to index problems. Pushing
decidability results beyond game automata seems to require new techniques.

Acknowledgements

The second author is supported by a grant from the SNFS, n. PBLAP2-132006, while the
third author is supported by the Polish government grant no. N N206 567840.

FSTTCS 2011



374 Definable Operations On Weakly Recognizable Sets of Trees

References
1 A. Arnold, J. Duparc, F. Murlak, D. Niwiński. On the Topological Complexity of Tree

Languages. In J. Flum et al. (Eds.) Logic and Automata - History and Perspectives, Texts
in Logic and Games, Amsterdam University Press: 9–28 (2007).

2 A. Arnold, D. Niwiński. Continuous Separation of Game Languages. Fund. Info., 81(1–3):
19–28 (2008).

3 J. Bradfield. The Modal µ-Calculus Alternation Hierarchy is Strict. Theor. Comput. Sci.
195(2): 133–153 (1998).

4 J. Duparc. Wadge Hierarchy and Veblen Hierarchy Part 1: Borel Sets of Finite Rank. J.
Symb. Log. 66(1): 56–86 (2001).

5 J. Duparc. A Hierarchy of Deterministic Context-Free ω-Languages. Theoret. Comput. Sci.
290:1253–1300 (2003).

6 J. Duparc, F. Murlak. On the Topological Complexity of Weakly Recognizable Tree Lan-
guages. FCT : 261–273 (2007).

7 J. Duparc, A. Facchini, F. Murlak. Linear Game Automata: Decidable Hierarchy Problems
for Stripped-Down Alternating Tree Automata. CSL: 225–239 (2009).

8 J. Duparc, A. Facchini, F. Murlak. Definable Operations On Weakly Recognizable Sets of
Trees. http://www.mimuw.edu.pl/~fmurlak/papers/gamafull.pdf.

9 O. Finkel. Borel Ranks and Wadge Degrees of ω-Context Free Languages. Mathematical
Structures in Computer Science 16: 813–840 (2006).

10 S. Hummel, H. Michalewski, D. Niwiński. On the Borel Inseparability of Game Tree Lan-
guages. STACS : 565–576 (2009).

11 A. S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics, Vol. 156.
Springer-Verlag, New York (1995).

12 L. H. Landweber. Decision Problems for ω-Automata. Math. Systems Theory 3: 376–384
(1969).

13 D. A. Martin. Borel Determinacy. Ann. of Math. (2), 102(2): 363–371 (1975).
14 A. W. Mostowski. Hierarchies of Weak Automata and Weak Monadic Formulas. Theoret.

Comput. Sci. 83: 323–335 (1991).
15 F. Murlak. On Deciding Topological Classes of Deterministic Tree Languages. CSL: 573–584

(2005).
16 F. Murlak. The Wadge Hierarchy of Deterministic Tree Languages. Logical Methods in

Comput. Sci., 4(4), Paper 15.
17 F. Murlak. Weak Index vs Borel Rank. STACS : 573–584 (2008).
18 D. Niwiński, I. Walukiewicz. A Gap Property of Deterministic Tree Languages. Theor.

Comput. Sci. 303: 215–231 (2003).
19 D. Niwiński, I. Walukiewicz. Deciding Nondeterministic Hierarchy of Deterministic Tree

Automata. Electr. Notes Theor. Comput. Sci. 123: 195–208 (2005).
20 M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans.

Amer. Soc. 141: 1–35 (1969).
21 V. Selivanov. Wadge Degrees of ω-Languages of Deterministic Turing Machines. Theoret.

Informatics Appl., 37: 67–83 (2003).
22 J. Skurczyński. The Borel Hierarchy is Infinite in the Class of Regular Sets of Trees. Theoret.

Comput. Sci. 112: 413–418 (1993).
23 W.W.Wadge. Reducibility and Determinateness on the Baire Space. Ph.D. Thesis, Berkeley

(1984).
24 K. Wagner. On ω-Regular Sets. Inform. and Control 43: 123–177 (1979).

http://www.mimuw.edu.pl/~fmurlak/papers/gamafull.pdf


Nash Equilibria in Concurrent Games with Büchi
Objectives
Patricia Bouyer, Romain Brenguier, Nicolas Markey, and
Michael Ummels

LSV, CNRS & ENS Cachan, France
{bouyer,brenguier,markey,ummels}@lsv.ens-cachan.fr

Abstract
We study the problem of computing pure-strategy Nash equilibria in multiplayer concurrent
games with Büchi-definable objectives. First, when the objectives are Büchi conditions on the
game, we prove that the existence problem can be solved in polynomial time. In a second part,
we extend our technique to objectives defined by deterministic Büchi automata, and prove that
the problem then becomes EXPTIME-complete. We prove PSPACE-completeness for the case
where the Büchi automata are 1-weak.

1998 ACM Subject Classification F.1.1; F.1.2; F.2.2

Keywords and phrases Concurrent games, Nash equilibria, Büchi objectives

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.375

1 Introduction

Game theory (especially games played on graphs) is used in computer science as a powerful
framework for modelling interactions in embedded systems [18, 13]. Until recently, more focus
had been put on purely antagonistic situations, where the system should fulfil its specification
however the environment behaves. This situation can be modelled as a two-player game (one
player for the system, and one for the environment), and a winning strategy for the first
player is a good controller for the system. In this purely antagonistic view, the objectives of
both players are opposite: the aim of the second player is to prevent the first player from
achieving her own objective; such games are called zero-sum.

In many cases, however, games are non-zero-sum, especially when they involve more
than two players. Such games appear e.g. in various problems in telecommunications, where
several agents try to send data on a network [10]. Focusing only on winning strategies in this
setting may then be too narrow: winning strategies must be winning against any behaviour
of the other agents, and do not consider the fact that the other agents also have their own
objectives. In the non-zero-sum setting, each player can have a different payoff associated
with an outcome of the game; it is then more interesting to look for equilibria. For instance,
a Nash equilibrium is a behaviour of the agents in which they play rationally, in the sense
that no agent can get a better payoff by unilaterally switching to another strategy [15]. This
corresponds to stable states of the game. Note that Nash equilibria need not exist and are
not necessarily optimal: several equilibria can coexist, possibly with different payoffs.

Our contribution. We focus here on qualitative objectives for the players: such objectives
are ω-regular properties over infinite plays, and a player receives payoff 1 if the property is
fulfilled and 0 otherwise. Our aim is to decide the existence of pure-strategy Nash equilibria in
nondeterministic concurrent games. Being concurrent (instead of the more classical turn-based

© P. Bouyer, R. Brenguier, N. Markey, and M. Ummels;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 375–386

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.375
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


376 Nash Equilibria in Concurrent Games with Büchi Objectives

games) and nondeterministic are two important properties of timed games (which are games
played on timed automata [2, 9]), to which we ultimately want to apply our algorithms.

In a first part, we focus on internal Büchi conditions (defined on the game directly) and
show that we can decide the existence of equilibria in polynomial time, which has to be
compared with the NP-completeness of the problem in the case of reachability objectives [8, 3].
This relies on an iterated version of a repellor operator [3]. Roughly speaking, the repellor is
to the computation of Nash equilibria in non-zero-sum games what the attractor is to the
computation of winning states in zero-sum games. The repellor operator we use for Büchi
objectives is a generalisation of the one defined in [3] for reachability objectives, and the
proof techniques are more involved.

Then, using a simulation lemma, we show how to compute Nash equilibria in case the
objectives of the players are given by deterministic Büchi automata. This encompasses many
winning conditions (among which reachability, Büchi, safety, etc.), and we show that deciding
the existence of Nash equilibria with constraints on the payoff is EXPTIME-complete. Under
a certain restriction on the automata (1-weakness), we prove that the complexity reduces to
PSPACE, and we prove PSPACE-hardness for the special case of safety objectives. When the
game is deterministic and the 1-weak Büchi automata defining the winning conditions have
bounded size (this includes safety and reachability objectives), we show that the constrained
existence problem becomes NP-complete. The simulation lemma can also be used to lift our
results to timed games, for which all our problems are EXPTIME-complete.

Related work. Concurrent and, more generally, stochastic games go back to Shapley [17].
However, most research in game theory and economics has focused on games with rewards,
which are either averaged or discounted along an infinite path. In particular, Fink [11]
proved that every discounted stochastic game has a Nash equilibrium in pure strategies,
and Vielle [22] proved the existence of ε-equilibria in randomised strategies for two-player
stochastic games under the average-reward criterion. For two-player concurrent games with
Büchi objectives, the existence of ε-equilibria (in randomised strategies) was proved by
Chatterjee [5]. However, exact Nash equilibria need not exist. An important subclass where
even Nash equilibria in pure strategies exist are turn-based games with Büchi objectives [8].

The complexity of Nash equilibria in games played on graphs was first addressed in [8, 19].
In particular, it was shown in [19] that the existence of a Nash equilibrium with a constraint
on its payoff can be decided in polynomial time for turn-based games with Büchi objectives.
In this paper, we extend this result to concurrent games. It was also shown in [19] that
the same problem is NP-hard for turn-based games with co-Büchi conditions, which implies
hardness for concurrent games with this kind of objectives. For concurrent games with ω-
regular objectives, the decidability of the constrained existence problem w.r.t. pure strategies
was established by Fisman et al. [12], but their algorithm runs in doubly exponential
time, whereas our algorithm for Büchi games runs in polynomial time. Finally, Ummels
and Wojtczak [21] proved that the existence of a Nash equilibrium in pure or randomised
strategies is undecidable for stochastic games with reachability or Büchi objectives, which
justifies our restriction to concurrent games without probabilistic transitions (see [20] for a
similar undecidability result for randomised Nash equilibria in non-stochastic games).



P. Bouyer, R. Brenguier, N. Markey, and M. Ummels 377

2 Preliminaries

2.1 Concurrent Games
A transition system is a 2-tuple S = 〈States,Edg〉 where States is a (possibly uncountable) set
of states and Edg ⊆ States×States is the set of transitions. In a transition system S, a path π
is a non-empty sequence (si)0≤i<n (where n ∈ N ∪ {∞}) of states such that (si, si+1) ∈ Edg
for all i < n− 1. The length of π, denoted by |π|, is n− 1. The set of finite paths (also called
histories) of S is denoted by HistS , the set of infinite paths (also called plays) of S is denoted
by PlayS , and PathS = HistS ∪ PlayS is the set of paths of S. Given a path π = (si)0≤i<n
and an integer j < n, the j-th prefix (resp. j-th suffix , j-th state) of π, denoted by π≤j (resp.
π≥j , π=j), is the finite path (si)0≤i<j+1 (resp. (si)j≤i<n, state sj). If π = (si)0≤i<n is a
history, we write last(π) = s|π|.

We consider nondeterministic concurrent games [3], which extend standard concurrent
games [1] with nondeterminism.

I Definition 1. A (nondeterministic) concurrent game is a tuple G = 〈States,Edg,Agt,
Act,Mov,Tab, (LA)A∈Agt〉, where 〈States,Edg〉 is a transition system, Agt is a finite set of
players, Act is a (possibly uncountable) set of actions, and

Mov : States×Agt→ 2Act \ {∅} is a mapping indicating the actions available to a given
player in a given state;
Tab : States × ActAgt → 2Edg \ {∅} associates with a state and an action profile the
resulting set of edges; we require that s = s′ if (s′, s′′) ∈ Tab(s, 〈mA〉A∈Agt);
LA ⊆ Statesω defines the objective for player A ∈ Agt; the payoff for player A is the
function νA : Statesω → {0, 1}, where νA(π) = 1 if π ∈ LA, and νA(π) = 0 otherwise;
we say that player A prefers play π′ over play π, denoted π 4A π′, if νA(π) ≤ νA(π′).

We call a game G finite if its set of states is finite.

Non-determinism naturally appears in timed games, and this is our most important motivation
for investigating this extension of standard concurrent games. We explain in Section 4.3 how
our results apply to timed games.

We say that a move 〈mA〉A∈Agt ∈ ActAgt (which we may write mAgt in the sequel) is legal
at s if mA ∈ Mov(s,A) for all A ∈ Agt. A concurrent game is deterministic if Tab(s,mAgt)
is a singleton for each s ∈ States and each legal move mAgt (at s). A game is turn-based if
for each state the set of allowed moves is a singleton for all but at most one player.

In a nondeterministic concurrent game, whenever we arrive at a state s, the players
(simultaneously) choose a legal move mAgt. Then, one of the transitions in Tab(s,mAgt) is
nondeterministically selected, which results in a new state of the game. In the sequel, we write
HistG , PlayG and PathG for the corresponding set of paths in the underlying transition system
of G. We also write HistG(s), PlayG(s) and PathG(s) for the respective subsets of paths
starting in state s.

I Definition 2. Let G be a concurrent game, and A ∈ Agt. A strategy for A is a mapping
σA : HistG → Act such that σA(π) ∈ Mov(last(π), A) for all π ∈ HistG . A strategy σP for a
coalition P is a tuple of strategies, one for each player in P . We write σP = 〈σA〉A∈P for
such a strategy. A strategy profile is a strategy for the coalition Agt. We write StratPG for
the set of strategies of coalition P (or simply StratBG if P = {B}), and ProfG = StratAgtG .

Note that we only consider non-randomised (pure) strategies in this paper. Notice also
that strategies are based on the sequences of visited states, and not on the actions played by

FSTTCS 2011



378 Nash Equilibria in Concurrent Games with Büchi Objectives

the players. This is a realistic assumption for concurrent systems where different components
interact with each other and each component has a set of internal actions which cannot be
observed by the other components. However, it makes the computation of equilibria harder:
when a deviation from the equilibrium profile occurs, the given sequence of states does not
uniquely determine the player who has deviated. While the main part of the paper focuses
on state-based strategies for Büchi objectives, we show in Section 6 that equilibria in the
action-based setting can be computed more easily, even for parity objectives.

Let G be a game, P a coalition, and σP a strategy for P . A path π = (sj)0≤j≤|π|
is compatible with the strategy σP if, for all k < |π|, there exists a move mAgt such that
(i) mAgt is legal at sk, (ii) mA = σA(π≤k) for all A ∈ P , and (iii). (sk, sk+1) ∈ Tab(sk,mAgt).
We write OutG(σP ) for the set of paths (or outcomes) in G that are compatible with the
strategy σP , and we write OutfG(σP ) (resp. Out∞G (σP )) for the finite (resp. infinite) outcomes,
and OutG(s, σP ), OutfG(s, σP ) and Out∞G (s, σP ) for the respective sets of outcomes that start
in state s. In general there might be several infinite outcomes for a strategy profile from a
given state. However, in the case of deterministic games, any strategy profile has a single
infinite outcome from a given state.

I Example 3. Figure 1 depicts a two-player concurrent game, called the matching-penny
game. A pair 〈a, b〉 represents a move, where Player 1 plays action a and Player 2 plays b.
Starting from state s0, if both players choose the same action, then the game proceeds to s1;
otherwise, the game proceeds to s2. In the matching-penny game, the objective for Player 1
is to visit s1 (which is encoded as L1 = States∗ · {s1} · Statesω), while for Player 2 it is to
visit s2. Figure 2 shows another game (our running example), in which the objective of
Player 1 is to loop in s1 (L1 = States∗ · {s1}ω), whereas the objective for Player 2 is to loop
in s2 (L2 = States∗ · {s2}ω).

s0

s1

s2

〈0, 0〉,
〈1, 1〉

〈0, 1〉, 〈1, 0〉

Figure 1 The matching-penny game

s0 s1 s2

〈0, 0〉

〈1, 0〉

〈0, 0〉

〈0, 1〉

〈0, 0〉

Figure 2 A game with Büchi objectives

2.2 Pseudo-Nash Equilibria

Given a move mAgt and an action m′ for some player B, we write mAgt[B 7→ m′] for the
move nAgt with nA = mA if A 6= B and nB = m′. This is extended to strategies in the natural
way. For non-zero-sum games, several notions of equilibria have been defined, e.g. Nash
equilibria [15], subgame-perfect equilibria [16], and secure equilibria [6]. None of these
notions apply to nondeterministic games. Bouyer et al. have therefore proposed the notion of
pseudo-Nash equilibria [3], which extend standard Nash equilibria to nondeterministic games.

I Definition 4. Let G be a nondeterministic concurrent game with objectives (LA)A∈Agt,
and let s be a state of G. A pseudo-Nash equilibrium of G from s is a pair (σAgt, π) of a
strategy profile σAgt ∈ ProfG and a play π ∈ OutG(s, σAgt) such that π′ 4B π for all players
B ∈ Agt, all strategies σ′ ∈ StratB , and all plays π′ ∈ OutG(s, σAgt[B 7→ σ′]). The outcome
π is then called an optimal play for the strategy profile σAgt.



P. Bouyer, R. Brenguier, N. Markey, and M. Ummels 379

For deterministic games, the play π is uniquely determined by σAgt, so that pseudo-Nash
equilibria coincide with Nash equilibria [15]: these are strategy profiles where no player has
an incentive to unilaterally deviate from her strategy.

In the case of nondeterministic games, a strategy profile for an equilibrium may give
rise to several outcomes. The outcome π is then chosen cooperatively by all players: once a
strategy profile is fixed, nondeterminism is resolved by all players choosing one of the possible
outcomes in such a way that each player has no incentive to unilaterally changing her choice
(nor her strategy). To the best of our knowledge, this cannot be encoded by adding an extra
player for resolving the nondeterminism.

I Example 5. Clearly, there is no pure-strategy Nash equilibrium in the game of Figure 1
since a losing player can always improve her payoff by switching her choice. In the game of
Figure 2 (where Player i wants to visit si infinitely often), there are several Nash equilibria:
one with payoff (0, 1), in which both players play action 1 when it is available; another one
with payoff (0, 0), in which Player 1 always plays 0, and Player 2 plays 1 when available.

In this paper, we study several decision problems related to the existence of pseudo-
Nash equilibria. The existence problem consists in deciding the existence of a pseudo-Nash
equilibrium in a given state of a game. Since several pseudo-Nash equilibria may coexist,
it is also interesting to decide whether there is one with a given payoff (0 or 1) for some of
the players; this is the constrained existence problem. Finally, the verification problem asks
whether a given payoff function (totally defined over Agt) is the payoff of some pseudo-Nash
equilibrium. Notice that the first and third problems are trivially logspace-reducible to the
second one.

3 Internal Büchi Objectives

In this section, we fix a nondeterministic concurrent game G = 〈States,Edg,Agt,Act,
Mov,Tab, (LA)A∈Agt〉, where the objectives are internal Büchi conditions given by a set
ΩA ⊆ States of target states for each player A ∈ Agt. The corresponding objective for
player A is the set LA = {π ∈ Statesω | π=j ∈ ΩA for infinitely many j ∈ N}.

3.1 Characterising Equilibria Using Fixpoints
In [3], pseudo-Nash equilibria are characterised for qualitative reachability objectives using
a fixpoint computation called the repellor. This was the counter-part of the attractor in
non-zero-sum games for computing equilibria. In this section, we extend the repellor to
handle internal Büchi objectives.

Suspect players. Let e = (s, s′) be an edge. Given a move mAgt, we define the set of
suspect players for e as the set

Susp(e,mAgt) = {B ∈ Agt | ∃m′ ∈ Mov(s,B) such that e ∈ Tab(s,mAgt[B 7→ m′])}.

Intuitively, Player B ∈ Agt is a suspect for edge e and if she can unilaterally change her
action to trigger edge e. Notice that if e ∈ Tab(s,mAgt), then Susp(e,mAgt) = Agt.

The iterated (or Büchi) repellor. For any n ∈ N and P ⊆ Agt, we define the n-th repellor
set RepnG(P ) as follows. If n = 0, then Rep0

G(P ) = ∅ for any P ⊆ Agt. Now fix n ∈ N, and
assume that repellor sets RepnG(P ) have been defined for any P ⊆ Agt. As the base case for
level n+ 1, we set Repn+1

G (∅) = States. Then, assuming that Repn+1
G (P ′) has been defined

FSTTCS 2011



380 Nash Equilibria in Concurrent Games with Büchi Objectives

for all P ′ ( P , we let Repn+1
G (P ) be the largest set fulfilling the following condition: for all

s ∈ Repn+1
G (P ) there exists a legal move mAgt (at s) such that

1. s′ ∈ Repn+1
G (P ∩ SuspG((s, s′),mAgt)) for all s′ ∈ States, and

2. if s′ ∈ ΩA for some player A ∈ P ∩ SuspG((s, s′),mAgt), then
s′ ∈ RepnG(P ∩ SuspG((s, s′),mAgt)).

Given a state s ∈ Repn+1
G (P ), a legal move mAgt that fulfils 1. and 2. is called a secure

move (w.r.t. P and n+ 1); we write Securen+1
G (s, P ) for the set of these moves. Finally,

we define Rep∞G (P ) =
⋃
n≥0 Rep

n(P ). In the following, to improve readability, we will omit
the index G in all the notions we have defined, when the game is clear from the context.

Intuitively, a state s is an element of RepnG(P ) iff at s there is a legal move such that
no player A ∈ P can force to visit her set of target states at least n times by changing her
action. For finite games, it follows that a state s is an element of Rep∞G (P ) iff at s there is a
legal move such that no player A ∈ P can force to visit her set set of target states infinitely
often by changing her action.
I Remark. The repellor defined for reachability objectives in [3] is rather similar to Rep1(P );
it differs only in the second condition, which was “Rep1(P ) ∩ ΩA = ∅ for all A ∈ P” in [3].
This change is required since a play that is losing w.r.t. a Büchi objective might visit a winning
state a finite number of times (whereas this cannot happen for reachability objectives).

I Example 6. In the game of Figure 2, if we assume reachability objectives (state si for
Player i), there is no equilibrium with payoff (0, 0), since Player 1 can enforce a visit to her
winning state. If we assume Büchi objectives, we have seen in Example 5 that there is an
equilibrium with payoff (0, 0). Table 1 displays the values of the iterated repellors in this game,
for all possible sets of players. These results were obtained with our prototype implementation
of our algorithms, available at http://www.lsv.ens-cachan.fr/Software/praline/.

Table 1 Computing the repellor sets in the game of Figure 2

P Rep0(P ) Rep1(P ) Rep2(P ) Rep∞(P ) = Rep3(P )

∅ ∅ {s0, s1, s2} {s0, s1, s2} {s0, s1, s2}

{A1} ∅ {s1, s2} {s0, s1, s2} {s0, s1, s2}

{A2} ∅ {s0} {s0} {s0}

{A1, A2} ∅ ∅ {s0} {s0}

I Lemma 7. The repellor and the secure moves satisfy the following properties:

If P ′ ⊆ P ⊆ Agt, then Repn(P ) ⊆ Repn(P ′) for all n ∈ N.
Repn(P ) ⊆ Repn+1(P ) for all P ⊆ Agt and n ∈ N.
Securen(s, P ) ⊆ Securen+1(s, P ) for all P ⊆ Agt, n ∈ N and s ∈ States.

We define the n-th repellor transition system Sn(P ) = 〈States,Edgn〉 by (s, s′) ∈ Edgn
iff there exists mAgt ∈ Securen(s, P ) such that (s, s′) ∈ Tab(s,mAgt). Note in particular
that any s ∈ Repn(P ) has an outgoing transition in Sn(P ). We also define the limit repellor
transition system S∞(P ) = 〈States,

⋃
n≥0 Edgn〉. The following lemma bounds the number

of iteration steps required to reach Rep∞(P ).

I Lemma 8. Let G be a a finite game, P ⊆ Agt, and let ` be the length of the longest acyclic
path in G. Then Repn(P ) = Rep∞(P ) for all n ≥ ` · |P |.

http://www.lsv.ens-cachan.fr/Software/praline/


P. Bouyer, R. Brenguier, N. Markey, and M. Ummels 381

The correctness of the iterated repellor for finite games is stated in the next proposition.

I Proposition 9. Let G be a finite game, P ⊆ Agt, and let ρ ∈ Play(s) be a play that
visits

⋃
B∈P ΩB only finitely often. Then ρ is a path in S∞(P ) if and only if there exists

σAgt ∈ Prof such that ρ ∈ Out(s, σAgt) and ρ′ does not visit ΩB infinitely often for all plays ρ′
that can arise when some player B ∈ P changes her strategy, i.e. ρ′ ∈ Out(s, σAgt[B 7→ σ′])
for some B ∈ P and some σ′ ∈ StratB.

We can deduce from this proposition that if ρ is an infinite path from state s in S∞(P )
that visits ΩA infinitely often if and only if A /∈ P , then there is a pseudo Nash equilibrium
from s with optimal play ρ.

I Corollary 10. Let G be a finite game, s ∈ States, and ν : Agt → {0, 1}. There exists a
pseudo-Nash equilibrium in G with payoff ν if and only if there exists an infinite path ρ in
S∞(ν−1(0)) with payoff νA(ρ) = ν(A) for all A ∈ Agt.

3.2 Application to Solving the Three Problems
We use the previous characterisation for analysing the complexity of the various decision
problems that we have defined in Section 2.2.

I Theorem 11. The verification, existence and constrained existence problems for finite
games with internal Büchi objectives are PTIME-complete.

The lower bounds are simple adaptations of the PTIME-hardness of the circuit value
problem. We now focus on the PTIME upper bounds, and prove it for the constrained
existence problem (which implies the same upper bound for the other two problems).

We first use the equivalence given in Proposition 9 to get a set-based characterisation
of (pseudo-)Nash equilibria. We fix a set of winning players W ⊆ Agt and a set of losing
players L ⊆ Agt, and we fix an initial state s. Given a transition system 〈S,E〉 and a set of
players P , we say that they satisfy condition (‡) if the following properties are fulfilled:

(1) ΩA ∩ S = ∅ if and only if A ∈ P ;
(2) L ⊆ P and P ∩W = ∅;
(3) 〈S,E〉 is strongly connected;

(4) 〈S,E〉 ⊆ S∞(P );
(5) S is reachable from s in S∞(P ).

The following is then a corollary to Proposition 9.

I Corollary 12 (Set-based characterisation). A pair (〈S,E〉, P ) satisfies condition (‡) iff
there is an infinite path ρ in S∞(P ) from s that, from some point onwards, stays in 〈S,E〉.
In particular, ρ is losing for all players in L. Moreover, if (〈S,E〉, P ) satisfies (‡), then there
exists an infinite path ρ in S∞(P ) from s with the same property that visits all states of S
infinitely often (and is thus winning for all players in W ).

Note that in the above characterisation, P is uniquely determined by the set S; hence we
write P (S) = {A ∈ Agt | S ∩ ΩA = ∅}, and we say that 〈S,E〉 satisfies condition (‡) if
(〈S,E〉, P (S)) does. Our aim is to compute in polynomial time all maximal pairs 〈S,E〉 that
satisfy condition (‡). As a prerequisite, we assume that we can compute S∞(P ) in polynomial
time whenever P ⊆ Agt is given. This can be proved using similar arguments as in [4]. Now,
we define a recursive operator SSG (SolveSubGame) by setting SSG (〈S,E〉) = {〈S,E〉} if
〈S,E〉 ⊆ S∞(P (S)) and 〈S,E〉 is strongly connected, and

SSG (〈S,E〉) =
⋃

〈S′,E′〉∈SCC(〈S,E〉)

SSG(〈S′, E′〉 ∩ S∞(P (S′)))

FSTTCS 2011



382 Nash Equilibria in Concurrent Games with Büchi Objectives

in all other cases. Here, SCC(〈S,E〉) denotes the set of strongly connected components of
〈S,E〉 (which can be computed in linear time). Finally, we define

Sol(L,W ) = SSG
(
〈States \

⋃
A∈L

ΩA,Edg〉
)
∩ {〈S,E〉 | P (S) ∩W = ∅} .

I Lemma 13. If 〈S,E〉 ∈ Sol(L,W ) and S is reachable from s in S∞(P (S)), then it satisfies
condition (‡). Conversely, if 〈S,E〉 satisfies condition (‡), then there exists 〈S′, E′〉 ∈
Sol(L,W ) such that 〈S,E〉 ⊆ 〈S′, E′〉.

I Lemma 14. The set Sol(L,W ) can be computed in polynomial time.

The PTIME upper bound of Theorem 11 follows from the above analysis.

I Remark. This result may seem surprising since we know that the problem is NP-complete
for reachability objectives, even in turn-based games [8, 3]. Intuitively, the problem is harder
for reachability objectives because whether a play satisfies or not a reachability objective
is not only determined by its behaviour in the strongly connected component in which it
settles but on all visited states.

4 Game Simulations

Our aim is to transfer our results for internal Büchi objectives to larger classes of objectives.
A useful tool is the notion of game simulation, which we develop now.

4.1 Definition and General Properties

We already gave a definition of game simulation in [3], which was tailored to games with
reachability objectives; we extend this notion to games with arbitrary qualitative objectives.

I Definition 15. Consider two games G = 〈States,Edg,Agt,Act,Mov,Tab, (LA)A∈Agt〉
and G′ = 〈States′,Edg′,Agt,Act′,Mov′,Tab′, (L′A)A∈Agt〉 with the same set Agt of players.
A relation / ⊆ States× States′ is a game simulation if s / s′ implies that for each move mAgt
in G there exists a move m′Agt in G′ such that

1. for each t′ ∈ States′ there exists t ∈ States with t / t′ and
Susp((s′, t′),m′Agt) ⊆ Susp((s, t),mAgt), and

2. for each (s, t) ∈ Tab(s,mAgt) there exists (s′, t′) ∈ Tab′(s′,m′Agt) with t / t′.

If / is a game simulation, we say that G′ simulates G. Finally, a game simulation / is
winning-preserving from (s0, s

′
0) ∈ States×States′ if for all ρ ∈ PlayG(s0) and ρ′ ∈ PlayG′(s′0)

with ρ / ρ′ (i.e. ρ=i / ρ
′
=i for all i ∈ N) it holds that ρ ∈ LA iff ρ′ ∈ L′A for all A ∈ Agt.

I Proposition 16. Game simulation is transitive.

I Proposition 17. Assume G and G′ are games. Fix two states s and s′ in G and G′
respectively, and assume that / is a winning-preserving game simulation from (s, s′). If
there exists a pseudo-Nash equilibrium (σAgt, ρ) of G from s, then there exists a pseudo-Nash
equilibrium (σ′Agt, ρ′) of G′ from s′ with ρ / ρ′. In particular, ρ and ρ′ have the same payoff.



P. Bouyer, R. Brenguier, N. Markey, and M. Ummels 383

4.2 Product of a Game with Deterministic Büchi Automata
We use the results on game simulation to study objectives that are defined by deterministic
Büchi automata. A deterministic Büchi automaton A over alphabet Σ is a tuple 〈Q,Σ, δ,
q0, R〉, where Q is a finite set of states, Σ is the input alphabet, δ : Q×Σ→ Q is the transition
function, q0 ∈ Q is the initial state, and R ⊆ Q is the set of repeated states. We assume
that the reader is familiar with Büchi automata, and we write L(A) ⊆ Σω for the language
accepted by A.

Fix a game G = 〈States,Edg,Agt,Act,Mov,Tab, (LB)B∈Agt〉 and a player A ∈ Agt,
and assume that LA = L(A) for a deterministic Büchi automaton A = 〈Q,States, δ, q0, R〉
over States. We show how to compute pseudo-Nash equilibria in G by building a product
of G with A and computing the pseudo-Nash equilibria in the resulting game.

We define the product of the game G with the automaton A as the game G n A =
〈States′,Edg′,Agt,Act,Mov′,Tab′, (L′B)B∈Agt〉, where:

States′ = States×Q;
Edg′ = {((s, q), (s′, q′)) | (s, s′) ∈ Edg and δ(q, s) = q′};
Mov′((s, q), Ai) = Mov(s,Ai) for every Ai ∈ Agt;
Tab′((s, q),mAgt) = {((s, q), (s′, q′)) | (s, s′) ∈ Tab(s,mAgt) and δ(q, s) = q′};
if B = A, then L′B is the internal Büchi objective given by the set Ω = States × R;
otherwise, L′B = π−1(LB), where π is the natural projection from States′ to States and
its extension to plays (i.e. π((s0, q0)(s1, q1) . . . ) = s0s1 . . . ).

I Remark. Note that, if LB is defined by an internal Büchi condition, then so is L′B .

I Lemma 18. G nA simulates G, and vice versa. Furthermore, in both cases we can exhibit
a game-simulation that is winning-preserving from (s, (s, q0)) for all s ∈ States.

Assume that for each player Ai ∈ Agt the objective in G is given by a deterministic Büchi
automaton Ai. We use the transitivity of game simulation to build a product of G with each
of the automata Ai, namely G′ = G nA1 n · · ·nAn (we assume that n is left-associative).
Each player Ai ∈ Agt has an internal Büchi objective in G′, which we denote by Ωi.

I Corollary 19. Let s ∈ States and ν : Agt → {0, 1}. There is a pseudo-Nash equilibrium
in G from s with payoff ν if and only if there is a pseudo-Nash equilibrium in G′ from
(s, q01, . . . , q0n) with payoff ν, where q0i is the initial state of Ai.

4.3 Application to Timed Games
We now apply the game-simulation approach to the computation of pseudo-Nash equilibria
in timed games. Given a timed game G with internal Büchi objectives, the corresponding
(exponential-size) region game RG as defined in [4] simulates G and is simulated by G
while preserving winning conditions (the proof for reachability objectives in [4] can be
easily extended to our framework). Pseudo-Nash equilibria of G can thus be computed
on the finite game RG . If the objectives of the players are defined by deterministic Büchi
automata (Ai)Ai∈Agt, we can compute the product RG nA1 n · · ·nAn with corresponding
internal Büchi objectives (Ωi)Ai∈Agt, as defined in the previous subsection. This product
has size exponential in the size of G and in the number of players. We can then apply
the algorithm developed in Section 3.2, yielding an EXPTIME upper bound for deciding the
verification, existence, and constrained existence problems in timed games. Finally we get
EXPTIME-hardness for internal Büchi objectives by applying the reduction in [4, Prop. 20]
(replace all accepting sink states by repeated states).

FSTTCS 2011



384 Nash Equilibria in Concurrent Games with Büchi Objectives

I Theorem 20. The verification, existence, and constrained existence problems are EXPTIME-
complete both for timed games with internal Büchi objectives and for timed games with
objectives defined by deterministic Büchi automata.

5 Büchi-Definable Objectives

The characterisation of Corollary 19 gives a procedure to compute pseudo-Nash equilibria in
games with objectives defined by deterministic Büchi automata (one automaton per player).
The algorithm runs in time exponential in the number of players since we have to build
the product with all the deterministic Büchi automata defining the objective of a player.
We prove that our problems are EXPTIME-hard by encoding two-player countdown games [14]
into multiplayer games. Each bit of the countdown will be managed by a different player,
who is in charge of checking that this bit is correctly updated at each transition.

I Theorem 21. The verification, existence, and constrained existence problems for finite
games with objectives defined by deterministic Büchi automata are EXPTIME-complete.

We now prove that when the deterministic Büchi automata defining the objectives are
1-weak (i.e. when all strongly connected components of the transition graph consist of just one
state), all our three problems can be solved in PSPACE. In particular, this result applies to
safety (and reachability) objectives, which can be defined by 1-weak automata. Our algorithm
is based on a procedure that, given parameters (P, n, q), computes the set of states s such
that in the product game (s, q) ∈ Repn(P ). The procedure computes the repellor as a
fixpoint, calling itself recursively on instances (P ′, n′, q′), where either P ′ ( P , n′ < n, or
q′ is a successor of q. The maximal number of nested calls is |P |+ n+

∑
i∈Agt `i, where `i is

the length of the longest acyclic path in Ai. According to Lemma 8, n can be bounded by a
polynomial. The whole computation thus runs in polynomial space.

I Theorem 22. The verification, existence, and constrained existence problems are in PSPACE
for finite games with objectives defined by 1-weak deterministic Büchi automata.

The matching lower bound holds already for the special case of safety objectives.

I Proposition 23. The verification, existence, and constrained existence problems are
PSPACE-hard for finite games with safety objectives.

Proof. The hardness proof for the verification (and for the constrained existence) problem is
by a reduction from QSAT: for every closed quantified Boolean formula φ in conjunctive prenex
normal form, we construct a game G(φ) with initial state s1 and safety objectives such that
G(φ) has a pseudo-Nash equilibrium with payoff (0, . . . , 0) from s1 iff the formula is true. Let
φ = ∃x1∀x2 . . . Qnxn C1 ∧C2 ∧ · · · ∧Cm, where each clause Cj is a disjunction of literals over
the variables x1, . . . , xn; we identify Cj with the set of literals occurring in it. Then the game
G(φ) is played by players 0, 1, . . . ,m. The set of states is {s1, x1,¬x1, . . . , sn, xn,¬xn, sn+1},
and there are transitions from si to xi and ¬xi, and from xi and ¬xi to si+1; additionally,
there is a transition from sn+1 back to sn+1. If i is odd, then the state si is controlled by
player 0; otherwise, the game proceeds nondeterministically from si to either xi or ¬xi (see
Figure 3). Player 0 loses every play of the game, i.e. L0 = ∅, whereas for j > 0 player j’s
objective is to avoid the set of literals occurring in the clause Cj , i.e. Lj = (States \ Cj)ω.
It is easy to see that φ is true iff there is a strategy for player 0 such that all outcomes are
losing for all players.

To prove hardness of the existence problem, it suffices to add two states s0 and s′0 to the
game G(φ): from s0, the game proceeds nondeterministically to either s′0 or s1, and we add



P. Bouyer, R. Brenguier, N. Markey, and M. Ummels 385

s1

x1

¬x1

s2

x2

¬x2

s3

x3

¬x3

s4

x4

¬x4

s5 . . . sn+1

Figure 3 Reducing from QSAT

a transition from s′0 back to s′0. Finally, the objective of player 0 is the set L0 = {s0, s
′
0}ω.

It follows that there is a pseudo-Nash equilibrium from s0 (with the optimal play leading
to s′0) iff there is a pseudo-Nash equilibrium from s1 with payoff (0, . . . , 0). J

Note that the hardness proof requires nondeterminism. For deterministic games we can
solve the problem by guessing the set of losing players and an (ultimately-periodic) path
in the corresponding repellor transition system. We then have to check that all possible
deviations fall in some repellor set. The best algorithm we could get for this check runs in
time O(|States|2 · |Agt| · |Tab|log(maxi |Qi|)), which is only polynomial when the size of the
Büchi automata is bounded.

I Theorem 24. The verification, existence, and constrained existence problems are in NP
for finite deterministic games with objectives defined by 1-weak deterministic Büchi automata
of bounded size.

The matching lower bound holds again for the special case of safety objectives since
no nondeterministic transitions arise in the construction used for proving Proposition 23
when we reduce from SAT (except for the existence problem, where we require a different
construction).

I Proposition 25. The verification, existence and constrained existence problems are NP-hard
for finite deterministic games with safety objectives.

6 Discussion

In this paper we focused on Büchi objectives. The natural next step is to go to parity objectives,
which can encode arbitrary ω-regular objectives. In the turn-based case, the constrained
existence problem becomes NP-complete for parity (or even co-Büchi) objectives [19]. In fact,
we can get the same upper bound in deterministic concurrent games under the assumption
that strategies can observe actions.

I Theorem 26. The constrained existence problem is in NP for finite deterministic concurrent
games with parity objectives if we assume that strategies can observe actions.

In Section 2, we mentioned that making actions unobservable by players is a relevant
modelling assumption, but that it makes the computation of equilibria harder. This claim is
justified by the following result, which is obtained by a reduction from the strategy problem
for generalised parity games [7].

I Proposition 27. The verification, existence and constrained existence problems are coNP-
hard for finite deterministic concurrent games with parity objectives. In particular, unless
NP = coNP, these problems do not belong to NP.

FSTTCS 2011



386 Nash Equilibria in Concurrent Games with Büchi Objectives

A natural question is whether the repellor techniques that we develop can be used to
handle imperfect information in a more general sense than just state-based vs. action-based
strategies. This is one of our directions for future work.

References
1 R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,

49(5):672–713, 2002.
2 E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In

SSC’98, p. 469–474. Elsevier Science, 1998.
3 P. Bouyer, R. Brenguier, and N. Markey. Nash equilibria for reachability objectives in

multi-player timed games. In CONCUR’10, LNCS 6269, p. 192–206. Springer, 2010.
4 P. Bouyer, R. Brenguier, and N. Markey. Nash equilibria for reachability objectives in

multiplayer timed games. Research Report LSV-10-12, ENS Cachan, France, 2010.
5 K. Chatterjee. Two-player nonzero-sum ω-regular games. In CONCUR’05, LNCS 3653, p.

413–427. Springer, 2005.
6 K. Chatterjee, T. A. Henzinger, and M. Jurdziński. Games with secure equilibria. In

LICS’04, p. 160–169. IEEE Comp. Soc. Press, 2004.
7 K. Chatterjee, T. A. Henzinger, and N. Piterman. Generalized parity games. In FoSSaCS’07,

LNCS 4423, p. 153–167. Springer, 2007.
8 K. Chatterjee, R. Majumdar, and M. Jurdziński. On Nash equilibria in stochastic games.

In CSL’04, LNCS 3210, p. 26–40. Springer, 2004.
9 L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The element of

surprise in timed games. In CONCUR’03, LNCS 2761, p. 142–156. Springer, 2003.
10 M. Félegyházi, J.-P. Hubaux, and L. Buttyán. Nash equilibria of packet forwarding

strategies in wireless ad hoc networks. IEEE Trans. Mobile Comput., 5(5):463–476, 2006.
11 A. M. Fink. Equilibrium in a stochastic n-person game. J. Science in Hiroshima University,

28(1):89–93, 1964.
12 D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In TACAS’10, LNCS 6015,

p. 190–204. Springer, 2010.
13 T. A. Henzinger. Games in system design and verification. In TARK’05, p. 1–4, 2005.
14 M. Jurdziński, F. Laroussinie, and J. Sproston. Model checking probabilistic timed auto-

mata with one or two clocks. In TACAS’07, LNCS 4424, p. 170–184. Springer, 2007.
15 J. F. Nash, Jr. Equilibrium points in n-person games. Proc. National Academy of Sciences

of the USA, 36(1):48–49, 1950.
16 R. Selten. Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit.

Zeitschrift für die gesamte Staatswissenschaft, 121:301–324 and 667–689, 1965.
17 L. S. Shapley. Stochastic games. Proc. National Academy of Sciences of the USA, 39:1095–

1100, 1953.
18 W. Thomas. Infinite games and verification (extended abstract of a tutorial). In CAV’02,

LNCS 2404, p. 58–64. Springer, 2002.
19 M. Ummels. The complexity of Nash equilibria in infinite multiplayer games. In

FoSSaCS’08, LNCS 4962, p. 20–34. Springer, 2008.
20 M. Ummels and D. Wojtczak. The complexity of Nash equilibria in limit-average games.

In CONCUR’11, LNCS 6901, p. 482–496. Springer, 2011.
21 M. Ummels and D. Wojtczak. The complexity of Nash equilibria in stochastic multiplayer

games. Logical Methods in Computer Science, 7(3), 2011.
22 N. Vielle. Two-player stochastic games I–II. Israel J. of Mathematics, 119(1):55–126, 2000.



A Perfect-Information Construction for
Coordination in Games∗

Dietmar Berwanger1, Łukasz Kaiser2, and Bernd Puchala3

1 LSV, CNRS &, ENS Cachan, France
2 LIAFA, CNRS & Université Paris Diderot – Paris 7, France
3 Mathematische Grundlagen der Informatik, RWTH Aachen University,

Germany

Abstract
We present a general construction for eliminating imperfect information from games with several
players who coordinate against nature, and to transform them into two-player games with perfect
information while preserving winning strategy profiles. The construction yields an infinite game
tree with epistemic models associated to nodes. To obtain a more succinct representation, we
define an abstraction based on homomorphic equivalence, which we prove to be sound for games
with observable winning conditions. The abstraction generates finite game graphs in several
relevant cases, and leads to a new semi-decision procedure for multi-player games with imperfect
information.

1998 ACM Subject Classification F.1.2. Alternation and nondeterminism

Keywords and phrases Games, Imperfect Information, Epistemic Models, Distributed Synthesis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.387

1 Introduction

A game with perfect information is one where a player knows the state of the play at any
stage. If he does not, we speak of a game with imperfect information. Analysing games
with perfect information appears conceptually easier than those of imperfect information,
which require handling the uncertainty of players. We present a generic construction for
eliminating imperfect information from games where players coordinate against nature, and
transform them into games with perfect information while preserving winning strategies.

We consider infinite games played on finite graphs [10, 16]. Plays proceed in stages in
which a token is moved along the edges, forming an infinite path. A state corresponds to the
node of the graph holding the token. Under perfect information, the current state is explicitly
announced to each player at every stage. Under imperfect information, the announcement is
made with uncertainty modelled by an indistinguishability relation between states.

In our setting, there are n players that form a coalition against nature; at each stage,
the players choose simultaneously an action and nature moves the token along an edge
compatible with these choices. The objective of the players is to ensure that the outcoming
path satisfies a given winning condition, regardless of the moves of nature. We focus on
the coordinated winning strategy problem: to decide whether the grand coalition has a joint
strategy to ensure a win, and to construct one, if this is the case. When we speak about the
solution of a game throughout the paper, we mean the solution to both the decision and

∗ Work supported by the ESF EUROCORES programme LogiCCC and the ESF GAMES grant No. 4505.

© Dietmar Berwanger, Łukasz Kaiser, and Bernd Puchala;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 387–398

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.387
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


388 A Perfect-Information Construction for Coordination in Games

the construction variant of the coordinated winning strategy problem. These problems are
central to the area of distributed controller synthesis (see [8, 11, 5]).

For the case of a single player against nature, the winning strategy problem has been
formulated and solved by Reif 25 years ago [15] – this basic case does not raise the issue
of coordination. Reif’s approach proceeds by elimination of imperfect information, as the
author phrases it: for a given game G with imperfect information, a game G+ with perfect
information is constructed in a way that resembles the powerset construction for determinising
finite automata. The states of the perfect-information game G+ correspond to subsets of
states in the imperfect-information game G. Intuitively, any set Π of plays in G that are
indistinguishable for the player corresponds to one play π in G+, and the subset state reached
in G+ via π consists of the states reachable in G when one of the plays from Π is played. The
states of G+ thus represent enough of the player’s knowledge about the current state of a
play in G to allow transferring his strategies from G+ to G in a way that preserves winning.

Reif’s subset construction allows to reduce (both the decision and the construction
variant of) the winning strategy problem for a game with imperfect information played
by a player against nature to the corresponding problem in a two-player game of perfect
information over a state space that may be exponentially larger. Although the original
procedure addressed only games with simple, reachability winning conditions, it extends
easily to general observable ω-regular conditions and the resulting games belong to the class
of infinite games on finite graphs that is well understood. They are determined with simple
strategies (of bounded memory) and they can be solved algorithmically: it is decidable
whether a player has winning strategies, and if so, one can construct one (see, e.g., [6]). Thus,
the reduction yields solution procedures for the original games of imperfect information and
further insights, e.g., about the memory requirement of winning strategies.

Unfortunately, the classical subset construction is not sound in settings that involve more
than one player. In fact, the coordinated winning strategy problem is generally undecidable
already for two players against nature [12, 13, 17], which implies not only that the subset
construction is inadequate for eliminating imperfect information in games with two or more
players, but, moreover, that any procedure that transforms a game with imperfect information
over a finite graph into one with perfect information over a possibly larger but still finite
graph will fail to preserve the solution to the winning strategy problem in the general case.
In [1], Arnold and Walukiewicz give a concrete example of a game with two players against
nature where winning strategies depend, at each stage, on the number of previous stages – to
keep track of this number, a perfect-information variant of the game would require infinitely
many states.

We are interested in constructions that generalise Reif’s classical approach in the sense that
they transform an n-player game G with imperfect information into a two-player zero-sum
game G+ with perfect information such that
(i) the grand coalition in G has a winning strategy against nature if, and only if, the first

player has a winning strategy in G+;
(ii) winning strategies of the first player in G+ can be translated uniformly into joint

winning strategies of the grand coalition in G and vice versa.

If we think of players as components of a system (each with imperfect information about
the global state) that shall follow a joint strategy prescribed by the system designer, such
a construction allows to formulate the task of the designer in terms of games between
two players: the system designer and nature (or the environment, in the phrasing of the
distributed-systems literature). One desirable property of such a construction is that it
produces instances of perfect-information games that are finite, for possibly large classes of



D. Berwanger, Ł. Kaiser, and B. Puchala 389

input games with imperfect information – even if, as pointed out in the previous paragraph,
this cannot work for the general case.

Several approaches to identify computationally manageable classes of games with imperfect
information among several players have been proposed during the last decade [8, 9, 3, 7, 14, 4].
As a common pattern, tractability is ensured by restricting the way information flows between
players.

In this paper, we take a different approach and propose a sufficient, though undecidable,
condition for manageability of games with imperfect information. Our perfect-information
construction is based on the unravelling of an imperfect-information game as a tree with
epistemic models associated to nodes. Intuitively, an epistemic model is a snapshot of what
players know at a stage of the game. The unravelling generates a two-player game of perfect
information on an infinite tree.

To obtain a more succinct representation, we perform an abstraction by taking the
quotient of the tree under homomorphic equivalence of epistemic models. We prove that
this abstraction method is sound for imperfect-information games with observable ω-regular
winning conditions. Consequently, all games that yield a finite quotient admit computable
solutions. In particular, this gives an alternative proof for the decidability of games with
hierarchical information and observable regular winning conditions. Our proof provides an
elementary solution for these games, whereas previous results rely on the simulation theorem
of alternation tree automata by nondeterministic ones.

2 Preliminaries

2.1 Distributed Games
We consider games played by n players, 0, 1, . . . , n − 1, against nature. We refer to a list
of elements x = (xi)i<n, one for each player, as a profile. The grand coalition is the set
{0, . . . , n− 1} of all players; nature is not regarded as a player.

Beforehand, we fix a set Ai of actions available to Player i, and we denote by A the set of
all action profiles. A distributed game for n players with imperfect information is described
by a structure G = (V,∆, (∼i)i<n,W ) where V is a finite set of positions, ∆ ⊆ V ×A× V is
a move relation, and each ∼i is an equivalence relation on V called the indistinguishability
relation of Player i. Finally, W is a subset of V ω describing the winning condition.

A play in G is a sequence of positions π = v0v1v2 . . . such that, for every stage l ≥ 0, there
exists an action profile al such that (vl, al, vl+1) ∈ ∆. We denote the set of all plays by Π. In
general, the winning condition is just a set of plays, W ⊆ Π. We will often focus on ω-regular
sets W . More specifically, we will be interested in observable winning conditions. For a set
of colours C, we say that a colouring Ω : V → C is observable if, whenever Ω(v) 6= Ω(w),
we have v 6∼i w, for all players i. An observable winning condition is described by a pair
(Ω,Wo), consisting of an observable colouring Ω and a set of infinite sequences of colours
Wo ⊆ Cω. Then, the associated winning set is W = {v0v1v2 . . . |Ω(v0)Ω(v1)Ω(v2) . . . ∈Wo}.

A history is a finite prefix of a play. A strategy for Player i is a function σi : V ∗ → Ai such
that σi(π) = σi(ρ) for any two histories π, ρ ∈ V ∗ with π ∼∗i ρ, where ∼∗i is the extension
of ∼i to sequences. A joint strategy for the grand coalition is a profile σ = (σ0, . . . , σn−1)
consisting of one strategy σi for every player i. We say that a play π = v0v1 . . . is consistent
with σ, if (vl, σ(v0 . . . vl), vl+1) ∈ ∆, for every stage l > 0. In this case, we refer to the
histories of π as σ-histories. A joint strategy profile σ is winning from a position v0 ∈ V , if
each play from v0 that is consistent with σ belongs to W . We study the following question:
given a game G, does the grand coalition have a winning strategy profile for G?

FSTTCS 2011



390 A Perfect-Information Construction for Coordination in Games

x

a, 0 a, 1 b, 0 b, 1

⊥|⊥
⊥|⊥ ⊥|⊥

⊥|⊥

a′, 0′ a′, 1′ b′, 0′ b′, 1′

a|0 a|1 b|0 b|1
· · · · · ·

a|0 a|1 b|0 b|1

⊥|⊥
⊥|⊥ ⊥|⊥

⊥|⊥

Figure 1 A distributed game G‖.

I Example 1. Figure 1 describes a distributed game G‖ with two players. The relations ∼0
and ∼1 are represented by dashed and dotted lines, respectively. The game starts at position
x where the players have only trivial moves ⊥ and nature chooses a letter from {a, b} and
a digit from {0, 1}. The label of the successor position reflects this choice. Player 0 only
observes whether nature has chosen a or b, whereas Player 1 observes whether it was 0 or 1.
Next, Player 0 chooses a letter from {a, b} and Player 1 a digit from {0, 1}, again reflected
by the label of the successor. After that, the game returns to x for another round.

Let us set A = {a, b}, A′ = {a′, b′}, and D = {0, 1}, D′ = {0′, 1′}. As one player observes
only letters and the other only digits, a strategy f of Player 0 in G corresponds to a function
(AA′)∗A→ A, whereas a strategy g of Player 1 corresponds to a function (DD′)∗D→ D. Let
W be a winning condition in G, i.e. a subset of (x(A× D)(A′ × D′))∗. Then, the strategy
profile (f, g) is winning if

x
( l1
d1

)( f(l1)′

g(d1)′
)
x
( l2
d2

)( f(l1 f(l1)′ l2)
g(d1 g(d1)′ d2)

)
x · · · ∈W.

Notice that, between two successive visits to position x, nature chooses a pair of bits and each
of the players chooses one bit, with the first bit always revealed only to the first player and
the second bit only to the second player. This is essentially the game structure considered
in [13], where the authors construct regular winning conditions that require the players to
construct the run of a given Turing machine. Deciding whether a winning profile (f, g) for
the resulting game exists reduces to deciding whether the machine halts on the empty tape.
Accordingly, the joint winning strategy problem is undecidable on this class of games.

2.2 Epistemic Models and Homomorphisms
To describe the knowledge acquired by the players during a play, we use epistemic models.
An epistemic model over G is a Kripke structure K = (K, (Pv)v∈V , (∼i)i<n) where (Pv)v∈V
is a partition of K and each ∼i is an equivalence relation on K such that, for all k, k′ ∈ K,
if k ∼i k′, then vk ∼i vk′ , with vk denoting the unique element from V such that k ∈ Pvk

.
Usually, K will be connected by ∼∪=

⋃
i ∼i, except when indicated otherwise. Notice that

∼∪ may not necessarily be an equivalence relation.
We recall the notion of graph homomorphism, which we apply to epistemic models. Let

K = (K, (Pv)v∈V , (∼i)i<n) and K′ = (K ′, (P ′v)v∈V , (∼′i)i<n) be epistemic models. A function
f is a homomorphism from K to K′, if Pv(k) =⇒ P ′v(f(k)) and k ∼i k′ =⇒ f(k) ∼′i f(k′).
The models are homomorphically equivalent, K ≈ K′, if there exists a homomorphism from



D. Berwanger, Ł. Kaiser, and B. Puchala 391

K to K′ and one from K′ to K. Notice that ≈ is an equivalence relation as the composition
of two homomorphisms is again a homomorphism.

For a finite epistemic model K, a core is a model K′ ≈ K with the minimal number of
elements. One crucial observation, which follows for epistemic models in the same way as
the standard argument for graphs, is that the core of a model is unique up to isomorphism.

I Lemma 2. Every finite epistemic model has a unique core, up to isomorphism.

3 Epistemic Unfolding

In more traditional approaches to analysing games on graphs, the unfolding collects histories
of the original game. We present a new kind of unfolding that uses Kripke structures to collect
the full description of the knowledge that players have at a certain stage of the play. When
unfolding a game G, we will keep track of the information available to all players in an epistemic
model. Thus, the states of the unfolding are epistemic models over G. At the start, we assume
that all players know that they are at the initial position, thus the initial epistemic model
will be a trivial, one-element structure consisting of {v0}, K0 = ({v0}, (Pv)v∈V , (∼i)i<n),
where Pv0 = {v0}, Pw = ∅ for w 6= v0, and each ∼i= {(v0, v0)}.

Assume that, in a state of the unfolding represented by an epistemic model K, the players
agreed on take actions described by a profile a. What will the epistemic state of a player be
after executing these actions? Let (ak)k∈K be a tuple of action profiles ak ∈ A compatible
with the players’ knowledge, i.e. for every i < n and for all k, k′ ∈ K with k ∼i k′, we have
(ak)i = (ak′)i. We define the, possibly disconnected, epistemic model

Update(K, (ak)k∈K) := (K ′, (Pv)v∈V , (∼i)i<n), by setting

K ′ = {kv | k ∈ K, k ∈ Pw and (w, ak, v) ∈ ∆},
Pv = {kv | kv ∈ K ′},
kv ∼i k′v′ ⇐⇒ k ∼Ki k′ and v ∼Gi v′.

The set of epistemic successor models Next(K, (ak)k∈K) consists of the ∼∪-connected com-
ponents of Update(K, (ak)k∈K).

To unfold a game G and track the knowledge with epistemic models, we start with the
initial structure K0 as above and consider all possible action profiles a the players can take.
We get the epistemic models Next(K, a) as next states, and continue the unfolding from
there. With this dynamic process in mind, we give the following declarative definition.

I Definition 3 (Epistemic Unfolding). The epistemic unfolding of a distributed game G is a
game

Tr(G) := (V t,∆t, (∼i)i<n,W t), where

V t is the set of all epistemic models K over G with K ⊆ V ∗,
∆t = {(K, (ak)k∈K ,K′) | (ak)k∈K ∈ A|K| and K′ ∈ Next(K, (ak)k∈K)},
∼i= {(K,K) | K ∈ V t}, i.e. Tr(G) is a game with perfect information,
K0K1 · · · ∈ W t if, and only if, for each sequence π = k0k1 . . . such that kl ∈ Kl and
kl+1 = klv for some v, with (vkl

, a, v) ∈ ∆ for some a, it holds that vk0vk1 · · · ∈W .

Note that the actions in the game Tr(G) correspond to tuples of actions in the original
game: At a position K, each player i chooses a tuple of actions ((ak)i)k∈K , one for every world
of the epistemic model K. The tuple of action profiles (ak)k∈K yields the set Next(K, (ak)k∈K)
of successor models from which nature chooses the next position.

FSTTCS 2011



392 A Perfect-Information Construction for Coordination in Games

x
⊥|⊥

a, 0 a, 1

b, 0 b, 1

a|0, a|1

b|0, b|1

a
|0

,
a
|0

,
a
|0

,
a
|0

b|1,
b|1

,
b|1

,
b|1

.

.

.

.

.

.

a′, 0′ a′, 0′

a′, 0′ a′, 0′

b′, 1′ b′, 1′

b′, 1′ b′, 1′

a′, 0′ a′, 1′

b′, 0′ b′, 1′

⊥|⊥

⊥|⊥

⊥|⊥

· · ·

· · ·

x x

x x

⊥|⊥

a, 0 a, 1

b, 0 b, 1

a, 0 a, 1

b, 0 b, 1

a, 0 a, 1

b, 0 b, 1

a, 0 a, 1

b, 0 b, 1

.

.

.

Figure 2 Epistemic unfolding Tr(G‖) of the game G‖.

The winning condition of Tr(G) requires that all paths through the sequence of Kripke
structures be winning in the original game. Let us detail this for the case of observable
winning conditions (Ω,Wo). Since epistemic models are ∼∪-connected, the colouring Ω is
constant for all worlds of a position K ∈ Tr(G); we write Ω(K) for this colour. Then, we have
K0K1 · · · ∈W t if, and only if, Ω(K1)Ω(K2) . . . ∈Wo. Notice however, that this description
is not valid for infinite game graphs, as there may be infinite plays in Tr(G) for which there
is no corresponding infinite play in G. In the case of finite game graphs the above remark
follows by König’s Lemma.

Observe that, since Tr(G) is a game with perfect information, in particular all players of
the grand coalition have the same information. Thus, the grand coalition can be regarded as
a single super-player who chooses actions on behalf of every member of the coalition, and
the game can be solved as if it was a two-player game between this super-player and nature
(now regarded as a second player).

I Example 4. In Figure 2, we represent a few first steps of the epistemic unfolding Tr(G‖)
of the game G‖ from Example 1. Note that the structures get larger as more and more
knowledge of the players has to be accounted for. Also observe that, in contrast to the
standard unfolding, the branching factor in Tr(G‖) may grow with increasing level.

The following theorem explains the basic utility of the epistemic unfolding.

I Theorem 5. The grand coalition has a winning strategy in the distributed game G from v0
if, and only if, the grand coalition has a winning strategy in Tr(G) from K0.

Proof. (⇒) First, let σ = (σ0, . . . , σn−1) be a winning strategy for the coalition in G from
v0. We define the strategy σt = (σt0, . . . , σtn−1) for the coalition for Tr(G) by induction over
the length of histories of Tr(G) from K0 such that, for each history π = K0 . . .Kr consistent
with σt, every π ∈ Kr is consistent with σ. Note that, in each step r, we only need to
extend σt to histories of length r + 1 that are consistent with σt. For r = 0 the statement
is trivial. Let now πt = K0 . . .Kr be an arbitrary history of Tr(G) that is consistent with
σt. We define σt(πt) = (ak)k∈Kr

by setting ak = σ(k), for every k ∈ K. Notice that each
k ∈ Kr is a σ-history of G from v0. We observe that (ak)k∈Kr ∈ act(Kr): If k ∼i k′, then
k ∼∗i k′, and since σi is a strategy for player i for G, we have (ak)i = σi(k) = σi(k′) = (ak′)i.



D. Berwanger, Ł. Kaiser, and B. Puchala 393

Now consider a model Kr+1 ∈ Next(Kr, (ak)k∈Kr ). By definition, πtKr+1 is consistent with
σt and every π ∈ Kr+1 is consistent with σ. This concludes the induction argument.

Next, consider any play πt = K0K1 . . . in Tr(G) from K0 consistent with σt. Let now
ρ = k0k1 . . . be any path through the structures in πt. Since k0 = v0 and, by construction,
each ki = v0 . . . vi such that v0 . . . vi is a history consistent with σ, we get that v0v1 . . . ∈W ,
and thus πt ∈W t, by definition. Hence, σt is a winning strategy.

(⇐) Now let σt = (σt0, . . . , σtn−1) be a winning strategy for the coalition in Tr(G) from K0.
We define the strategy σ = (σ0, . . . , σn−1) for the coalition for G by induction over the length
of histories of G from K0 and, simultaneously, with each σ-history π = v0 . . . vr of G, we
associate a history ζ(π) = K0 . . .Kr of Tr(G) from v0, such that the following holds.

(i) π ∈ Kr;
(ii) if ρ ∼∗i π for some σ-history ρ in G from v0 and some i < n, then ζ(ρ) = ζ(π);
(iii) ζ(π) is consistent with σt;
(iv) ζ(v0 . . . vl) = K0 . . .Kl for any l ≤ r.

Note that in each step r, we only need to extend σ to histories of length r + 1 that
are consistent with σ. For π = v0 we take K0 as defined before. Now let π = v0 . . . vr
be any history of G from v0 that is consistent with σ and let ζ(π) = K0 . . .Kr. We define
σi(π) = (aπ)i, where (ak)k∈Kr := σt(ζ(π)), that means, σi(π) is the projection to the i-th
component of the action, chosen by player i at ζ(π) for the position π ∈ Kr according to σt.
First, we observe that σi is constant over ∼∗i -equivalence classes: if ρ ∼∗i π for some σ-history
ρ of G from v0, then by condition (i) and (ii) we have ρ ∈ ζ(ρ) = ζ(π), so σi(ρ) = (aρ)i.
Moreover, as π ∼∗i ρ and (ak)k∈Kr

∈ act(Kr), (aπ)i = (aρ)i.
Now let vr+1 ∈ V such that (vr, σ(π), vr+1) ∈ ∆ (i.e., πvr+1 is a σ-history) and let

Kr+1 ∈ Next(Kr, (ak)k∈Kr
) such that πvr+1 ∈ Kr+1, that means, Kr+1 is the unique ∼∪-

connected component of the epistemic model Update(K, (ak)k∈Kr ) that contains πvr+1.
Observe that, since last(π) = vr and (vr, aσ, vr+1) ∈ ∆, the history πvr+1 is contained in
Update(K, (ak)k∈Kr

), ensuring (i) and by induction (iv). By definition, ζ(πvr+1) = ζ(π)Kr+1
is consistent with σt, ensuring (iii), so it remains to show (ii), i.e. that if ρv ∼∗i πvr+1 for
some σ-history ρv of G from v0 and some i < n, then ζ(ρv) = ζ(πvr+1).

First, notice that ρv ∼∗i πvr+1 implies ρ ∼∗i π, so ζ(ρ) = ζ(π). Moreover, the construction
of ζ(πvr+1) from ζ(π) = ζ(ρ) is independent of πvr+1, except for the choice of the ∼∪-
connected component Kr+1 ∈ Next(Kr, a) of Update(K, (ak)k∈Kr

). As ρv is a σ-history with
ρ ∈ Kr, by definition of σ(ρ), we have ρv ∈ Update(Kr, (ak)k∈Kr

), since ρv ∼∗i πvr+1, ρv
and πvr+1 lie in the same ∼∪-connected component of Update(Kr, (ak)k∈Kr

,).
Finally, consider any play π = v0v1 . . . in G from v0 that is consistent with σ and let

πt = K0K1 . . . be the play in Tr(G) from K0 associated with π, i.e. ζ(v0 . . . vl) = K0 . . .Kl
for all l. By construction, any finite prefix v0v1 . . . vl is also a path through πt of the form
k0k1 . . . kl, and this extends to the whole play π. Since πt is consistent with σt and thus won
by the coalition, by definition of the winning condition W t, we get that π ∈W . J

4 Epistemic Unfolding up to Homomorphic Equivalence

We turn to the task of representing the game Tr(G) more succinctly. One simple approach
would be to identify isomorphic epistemic models; then, strategies can be transferred by
isomorphism. To obtain a more significant degree of succinctness, we show that, if the winning
condition is observable, it is sufficient to distinguish epistemic models up to homomorphic

FSTTCS 2011



394 A Perfect-Information Construction for Coordination in Games

x
⊥|⊥

a, 0 a, 1

b, 0 b, 1

a|0, a|1

b|0, b|1

a
|0

,
a
|0

,
a
|0

,
a
|0

b|1,
b|1,

b|1,
b|1

.

.

.

.

.

.

a′, 0′

b′, 1′

a′, 0′ a′, 1′

b′, 0′ b′, 1′

⊥|⊥

⊥|⊥

⊥|⊥

· · ·

· · ·

x
⊥|⊥

a, 0 a, 1

b, 0 b, 1

.

.

.

Figure 3 Epistemic unfolding Tr(G‖) quotiented by core.

equivalence. Consequently, we may take the core of each model (or any retract) instead of
the model itself while unfolding.

Essentially, epistemic unfolding up to homomorphism consists of performing the tracking
construction while identifying homomorphically equivalent models. Since there may be many
possible models equivalent to a model K, we describe this unfolding with respect to a function
q, defined on all epistemic models, which chooses for every model K a homomorphically
equivalent companion model q(K) ≈ K.

Although unfolding up to homomorphism is sound only for observable winning conditions
(Ω,Wo), we first define the notion for arbitrary winning conditions W . As in the case of the
tracking Tr(G) for games with observable winning conditions, the following definition can be
phrased equivalently using sets of colour sequences Wo ∈ Cω to describe winning conditions.

I Definition 6 (Epistemic Unfolding up to Homomorphic Equivalence).
The epistemic unfolding of a distributed G up to homomorphic equivalence, with respect to a
function q, is a game

Trq(G) := (V q,∆q, (∼i)i<n,W q), where

V q is the set {q(K) | K is an epistemic model over G},
∆q = {(K, (ak)k∈K , q(K′)) | (ak)k∈K ∈ A|K| and K′ ∈ Next(K, (ak)k∈K)},
∼i= {(K,K) | K ∈ V q}, i.e. Trq(G) is a game with perfect information,
K0K1 · · · ∈ W q if, and only if, for each sequence π = k0k1 . . . such that kl ∈ Kl and
kl+1 = q(klv) for some v, with (vkl

, a, v) ∈ ∆ for some a, it holds that vk0vk1 · · · ∈W .

I Example 7. We are particularly interested in the case when the image of the homomorphism
is the core, i.e., q(K) = core(G). In Figure 2, we presented a few positions from the epistemic
unfolding Tr(G‖). In Figure 3 we present the same situation, but these structures are now

replaced by their cores. Note that, for example,
x x

x x
gets quotiented to x and thus, from

the fourth stage, the structures are repeated. Since we identify isomorphic Kripke structures,
the game Trcore(G‖) is a finite game with perfect information.

Note that, since K ≈ K, the unfolding Trq is a generalisation of the tracking construction
Tr obtained with q(K) = K. We will extend Theorem 5 to all unfoldings Trq for games with
observable winning conditions. The key point is how to extend the homomorphisms from a
model to the next one in a tracking. This is an interesting observation in itself, we formulate
it as a separate lemma.



D. Berwanger, Ł. Kaiser, and B. Puchala 395

I Lemma 8. Let K and L be epistemic models, let h : K → L be a homomorphism, and
let (bl)l∈L be a tuple of actions for L. Then (ak)k∈K with ak = bh(k) is a tuple of actions
for K, and for each connected component K′ of Update(K, (ak)k∈K), there is a connected
component L′ of Update(L, (bl)l∈L) such that there is a homomorphism h′ : K′ → L′.

Proof. Since h is a homomorphism, (ak)k∈K is obviously a tuple of actions for K. Let K′
be a connected component of Update(K, (ak)k∈K) and consider the connected component
of Update(L, (bl)l∈L) that contains all elements h(k)v with kv ∈ K ′. Note that since K′ is
connected by ∼∪ and h is a homomorphism, the elements h(k)v are ∼∪-connected as well
and thus are included in a single L′, which we denote by h(K′). The mapping h′ : K′ → L′
with h′(kv) = h(k)v is again a homomorphism, now from K′ to L′. J

I Theorem 9. Let G be a distributed game with observable winning condition (Ω,Wo). Then,
for all q, the following are equivalent.

(1) The grand coalition has a winning strategy for G from v0.
(2) The grand coalition has a winning strategy for Tr(G) from K0.
(3) The grand coalition has a winning strategy for Trq(G) from q(K0).

Proof. The equivalence of (1) and (2) was shown already in Theorem 5.

(2) ⇒ (3) Let σt be a joint winning strategy for the grand coalition in Tr(G). We define
the joint winning strategy σq for the grand coalition in Trq(G) by induction on the length
of histories in Trq(G) and simultaneously, with each such history πq = L0L1 . . .Lr that
is consistent with σq, we associate a history µ(πq) = K0K1 . . .Kr in Tr(G), such that the
following conditions hold:

(i) µ(πq) is consistent with σt;
(ii) there is a homomorphism ν : Lr → Kr;
(iii) µ(L0L1 . . .Ls) = K0K1 . . .Ks for each s ≤ r.

For r = 1, there is only one history πq = L0 = q(K0), thus µ(πq) = K0 and the
homomorphism ν : L0 → K0 is obtained from K0 ≈ q(K0). In the following, for an epistemic
model K, let ϕK always denote a homomorphism ϕ : q(K)→ K; in this notation we write
ν = ϕK0 . Let now πqr = L0 . . .Lr be a history consistent with σq, let µ(πqr) = K0 . . .Kr
be the associated history consistent with σt, and let ν : Lr → Kr be a homomorphism
according to (ii). Consider the actions (ak)k∈Kr

= σt(µ(πqr)) prescribed by σt, given the
history µ(πqr) in the game Tr(G). We define σq(πqr) by σq(πqr)(l) = aν(l) = σt(µ(πqr))(ν(l)).
By Lemma 8, σq(πqr) is a tuple of actions for Lr. So, for any connected component L′ of
Update(Lr, σq(πqr)), the sequence πqr+1 = πqrLr+1 with Lr+1 = q(L′) is a history of Trq(G)
that is, by definition, consistent with σq. Moreover, Lemma 8 yields a homomorphism
η : L′ → K′ for a connected component K′ of Update(Kr, σt(µ(πq))). So, by composing the
homomorphism ϕLr+1 from Lr+1 to q(Lr+1) = L′ with the homomorphism η from L′ to K′
we obtain a homomorphism ν′ : Lr+1 → K′ and we set µ(πqr+1) = µ(πqr)K′. By construction,
µ(πqr+1) is consistent with σt.

Now let πq = L0L1 . . . be a play in Trq(G) consistent with σq. By (iii), the sequence
µ(L0), µ(L0L1), . . . yields a play K0K1 . . . in Tr(G) consistent with σt such that, for each
r ∈ N, there is a homomorphism νr : Lr → Kr. To show that πq is indeed a winning play,
consider any sequence π = l0l1 . . . with lr ∈ Lr and lr+1 = q(lrv) for v with (vlr , a, v) ∈ ∆ for
some a. In particular, νr(lr) ∈ Kr for each r ∈ N, so Ω(vl0)Ω(vl1) . . . = Ω(K0)Ω(K1) . . . and
as K0K1 . . . ∈W q we have Ω(vl0)Ω(vl1) . . . ∈Wo, which proves that πq is winning. Hence, σq
is a winning strategy for the grand coalition.

(3)⇒ (2) This direction follows analogously, by symmetry of homomorphic equivalence. J

FSTTCS 2011



396 A Perfect-Information Construction for Coordination in Games

Notice that, despite the symmetric argument in the proof, if q maps an epistemic model
to its core, then ϕ : K → q(K) is surjective while ϕ : q(K)→ K is injective. This allows to
prove the implication from (3) to (2) even in the case of winning conditions that are not
observable. However, the implication from (2) to (3) does not hold in general.

While the theorem above can be applied to an arbitrary tracking Trq such that q(K) ≈ K,
we will concentrate on a specific one, namely Trcore(G), obtained with the function that
maps every structure K to its core. The uniqueness of a core allows us to prove the following
remarkable property.

I Theorem 10. There exists a finite tracking Trq(G) of G if, and only if, the tracking
Trcore(G) is finite.

As a consequence, we obtain a semi-decision procedure for solving distributed games with
observable winning conditions: compute Trcore(G) and if it is finite, solve the resulting game
with perfect information. The procedure thus takes arbitrary games with observable winning
condition as input. This is in contrast with tree-automata based methods, which require a
certain information-order among the players, and hence a-priori restrict possible inputs.

5 Hierarchical Games

We present an application of our construction to hierarchical games, which were studied in
[18] and are related to the ones in [13, 7]. In particular, they subsume observable ω-regular
games with imperfect information where one player has perfect information.

A game G = (V,∆, (∼i)i<n,W ) is hierarchical, if ∼0⊆∼1⊆ . . . ⊆∼n−1, i.e., if the knowl-
edge of the players is ordered linearly: Player 0 is the best informed one, and Player n− 1
knows the least. The following theorem provides us with a bound on the size of the game of
perfect information obtained by the epistemic unfolding up to homomorphic equivalence of a
hierarchical game with imperfect information.

I Theorem 11. Let V be a finite set and n ∈ N. Up to homomorphic equivalence, there are
at most expn(|V |) different Kripke structures K = (K, (Pv)v∈V , (∼i)i<n) such that:

1. (Pv)v∈V is a partition of K
2. ∼1⊆ . . . ⊆∼n are equivalence relations
3. K is connected by

⋃n
i=1∼i.

Proof. We denote by Ψn(V ) the class of all Kripke structures K = (K, (Pv)v∈V , (∼i)i<n)
with the properties 1. - 3, and we write ∼n∪:=

⋃n−1
i=0∼i. We prove by induction that, for each

n ∈ N, there is a class Ψ≈n (V ) of Kripke structures from Ψn(V ) with |Ψ≈n (V )| = expn(|V |)
such that each structure from Ψn(V ) is homomorphically equivalent to one from Ψ≈n (V ).

First, we define Ψ≈1 (V ) as the set of all Kripke structures K = (K, (Pv)v∈V ,∼0) with
K ⊆ V , Pv = {v} for v ∈ V and ∼0= K × K. Hence, any structure in Ψ≈1 (V ) can be
identified with a subset of V , |Ψ≈1 (V )| = 2|V | = exp1(|V |). Clearly, Ψ≈1 (V ) ⊆ Ψ1(V ). Let
L = (L, (Pv)v∈V ,∼0) be any Kripke structure from Ψ1(V ). This structure is connected
by ∼0= L × L and we define a homomorphism ν on L by ν(l) = v, for the unique v ∈ V
such that l ∈ Pv. The homomorphic image ν(L) = (K, (Pv)v∈V ,∼0) of ν is in Ψ≈1 (V ) and
η : ν(L)→ L with η(v) = l for some l ∈ L ∩ Pv is a homomorphism on ν(L). Hence, L and
ν(L) are homomorphically equivalent.

For n > 1, suppose Ψ≈n−1(V ) has already been constructed. Without loss, we assume
that all Kripke structures from Ψ≈n−1(V ) are pairwise disjoint. We define Ψ≈n (V ) as the
set of all Kripke structures K = (K, (Pv)v∈V , (∼i)i<n) that consist of a union of epistemic



D. Berwanger, Ł. Kaiser, and B. Puchala 397

models from Ψ≈n−1(V ) and we set ∼n−1= K × K. Hence, any structure in Ψ≈n (V ) can
be identified with a subset of Ψ≈n−1(V ), so |Ψ≈n (V )| = 2expn−1(|V |) = expn(|V |). Now, let
L = (L, (Pv)v∈V , (∼i)i<n) be any Kripke structure from Ψn(V ). As L is connected by ∼n∪,
we have ∼n−1= L×L: any l, l′ ∈ L are connected in L via some ∼n∪-path and as ∼n−1

∪ ⊆∼n−1
and ∼n−1 is transitive, it follows that l ∼n−1 l

′.
Consider the decomposition of L into ∼n−1

∪ -connected components L1, . . . ,Lr. Clearly,
Lj ∈ Ψn−1(V ) for j = 1, . . . , r and hence, each Lj is homomorphically equivalent to a Kripke
structure from Ψ≈n−1(V ). For j ∈ {1, . . . , r} we fix a homomorphism νj on Lj such that the
image νj(Lj) is in Ψ≈n−1(V ) and a homomorphism ηj from νj(Lj) to Lj . Moreover, we define
the homomorphism ν on L by ν�Lj = νj for j = 1, . . . , r. As the components Lj are pairwise
disjoint, this is well defined and it is easy to see that the homomorphic image ν(L) is in
Ψ≈n (V ). Furthermore, we define η : ν(L)→ L as follows. For any ∼n−1

∪ -connected component
M of ν(L) there exists j ∈ {1, . . . , r} such that νj(Lj) = M and we define η�M = ηj ,
for arbitrary j. Now, η is a homomorphism and hence, L and ν(L) are homomorphically
equivalent. J

I Corollary 12. For hierarchical games with observable regular winning conditions, the
existence of a joint winning strategy for the grand coalition is decidable.

Proof. Let G be a hierarchical game with an observable winning condition (Ω,Wo) such that
Wo is regular. By Theorem 9, the grand coalition has a joint winning strategy for G if, and
only if, it has a joint winning strategy for Trcore(G), and by Theorem 11, Trcore(G) is finite.
Moreover, as we observed previously, the winning condition of Trcore(G) can be described
as W core = {L0L1 . . . ∈ (V core)ω |Ω(L0)Ω(L1) . . . ∈Wo} so W core is regular as well. Hence,
the existence of a joint winning strategy in G can be decided by solving the game Trcore(G) –
a finite game with perfect information and a regular winning condition. J

6 Outlook

We introduced the epistemic unfolding Tr(G) of a distributed game G to capture the knowledge
of players; the resulting structure is infinite for all games G of infinite duration. To obtain a
more succinct representation, we restrict to the core of the generated epistemic models and
obtain perfect information games Trcore(G) that are finite for certain game instances G, in
particular for all hierarchical ones. However, we can only guarantee that the quotient Trcore(G)
preserves winning strategies if the winning condition of G is observable. Nevertheless, even
under observable winning conditions there exist distributed games for which it is undecidable
whether a winning strategy profile exists (cf. Propositions 22-24 in [2]).

Theorem 9 and Lemma 8 demonstrate that homomorphic equivalence allows to transfer
strategies in observable games. We are persuaded that homomorphic equivalence – and not
bisimulation – is a suitable notion for a quotient. The current work brought us to the insight
that the bisimulation-based tracking introduced in our previous paper [2] does not preserve
winning strategies – the assertion of Lemma 14 of the paper is incorrect in the stated form.
We are currently preparing an erratum communication on this result, where we will also
discuss the appropriateness of homomorphic equivalence in more detail.

The construction of Trcore(G) can be done on the fly. Thus, our result provides a semi-
decision procedure for the coordinated winning strategy problem for games with imperfect
information and observable winning conditions. The procedure halts on all hierarchical
games. One important task is to characterise further game classes that are solvable in this
way, i.e. instances G for which Trcore(G) is finite. Another challenge is to develop a similar

FSTTCS 2011



398 A Perfect-Information Construction for Coordination in Games

semi-decision procedure for games with non-observable winning conditions. Does there exists
a uniform quotienting function q such that Trq(G) preserves winning strategies for all (even
non-observable) winning conditions and is finite for hierarchical games? If not, does such a
quotient qW exists for each regular (non-observable) winning condition W separately?

References
1 André Arnold and Igor Walukiewicz. Nondeterministic controllers of nondeterministic pro-

cesses. In Logic and Automata, volume 2. Amsterdam University Press, 2007.
2 Dietmar Berwanger and Łukasz Kaiser. Information tracking in games on graphs. Journal

of Logic, Language and Information, 19(4):395–412, 2010.
3 B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proc. of LICS ’05, pages

321–330. IEEE, 2005.
4 Bernd Finkbeiner and Sven Schewe. Coordination logic. In Proc. of CSL ’10, volume 6247

of LNCS, pages 305–319. Springer, 2010.
5 Paul Gastin, Benjamin Lerman, and Marc Zeitoun. Distributed games and distributed

control for asynchronous systems. In Proc. of LATIN ’04, volume 2976 of LNCS, pages
455–465. Springer, 2004.

6 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and
Infinite Games, volume 2500 of LNCS. Springer, 2002.

7 Łukasz Kaiser. Game quantification on automatic structures and hierarchical model check-
ing games. In Proc. of CSL ’06, volume 4207 of LNCS, pages 411–425. Springer, 2006.

8 Orna Kupferman and Moshe Y. Vardi. Synthesizing distributed systems. In Proc. of
LICS ’01, pages 387–396, Washington, DC, USA, 2001. IEEE Computer Society.

9 P. Madhusudan and P. S. Thiagarajan. A decidable class of asynchronous distributed
controllers. In Proc. of CONCUR ’02, volume 2421 of LNCS, pages 145–160, 2002.

10 Robert McNaughton. Infinite Games Played on Finite Graphs. Ann. Pure Appl. Logic,
65(2):149–184, 1993.

11 Swarup Mohalik and Igor Walukiewicz. Distributed games. In Proc. of FSTTCS ’03,
volume 2914 of LNCS, pages 338–351, 2003.

12 Gary L. Peterson and John H. Reif. Multiple-person alternation. In Proc. of FOCS ’79,
pages 348–363. IEEE, 1979.

13 A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In Proc. of
FOCS ’90, pages 746–757. IEEE, 1990.

14 Ramaswamy Ramanujam and Sunil Easaw Simon. A communication based model for games
of imperfect information. In Proc. of CONCUR ’10, volume 6269 of LNCS, pages 509–523.
Springer, 2010.

15 J. Reif. The complexity of two-player games of incomplete information. Journal of Com-
puter and System Sciences, 29:274–301, 1984.

16 Wolfgang Thomas. On the synthesis of strategies in infinite games. In Proc. of STACS ’95,
pages 1–13, 1995.

17 Stavros Tripakis. Undecidable problems of decentralized observation and control on regular
languages. Inf. Process. Lett., 90(1):21–28, 2004.

18 R. van der Meyden and T. Wilke. Synthesis of distributed systems from knowledge-based
specifications. In Proc. of CONCUR ’05, pages 562–576. Springer, 2005.



Efficient Approximation of Optimal Control for
Continuous-Time Markov Games∗

John Fearnley1, Markus Rabe2, Sven Schewe1, and Lijun Zhang3

1 Department of Computer Science, University of Liverpool, Liverpool, United
Kingdom

2 Department of Computer Science, Universität des Saarlandes, Saarbrücken,
Germany

3 DTU Informatics, Technical University of Denmark, Lyngby, Denmark

Abstract
We study the time-bounded reachability problem for continuous-time Markov decision processes
(CTMDPs) and games (CTMGs). Existing techniques for this problem use discretisation tech-
niques to break time into discrete intervals of size ε, and optimal control is approximated for each
interval separately. Current techniques provide an accuracy of O(ε2) on each interval, which leads
to an infeasibly large number of intervals. We propose a sequence of approximations that achieve
accuracies of O(ε3), O(ε4), and O(ε5), that allow us to drastically reduce the number of intervals
that are considered. For CTMDPs, the performance of the resulting algorithms is comparable to
the heuristic approach given by Buckholz and Schulz [5], while also being theoretically justified.
All of our results generalise to CTMGs, where our results yield the first practically implementable
algorithms for this problem. We also provide memoryless strategies for both players that achieve
similar error bounds.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, G.1.2
Approximation

Keywords and phrases Continuous time Markov decision processes and games, Discretisation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.399

1 Introduction

Probabilistic models are being used extensively in the formal analysis of complex systems,
including networked, distributed, and most recently, biological systems. Over the past 15
years, probabilistic model checking for discrete-time Markov decision processes (MDPs)
and continuous-time Markov chains (CTMCs) has been successfully applied to these rich
academic and industrial applications [8, 7, 9, 3]. However, the theory for continuous-time
Markov decision processes (CTMDPs), which mix the non-determinism of MDPs with the
continuous-time setting of CTMCs [2], is less well developed.

This paper studies the time-bounded reachability problem for CTMDPs and their ex-
tension to continuous-time Markov games, which is a model with both helpful and hostile
non-determinism. This problem is of paramount importance for model checking applica-
tions [4]. The non-determinism in the system is resolved by providing a scheduler. The

∗ This work was partly supported by the Engineering and Physical Science Research Council (EPSRC)
through the grant EP/H046623/1 ‘Synthesis and Verification in Markov Game Structures’, the Trans-
regional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS) of the DFG, and the VKR Centre of Excellence MT-LAB.

© J. Fearnley, M. Rabe, S. Schewe, and L. Zhang;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 399–410

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.399
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


400 Efficient Approximation of Optimal Control for Continuous-Time Markov Games

time-bounded reachability problem is to determine or to approximate, for a given set of goal
locations G and time bound T , the maximal (or minimal) probability of reaching G before
the deadline T that can be achieved by a scheduler.

For CTMCs, this problem can be solved efficiently by the Runge-Kutta method. How-
ever, this method requires that the target function can be continuously differentiated four
times. Once we move to the CTMDP setting, our target function is not continuously dif-
ferentiable at all. This is because changing the choice of action at a state introduces a
discontinuity in the derivative of the time bounded-reachability probability.

Early work on this problem for CTMDPs focused on restricted classes of schedulers, such
schedulers without any access to time in systems with uniform transition rates [1]. Recently
however, results have been proved for the more general class of late schedulers [13], which will
be studied in this paper. The different classes of schedulers are contrasted by Neuhäußer et.
al. [12], and they show that late schedulers are the most powerful class. Several algorithms
have been given to approximate the time-bounded reachability probabilities for CTMDPs
using this scheduler class [4, 6, 13, 15].

The current state-of-the-art techniques for solving this problem are based on different
forms of discretisation. This technique splits the time bound T into small intervals of length
ε. Optimal control is approximated for each interval separately, and these approximations
are combined to produce the final result. Current techniques can approximate optimal
control on an interval of length ε with an accuracy of O(ε2). However, to achieve a precision
of π with these techniques, one must choose ε ≈ π/T , which leads to O(T 2/π) many intervals.
Since the desired precision is often high (it is common to require that π ≤ 10−6), this leads
to an infeasibly large number of intervals that must be considered by the algorithms.

A recent paper of Buckholz and Schulz [5] has addressed this problem for practical ap-
plications, by allowing the interval sizes to vary. In addition to computing an approximation
of the maximal time-bounded reachability probability, which provides a lower bound on the
optimum, they also compute an upper bound. As long as the upper and lower bounds do not
diverge too far, the interval can be extended indefinitely. In practical applications, where
the optimal choice of action changes infrequently, this idea allows their algorithm to consider
far fewer intervals while still maintaining high precision. However, from a theoretical per-
spective, their algorithm is not particularly satisfying. Their method for extending interval
lengths depends on a heuristic, and in the worst case their algorithm may consider O(T 2/π)
intervals, which is not better than other discretisation based techniques.

Our contribution. In this paper we present a method of obtaining larger interval
sizes that satisfies both theoretical and practical concerns. Our approach is to provide
more precise approximations for each ε length interval. While current techniques provide
an accuracy of O(ε2), we propose a sequence of approximations, called double ε-nets, triple
ε-nets, and quadruple ε-nets, with accuracies O(ε3), O(ε4), and O(ε5), respectively. Since
these approximations are much more precise on each interval, they allow us to consider far
fewer intervals while still maintaining high precision. For example, Table 1 gives the number
of intervals considered by our algorithms, in the worst case, for a normed CTMDP with time
bound T = 10.

Of course, in order to become more precise, we must spend additional computational
effort. However, the cost of using double ε-nets instead of using current techniques requires
only an extra factor of log |Σ|, where Σ is the set of actions. Thus, in almost all cases, the
large reduction in the number of intervals far outweighs the extra cost of using double ε-nets.
Our worst case running times for triple and quadruple ε-nets are not so attractive: triple
ε-nets require an extra |L| · |Σ|2 factor over double ε-nets, where L is the set of locations,



J. Fearnley, M. Rabe, S. Schewe, and L. Zhang 401

Table 1 The number of intervals needed by our algorithms for precisions 10−7, 10−9, and 10−11.

Technique Error π = 10−7 π = 10−9 π = 10−11

Current techniques O(ε2) 1, 000, 000, 000 100, 000, 000, 000 10, 000, 000, 000, 000
Double ε-nets O(ε3) 81, 650 816, 497 8, 164, 966
Triple ε-nets O(ε4) 3, 219 14, 939 69, 337

Quadruple ε-nets O(ε5) 605 1, 911 6, 043

and quadruple ε-nets require yet another |L| · |Σ|2 factor over triple ε-nets. However, these
worst case running times only occur when the choice of optimal action changes frequently,
and we speculate that the cost of using these algorithms in practice is much lower than
our theoretical worst case bounds. Our experimental results with triple ε-nets support this
claim.

An added advantage of our techniques is that they can be applied to continuous-time
Markov games as well as to CTMDPs. Buckholz and Schulz restrict their analysis to
CTMDPs. Moreover, previous works on CTMGs have been restricted to simplified set-
tings, such as the time-abstract setting [4]. Therefore, to the best of our knowledge, we
present the first practically implementable approximation algorithms for the time-dependent
time-bounded reachability problem in CTMGs. Each of our approximations also provide
memoryless strategies for both players that achieve similar error bounds.

2 Preliminaries

I Definition 1. A continuous-time Markov game (or simply Markov game) is a tuple
(L,Lr, Ls,Σ,R,P, ν), consisting of a finite set L of locations, which is partitioned into
locations Lr (controlled by a reachability player) and Ls (controlled by a safety player), a
finite set Σ of actions, a rate matrix R : (L × Σ × L) → Q>0, a discrete transition matrix
P : (L× Σ× L)→ Q ∩ [0, 1], and an initial distribution ν ∈ Dist(L).

We require that the following side-conditions hold: For all locations l ∈ L, there must be an
action a ∈ Σ such that R(l, a, L) :=

∑
l′∈L R(l, a, l′) > 0, which we call enabled. We denote

the set of enabled actions in l by Σ(l). For a location l and actions a ∈ Σ(l), we require
for all locations l′ that P(l, a, l′) = R(l,a,l′)

R(l,a,L) , and we require P(l, a, l′) = 0 for non-enabled
actions. We define the size |M| of a Markov game as the number of non-zero rates in the
rate matrix R.

A Markov game is called uniform with uniformisation rate λ, if R(l, a, L) = λ holds for
all locations l and enabled actions a ∈ Σ(l). We further call a Markov game normed, if its
uniformisation rate is 1. Note that for normed Markov games we have R = P. We will
present our results for normed Markov games only. The following lemma states that our
algorithms for normed Markov games can be applied to solve Markov games that are not
normed.

I Lemma 2. We can adapt an O(f(M)) time algorithm for normed Markov games to solve
an arbitrary Markov game in time O(f(M) + |L|).

We are particularly interested in Markov games with a single player, which are
continuous-time Markov decision processes (CTMDPs). In CTMDPs all positions belong to
the reachability player (L = Lr), or to the safety player (L = Ls), depending on whether
we analyse the maximum or minimum reachability probability problem.

FSTTCS 2011



402 Efficient Approximation of Optimal Control for Continuous-Time Markov Games

lS

⊥ lR

G

l

b, 1
8

b, 7
8

a, 1
a, 1

10

a, 1
20

a, 3
20 b, 1

5

Figure 1 Left: a normed Markov game. Right: the function f within [0, 4] for lR and lS .

As a running example, we will use the normed Markov game shown in the left half
of Figure 1. Locations belonging to the safety player are drawn as circles, and locations
belonging to the reachability player are drawn as rectangles. The self-loops of the normed
Markov game are not drawn, but rates assigned to the self loops can be derived from the
other rates: for example, we have R(lR, a, lR) = 0.8. The locations G and ⊥ are absorbing,
and there is only a single enabled action for l. It therefore does not matter which player
owns l, G, and ⊥.

2.1 Schedulers and Strategies
We consider Markov games in a time interval [0, T ] with T ∈ R≥0. The non-determinism in
the system needs to be resolved by a pair of strategies for the two players which together form
a scheduler for the whole system. Formally, a strategy is a function in Pathsr/s× [0, T ]→ Σ,
where Pathsr and Pathss are the sets of finite paths l0

a0,t0−−−→ l1 . . .
an−1,tn−1−−−−−−−→ ln with ln ∈ Lr

and ln ∈ Ls, respectively. We use Sr and Ss to denote the strategies of reachability player
and the strategies of safety player, respectively, and we use Πr and Πs to denote the set of
all strategies for the reachability and safety players, respectively. (For technical reasons one
has to restrict the schedulers to those which are measurable. This restriction, however, is of
no practical relevance. In particular, simple piecewise constant timed-positional strategies
L× [0, T ]→ Σ suffice for optimal scheduling [14, 13, 2], and all schedulers that occur in this
paper are from the particularly tame class of cylindrical schedulers [14].)

If we fix a pair (Sr,Ss) of strategies, we obtain a deterministic stochastic process, which
is in fact a time inhomogeneous Markov chain, and we denote it byMSr,s

. For t ≤ T , we use
PrSr+s(t) to denote the transient distribution at time t over S under the scheduler (Sr,Ss).

Given a Markov game M, a goal region G ⊆ L, and a time bound T ∈ R≥0, we are
interested in the optimal probability of being in a goal state at time T (and the corresponding
pair of optimal strategies). This is given by:

sup
Sr∈Πr

inf
Ss∈Πs

∑
l∈G

PrSr+s
(l, T ),

where PrSr+s(l, T ) := PrSr+s(T )(l). It is commonly referred to as the maximum time-
bounded reachability probability problem in the case of CTMDPs with a reachability player
only. For t ≤ T , we define f : L × R≥0 → [0, 1], to be the optimal probability to be in the
goal region at the time bound T , assuming that we start in location l and that t time units
have passed already. By definition, it holds then that f(l, T ) = 1 if l ∈ G and f(l, T ) = 0 if
l 6∈ G. Optimising the vector of values f(·, 0) then yields the optimal value and its optimal
piecewise deterministic strategy.

Let us return to the example shown in Figure 1. The right half of the Figure shows
the optimal reachability probabilities, as given by f , for the locations lR and lS when the



J. Fearnley, M. Rabe, S. Schewe, and L. Zhang 403

time bound T = 4. The points t1 ≈ 1.123 and t2 ≈ 0.609 represent the times at which the
optimal strategies change their decisions. Before t1 it is optimal for the reachability player
to use action b at lR, but afterwards the optimal choice is action a. Similarly, the safety
player uses action b before t2, and switches to a afterwards.

2.2 Characterisation of f

We define a matrix Q such that Q(l, a, l′) = R(l, a, l′) if l′ 6= l and Q(l, a, l) =
−

∑
l′ 6=l R(l, a, l′). The optimal function f can be characterised as a set of differential

equations [2], see also [11, 10]. For each l ∈ L we define f(l, T ) = 1 if l ∈ G, and 0 if l 6∈ G.
Otherwise, for t < T , we define:

−ḟ(l, t) = opt
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · f(l′, t), (1)

where opt ∈ {max,min} is max for reachability player locations and min for safety player
locations. We will use the opt-notation throughout this paper.

Using the matrix R, Equation (1) can be rewritten to:

−ḟ(l, t) = opt
a∈Σ(l)

∑
l′∈L

R(l, a, l′) · (f(l′, t)− f(l, t)) (2)

For uniform Markov games, we simply have Q(l, a, l) = R(l, a, l) − λ, with λ = 1 for
normed Markov games. This also provides an intuition for the fact that uniformisation does
not alter the reachability probability: the rate R(l, a, l) does not appear in (1).

3 Approximating Optimal Control for Normed Markov Games

In this section we describe ε-nets, which are a technique for approximating optimal values
and strategies in a normed continuous-time Markov game. Thus, throughout the whole
section, we fix a normed Markov gameM = (L,Lr, Ls,Σ,R,P, ν).

Our approach to approximating optimal control within the Markov game is to break
time into intervals of length ε, and to approximate optimal control separately in each of the
dTε e distinct intervals. Optimal time-bounded reachability probabilities are then computed
iteratively for each interval, starting with the final interval and working backwards in time.
The error made by the approximation in each interval is called the step error. In Section 3.1
we show that if the step error in each interval is bounded, then the global error made by
our approximations is also bounded.

Our results begin with a simple approximation that finds the optimal action at the start
of each interval, and assumes that this action is optimal for the duration of the interval.
We refer to this as the single ε-net technique, and we will discuss this approximation in
Section 3.2. While it only gives a simple linear function as an approximation, this technique
gives error bounds of O(ε2), which is comparable to existing techniques.

However, single ε-nets are only a starting point for our results. Our main observation
is that, if we have a piecewise polynomial approximation of degree c that achieves an error
bound of O(εk), then we can compute a piecewise polynomial approximation of degree c+ 1
that achieves an error bound of O(εk+1). Thus, starting with single ε-nets, we can construct
double ε-nets, triple ε-nets, and quadruple ε-nets, with each of these approximations becom-
ing increasingly more precise. The construction of these approximations will be discussed
in Sections 3.3 and 3.4.

FSTTCS 2011



404 Efficient Approximation of Optimal Control for Continuous-Time Markov Games

In addition to providing an approximation of the time-bounded reachability probabilities,
our techniques also provide memoryless strategies for both players. For each level of ε-net, we
will define two approximations: the function p1 is the approximation for the time-bounded
reachability probability given by single ε-nets, and the function g1 gives the reachability
probability obtained by following the memoryless strategy that is derived from p1. This
notation generalises to deeper levels of ε-nets: the functions p2 and g2 are produced by
double ε-nets, and so on.

We will use E(k, ε) to denote the difference between pk and f . In other words, E(k, ε) gives
the difference between the approximation pk and the true optimal reachability probabilities.
We will use Es(k, ε) to denote the difference between gk and f . We defer formal definition
of these measures to subsequent sections. Our objective in the following subsections is to
show that the step errors E(k, ε) and Es(k, ε) are in O(εk+1), with small constants.

3.1 Step Error and Global Error

In subsequent sections we will prove bounds on the ε-step error made by our approximations.
This is the error that is made in a single interval of length ε. However, in order for our
approximations to be valid, they must provide a bound on the global error, which is the
error made by our approximations over every ε interval. In this section, we prove that, if
the ε-step error of an approximation is bounded, then the global error of the approximation
is bounded by the sum of these errors.

We define f : [0, T ] → [0, 1]|L| as the vector valued function f(t) 7→
⊗

l∈L f(l, t) that
maps each point of time to a vector of reachability probabilities, with one entry for each
location. Given two such vectors f(t) and p(t), we define the maximum norm ‖f(t)−p(t)‖ =
max{|f(l, t)− p(l, t)| | l ∈ L}, which gives the largest difference between f(l, t) and p(l, t).

We also introduce notation that will allow us to define the values at the start of an ε

interval. For each interval [t − ε, t], we define f tx : [t − ε, t] → [0, 1]|L| to be the function
obtained from the differential equations (1) when the values at the time t are given by the
vector x ∈ [0, 1]|L|. More formally, if τ = t then we define f tx(τ) = x, and if t − ε ≤ τ < t

and l ∈ L then we define:

−ḟ tx(l, τ) = opt
a∈Σ(l)

∑
l′∈L

Q(l, a, l′)f tx(l′, τ). (3)

The following lemma states that if the ε-step error is bounded for every interval, then
the global error is simply the sum of these errors.

I Lemma 3. Let p be an approximation of f that satisfies ‖f(t)− p(t)‖ ≤ µ for some time
point t ∈ [0, T ]. If ‖f tp(t)(t− ε)− p(t− ε)‖ ≤ ν then we have ‖f(t− ε)− p(t− ε)‖ ≤ µ+ ν.

3.2 Single ε-Nets

In single ε-nets, we compute the gradient of the function f at the end of each interval, and
we assume that this gradient remains constant throughout the interval. This yields a linear
approximation function p1, which achieves a local error of ε2.

We now define the function p1. For initialisation, we define p1(l, T ) = 1 if l ∈ G and
p1(l, T ) = 0 otherwise. Then, if p1 is defined for the interval [t, T ], we will use the following
procedure to extend it to the interval [t− ε, T ]. We first determine the optimising enabled



J. Fearnley, M. Rabe, S. Schewe, and L. Zhang 405

actions for each location for f tp1(t) at time t. That is, we choose, for all l ∈ L, an action:

atl ∈ arg opt
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · p1(l′, t). (4)

We then fix ctl =
∑
l′∈L Q(l, atl , l′) · p1(l′, t) as the descent of p1(l, ·) in the interval [t− ε, t].

Therefore, for every τ ∈ [0, ε] and every l ∈ L we have:

−ṗ1(l, t− τ) = ctl and p1(l, t− τ) = p1(l, t) + τ · ctl .

Let us return to our running example. We will apply the approximation p1 to the example
shown in Figure 1. We will set ε = 0.1, and focus on the interval [1.1, 1.2] with initial values
p1(G, 1.2) = 1, p1(l, 1.2) = 0.244, p1(lR, 1.2) = 0.107, p1(lS , 1.2) = 0.075, p1(⊥, 1.2) = 0.
These are close to the true values at time 1.2. Note that the point t1, which is the time at
which the reachability player switches the action played at lR, is contained in the interval
[1.1, 1.2]. Applying Equation (4) with these values allows us to show that the maximising
action at lR is a, and the minimising action at lS is also a. As a result, we obtain the
approximation p1(lR, t− τ) = 0.0286τ + 0.107 and p1(lS , t− τ) = 0.032τ + 0.075.

We now prove error bounds for p1. Recall that E(1, τ) denotes the difference between f
and p1 after τ time units. We can now formally define this error, and prove the following
bounds.

I Lemma 4. If ε ≤ 1, then E(1, ε) := ‖f tp1(t)(t− ε)− p1(t− ε)‖ ≤ ε2.

The approximation p1 can also be used to construct strategies for the two players with
similar error bounds. We will describe the construction for the reachability player. The
construction for the safety player can be derived analogously.

The strategy for the reachability player is to play the action chosen by p1 during the
entire interval [t−ε, t]. We will define a system of differential equations g1(l, τ) that describe
the outcome when the reachability fixes this strategy, and when the safety player plays an
optimal counter strategy. For each location l, we define g1(l, t) = f tp1(t)(l, t), and we define
g1(l, τ), for each τ ∈ [t− ε, t], as:

−ġ1(l, τ) =
∑
l′∈L

Q(l, atl , l′) · g1(l′, τ) if l ∈ Lr, (5)

−ġ1(l, τ) = min
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · g1(l′, τ) if l ∈ Ls. (6)

We can prove the following bounds for Es(1, ε), which is the difference between g1 and
f tp1(t) on an interval of length ε.

I Lemma 5. We have Es(1, ε) := ‖g1(t− ε)− f tp1(t)(t− ε)‖ ≤ 2 · ε2.

Lemma 4 gives the ε-step error for p1, and we can apply Lemma 3 to show that the
global error is bounded by ε2 · Tε = εT . If π is the required precision, then we can choose
ε = π

T to produce an algorithm that terminates after T
ε ≈

T 2

π many steps. Hence, we obtain
the following known result.

I Theorem 6. For a normed Markov game M of size |M|, we can compute a π-optimal
strategy and determine the quality ofM up to precision π in time O(|M| · T · Tπ ).

FSTTCS 2011



406 Efficient Approximation of Optimal Control for Continuous-Time Markov Games

a

[1.1

b
a

1.2]1.2− z

b

Figure 2 This figure shows how −ṗ2 is computed on the interval [1.1, 1.2] for the location lR.
The function is given by the upper envelope of the two functions: it agrees with the quality of a on
the interval [1.2− z, 1.2] and with the quality of b on the interval [1.1, 1.2− z].

3.3 Double ε-Nets
In this section we show that only a small amount of additional computation effort needs to
be expended in order to dramatically improve over the precision obtained by single ε-nets.
This will allow us to use much larger values of ε while still retaining our desired precision.

In single ε-nets, we computed the gradient of f at the start of each interval and assumed
that the gradient remained constant for the duration of that interval. This gave us the
approximation p1. The key idea behind double ε-nets is that we can use the approximation p1
to approximate the gradient of f throughout the interval.

We define the approximation p2 as follows: we have p2(l, T ) = 1 if l ∈ G and 0 otherwise,
and if p2(l, τ) is defined for every l ∈ L and every τ ∈ [t, T ], then we define p2(l, τ) for every
τ ∈ [t− ε, t] as:

−ṗ2(l, τ) = opt
a∈Σ(l)

∑
l′∈L

R(l, a, l′) · (p1(l′, τ)− p1(l, τ)) ∀l ∈ L. (7)

By comparing Equations (7) and (2), we can see that double ε-nets uses p1 as an approx-
imation for f during the interval [t − ε, t]. Furthermore, in contrast to p1, note that the
approximation p2 can change it’s choice of optimal action during the interval. The ability
to change the choice of action during an interval is the key property that allows us to prove
stronger error bounds than previous work.

I Lemma 7. If ε ≤ 1 then E(2, ε) := ‖p2(τ)− f tp2(t)(τ)‖ ≤ 2
3ε

3.

Let us apply the approximation p2 to the example shown in Figure 1. We will again use
the interval [1.1, 1.2], and we will use initial values that were used when we applied single
ε-nets to the example in Section 3.2. We will focus on the location lR. From the previous
section, we know that p1(lR, t− τ) = 0.0286τ + 0.107, and for the actions a and b we have:
•

∑
l′∈L R(lR, a, l′)p1(l′, t− τ) = 1

20 + 4
5p1(lR, t− τ),

•
∑
l′∈L R(lR, b, l′)p1(l′, t− τ) = 1

5p1(l, t− τ) + 4
5p1(lR, t− τ).

These functions are shown in Figure 2. To obtain the approximation p2, we must take the
maximum of these two functions. Since p1 is a linear function, we know that these two
functions have exactly one crossing point, and it can be determined that this point occurs
when p1(l, t − τ) = 0.25, which happens at τ = z := 5

63 . Since z ≤ 0.1 = ε, we know that
the lines intersect within the interval [1.1, 1.2]. Consequently, we get the following piecewise
quadratic function for p2:
• When 0 ≤ τ ≤ z, we use the action a and obtain −ṗ2(lR, t − τ) = −0.00572τ + 0.0286,

which implies that p2(lR, t− τ) = −0.00286τ2 + 0.0286τ + 0.107.
• When z < τ ≤ 0.1 we use action b and obtain −ṗ2(lR, t− τ) = 0.0094τ + 0.0274, which

implies that p2(lR, t− τ) = 0.0047τ2 + 0.0274τ + 0.107047619.



J. Fearnley, M. Rabe, S. Schewe, and L. Zhang 407

As with single ε-nets, we can provide a strategy that obtains similar error bounds.
Once again, we will consider only the reachability player, because the proof can easily be
generalised for the safety player. In much the same way as we did for g1, we will define
a system of differential equations g2(l, τ) that describe the outcome when the reachability
player plays according to p2, and the safety player plays an optimal counter strategy. For
each location l, we define g2(l, t) = f tp2(t)(l, t). If aτl denotes the action that maximises
Equation (7) at the time point τ ∈ [t− ε, t], then we define g2(l, τ), as:

−ġ2(l, τ) =
∑
l′∈L

Q(l, aτl , l′) · g2(l′, τ) if l ∈ Lr, (8)

−ġ2(l, τ) = min
a∈Σ(l)

∑
l′∈L

Q(l, a, l′) · g2(l′, τ) if l ∈ Ls. (9)

The following lemma proves that difference between g2 and f tp2(t) has similar bounds to
those shown in Lemma 7

I Lemma 8. If ε ≤ 1 then we have Es(2, ε) := ‖g2(t− ε)− f tp2(t)(t− ε)‖ ≤ 2 · ε3.

Computing the approximation p2 for an interval [t − ε, t] is not expensive. The fact
that p1 is linear implies that each action can be used for at most one subinterval of [t− ε, t].
Therefore, there are less than |Σ| points at which the strategy changes, which implies that p2
is a piecewise quadratic function with at most |Σ| pieces. It is possible to design an algorithm
that uses sorting to compute these switching points, achieving the following complexity.

I Lemma 9. Computing p2 for an interval [t− ε, t] takes O(|M|+ |L| · |Σ| · log |Σ|) time.

Since the ε-step error for double ε-nets is bounded by ε3, we can apply Lemma 3 to
conclude that the global error is bounded by ε3 · Tε = ε2T . Therefore, if we want to compute
f with a precision of π, we should choose ε ≈

√
π
T , which gives T

ε ≈
T 1.5
√
π

distinct intervals.

I Theorem 10. For a normed Markov game M we can approximate the time-bounded
reachability, construct π optimal memoryless strategies for both players, and determine the
quality of these strategies with precision π in time O(|M| ·T ·

√
T
π + |L| ·T ·

√
T
π · |Σ| log |Σ|).

3.4 Triple ε-Nets and Beyond
The techniques used to construct the approximation p2 from the approximation p1 can be
generalised. This is because the only property of p1 that is used in the proof of Lemma 7 is
the fact that it is a piecewise polynomial function that approximates f . Therefore, we can
inductively define a sequence of approximations pk as follows:

−ṗk(l, τ) = opt
a∈Σ(l)

∑
l′∈L

R(l, a, l′) · (pk−1(l′, τ)− pk−1(l, τ)) (10)

We can repeat the arguments from the previous sections to obtain the following error bounds:

I Lemma 11. For every k > 2, if we have E(k, ε) ≤ c · εk+1, then we have E(k + 1, ε) ≤
2
k+2 · c · ε

k+2. Moreover, if we additionally have that Es(k, ε) ≤ d · εk+1, then we also have
that Es(k + 1, ε) ≤ 8c+3d

k+2 · ε
k+2.

Computing the accuracies explicitly for the first four levels of ε-nets gives:

k 1 2 3 4 . . .

E(k, ε) ε2 2
3ε

3 1
3ε

4 2
15ε

5 . . .

Es(k, ε) 2ε2 2ε3 17
6 ε

4 67
30ε

5 . . .

FSTTCS 2011



408 Efficient Approximation of Optimal Control for Continuous-Time Markov Games

We can also compute, for a given precision π, the value of ε that should be used in order
to achieve an accuracy of π with ε-nets of level k.

I Lemma 12. To obtain a precision π with an ε-net of level k, we choose ε ≈ k
√

π
T , resulting

in T
ε ≈ T

k

√
T
π steps.

Unfortunately, the cost of computing ε-nets of level k becomes increasingly prohibitive
as k increases. To see why, we first give a property of the functions pk. Recall that p2
is a piecewise quadratic function. It is not too difficult to see how this generalises to the
approximations pk.

I Lemma 13. The approximation pk is piecewise polynomial with degree less than or equal
to k.

Although these functions are well-behaved in the sense that they are always piecewise
polynomial, the number of pieces can grow exponentially in the worst case. The following
lemma describes this bound.

I Lemma 14. If pk−1 has c pieces in the interval [t−ε, t], then pk has at most 1
2 ·c·k ·|L|·|Σ|

2

pieces in the interval [t− ε, t].

The upper bound given above is quite coarse, and we would be surprised if it were found
to be tight. Moreover, we do not believe that the number of pieces will grow anywhere close
to this bound in practice. This is because it is rare, in our experience, for optimal strategies
to change their decision many times within a small time interval.

However, there is a more significant issue that makes ε-nets become impractical as k
increases. In order to compute the approximation pk, we must be able to compute the
roots of polynomials with degree k − 1. Since we can only efficiently compute the roots
of quadratic functions, and efficiently approximate the roots of cubic functions, only the
approximations p3 and p4 are realistically useful.

Once again it is possible to provide a smart algorithm that uses sorting in order to find
the switching points in the functions p3 and p4, which gives the following bounds on the
cost of computing them.

I Theorem 15. For a normed MarkovM we can construct π optimal memoryless strategies
for both players and determine the quality of these strategies with precision π in time
O(|L|2 · 3

√
T
π ·T ·|Σ|

4 log |Σ|) when using triple ε-nets, and in time O(|L|3 · 4
√

T
π ·T ·|Σ|

6 log |Σ|)
when using quadruple ε-nets.

It is not clear if triple and quadruple ε-nets will only be of theoretical interest, or if
they will be useful in practice. It should be noted that the worst case complexity bounds
given by Theorem 15 arise from the upper bound on the number of switching points given
in Lemma 14. Thus, if the number of switching points that occur in practical examples
is small, these techniques may become more attractive. Our experiments in the following
section give some evidence that this may be true.

4 Experimental Results and Conclusion

In order to test the practicability of our algorithms, we have implemented both double and
triple-ε nets. We evaluated these algorithms on two sets of examples. Firstly, we tested
our algorithms on the Erlang-example (see Figure 3) presented in [4] and [15]. We chose



J. Fearnley, M. Rabe, S. Schewe, and L. Zhang 409

l1

Erlang(30,10)

. . . l4

l3 l5

a,1

b,1

10 10 10 10

a,0.5
a,0.5

Figure 3 A CTMDP offering the choice between a long chain of fast transition and a slower path
that looses some probability mass in l5.

Table 2 Experimental evalutation of our algorithms.

Erlang model Game model
precision \ method MRMC [4] Double-nets Triple-nets Double-nets Triple-nets

10−4 0.05 s 0.04 s 0.01 s 0.29 s 0.06 s
10−5 0.20 s 0.10 s 0.02 s 0.93 s 0.13 s
10−6 1.32 s 0.32 s 0.03 s 2.94 s 0.28 s
10−7 8 s 0.98 s 0.06 s 9.35 s 0.60 s
10−8 475 s 3.11 s 0.12 s 29.21 s 1.29 s
10−9 — 9.91 s 0.27 s 94 s 2.78 s
10−10 — 31.24 s 0.58 s 299 s 6.05 s

to consider the same parameters used by those papers: we consider maximal probability to
reach location l4 from l1 within 7 time units. Since this example is a CTMDP, we were able to
compare our results with the Markov Reward Model Checker (MRMC) [4] implementation,
which includes an implementation of the techniques proposed by Buckholz and Schulz.

We also tested our algorithms on continuous-time Markov games, where we used
the model depicted in Figure 4, consisting of two chains of locations l1, l2, . . . , l100 and
l′1, l
′
2, . . . , l

′
100 that are controlled by the maximising player and the minimising player, re-

spectively. This example is designed to produce a large number of switching points. In
every location li of the maximising player, there is the choice between the short but slow
route along the chain of maximising locations, and the slightly longer route which uses the
minimising player’s locations. If very little time remains, the maximising player prefers
to take the slower actions, as fewer transitions are required to reach the goal using these
actions. The maximiser also prefers these actions when a large amount of time remains.
However, between these two extremes, there is a time interval in which it is advantageous
for the maximising player to take the action with rate 3. A similar situation occurs for the
minimising player, and this leads to a large number of points where the players change their
strategy.

The results of our experiments are shown in Table 2. The MRMC implementation was
unable to provide results for precisions beyond 1.86 · 10−9. For the Erlang examples we
found that, as the desired precision increases, our algorithms draw further ahead of the
current techniques. The most interesting outcome of these experiments is the validation
of triple ε-nets for practical use. While the worst case theoretical bounds arising from
Lemma 14 indicated that the cost of computing the approximation for each interval may
become prohibitive, these results show that the worst case does not seem to play a role in
practice. In fact, we found that the number of switching points summed over all intervals
and locations never exceeded 2 in this example.

FSTTCS 2011



410 Efficient Approximation of Optimal Control for Continuous-Time Markov Games

. . .

. . .

G

⊥

l1 l2 l99 l100

l ′1 l ′2 l ′99 l ′100

1 1 1 1 1

5 5 5 5

a,3

a,2

3 3 3 33 3 3 3

Figure 4 A CTMG with many switching points.

Our results on Markov games demonstrate that our algorithms are capable of solving non-
trivially sized games in practice. Once again we find that triple ε-nets provide a substantial
performance increase over double ε-nets, and that the worst case bounds given by Lemma 14
do not seem occur. Double ε-nets found 297 points where the strategy changed during an
interval, and triple ε-nets found 684 such points. Hence, the |L||Σ|2 factor given in Lemma 14
does not seem to arise here.

References
1 C. Baier, H. Hermanns, J.-P. Katoen, and B. Haverkort. Efficient computation of time-

bounded reachability probabilities in uniform continuous-time Markov decision processes.
Theoretical Computer Science, 345(1):2–26, 2005.

2 R. Bellman. Dynamic Programming. Princeton University Press, 1957.
3 M. Bozzano, A. Cimatti, M. Roveri, J.-P. Katoen, V. Y. Nguyen, and T. Noll. Verification

and performance evaluation of AADL models. In ESEC/SIGSOFT FSE, pages 285–286,
2009.

4 P. Buchholz, E. M. Hahn, H. Hermanns, and L. Zhang. Model checking algorithms for
CTMDPs. In Proc. of CAV, pages 225–242, 2011.

5 P. Buchholz and I. Schulz. Numerical analysis of continuous time Markov decision processes
over finite horizons. Computers and Operations Research, 38(3):651–659, 2011.

6 T. Chen, T. Han, J.-P. Katoen, and A. Mereacre. Computing maximum reachability
probabilities in Markovian timed automata. Technical report, RWTH Aachen, 2010.

7 N. Coste, H. Hermanns, E. Lantreibecq, and W. Serwe. Towards performance prediction
of compositional models in industrial gals designs. In Proc. of CAV, pages 204–218, 2009.

8 H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006: A toolbox for the con-
struction and analysis of distributed processes. In Proc. of CAV, pages 158–163, 2007.

9 T. A. Henzinger, M. Mateescu, and V. Wolf. Sliding window abstraction for infinite Markov
chains. In Proc. of CAV, pages 337–352, 2009.

10 A. Martin-Löfs. Optimal control of a continuous-time Markov chain with periodic transition
probabilities. Operations Research, 15(5):872–881, 1967.

11 B. L. Miller. Finite state continuous time Markov decision processes with a finite planning
horizon. SIAM Journal on Control, 6(2):266–280, 1968.

12 M. R. Neuhäußer, M. Stoelinga, and J.-P. Katoen. Delayed nondeterminism in continuous-
time Markov decision processes. In Proc. of FOSSACS, pages 364–379, 2009.

13 M. R. Neuhäußer and L. Zhang. Time-bounded reachability probabilities in continuous-
time Markov decision processes. In Proc. of QEST, pages 209–218, 2010.

14 M. Rabe and S. Schewe. Finite optimal control for time-bounded reachability in continuous-
time Markov games and CTMDPs. Acta Informatica, pages 291–315, 2011.

15 L. Zhang and M. R. Neuhäußer. Model checking interactive Markov chains. In Proc. of
TACAS, pages 53–68, 2010.



Minimal Disclosure in Partially Observable Markov
Decision Processes
Nathalie Bertrand1 and Blaise Genest2

1 INRIA Rennes Bretagne Atlantique, France
2 CNRS, UMI IPAL, joint with NUS and A*STAR/I2R, Singapore

Abstract
For security and efficiency reasons, most systems do not give the users a full access to their
information. One key specification formalism for these systems are the so called Partially Ob-
servable Markov Decision Processes (POMDP for short), which have been extensively studied in
several research communities, among which AI and model-checking. In this paper we tackle the
problem of the minimal information a user needs at runtime to achieve a simple goal, modeled
as reaching an objective with probability one. More precisely, to achieve her goal, the user can
at each step either choose to use the partial information, or pay a fixed cost and receive the
full information. The natural question is then to minimize the cost the user needs to fulfill her
objective. This optimization question gives rise to two different problems, whether we consider
to minimize the worst case cost, or the average cost. On the one hand, concerning the worst case
cost, we show that efficient techniques from the model checking community can be adapted to
compute the optimal worst case cost and give optimal strategies for the users. On the other hand,
we show that the optimal average price (a question typically considered in the AI community)
cannot be computed in general, nor can it be approximated in polynomial time even up to a
large approximation factor.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, G.3 Probability and Statistics, Markov Processes

Keywords and phrases Partially Observable Markov Decision Processes, Stochastic Games,
Model-Checking, Worst-Case/Average-Case Analysis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.411

1 Introduction

Partially Observable Markov Decision Processes (POMDP for short) form a powerful model
to describe systems where part of the information is not accessible at runtime by the user,
and where the effect of the user actions is randomized. Partial observation happens virtually
in every real life systems for various reasons, e.g. complexity, privacy or security. The usual
question is given the observation at runtime and the (offline) POMDP description of the
complete system, can a user achieve some goal or optimize some value?

In this paper, rather than considering that the partial information is rigidly fixed, we
aim at evaluating several observation schemes. In applications where partial observation
arises from complexity reasons, the system should provide at runtime the weakest observa-
tion which still allows to achieve a given goal, as it would also have the minimum cost of
deployment. On the contrary, in the context of security, the objective is to design a secure
system preventing an attacker to achieve her goal, by giving her only partial access to the
state of the system. Knowing that the partial observation scheme may be vulnerable, one

© N. Bertrand and B. Genest;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 411–422

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.411
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


412 Minimal Disclosure in Partially Observable Markov Decision Processes

may be extremely careful and analyze the additional information (obtained by punctually
attacking the partial observation) an attacker needs at runtime to achieve her objective.

We analyze in depth the simplest such framework to which many problems can be re-
duced: The aim of the user is to reach with probability 1 a set Goal of states. We consider
only two alternatives of information: by default, the user gets a fixed partial information;
If requested, she can also obtain full information on the current state of the system. In
this framework, each execution is naturally assigned a “cost” – the number of times the full
information is requested – and the user always aims at minimizing this amount. Now, giving
a value to a strategy reaching Goal can be done in two different meaningful ways: either the
worst case cost the user can have to pay or the average cost she pays, while following this
strategy. For both options, the objective is to compute the optimal cost (among almost-
sure winning strategies) and if possible synthesize a family of strategies approximating this
optimal for smaller and smaller approximation factors.

A first contribution is to show that efficient model-checking techniques can be adapted
to compute the worse case cost. Furthermore, we design optimal strategies in such cases
and prove that strategies with finite memory, based on the set B of so-called (discrete) belief
states, are optimal. A belief state represents the set of states the system can be in after a
given sequence of actions and observations. First, we check in polynomial time that Goal
can be reached with probability 1 using req unrestrictedly. If it is not the case, the whole
procedure is pointless. Assuming Goal can be reached almost surely, we define a family of
generic strategies (σncan)n∈N with memory state in B and which is almost-surely winning. To
improve the worst case cost of these strategies, we compute the set of states from which Goal
can be reached with probability 1 without ever requesting the full information, then the set
of states requesting the full information at most once, at most twice etc. The whole process
terminates in time polynomial in |B|, and gives associated strategies with finite memory
B. Of course, |B| is at worse exponential in the number of states of the POMDP. The
memory-size of these strategies, as well as the complexity of our algorithm are thus optimal
since deciding whether Goal can be reached almost-surely without any requests (a simple
subproblem) is EXPTIME-complete and requires strategies with exponential memory [6].
We illustrate the approach on a simple example for which we analyze the family of strategies,
and show that it is optimal also for average cost on this particular instance.

However, this optimality result for average cost in this simple example is far from being
generally true. Indeed, first of all, we prove that computing optimal average cost for a
POMDP under a reachability objective is undecidable. Even worse, it is undecidable to even
approximate it, whatever the approximation factor. At last, we give non approximability
factors exponential in the size of the system, and prove that there is no algorithm running
in polynomial time in the number of belief states to approximate the optimal average cost
within that factor, even over finite horizon, for which the undecidability result does not hold.

Related work

The POMDP model has been studied by at least two communities: first by the Artificial
Intelligence and Operations Research community where mostly the problem consists in op-
timizing a reward function. Here, the results are twofold. First, they propose heuristics
to obtain policies to get good rewards, using value iteration, grid-based algorithms [11],
strategy improvement [10], etc.; see for instance [14] for a survey. Also, they analyze the
complexity class in which such problem falls: It is undecidable in general to compute or
approximate the optimal reward [13], and it is NP-complete to do it in finite horizon [12].
Compared to these works, we consider a particular cost function which cannot be expressed



N. Bertrand and B. Genest 413

as a reward, and our lower bound results needs only a polynomial number of belief states.
More recently, the Model Checking community considered POMDP, where the question

was mainly qualitative (probability 1 or positive) over a navigational goal: reachability or
safety (avoiding to reach a state), once or repeatedly. The problem of reachability with
probability 1 is the dual problem of safety with positive probability. These problems are
EXPTIME-complete in general [6] and PSPACE-complete when the user has no observation
at all [16, 4]. While visiting infinitely often a state almost-surely has the same complexity as
almost sure reachability, reaching infinitely often a state with positive probability is unde-
cidable for POMDP [1]. Surprisingly, with a slight constraint on these infinitely many visits,
namely that the limit average number of times the goal is visited shall be positive, this last
problem is decidable [16]. More complex systems than POMDP have been considered, where
two partially informed players have opposite objectives: the results on POMDP mentionned
above basically carry over [2]. More general winning conditions have also been studied [5].
Only very recently (up to our knowledge), both a particular numerical function (energy)
and navigational goal were considered [9].

The closest work to ours is by Chatterjee et al [8, 7], where the problem is the existence of
a controller with limited budget (and of an optimal controller) achieving an omega-regular
objective in an imperfect information game. In this work and similarly to ours, partial
observation of the controller is not fixed and varies according to the choices of the controller
to allocate its budget. The main difference from our setting is that the arena as well as the
strategy of the controller are pure, that is, they do not incorporate probabilities.

Controllers that dynamically request access to more precise information (e.g. by ac-
tivating sensors) have also been considered in control and diagnosis for discrete event sys-
tems [15, 3].

2 Notations

Given S a finite set, let Dist(S) denote the set of distributions over S, that is functions
d : S → [0, 1] such that

∑
s∈S d(s) = 1. The support of distribution d is defined as Supp(d) =

{s ∈ S | d(s) > 0}. If d is the Dirac distribution associated with s ∈ S (that is d(s) = 1 and
d(t) = 0 for every t 6= s) we will abuse notation and simply write d = s.

I Definition 1 ((PO)MDP). A Markov decision process (MDP) is tuple (Q,Act,∆) where
Q is a finite set of states, Act is a finite set of actions, and ∆ : Q × Act → Dist(Q) is the
transition function.

A partially observable MDP (POMDP) is a tupleM = (Q,Act,∆,Part), where (Q,Act,∆)
is an MDP, and Part is a partition of Q. Elements of Part are called observations.

Given a POMDP (Q,Act,∆,Part) the underlying MDP (Q,Act,∆) is alternatively called the
FOMDP, for Fully Observable MDP. Intuitively, in a POMDP, from state s, if action a is
chosen, the next state is t with probability ∆(s, a)(t) and the controller receives observation
O ∈ Part such that p ∈ O. Of course, any MDP can be seen as a POMDP by setting Part as
the set of all singletons sets. In the sequel, we always assume a fixed starting state s0 and
also distinguish a goal (set of) state(s) Goal. We assume for convenience that being in Goal
is observable, that is for all P ∈ Part, P ⊆ 2Goal ∩ P or P ⊆ 2Q\Goal.

An example of POMDP is given in Figure 1, where Part =
{
{1, 2, 3}, {Goal}, {4}

}
and

the non-trivial set of the partition is represented by a grey area.
In this paper, given a POMDP (Q,Act,∆,Part), we assume that the controller can per-

form an extra action req /∈ Act whose effect is to disclose the precise state of the FOMDP.

FSTTCS 2011



414 Minimal Disclosure in Partially Observable Markov Decision Processes

1

2

3

Goal

4

a,1/3

a,1/3

a,1/3

a

a

b

c

c

b

Figure 1 A simple POMDP

More precisely, the observation the controller receives after a request action req is {s} if the
current state is s ∈ Q. The set of possible observations, denoted O, thus consists of the
partition Part, together with Single = {{s} | s ∈ Q}. The probabilistic transition function
is extended to Act′ = Act ∪ {req} by defining ∆(s, req) as the Dirac distribution associated
with observation {s}. Our high-level aim is to design a strategy of chosing actions to play
based only on the sequence of actions played and observations received, such that the goal
can be reached. Notice that from s0 = 1, one needs to play a as no other choice is possible.
A possible outcome is to reach state 1 again, hence for any choice of actions, there will
always be a possibility to not reach Goal. Hence our aim is instead to ensure that Goal is
reached, unless being terribly unlucky. Formally, we want the set of paths reaching Goal to
have probability 1. We define the probability space of G by extending the POMDP to Act′.

2.1 Belief States
Let (a1, O1) · · · (ai, Oi) ∈ (Act×Part∪{req}×Single)∗ be a sequence of actions played and ob-
servations received. We define B(s0, (a1, O1) · · · (ai, Oi)) as the set of states s ∈ Q such that
for all 0 ≤ j ≤ i there exists tj with t0 = s0, ti = s, tj ∈ Oj and ∆(tj−1, aj)(tj) >

0. Intuitively if actions a1 · · · ai have been played and observations O1 · · ·Oi were re-
ceived, the set of possible states are exactly those in B(s0, (a1, O1) · · · (ai, Oi)). The set
B(s0, (a1, O1) · · · (ai, Oi)) can be computed inductively:

B(s0, (a1, O1) · · · (ai, Oi)) = Oi∩{t | ∃s ∈ B(s0, (a1, O1) · · · (ai−1, Oi−1)), ∆(s, ai)(t) > 0}.

The set Path of possible finite paths consists in all ρ = (a1, O1) · · · (an, On) ∈ (Act×Part∪
{req} × Single)∗ such that B(s0, (a1, O1) · · · (an, On)) 6= ∅. Moreover, the set of reachable
belief states is defined by B = {B(s0, ρ) | ρ ∈ Path}. For the example POMDP of Figure 1
the graph of reachable belief states is depicted in Figure 2. The number of belief states is
at worst exponential in the number of states, but often, it is not that big.

Given a finite path ρ, B(s0, ρ) only gives the set of states the POMDP can be after
executing ρ, but the precise probability to be in each state is unknown. The distribu-
tions D(s0, ρ) and D(s0, ρ, a) over states after a prefix of path (that is, ρ or ρa, with
ρ ∈ Path and a ∈ Act′) can be defined by induction. Assuming ρ = ρ′(a,O), and D(s0, ρ

′)
is known, D(s0, ρ

′, a) is defined by D(s0, ρ
′, a)(s) =

∑
tD(s0, ρ

′)(t) × ∆(t, a)(s). Then,
taking the observation into account yields: D(s0, ρ)(s) = 0 if s /∈ O, else D(s0, ρ)(s) =
D(s0, ρ

′, a)(s)/
∑
s∈OD(s0, ρ

′, a)(s).
Of course, the discrete belief after ρ can be recovered from the probabilistic belief:

B(s0, ρ) = Supp(D(s0, ρ)).



N. Bertrand and B. Genest 415

1 1,2,3

2

3

Goal

4

a

a

a

a
b

c

c

b

req

req

req

b,c

b,c

Figure 2 Graph of reachable belief states for the POMDP in Figure 1

2.2 Strategy

A strategy σ : Path→ Dist(Act′) for the controller is a function which associates with any pos-
sible path a distribution over the extended set of actions Act′. Given a strategy σ, a possible
path (a1, O1) · · · (an, On) ∈ Path is called a σ-path if ai+1 ∈ Supp

(
σ((a1, O1) · · · (ai, Oi))

)
for all i < n. When a fixed strategy σ is played, it is easy to define the probabil-
ity that a possible path occurs, as follows. First of all, if ρ = ρ′(a,O) is a σ-path,
Pσ(ρ) = Pσ(ρ′) · σ(ρ′)(a) ·

∑
s∈OD(ρ′, a)(s), and P(ρ) = 1 if ρ is the empty path. Now,

we can define the probability of a run r = s0
a1−→ s1 · · ·

an−→ sn (every si is a state of the
FOMDP) knowing that ρ occured. Let ρ be the unique (POMDP) path associated with
r, obtained by replacing states with their associated observations. The probability of r
assuming ρ is performed is given by P(r | ρ) =

∏
i≤nD(s0, ρi)(si), where ρi denotes the

prefix of length i of ρ. Then we let Pσ(r) = Pσ(ρ) × P(r | ρ). This probability measure
on finite runs is extended in the usual way to the sigma-algebra they generate, and it is
well-known that LTL properties on infinite runs are measurable for this measure [17]. The
objective for the controller is to reach the Goal state. Thus, strategy σ is almost-surely
winning if Pσ(3Goal) = 1. Clearly enough, if there is no almost-surely winning strategy in
the FOMDP, then there will be none in the extended POMDP either.

Problem statement

To every strategy σ, two quantities can be associated: first of all, the worst-case cost, i.e.
the maximum number of request actions σ takes along a σ-path; and second the average
cost, that is the expected number of requests for σ-paths. In this paper we thus tackle the
two distinct problems of finding almost-surely winning strategies which (1) minimize the
worst-case cost, or (2) minimize the average cost.

3 Algorithms for the optimal worst case cost

Strategies are in general objects that do not have a finite presentation. In order to represent
them effectively, it is common to restrict to finite-memory strategies, that are weaker than
general strategies, but, as we will see, suffice when considering the optimal worst case cost
problem. A finite-memory strategy on finite memory set M is given as σ : M → Dist(Act′)
together with an update function: up : M × (Act× Part ∪ {req} × Single)→M .

FSTTCS 2011



416 Minimal Disclosure in Partially Observable Markov Decision Processes

3.1 Reaching Goal with probability 1
We first propose a family (σncan)n∈N of strategies with finite memory B ⊆ 2Q the set of
reachable belief states. The memory is initialized to {s0}, where s0 is the initial state. The
update function is given by up(S, a,O) = O ∩ {t | ∃s ∈ S,∆(s, ai)(t) > 0}. We extend it
inductively to a path ρ′ = ρ · (a,O) with up(S, ρ · (a,O)) = up(up(S, ρ), a, O) = T , and we
say that the path ρ′ reaches the memory state T . It is easy to see that the memory state
M reached after some possible path ρ is exactly B(s0, ρ).

Let n ∈ N. We now define how the strategy σncan plays. First, we denote by LoseF ⊆ Q

the set of states s of the FOMDP associated with G such that there is no strategy in the
FOMDP reaching Goal with probability 1 from s. We then denote by Lose ⊆ 2Q the set of
belief states S such that S ∩ LoseF 6= ∅. In the example of Figure 1, 4 is the only state of
the FOMDP from which there is no strategy reaching Goal almost-surely. In the reachable
belief graph of Figure 2, Lose is thus made of the single belief state {4}. Intuitively, any path
reaching a memory state in Lose cannot reach Goal with probability 1. It is easy to see that
if {s0} ∈ Lose, then there is no almost-surely winning strategy, since otherwise a strategy
in the FOMDP reproducing σ (which is possible since it has at least as much information)
would also reach Goal with probability 1.

Letting Win = B \Lose the complementary set, we prove in the next theorem that under
strategy σncan, Goal is reached almost-surely from any belief state of Win. We partition Win
in 3 sets: W0 = {S | S ⊆ Goal} wins directly, WN the needing belief states, andWU the non-
needing belief states. A state S is inWN whenever for all a ∈ Act, there exists O ∈ Part, such
that B(S, a,O) ∈ Lose. Intuitively, from a memory state in WN any almost-surely winning
strategy needs to perform a request action req, as every other action leaves a chance to
reach Lose. In the example of Figure 2, W0 only contains the belief state {Goal}, WN = ∅
(in particular, actions a can be done safely from belief states {1} and {1, 2, 3}), and WU

consists of the other belief states {1}, {1, 2, 3}, {2}, {3}. Strategy σncan is then defined by:
If M ∈W0, then σncan(M) = ∅,
if M ∈WN , σncan(M) = req,
if M ∈ WU , σncan(M) plays req with probability 1/n, and plays uniformly all actions
a ∈ Act such that for every observation O, up(M,a,O) /∈ Lose, and
if M ∈ Lose, then σncan(M) is the uniform distributions over all actions.

Furthermore, if M ∈ Single (that is, the actual state is known for sure), then we disallow
σncan to perform a req as it would be useless. Notice that the only infinite σncan-paths are
exactly those which never meet W0.

I Theorem 2. If {s0} ∈Win, then Pσn
can

(3Goal) = 1.

Notice that we can compute in polynomial time the set of losing state in the FOMDP,
and hence decide in polynomial time whether there exists an almost-surely strategy in G.

3.2 Optimizing the worst case cost
Now that we know the set of belief states from which there is a strategy reaching Goal with
probability 1, we can tune the canonical strategies σncan. To do so, we compute inductively
the set Sk of belief states from which one needs at most k actions req to win. The set S0 is
pretty easy to obtain, as the associated strategy cannot use any req.

Let G0 = (B,Act, δ0) be the belief MDP associated with the POMDP G, where each
state is a belief state, and δ0(B, a) is the uniform distribution over all belief states B′ such
that there exists a part P ∈ Part with B′ = P ∩ {t | ∃s ∈ B, ∆(s, a)(t) > 0}. Notice that



N. Bertrand and B. Genest 417

requests are not allowed in G0. The MDP G0 obtained from the POMDP in Figure 1 is
very similar to the graph of Figure 2, except that the 3 edges labeled with req have been
deleted. Let us denote by S0 the set of belief states from which there exists a strategy σ0
in G0 reaching W0 = 2Goal almost-surely. The set S0 can be computed in time linear in the
number |B| of states of G0, thus at worst in time exponential in the size of G. Taking our
example of Figure 1, S0 =

{
{2}, {3}, {Goal}

}
. Indeed, {4} is a losing state, and {1} and

{1, 2, 3} as well since no req-action is allowed and playing b, c from {1, 2, 3} has a positive
probability to lead to {4}. Clearly, σ0 can be chosen positional, and on the example it is
given by σ0({2}) = b and σ0({3}) = c.

Now, the canonical strategy σncan is improved by letting σncan(B) = σ0(B) if B ∈ S0 \W0,
and leaving it unchanged otherwise. Under this new definition, σncan is still almost-surely
reaching Goal, and from any B ∈ S0, σncan never proposes a req-action anymore:

I Proposition 3. Assuming s0 ∈Win, then: (i) σncan is almost-surely winning, and (ii) for
every σncan-path ρ = ρ1ρ2 with B(ρ1) ∈ S0, ρ2 contains no req.

Given a strategy σ, we say that B is a σ-belief state if there exists a σ-path ρ with
B(ρ) = B. We prove that S0 is optimal, in the following meaning:

I Proposition 4. Let σ be a strategy reaching Goal almost-surely from s0, and B /∈ S0 a
σ-belief state. Then there exists a σ-path ρ = ρ1ρ2 such that B(ρ1) = B and ρ2 contains a
req.

Proof. Let σ be an almost-surely winning strategy, and B a σ-belief state. Assume by
contradiction that for every σ-path ρ1ρ2 with B(ρ1) = B, ρ2 contains no req-action, and let
us prove that B ∈ S0. We design a strategy σ′ in the MDP G0 from B as follows. For each
run r = Ba1B1 · · · anBn in G0, let ρr = Oa1O1 · · · anOn be the associated possible path in
G with Bi ⊆ Oi for all i. The choice of Oi is unique, and it is always a part of Part since
ai 6= req. We let σ′(r) = σ(ρ1ρr). Now, it is easy to see that σ′ reaches Goal almost surely
from B, since ρ1 is a finite σ-path and σ reaches Goal with probability 1. As a consequence,
B ∈ S0. J

We can now define the set S1 of belief states for which at most one req-action is needed
to reach Goal almost-surely. We let L1 be the set of belief states B such that for all s ∈ B,
{s} ∈ S0. Playing a request from a state in L1 obviously leads to some state in S0, from
which winning without request is possible. Clearly, L1 ∪ S0 ⊆ S1. In fact, S1 is the set of
all belief states from which there is a strategy to reach L1 ∪ S0 in G0 with probability one.
S1 can be computed as follows:

1. Initialize a set X of belief states at B \ Lose,
2. Compute the set YX ⊆ B of belief states which can reach L1 ∪ S0 while staying in X,

using a smallest fixed point:

a. initialize YX at L1 ∪ S0,
b. add to YX all B ∈ X such that there exists a ∈ Act with Supp(δ0(B, a)) ⊆ X and

Supp(δ0(B, a)) ∩ YX 6= ∅.

3. If X 6= YX then set X := YX and goto step 2 again, else set S1 = YX and quit.

The so-computed set S1 of belief states is the largest one such that from all belief states of
S1 there is a strategy which allows to reach L1 ∪ S0 and which ensures to stay in S1. Now,
we improve once again the canonical strategy σncan with,

if B ∈ L1 \ S0, σncan(B) = req,

FSTTCS 2011



418 Minimal Disclosure in Partially Observable Markov Decision Processes

if B ∈ S1 \ (L1 ∪ S0), Supp(σncan(B)) is the uniform distribution over the set of actions
a ∈ Act such that Supp(δ0(B, a)) ⊆ S1,
otherwise, it is unchanged.

Notice that from S1 \ (L1 ∪ S0), always at least one action a ∈ Act satisfies δ0(B, a) ⊆ S1.
After this modification, σncan still reaches Goal with probability 1 and from any B ∈

S1 \ S0, σncan proposes at most one req-action:
I Proposition 5. Assuming s0 ∈Win, then: (i) σncan is almost-surely winning, and (ii) for
every σncan-path ρ = ρ1ρ2 with B(ρ1) ∈ S1, ρ2 contains at most one req.

Proof. (ii) is fairly easy to establish. Let ρ = ρ1ρ2 be a σncan-path with B = B(ρ1) ∈ S1.
As ρ2 = B

a1−→ B1ρ
′
2 is a σncan-path, the first action a1 ensures to stay in S1: more precisely,

if B ∈ L1, then B1 ∈ S0, if B ∈ S0, then B1 ∈ S0, and if B ∈ S1 \ (L1 ∪ S0) then B1 ∈ S1.
Iterating this argument, beliefs in ρ2 always belong to S1. In case L1 is never reached,
request are never performed. Otherwise, as soon as it reachs L1, a request is played, and
the next belief state is in S0 from which no request are proposed anymore, according to the
Proposition 3. Overall, (ii) is verified.

We now prove that from S1, L1 ∪ S0 is reached with probability 1, which proves that
σncan reaches Goal with probability 1 thanks to Proposition 3. The only paths from S1 which
does not reach L1 ∪ S0 are those staying forever in S1 \ (L1 ∪ S0). We now prove that from
every state in S1, there is a σncan-path reaching L1∪S0, hence, a positive probability to reach
L1 ∪ S0. Together, these facts show that almost-surely L1 ∪ S0 will be reached from S1.
Assume now by contradiction that there is a state B ∈ S1 with B(ρ1) = B and such that for
all σncan-path ρ = ρ1ρ2, we have B(ρ) /∈ L1∪S0. Hence these paths ρ2 make no request. But
this set of ρ2 paths cover exactly the set of path from B which stay within S1. Considering
the last iteration of the construction of S1. As it is the last iteration, YX = X = S1 and
B ∈ X. Now, in the construction of YX , B can never be added to YX . Hence YX 6= X, a
contradiction. J

We prove that S1 is optimal, in the following sense:
I Proposition 6. Let σ be a strategy reaching Goal almost-surely from s0 and B /∈ S1 a
σ-belief state. Then there is a σ-path ρ = ρ1ρ2 with B(ρ1) = B and ρ2 contains at least
two req-actions.

We can easily construct in this way by induction the sets (Sk)k∈N of belief states requier-
ing at most k requests, until stabilization: SK+1 = SK , which happens at worse for K = |B|.
Computing each Si takes O(|B|2 × |Act|); overall, the procedure is in time O(|B|3 × |Act|).

This easily improves the strategy σncan by allowing requests only when they are needed.
Then, denoting S∞ = 2Q \ SK , we have the following optimality result:
I Proposition 7. For every strategy σ reaching goal almost surely and every σ-belief states
B ∈ S∞, for all N ∈ N, there exists a σ-path ρ = ρ1ρ2 with B(ρ1) = B and ρ2 contains at
least N req-actions.

In our example, notice that S1 = S0, and hence S∞ =
{
{1}, {1, 2, 3}

}
. Hence, the

improved canonical strategy in our running example is defined by: σncan(1) = a, σncan(2) =
b, σncan(3) = c and σncan({1, 2, 3}) assigns probability (n − 1)/n to action a and probability
1/n to req. We show now that the family of canonical strategies is, on this particular
example, also optimal for average cost! The proof is educational to understand that even
with a fixed strategy, computing the average cost in a POMDP is not easy as the set of
possible stochastic belief states (precise distributions over states in the discrete belief states)
is potentially infinite.



N. Bertrand and B. Genest 419

Let n ∈ N and consider strategy σncan. The game starts in state 1, and σncan first decision
is to perform an a. After this action, the discrete belief state is {1, 2, 3} and the probability
to be in state 1 is 1/3. In the sequel, we denote by Ek the expected number of requests
following σncan from {1, 2, 3} with probability 1/3k to be in state 1. Thanks to the observation
above, the expected number of requests for σncan is exactly E1.

Assume now that the current belief state is {1, 2, 3} and the probability to be in state 1 is
1/3k. In this state, with probability 1/n, a request is performed, which discloses state 1 with
probability 1/3k; with probability (n− 1)/n, a is played, and the resulting state is {1, 2, 3}
with probability 1/3k+1 to be in state 1. As a consequence, Ek = 1

n

(
1 + 1

3kE1)
)

+ n−1
n Ek+1.

By summation, we derive: E1 = 1 + 1
2n . Hence, the average number of req asked by σncan

is smaller than 1 + 1
2n , for all n ∈ N. In fact, we can prove that this family of strategy is

optimal in the sense that no almost surely winning strategy can achieve an average number
of request of 1 or less on this particular example.

4 Hardness and undecidability results for the average cost

We turn now to a more general analysis of the strategies minimizing the average cost.
Unfortunately, as we hinted before, this question is very hard to tackle. We show first that
the problem of the existence of a strategy with cost smaller than a fixed threshold is in
general undecidable, and that it is undecidable to approximate the optimal average cost.
Moreover, we give concrete approximation factor (with respect to the size of the POMDP)
up to which no optimal strategy can be computed with polynomial time algorithms. This
obviously contrasts with the rather efficient algorithms we design in the previous section,
which run in time polynomial in |B|.

For a run r of G, we denote by val(r) the number of req in r. Let σ be a strategy reaching
Goal from s0 with probability 1. Then we denote by val(σ) the expected value of val(r),
over all the σ-runs. Notice that val(σ) <∞ since σ is almost-surely winning.

I Definition 8. The value of G is val(G) = inf{val(σ) | σ almost-surely winning}, where
val(σ) denotes the expected number of requests under strategy σ.

We can now present our first negative result, namely that it is undecidable to compute the
exact minimum average cost val(G). This result should not be too surprising as optimizing
a cost function in a POMDP is undecidable [13]. However, our result is stronger and harder
to get, since our cost function is not arbitrary.

I Theorem 9. For all K > 0, it is undecidable to know whether val(G) ≤ K.

Proof. Let ε ∈ (0, 1/2). Take a Probabilistic Finite Automaton P (a PFA for short, that is
a POMDP with |Part| = 1) such that either there exists a word accepted with probability at
least 1− ε or all words are accepted with probability less than ε. It is undecidable to know
which case holds [13]. From P, we build a POMDP G, as illustrated on Figure 3 by adding
four new states. This reduction ensures the following: P accepts a word with probability
greater than 1− ε if and only if val(G) < ε

1−ε . J

Actually, in the proof, we even show that if val(G) ≥ ε/(1− ε), then val(G) ≥ 1− ε. That
is, (ε/(1− ε) + 1− ε)/2 is the best approximation one can make for this family of POMDP.
The approximation factor is thus δ = (1/(1 − ε) − ε)(1 − ε)/2ε = (1 − ε(1 − ε))/2ε, which
converges to infinity as ε converges to 0. As a consequence:

I Corollary 10. For any δ, it is undecidable to approximate val(G) with factor δ.

FSTTCS 2011



420 Minimal Disclosure in Partially Observable Markov Decision Processes

Notice however that for bigger δ, the non-approximation result uses bigger and bigger
PFA (and thus POMDP). The following result establishes the relationship between the
number of states of the POMDP and the non-approximation factor.

I Theorem 11. Assuming that P 6= NP , for any polynomial time algorithm A, there exists
a POMDP G with at most 3n2 + n states and at most 9n2 + 8n reachable belief states, such
that A computes a strategy with value val on G with:
approximation factor: |val − val(G)|/val(G) ≥ 2n−1/n2 − 1, and
absolute approximation error: |val − val(G)| ≥ (2n−1/n− n− 2).

Proof. The proof is by reduction from 3-SAT. Let ϕ be a Boolean formula in conjunctive
normal form with m clauses C1 · · ·Cm over k variables x1, · · ·xk. We let n = k ×m. We
also let ε = 1/2n. From ϕ, we derive a POMDP G such that ϕ is satisfiable if and only
val(G) ≤ 3nε. We recall that ϕ is satisfiable if and only if for every clause Ci, one can
choose one literal `i among the three literals of Ci such that for all i, j ≤ m, the choices of
`i and `j do not conflict.

The actions that can be played are any of the 2k literals {xi, xi | i ≤ k}, plus a dummy
action. The POMDP starts in the initial state init, where only the dummy action can be
fired, and with equal probability a variable xi, i ≤ k is chosen leading to state labeled (C1, i).
Intuitively, the POMDP will remember actions played concerning this variable xi and no
other. All states (C1, 1), · · · , (C1, k) belong to the same part of the partition and thus the
player does not know which variable is monitored.

From (C1, i), three actions are enabled, corresponding to the three literals in clause C1.
If the action played is xj , xj with j 6= i, then the next state is (C2, i) with probability 1− ε.
With probability ε/2 it is (C2, xi) and with probability ε/2 it is (C2, xi). Intuitively, with
small probability, the POMDP remembers wrongly that literal xi or xi has been chosen. If
the action played is xi, then the next state is (C2, xi) with probability 1 − ε, (C2, i) with
probability ε/2 and (C2, xi) with probability ε/2. At last, if the action played is xi, then the
next state is (C2, xi) with probability 1 − ε, (C2, i) with probability ε/2 and (C2, xi) with
probability ε/2. Transitions from (C`, i) with ` < m and i ≤ k follow the same pattern.

Now, assume that the state is (C`, xi), that is the POMDP recalls (possibly wrongly)
that xi has been played before. If the action played is xi, then there is a conflict and the
next state is test, which is the gadget, similar to the one in the proof of Theorem 9 that
forces the player to perform a req-action in order not to lose, and then it reaches state ok.
If the action played is any other, then the next state is (C`+1, xi) with probability 1 − ε,
and (C`+1, xi) or (C`+1, i) with probability ε/2 each. From state (C`, xi), the transitions

P

ta tb sink

Goal

],1/2 ],1/2

a

b

a
b

Figure 3 Reduction to a variant of the emptiness problem for PFA



N. Bertrand and B. Genest 421

are symmetric. At last, for the last clause, from (Cm, xi), all the actions lead to ok except
action xi which leads to the test gadget.

This reduction ensures: there exists a strategy σ reaching ok with probability 1 and
such that val(σ) ≤ nε if and only if the formula ϕ is satisfiable. Assume that there is a
non conflicting choice of literals for every clause. Consider the strategy σ which chooses to
play accordingly to this choice of literal, and when in the test gadget performs a req. With
probability higher than 1 − nε, the POMDP remembers accurately the choice of literal xi
by σ at each step (there are less than n steps). As this choice is not conflicting, under
this hypothesis, no req is played and ok is reached. Now, with probability less than nε,
the memory can be wrong at some point, and the worse case is to reach the test, in which
case a unique requests is made before reaching ok. Thus, val(σ) ≤ nε. For the reverse
implication, observe that under any strategy σ reaching ok with probability 1, there is at
least one conflicting variable (successive choices of literal xi and xi). As in the reduction
of Theorem 9 we assume without loss of generality that σ does not propose any req but in
test. With probability at least 1/n, the POMDP remembers the conflicting variable, and
with probability at least (1 − nε) the POMDP remembers accurately the first literal of xi
played, and then when xi is played, the POMDP goes to test where a req is played. Overall,
val(σ) ≥ (1/n− ε).

As SAT is NP -complete and assuming that P 6= NP , no polynomial time algorithm
can decide whether val(G) ≥ (1/n − ε) or val(G) ≤ nε. To keep the error factor as low as
possible, the safest is thus to play the average value, which proves the first item.

One can however notice that even if the approximation factor is large, the absolute gap
between an approximation and the real value is rather small (less than 1), which would not
be a huge concern in practice. We explain now how to keep the same factor while widening
the absolute gap using a small trick. The previous reduction is enriched as follows: from
state ok only the dummy action can be played, leading with probability ε to Goal, and with
probability 1− ε back to init. The probability to reach Goal after seeing init exactly i times
is ε(1− ε)i, that is the expected number of times init is seen is

∑
i i · ε · (1− ε)i ∈ [2n− 2, 2n]

for n large enough. That is, if there is a non conflicting choice of literals, then val(G) ≤
n/2n · 2n = n. On the other hand, if all choice of 1 literal per clause is conflicting, then
val(G) ≥ (1/n− ε) · (2n − 2) ≥ 2n/n− 2. This concludes the proof. J

Notice that the first item of our result holds for POMDP without loops, that is in
particular for finite horizon POMDP (horizon ≤ n). Compared with other results on non
approximability of optimal cost in (finite horizon) POMDP [12], our reduction does not
rely on the (at worse exponentially many) discrete belief states to encode the problem, but
uses the actual probability to be in a state. Indeed, the family of graph considered has a
polynomial number of reachable belief states (for which the algorithm of the previous section
are efficient). Actually, if we relax the constraint of a polynomial number of beliefs, the proof
can easily be simplified to obtain an infinite non approximability factor, since val(G) = 0
if and only if the 3-SAT formula is satisfiable. It also proves that reasoning on beliefs is in
some sense mandatory.

5 Conclusion

In this paper we investigated the problem of minimizing requests for full information in a
POMDP in order to achieve a reachability objective with probability 1. On the one hand,
the optimal worst-case cost is in N ∪ {∞} and can be computed in polynomial time in the
number of discrete beliefs (that is, exponential time at worse), together with a finite memory

FSTTCS 2011



422 Minimal Disclosure in Partially Observable Markov Decision Processes

strategy that guarantees this optimal cost. On the other hand, the optimal average cost is
in R≥0 and can neither be computed nor approximated, and we provide large error factors
for which no polynomial-time algorithm can approximate the average optimal cost up to
that factor. In practice, despite the non-approximability result, quite accurate values can
be obtained for some POMDPs using heuristics [14]. Our model can be enriched to allow
several intermediate information levels, encoded by successive refinements of the partition,
and for which the techniques developped here will certainly be useful.

Acknowledgements We would like to thank the CNRS PEPS UMI INSIS AABS for
the financial support without which this work would not have taken place, as well as the
referees for pointing out very interesting related bibliography.

References
1 C. Baier, N. Bertrand, and M. Grösser. On decision problems for probabilistic Büchi

automata. In FOSSACS ’08, volume 4962 of LNCS, pages 287–301. Springer, 2008.
2 N. Bertrand, B. Genest, and H. Gimbert. Qualitative determinacy and decidability of

stochastic games with signals. In LICS ’09, pages 319–328. IEEE, 2009.
3 F. Cassez and S. Tripakis. Fault diagnosis with static and dynamic observers. Fundamenta

Informaticae, 88(4):497–540, 2008.
4 R. Chadha, A. P. Sistla, and M. Viswanathan. Power of randomization in automata on

infinite strings. In CONCUR ’09, volume 5710 of LNCS, pages 229–243. Springer, 2009.
5 K. Chatterjee and L. Doyen. The Complexity of Partial-Observation Parity Games. In

LPAR ’10 (Yogyakarta), LNCS 6397, pages 1–14, 2010.
6 K. Chatterjee, L. Doyen, and T. A. Henzinger. Qualitative analysis of partially-observable

Markov decision processes. In MFCS ’10, volume 6281 of LNCS, pages 258–269. Springer,
2010.

7 K. Chatterjee and R. Majumdar. Minimum attention controller synthesis for omega-regular
objectives. In FORMATS ’11, volume 6919 of LNCS, pages 145–159. Springer, 2011.

8 K. Chatterjee, R. Majumdar, and T. A. Henzinger. Controller synthesis with budget con-
straints. In HSCC ’08, volume 4981 of LNCS, pages 72–86. Springer, 2008.

9 A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Toruńczyk. Energy and Mean-
Payoff Games with Imperfect Information. In CSL ’10, LNCS 6247, pages 260–274, 2010.

10 J. Fearnley. Exponential Lower Bounds for Policy Iteration. In ICALP ’10, volume 6199
of LNCS, pages 551–562. Springer, 2010.

11 W. Lovejoy. Computationally feasible bounds for partially observed Markov decision pro-
cesses. Operations Research, 39:162–175, 1991.

12 C. Lusena, J. Goldsmith, and M. Mundhenk. Nonapproximability results for partially
observable Markov decision processes. Journal of Artificial Intelligence Research, 14, 2001.

13 O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning and
related stochastic optimization problems. Artificial Intelligence, 147(1-2):5–34, 2003.

14 K. Murphy. A Survey of POMDP Solution Techniques. Technical report, 2000.
15 D. Thorsley and D. Teneketzis. Active acquisition of information for diagnosis and super-

visory control of discrete event systems. Discrete Event Dynamic Systems, 17(4):531–583,
2007.

16 M. Tracol. Recurrence and transience for finite probabilistic tables. Theoretical Computer
Science, 412(12-14):1154–1168, 2011.

17 M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In
FOCS ’85, pages 327–338. IEEE, 1985.



Optimal Packed String Matching ∗

Oren Ben-Kiki1, Philip Bille2, Dany Breslauer3, Leszek Gąsieniec4,
Roberto Grossi5, and Oren Weimann6

1 Intel Research and Development Center, Haifa, Israel
2 Technical University of Denmark, Copenhagen, Denmark
3 Caesarea Rothchild Institute, University of Haifa, Haifa, Israel
4 University of Liverpool, Liverpool, United Kindom
5 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
6 University of Haifa, Haifa, Israel

Abstract
In the packed string matching problem, each machine word accommodates α characters, thus
an n-character text occupies n/α memory words. We extend the Crochemore-Perrin constant-
space O(n)-time string matching algorithm to run in optimal O(n/α) time and even in real-time,
achieving a factor α speedup over traditional algorithms that examine each character individually.
Our solution can be efficiently implemented, unlike prior theoretical packed string matching work.
We adapt the standard RAM model and only use its AC0 instructions (i.e., no multiplication)
plus two specialized AC0 packed string instructions. The main string-matching instruction is
available in commodity processors (i.e., Intel’s SSE4.2 and AVX Advanced String Operations);
the other maximal-suffix instruction is only required during pattern preprocessing. In the absence
of these two specialized instructions, we propose theoretically-efficient emulation using integer
multiplication (not AC0) and table lookup.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity,
F.2.2 Nonnumerical Algorithms and Problems—Pattern Matching

Keywords and phrases String matching, Bit parallelism, Real time, Space efficiency

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.423

1 Introduction

Hundreds of articles have been published about string matching, exploring the multitude
of theoretical and practical facets of this fundamental problem. For an n-character text T
and an m-character pattern x, the classical algorithm by Knuth, Morris and Pratt [21] takes
O(n + m) time and uses O(m) auxiliary space to find all pattern occurrences in the text,
namely, all text positions i, such that T [i..i + m − 1] = x. Many other algorithms have
been published; some are faster on the average, use only constant auxiliary space, operate
in real-time, or have other interesting benefits. In an extensive study, Faro and Lecroq [12]
offer an experimental comparative evaluation of some 85 string matching algorithms.

Packed strings. In modern computers, the size of a machine word is typically larger
than the size of an alphabet character and the machine level instructions operate on whole
words, i.e., 64-bit or longer words vs. 8-bit ASCII, 16-bit UCS, 2-bits biological DNA, 5-bits
amino acid alphabets, etc. The packed string representation fits multiple characters into one

∗ Partially supported by the European Research Council (ERC) project SFEROT, by the Israeli Science
Foundation grant 347/09 and by Italian project PRIN AlgoDEEP (2008TFBWL4) of MIUR.

© O. Ben-Kiki, P. Bille, D. Breslauer, L. Gasieniec, R. Grossi, and O. Weimann;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 423–432

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.423
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


424 Optimal Packed String Matching

larger word, so that the characters can be compared in bulk rather than individually: if the
characters of a string are drawn from an alphabet Σ, then a word of ω ≥ log2 n bits fits up
to α characters, where the packing factor is α = ω

log2 |Σ|
≥ log|Σ| n.1

Using the packed string representation in the string matching problem is not a new idea
and goes back to early string matching papers by Knuth, Morris and Pratt [21, §4] and Boyer
and Moore [6, §8-9], to times when hardware character byte addressing was new and often less
efficient than word addressing. Since then, several practical solutions that take advantage of
the packed representation have been proposed in the literature [2, 4, 11, 15, 16, 25]. However,
none of these algorithms improves over the worst-case O(n) time bounds of the traditional
algorithms. On the other hand, any string matching algorithm should take at least Ω(n/α)
time to read a packed text in the worst case, so there remains a gap to fill.
Existing work. A significant theoretical step recently taken introduces a few solutions
based on either tabulation (a.k.a. “the Four-Russian technique”) or word-level parallelism
(a.k.a. “bit-parallelism”). Fredriksson [15, 16] used tabulation and obtained an algorithm
that uses O(nεm) space and O( n

log|Σ| n
+ nεm+ occ) time, where occ denotes the number of

pattern occurrences and ε > 0 denotes an arbitrary small constant. Bille [5] improved these
bounds to O(nε +m) space and O( n

log|Σ| n
+m+ occ) time. Very recently, Belazzougui [3]

showed how to use word-level parallelism to obtain O(m) space and O( nm + n
α +m+ occ)

time. Belazzougui’s algorithm uses a number of succinct data structures as well as hashing:
for α ≤ m ≤ n/α, his time bound is optimal while space occupancy is not. As admitted by
the above authors, none of these results is practical. A summary of the known bounds and
our new result is given in Table 1, where our result uses two instructions described later on.

Table 1 Comparison of packed string matching algorithms.

Time Space Reference
O( n

log|Σ| n
+ nεm+ occ) O(nεm) Fredriksson [15, 16]

O( n
log|Σ| n

+m+ occ) O(nε +m) Bille [5]
O(n

α
+ n

m
+m+ occ) O(m) Belazzougui [3]

O(n
α

+ m
α

+ occ) O(1) This paper

Our results. We propose an O(n/α + m/α) time string matching algorithm (where the
term m/α is kept for comparison with the other results) that is derived from the elegant
Crochemore-Perrin [9] algorithm. The latter takes linear time, uses only constant auxiliary
space, and can be implemented in real-time following the recent work by Breslauer, Grossi and
Mignosi [7] – benefits that are also enjoyed in our settings. The algorithm has an attractive
property that it compares the text characters only moving forward on two wavefronts without
ever having to back up, relying on the celebrated Critical Factorization Theorem [8, 22].

We use a specialized word-size packed string matching instruction to anchor the pattern
in the text and continue with bulk character comparisons that match the remainder of the
pattern. Our reliance on a specialized packed string matching instruction is not far fetched,
given the recent availability of such instructions in commodity processors, which has been a
catalyst for our work. Our algorithm is easily adaptable to situations where the packed string
matching instruction and the bulk character comparison instruction operate on different
word sizes. The output occurrences are compactly provided in a bit-mask that can be spelled

1 Assume that |Σ| is a power of two, ω is divisible by log2 |Σ|, and the packing factor α is a whole integer.



O. Ben-Kiki, P. Bille, D. Breslauer, L. Gasieniec, R. Grossi, and O. Weimann 425

out as an extensive list of text positions in extra O(occ) time.
Unlike the prior theoretical work, our solution has a cache-friendly sequential memory

access without using large external tables or succinct data structures, and therefore, can also
be efficiently implemented. The same specialized packed string matching instruction could
also be used in other string matching algorithms, e.g. the Knuth-Morris-Pratt algorithm [19,
§10.3.3], but our algorithm also works in real-time and uses only constant auxiliary space.

Model of computation. We adapt the standard word-RAM model with ω-bit words and
with only AC0 instructions (i.e., arithmetic, bitwise and shift operations but no multiplication)
plus two other specialized AC0 instructions. The main word-size packed string matching
instruction is available in the recent Advanced String Operations in Intel’s Streaming SIMD
Extension (SSE4.2) and Advanced Vector Extension (AVX) Efficient Accelerated String and
Text Processing instruction set [18, 20]. The other instruction, which is only used in the
pattern preprocessing, finds the lexicographically maximum suffix. Specifically, adopting the
notation [d] = {0, 1, . . . , d− 1}, the two instructions are the following ones:

Word-Size String Matching (wssm): find occurrences of one short pattern x that fits in
one word (up to α characters) in a text y that fits in two words (up to 2α−1 characters). The
output is a binary word Z of 2α− 1 bits such that its ith bit Z[i] = 1 iff y[i..i+ |x| − 1] = x,
for i ∈ [2α− 1]. When i+ |x| − 1 ≥ α, this means that only a prefix of x is matched.

Word-Size Lexicographically Maximum Suffix (wslm): given a packed string x that
fits in one word (up to α characters), return position i ∈ [α] such that x[i..α − 1] is
lexicographically maximum among the suffixes in {x[j..α− 1] | j ∈ [α]}.

If these instructions are not available, then we can emulate them, but our proposed
emulations cause a small slowdown of log logω as shown in Table 2.

Table 2 Bounds in the word-RAM when the ω-bit wssm and wslm instructions are not available.

Time Space Reference
O
(
ω + n log logω

α
+ m

α
+ occ

)
O(1) This paper

2 Packed String Matching

In this section we describe how to solve the packed string matching problem using the two
specialized word-size string matching instructions wssm and wslm, and standard word-RAM
bulk comparisons of packed strings.

I Theorem 1. Packed string matching for a length m pattern and a length n text can be
solved in O(mα + n

α ) time in the word-RAM extended with constant-time wssm and wslm
instructions. Listing explicitly the occ text positions of the pattern occurrences takes an
additional O(occ) time. The algorithm can be made real-time, and uses just O(1) auxiliary
words of memory besides the read-only m

α + n
α words that store the input.

The algorithm behind Theorem 1 follows the classical scheme, in which a text scanning
phase is run after the pattern preprocessing. In the following, we first present the necessary
background and then describe how to perform the text scanning phase using wssm, and the
pattern preprocessing using wslm.

FSTTCS 2011



426 Optimal Packed String Matching

2.1 Background

Critical Factorization. Properties of periodic strings are often used in efficient string
algorithms. A string u is a period of a string x if x is a prefix of uk for some integer k, or
equivalently if x is a prefix of ux. The shortest period of x is called the period of x and its
length is denoted by π(x). A substring or a factor of a string x is a contiguous block of
symbols u, such that x = x′ux′′ for two strings x′ and x′′. A factorization of x is a way to
break x into a number of factors. We consider factorizations of a string x = uv into two
factors: a prefix u and a suffix v. Such a factorization can be represented by a single integer
and is non-trivial if neither of the two factors is equal to the empty string.

Given a factorization x = uv, a local period of the factorization is defined as a non-empty
string p that is consistent with both sides u and v. Namely, (i) p is a suffix of u or u is a
suffix of p, and (ii) p is a prefix of v or v is a prefix of p. The shortest local period of a
factorization is called the local period and its length is denoted by µ(u, v). A non-trivial
factorization x = uv is called a critical factorization if the local period of the factorization is
of the same length as the period of x, i.e., µ(u, v) = π(uv). See Figure 1.

a | b a a a b a
b a b a

(a)

a b | a a a b a
a a a b a a a b

(b)

a b a | a a b a
a a

(c)

Figure 1 The local periods at the first three non-trivial factorizations of the string abaaaba. In
some cases the local period overflows on either side; this happens when the local period is longer
than either of the two factors. The factorization (b) is a critical factorization with local period aaab
of the same length as the global period abaa.

Crochemore-Perrin algorithm. Although critical factorizations may look tricky, they
allow for a simplification of the text processing phase of string matching algorithms. We
assume that the reader is familiar with the Crochemore-Perrin algorithm [9] and its real-time
variation Breslauer-Grossi-Mignosi [7]. Observe that Crochemore and Perrin use Theorem 2
to break up the pattern as x = uv for non-empty prefix u and suffix v, such that |u| ≤ π(x).

I Theorem 2. (Critical Factorization Theorem, Cesari and Vincent [8, 22]) Given any
|π(x)| − 1 consecutive non-trivial factorizations of a string x, at least one is critical.

Then, they exploit the critical factorization of x = uv by matching the longest prefix z
of v against the current text symbols, and using Theorem 3 whenever a mismatch is found.

I Theorem 3. (Crochemore and Perrin [9]) Let x = uv be a critical factorization of the
pattern and let p be any local period at this factorization, such that |p| ≤ max(|u|, |v|). Then
|p| is a multiple of π(x), the period length of the pattern.

Precisely, if z = v, they show how to declare an occurrence of x. Otherwise, the symbol
following z in v is mismatching when compared to the corresponding text symbol, and the
pattern x can be safely shifted by |z|+ 1 positions to the right (there are other issues for
which we refer the reader to [9]).

To simplify the matter in the rest of the paper, we discuss how to match the pattern
suffix v assuming without loss of generality that |u| ≤ |v|. Indeed, if |u| > |v|, the Crochemore-
Perrin approach can be simplified as shown in [7]: use two critical factorizations, x = uv

and x′ = u′v′, for a prefix x′ of x such that |x′| > |u| and |u′| ≤ |v′|. In this way, matching
both u′ and v′ suitably displaced by |x| − |x′| positions from matching v, guarantees that x



O. Ben-Kiki, P. Bille, D. Breslauer, L. Gasieniec, R. Grossi, and O. Weimann 427

occurs. This fact enables us to focus on matching v and v′, since the cost of matching u′ is
always dominated by the cost of matching v′, and we do not need to match u. For the sake
of discussion, it suffices to consider only one instance, namely, suffix v.

We now give more details on the text processing phase, assuming that the pattern
preprocessing phase has correctly found the critical factorization of the pattern x and its
period π(x), and any additional pattern preprocessing that may be required (Section 2.3).

While other algorithms may be used with the wssm instruction, the Crochemore-Perrin
algorithm is particularly attractive because of its simple text processing. Therefore, it is
convenient to assume that the period length and critical factorization are exactly computed
in the pattern preprocessing burying the less elegant parts in that phase.

2.2 Text processing
The text processing has complementary parts that handle short patterns and long patterns.
A pattern x is short if its length is at most α, namely, the packed pattern fits into a single
word, and is long otherwise. Processing short patterns is immediate with wssm and, as we
shall see, the search for long patterns reduces to that for short patterns.
Short patterns. When the pattern is already short, wssm is repeatedly used to directly
find all occurrences of the pattern in the text.

I Lemma 4. There exists an algorithm that finds all occurrences of a short pattern of length
m ≤ α in a text of length n in O

(
n
α

)
time using O(1) auxiliary space.

Proof. Consider the packed text blocks of length α+m− 1 that start on word boundaries,
where each block overlaps the last m− 1 characters of the previous block and the last block
might be shorter. Each occurrence of the pattern in the text is contained in exactly one such
block. Repeatedly use the wssm instruction to search for the pattern of length m ≤ α in
these text blocks whose length is at most α+m− 1 ≤ 2α− 1. J

Long patterns. Let x be a long pattern of length m > α: occurrences of the pattern in the
text must always be spaced at least the period π(x) locations apart. We first consider the
easier case where the pattern has a long period, namely m ≥ π(x) > α, and so there is at
most one occurrence starting within each word.

I Lemma 5. There exists an algorithm that finds all occurrences of a long-period long pattern
of length m ≥ π(x) ≥ α, in a text of length n in O

(
n
α

)
time using O(1) auxiliary space.

Proof. The Crochemore-Perrin algorithm can be naturally implemented using the wssm
instruction and bulk character comparisons. Given the critical factorization x = uv, the
algorithm repeatedly searches using wssm for an occurrence of a prefix of v of length min(|v|, α)
starting in each packed word aligned with v, until such an occurrence is discovered. If more
than one occurrence is found starting within the same word, then by Lemma 3, only the
first such occurrence is of interest. The algorithm then uses the occurrence of the prefix
of v to anchor the pattern within the text and continues to compare the rest of v with the
aligned text and then compares the pattern prefix u, both using bulk comparison of words
containing α packed characters. Bulk comparisons are done by comparing words; in case of
a mismatch the mismatch position can be identified using bitwise xor operation, and then
finding the most significant set bit.

A mismatch during the attempt to verify the suffix v allows the algorithm to shift the
pattern ahead until v is aligned with the text after the mismatch. A mismatch during the

FSTTCS 2011



428 Optimal Packed String Matching

attempt to verify u, or after successfully matching u, causes the algorithm to shift the pattern
ahead by π(x) location. In either case the time adds up to only O

(
n
α

)
. J

When the period of the pattern is shorter than the word size, that is π(x) ≤ α, there
may be several occurrences of the pattern starting within each word. The algorithm is very
similar to the long period algorithm above, but with special care to efficiently manipulate
the bit-masks representing all the occurrences.

I Lemma 6. There exists an algorithm that finds all occurrences of a short-period long
pattern of length m, such that m > α > π(x), in a text of length n in O

(
n
α

)
time using O(1)

auxiliary space.

Proof. Let p be the prefix of x of length π(x), and write x = prp′, where p′ is a prefix of p.
If we can find the maximal runs of consecutive ps inside the text, then it is easy to locate
the occurrences of x. To this end, let k ≤ r be the maximum positive integer such that
k · π(x) ≤ α while (k + 1) · π(x) > α. Note that there cannot exist two occurrences of pk
that are completely inside the same word.

We examine one word w of the text at a time while maintaining the current run of
consecutive ps spanning the text word w′ preceding w. We apply wssm to pk and w′w, and
take the rightmost occurrence of pk whose matching substring is completely inside w′w. We
have two cases: either that occurrence exists and is aligned with the current run of ps, and
so we extend it, or we close the current run and check whether p’ occurs soon after. The
latter case arises when there is no such an occurrence of pk, or it exists but is not aligned
with the current run of ps. Once all the maximal runs of consecutive occurrences of ps are
found (some of them are terminated by p′) for the current word w, we can decide by simple
arithmetics whether x = prp′ occurs on the fly. J

Real-time algorithm. As mentioned in Section 2.1, the Crochemore-Perrin algorithm can
be implemented in real time using two instances of the basic algorithm with carefully chosen
critical factorizations [7]. Since we are following the same scheme here, our algorithm reports
the output bit-mask of pattern occurrences ending in each text word in O(1) time after
reading the word. Thus, we can obtain a real-time version as claimed in Theorem 1.

2.3 Pattern preprocessing
Given the pattern x, the pattern preprocessing of Crochemore-Perrin produces the period
length π(x) and a critical factorization x = uv (Section 2.1): for the latter, they show that
v is the lexicographically maximum suffix in the pattern under either the regular alphabet
order or its inverse order, and use the algorithm by Duval [10]. The pattern preprocessing of
Breslauer, Grossi and Mignosi [7] uses Crochemore-Perrin preprocessing, and it also requires
to find the prefix x′ of x such that |x′| > |u| and its critical factorization x′ = u′v′ where
|u′| ≤ |v′|. Our pattern preprocessing requires to find the period π′ for the first α characters
in v (resp., those in v′), along with the longest prefix of v (resp., v′) having that period. We
thus end up with only the following two problems:
1. Given a string x, find its lexicographically maximum suffix v (under the regular alphabet

order or its inverse order).
2. Given a string x = uv, find its period π(x) and the period of a prefix of v.

When m = O(nα ), which is probably the case in many situations, we can simply run the
above algorithms in O(m) time to solve the above two problems. We focus here on the case
when m = Ω(nα ), for which we need to give a bound of O(mα ) time.



O. Ben-Kiki, P. Bille, D. Breslauer, L. Gasieniec, R. Grossi, and O. Weimann 429

I Lemma 7. Given a string x of length m, its lexicographically maximum suffix v can be
found in O(mα ) time.

Proof. Duval’s algorithm [10] is an elegant and simple linear-time algorithm that can be
easily adapted to find the lexicographically maximum suffix. It maintains two positions i
and j, one for the currently best suffix and the other for the current candidate. Whenever
there is a mismatch after matching k characters (x[i+k] 6= x[j+k]), one position is “defeated”
and the next candidate is taken. Its implementation in word-RAM is quite straightforward,
by comparing α characters at a time, except when the interval [min(i, j),max(i, j) + k]
contains less than α positions, and so everything stays in a single word: in this case, we can
potentially perform O(α) operations for the O(α) characters (contrarily to the rest, where we
perform O(1) operations). We show how to deal with this situation in O(1) time. We employ
wslm, and let w be the suffix thus identified in the word. We set i to the position of w in the
original string x, and j to the first occurrence of w in x after position i (using wssm). If j
does not exist, we return i as the position of the lexicographically maximum suffix; otherwise,
we set k = |w| and continue by preserving the invariant of Duval’s algorithm. J

I Lemma 8. The preprocessing of a pattern of length m takes O(mα ) time.

3 Word-Size Instruction Emulation

Our algorithm uses two specialized word-size packed string matching instructions, wssm
and wslm, that are assumed to take O(1) time. In the circuit complexity sense both are
AC0 instructions, which are easier than integer multiplication that is not AC0, since integer
multiplication can be used to compute the parity [17]. Recall that the class AC0 consist of
problems that admit polynomial size circuits of depth O(1), with Boolean and/or gates of
unbounded fan-in and not gates only at the inputs.

While either instruction can be emulated using the four Russians’ technique, table lookup
limits the packing factor and has limited practical value for two reasons: it sacrifices the
constant auxiliary space and has no more cache friendly access. We focus here on the easier
and more useful main instruction wssm and propose efficient bit parallel emulations in the
word-RAM, relying on integer multiplication for fast Boolean convolutions.

I Lemma 9. After a preprocessing of O(ω) time, the ω/ log logW -bit wssm and wslm
instructions can be emulated in O(1) time on a ω-bit word RAM.

3.1 Bit-parallel emulation of wssm

String matching problems under general matching relations were classified in [23, 24] into
easy and hard problems, where easy problems are equivalent to string matching and are
solvable in O(n+m) time, and hard problems are at least as hard as one or more Boolean
convolutions, that are solved using FFT and integer convolutions in O(n logm) time [1, 14].
To efficiently emulate the wssm instruction we introduce two layers of increased complexity:
first, we observe that the problem can also be solved using Boolean convolutions, and then,
we use the powerful, yet standard, integer multiplication operation, that resembles integer
convolutions, to emulate Boolean convolutions. In the circuit complexity sense Boolean
convolution is AC0, and therefore, is easier than integer multiplication.
String matching and bitwise convolution via integer multiplication. Consider the
Boolean vectors t0 · · · tn−1 and p0 · · · pm−1: we need to identify those positions k, such that
tk+i = pi, for all i ∈ [m]. Given a text and a pattern, where each of their characters is

FSTTCS 2011



430 Optimal Packed String Matching

encoded in log2 |Σ| bits, we can see them as Boolean vectors of length log2 |Σ| times the
original one. We can therefore focus on binary text and pattern. We want to compute the
occurrence vector c, such that ck indicates if there is a pattern occurrence starting at text
position k ∈ [n] (so we then have to select only those ck that are on log2 |Σ| bit boundaries
in c). In general, we have

ck =
∧

i=0,...,m−1
(tk+i = pi) =

 ∨
i=0,...,m−1

(tk+i ∧ pi)

 ∨
 ∨
i=0,...,m−1

(tk+i ∧ pi)

.
Define the OR-AND Boolean convolution operator ĉ = a 5 b for the Boolean vectors
a = an−1 · · · a0, b = bm−1 · · · b0, and ĉ = ĉn+m−1 · · · ĉ0, to be

ĉk =
∨

i=max{0,k−(n−1)},...,min{m−1,k}

(ak−i ∧ bm−i−1).

Then, the occurrence vector c can be computed by taking the least n significant bits
from the outcome of two convolutions, ĉ = (t5 p) ∨ (t5 p). Treating the Boolean vectors as
binary integers with the left shift operator �, we can compute a5 b using standard integer
multiplication a× b, but the sum has to be replaced by the OR operation:

a5 b =
∨

i=0,...,m−1
[(a� i)× bi] = a× b (where + is replaced by ∨).

Observe the following to actually use the plain standard integer multiplication a×b. Since
the sum of up to m Boolean values is at most m, it can be represented by L = dlogm+ 1e
bits. If we pad each digit of a and b with L zeros, and think of each group of L+ 1 bits as
a field, by adding up at most m numbers the fields would not overflow. Thus, performing
the integer multiplication on the padded a and b gives fields with zero or non-zero values
(where each field actually counts the number of mismatches). Adding the two convolutions
together we get the overall number of mismatches, and we need to identify the fields with
no mismatches, corresponding to occurrences and compact them. In other words, if we use
padded vectors t′, t′, p′, and p′, we can compute r = (t′ × p′) + (t′ × p′) and set ĉk = 0 if and
only if the the corresponding field in r is non-zero.

We use the constant time word-RAM bit techniques in Fich [13] to pad and compact.
Note that in each field with value f we have that 0− f is either 0, or borrows from the next
field 1s on the left side. Take a mask with 1 in each field at the least significant bit, and
subtract our integer m from this mask. We get that only zero fields have 0 in their most
significant bit. Boolean AND with the mask to keep the most significant bit in each field,
then shift right to the least significant bit in the field. The only caveat in the above “string
matching via integer multiplication” is its need for padding, thus extending the involved
vectors by a factor of L = Θ(logm) = O(logw) since they fit into one or two words. We now
have to use L machine words, incurs a slowdown of Ω(L). We next show how to reduce the
required padding from L to log logα.
Sparse convolutions via deterministic samples. A deterministic sample (DS) for a
pattern with period length π is a collection of at most dlog πe pattern positions, such that any
two occurrence candidate text locations that match the pattern at the DS must be at least π
locations apart [26]. To see that a DS exists, take π consecutive occurrence candidates. Any
two candidates must have at least one mismatch position; add one such position to the DS
and keep only the remaining minority candidates, removing at least half of the remaining
candidates. After at most dlog πe iterations, there remains only one candidate and its DS.
Moreover, if the input characters are expanded into log2 |Σ| bits, then the DS specifies only



O. Ben-Kiki, P. Bille, D. Breslauer, L. Gasieniec, R. Grossi, and O. Weimann 431

dlog πe bits, rather than characters. Candidates can be eliminated via Boolean convolutions
with the two bit vectors representing the 0s and 1s in the DS, that is, sparse Boolean vectors
with at most dlog πe set bits. The period π, the DS, and the other required masks and
indices are precomputed in O(ω) time.

Consider now how we performed string matching via integer multiplication in the previous
paragraph. Then, the padding in the bitwise convolution construction can be now reduced
to only L′ = dlog log π + 1e bits instead of L bits, leading to convolutions of shorter
O(ω log log π) = O(ω log logω) bit words and slowdown of only O(log logω) time. Using
ω-bit words and O(ω)-time preprocessing, we can treat O(ω/ log logω) bits in O(1) time
using multiplication, thus proving Lemma 9.

3.2 wssm on contemporary commodity processors
Benchmarks of packed string matching instructions in "Efficient Accelerated String and Text
Processing: Advanced String Operations" Streaming SIMD Extension (SSE4.2) and Advanced
Vector Extension (AVX) on Intel Sandy Bridge processors [18, 20] and Intel’s Optimization
Reference Manual [19] indicate remarkable performance. The instruction Packed Compare
Explicit Length Strings Return Mask (PCMPESTRM) produces a bit mask that is suitable
for short patterns and the similar instruction Packed Compare Explicit Length Strings Return
Index (PCMPESTRI) produces only the index of the first occurrence, which is suitable for
our longer pattern algorithm.

Faro and Lecroq kindly made their String Matching Algorithms Research Tool (SMART)
available [12]. Benchmarks show that for up to 8-character patterns, the raw packed string
matching instructions outperformed all existing algorithms in SMART. The Crochemore-
Perrin algorithm with packed string matching instructions performed very well on longer
patterns. These preliminary experimental results must be interpreted cautiously, since on
one hand we have implemented the benchmarks very quickly, while on the other hand the
existing SMART algorithms could benefit as well from packed string matching instructions
and from other handcrafted machine specific optimization; in fact, a handful of the existing
SMART algorithms already use other Streaming SIMD Extension instructions.

4 Conclusions

We demonstrated how to employ string matching instructions to design optimal packed
string matching algorithms in the word-RAM, which are fast both in theory and in practice.
There is an array of interesting questions that arise from our investigation. (1) Compare
the performance of our algorithm using the hardware packed string matching instructions
to existing implementations (e.g. Faro and Lecroq [12] and platform specific strstr in glibc).
(2) Derive Boyer-Moore style algorithms that may be faster on average and skip parts of the
text [6, 27] using packed string matching instructions. (3) Extend our results to dictionary
matching with multiple patterns [3]. (4) Improve our emulation towards constant time with
ω-bit words and AC0 operations. (5) Find critical factorizations in linear-time using only
equality pairwise symbol comparisons: such algorithms could also have applications in our
packed string model, possibly eliminating our reliance on the wslm instruction.

References
1 A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Al-

gorithms. Addison-Wesley, Reading, MA, 1974.

FSTTCS 2011



432 Optimal Packed String Matching

2 R. A. Baeza-Yates. Improved string searching. Softw. Pract. Exper., 19(3):257–271, 1989.
3 D. Belazzougui. Worst Case Efficient Single and Multiple String Matching in the RAM

Model. In Proceedings of the 21st International Workshop On Combinatorial Algorithms
(IWOCA), pages 90–102, 2010.

4 M. Ben-Nissan and S. Tomi Klein. Accelerating Boyer Moore searches on binary texts.
In Proceedings of the 12th International Conference on implementation and Application of
Automata (CIAA), pages 130–143, 2007.

5 P. Bille. Fast searching in packed strings. J. Discrete Algorithms, 9(1):49–56, 2011.
6 R.S. Boyer and J.S. Moore. A fast string searching algorithm. Comm. of the ACM, 20:762–

772, 1977.
7 Dany Breslauer, Roberto Grossi, and Filippo Mignosi. Simple Real-Time Constant-Space

String Matching. In Raffaele Giancarlo and Giovanni Manzini, editors, CPM, volume 6661
of Lecture Notes in Computer Science, pages 173–183. Springer, 2011.

8 Y. Césari and M. Vincent. Une caractérisation des mots périodiques. C.R. Acad. Sci. Paris,
286(A):1175–1177, 1978.

9 M. Crochemore and D. Perrin. Two-way string-matching. J. ACM, 38(3):651–675, 1991.
10 J.P. Duval. Factorizing Words over an Ordered Alphabet. J. Algorithms, 4:363–381, 1983.
11 S. Faro and T. Lecroq. Efficient pattern matching on binary strings. In Proceedings of the

35th Conference on Current Trends in Theory and Practice of Computer Science (SOF-
SEM), 2009.

12 S. Faro and T. Lecroq. The exact string matching problem: a comprehensive experimental
evaluation report. Technical Report 0810.2390, arXiv, Cornell University Library, 2011.
http://arxiv.org/abs/1012.2547.

13 F. E. Fich. Constant time operations for words of length w. Technical report, University
of Toronto, 1999. http://www.cs.toronto.edu/~faith/algs.ps.

14 M.J. Fischer and M.S. Paterson. String matching and other products. In Complexity of
Computation, pages 113–125. American Mathematical Society, 1974.

15 K. Fredriksson. Faster string matching with super-alphabets. In Proceedings of the 9th
International Symposium on String Processing and Information Retrieval (SPIRE), pages
44–57, 2002.

16 K. Fredriksson. Shift-or string matching with super-alphabets. IPL, 87(4):201–204, 2003.
17 M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy.

Mathematical Systems Theory, 17(1):13–27, 1984.
18 Intel. Intel® SSE4 Programming Reference. Intel Corporation, 2007.
19 Intel. Intel® 64 and IA-32 Architectures Optimization Reference Manual. Intel Co., 2011.
20 Intel. Intel® Advanced Vector Extensions Programming Reference. Intel Corporation, 2011.
21 D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J.

Comput., 6:322–350, 1977.
22 M. Lothaire. Combinatorics on Words. Addison-Wesley, Reading, MA, U.S.A., 1983.
23 S. Muthukrishnan and K. V. Palem. Non-standard stringology: algorithms and complexity.

In Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC),
pages 770–779, 1994.

24 S. Muthukrishnan and H. Ramesh. String Matching Under a General Matching Relation.
Inf. Comput., 122(1):140–148, 1995.

25 J. Tarhio and H. Peltola. String matching in the DNA alphabet. Software Practice Exper-
ience, 27:851–861, 1997.

26 U. Vishkin. Deterministic sampling - a new technique for fast pattern matching. SIAM J.
Comput., 20(1):22–40, 1990.

27 Andrew Chi-Chih Yao. The complexity of pattern matching for a random string. SIAM J.
Comput., 8(3):368–387, 1979.

http://arxiv.org/abs/1012.2547
http://www.cs.toronto.edu/~faith/algs.ps


Dynamic programming in faulty memory
hierarchies (cache-obliviously)∗

Saverio Caminiti1, Irene Finocchi1, Emanuele G. Fusco1, and
Francesco Silvestri2

1 Computer Science Department, Sapienza University of Rome
{caminiti, finocchi, fusco}@di.uniroma1.it

2 Department of Information Engineering, University of Padova
silvest1@dei.unipd.it

Abstract
Random access memories suffer from transient errors that lead the logical state of some bits to
be read differently from how they were last written. Due to technological constraints, caches
in the memory hierarchy of modern computer platforms appear to be particularly prone to bit
flips. Since algorithms implicitly assume data to be stored in reliable memories, they might easily
exhibit unpredictable behaviors even in the presence of a small number of faults. In this paper
we investigate the design of dynamic programming algorithms in faulty memory hierarchies.
Previous works on resilient algorithms considered a one-level faulty memory model and, with
respect to dynamic programming, could address only problems with local dependencies. Our
improvement upon these works is two-fold: (1) we significantly extend the class of problems that
can be solved resiliently via dynamic programming in the presence of faults, settling challenging
non-local problems such as all-pairs shortest paths and matrix multiplication; (2) we investigate
the connection between resiliency and cache-efficiency, providing cache-oblivious implementations
that incur an (almost) optimal number of cache misses. Our approach yields the first resilient
algorithms that can tolerate faults at any level of the memory hierarchy, while maintaining cache-
efficiency. All our algorithms are correct with high probability and match the running time and
cache misses of their standard non-resilient counterparts while tolerating a large (polynomial)
number of faults. Our results also extend to Fast Fourier Transform.

1998 ACM Subject Classification B.8 [Performance and reliability]; F.2 [Analysis of algorithms
and problem complexity]; I.2.8 [Dynamic programming].

Keywords and phrases Unreliable memories, fault-tolerant algorithms, dynamic programming,
cache-oblivious algorithms, Gaussian elimination paradigm.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.433

1 Introduction

Random access memories suffer from failures that lead the logical state of some bits to be read
differently from how they were last written. A recent study has analyzed the memory-error
sensitivity of Google’s fleet of commodity servers over a period of nearly two years, observing
an incidence of errors much higher than previously reported in laboratory conditions [26].
Due to low supply voltage and low critical charge per cell, caches in the memory hierarchy

∗ This work was supported in part by the Italian Ministry of Education, University, and Research (MIUR)
under PRIN 2008TFBWL4 national research project AlgoDEEP. The last author was also supported by
the University of Padova under Projects STPD08JA32 and CPDA099949/09.

© S. Caminiti, I. Finocchi, E.G. Fusco, and F. Silvestri;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 433–444

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.433
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


434 Dynamic programming in faulty memory hierarchies (cache-obliviously)

of modern computer platforms appear to be even more prone to bit flips than dynamic
random access memories [22], while sophisticated error-correction algorithms are prohibitive
for on-chip caches due to tight constraints on die size. The effect of memory errors is
an important consideration in system design, especially for long-running and large-scale
applications that work on massive data sets. When hardware techniques to detect bit flips
are not available, it is important to design algorithms and data structures that are resilient
to memory faults without incurring significant space/time penalties.

So far, algorithmic research related to memory faults mainly focused on fault-tolerant
sorting networks [25] and on the design of resilient data structures in different (hardly
comparable) models [2, 3, 9]. A variety of results have been recently obtained in a faulty
RAM model introduced in [19], where an adversary can corrupt at most δ memory cells of a
large unreliable memory during the execution of an algorithm. Problems solved resiliently
in the faulty RAM model include sorting [17, 19], dictionaries [5, 18], priority queues [23],
counting [7], K-d Trees [21], dynamic data structures [15], and local-dependency dynamic
programming [8]. All these works focus on a one-level faulty memory: the only exception
is [6], which investigates the connection between fault tolerance and I/O-efficiency in the
external memory model [1], addressing resilient dictionaries, priority queues, and sorting.
We remark that external memory (and, similarly, cache-aware) algorithms often crucially
depend on the knowledge of hardware parameters, such as block or cache line size, and may
not adapt well to different memory hierarchies. Cache-oblivious algorithms [20] overcome
this issue: they are designed in a two-level ideal-cache model with no explicit dependencies
on hardware parameters, and can therefore adapt simultaneously to all levels of the memory
hierarchy (see [16] for a survey). To the best of our knowledge, no work but [6] proposes
algorithms that are both resilient and cache-efficient. These two requirements pose indeed
conflicting challenges: resilient algorithms typically use data replication, which might result
in poor spatial locality, and perform error detection and recovery strategies throughout the
computation, which might result in poor temporal locality.
Hierarchical faulty memory model. To analyze the resiliency of algorithms to faults
that take place anywhere in the memory hierarchy, we combine the notions of fault-tolerance
and cache-obliviousness extending the faulty RAM model [19] and the faulty external memory
model [6] in a natural way. We assume the existence of a multilevel unreliable memory.
Overall, at most δ (adversarial) corruptions can take place: each fault can be inserted at
any time during the execution of an algorithm and at any level of the memory hierarchy.
The algorithms can exploit knowledge of δ, which is a parameter of the model, but are
oblivious to hardware parameters of the memory hierarchy and require neither error detection
capabilities nor cryptographic assumptions. Following [20], we analyze the cache complexity
in a two-level ideal-cache model, where both levels may be faulty: a fully associative cache
of size M is partitioned into lines, each consisting of B consecutive words which are always
moved together to/from main memory according to an optimal off-line replacement strategy
(these choices are justified in [20]). Similarly to previous works [3, 6, 17, 18], we assume the
existence of P private memory words that are incorruptible and hidden from the adversary:
the private memory can be used, e.g., in the case of randomized algorithms to store random
values and their derivatives. If P = Θ(1), the private memory can be implemented by a
constant number of dedicated registers and accessed without incurring cache misses. If P is
not constant (e.g., P = Θ(logn), where n is the input size), we assume the existence of a
private memory hierarchy whose largest level has size P : at each hierarchy level, private and
public (unreliable) memory have the same cache line size.



S. Caminiti, I. Finocchi, E.G. Fusco, and F. Silvestri 435

Our results. We investigate the design of dynamic programming algorithms in the hierarch-
ical faulty memory model. Previous work on resilient dynamic programming (in short, DP) [8]
only applies to local dependency DP problems, where updates to entries in the DP table are
determined by the contents of O(1) neighboring cells: this class of problems includes, e.g.,
longest common subsequence and certain kinds of sequence alignment, but excludes many
practically relevant problems such as Floyd-Warshall all-pairs shortest paths. Furthermore,
algorithms in [8] are designed in a one-level memory model and are not cache-efficient. The
contribution of this paper is two-fold. As a first result, we remove the local dependency
assumption, significantly extending, w.r.t. [8], the class of problems that can be solved
resiliently via dynamic programming in the presence of faults. Hinging upon a recursive
framework introduced in [10, 11], we design resilient algorithms for all problems that can be
solved by triply-nested loops of the type that occur in the standard Gaussian elimination
algorithm, most notably all-pairs shortest paths and matrix multiplication. Similar results
also apply to the Fast Fourier Transform. We remark that even checking the correctness of
dynamic programming computations for non-local problems has been regarded as an elusive
goal for many years. All our algorithms are correct with high probability, are parametric in
the private memory size, and can tolerate a polynomial number of faults while still matching
the running time of their non-resilient counterparts. As a second contribution, our approach
yields the first resilient and cache-oblivious algorithms that can tolerate faults at any level
of the memory hierarchy, while incurring an (almost) optimal number of cache misses. To
obtain our results we introduce some novel techniques which might be of independent interest
in the design of resilient algorithms for different problems.

To exemplify our bounds, consider a classical local-dependency DP problem, i.e., com-
puting a longest common subsequence (LCS) of two sequences of length m and n, with
m ≥ n. We solve LCS resiliently and cache-obliviously in O(nm + δnc/PmP ) time and
O(nm/(MB) + δnc/PmP/B) cache misses, where M is the unreliable cache size, P is the
private memory size (bounded by O (logn)), B is the number of words in a cache line, δ
is an upper bound on the number of faults, and c < P is a small constant. Notice that
Ω(nm/(MB) + δm/B) is a lower bound on the number of cache misses in the hierarchical
faulty memory model [11], and that nc/P = Θ(1) when P = Θ(logn). Our algorithm matches
the Θ(mn) running time of its non-resilient counterpart as long as δ = O(n1−c/P /P ), offering
a full spectrum of tradeoffs between private memory size and number of faults. For instance,
when P = Θ (logn), we can tolerate up to δ = O(n/ logn) faults and incur a number of
cache misses that is either optimal, if δ is also bounded by O(n/(M logn)), or at most a
factor of logn away from optimal. Even when P = Θ(1), the algorithm can still tolerate a
polynomial number of faults within the same bounds of its non-resilient counterpart. Note
that the resilient LCS algorithm from [8] incurs Θ(nm/B) cache misses, even without faults.
Paper organization. After some preliminaries, in Section 3 we introduce the main tools
that will allow us to achieve resiliency and cache-efficiency simultaneously: this section is
intended as an overview of our techniques, while the algorithms are detailed in Section 4
(which focuses on local-dependency DP problems) and in Section 5 (devoted to the extension
to non-local problems). Due to lack of space, proofs of several results and some detailed
description are omitted and will appear in the full version of the paper.

2 Preliminaries

Recursive dynamic programming [10, 11]. Our approach hinges upon a recursive
framework for dynamic programming, introduced in [10, 11], that we briefly describe here

FSTTCS 2011



436 Dynamic programming in faulty memory hierarchies (cache-obliviously)

for completeness. We refer to [10, 11] for a detailed description and analysis. Let X and Y
be two sequences of length n and m, respectively (w.l.o.g., let m ≥ n). As an example we
consider the LCS problem, whose standard DP solution is based on the following recurrence:

`[i, j] =

 0 if i = 0 or j = 0
`[i− 1, j − 1] + 1 if i, j > 0 and xi = yj

max{`[i, j − 1], `[i− 1, j]} if i, j > 0 and xi 6= yj

(1)

where `[i, j] is the length of a longest common subsequence of prefixes 〈x1, . . . , xi〉 and
〈y1, . . . , yj〉. Values ` can be stored in a DP table C of size (n+ 1)× (m+ 1), and a longest
common subsequence of X and Y can be obtained by computing a traceback path starting
from entry C[n,m], according to Equation 1.

Let C[i, j][h, k] be the subtable of the dynamic programming table C ranging from row
i to row j and from column h to column k. Let vectors L = C[i − 1, j][h − 1, h − 1],
R = C[i, j][k, k], T = C[i− 1, i− 1][h− 1, k], and D = C[j, j][h, k] be the left, right, top, and
down boundaries of the subtable, respectively. Moreover, let 〈xi, . . . , xj〉 and 〈yh, . . . , yk〉 be
the projections of the input sequences X and Y on C[i, j][h, k]. The algorithm presented
in [10, 11] is implemented by two recursive functions, Boundary and Traceback-Path, that
use a divide-and-conquer strategy, logically splitting table C into four quadrants. Boundary
performs a forward computation by recursively solving four subproblems: it returns the
output boundaries (R and D) of a quadrant, starting from the projections of X and Y on
the quadrant and the input boundaries (L and T ). Traceback-Path finds the traceback
path π through the DP table C by recursively finding the fragments of the path through
the quadrants it traverses: given the entry point of path π on the output boundaries of a
quadrant, Traceback-Path calls function Boundary to compute the input boundaries of (at
most three) subquadrants, and recursively calls itself to compute the fragments of π traversing
the subquadrants. In [12] the authors also provide a multicore version of the algorithm: this
extension exploits a tiling sequence, depending on the recursion depth, that determines a
subdivision of the DP table into a (not necessarily constant) number of quadrants.
Resilient variables [18]. An r-resilient variable x consists of 2r + 1 copies of a standard
variable. A reliable write operation on x means assigning the same value to each copy.
Similarly, a reliable read means calculating the majority value, which can be done in Θ(r)
time and O(1) space [4], incurring O(r/B+1) cache misses. The majority value is guaranteed
to be correct if r ≥ δ, since at most δ copies can be corrupted. If r < δ, an r-resilient variable
can be corrupted by the adversary, but at the cost of at least r + 1 faults.
Karp-Rabin fingerprints [24]. Given a vector A = 〈a0, . . . , ak〉 and a prime number p,
a Karp-Rabin fingerprint can be defined as ϕA =

∑k
i=0 ai2w(k−i) mod p, where w is the

memory word size. Fingerprint ϕA can be incrementally computed in O(k) time and O(1)
private memory: when a new number ai is revealed, ϕA can be updated in O(1) time using
Horner’s rule and simple modular arithmetics [24].

3 Overview of our techniques

In this section we describe the main tools that will allow us to adapt some cache-oblivious
algorithms to run in the presence of memory faults, while keeping the number of cache misses
bounded. In Section 4 we will show how to combine these tools to make functions Boundary
and Traceback-Path resilient.
Read and write fingerprints. The hierarchical faulty memory model does not provide
fault detection capabilities: hence, we need to guarantee that values read throughout the



S. Caminiti, I. Finocchi, E.G. Fusco, and F. Silvestri 437

computation (from the input sequences and from the DP table) were not tampered since
they were last written. To this aim, we use read and write Karp-Rabin fingerprints. Since
Boundary and Traceback-Path are recursive, we will associate fingerprints to the input
and output data of each call (i.e., to quadrant boundaries and to sequence projections). We
use an independently generated prime number pd for each recursion depth d and denote the
write and read fingerprints of a vector A as ϕA and ϕA, respectively. The correctness of data
stored in A can be checked by reading A, computing ϕA, and comparing its value against the
write fingerprint ϕA produced when A was previously written: if ϕA 6= ϕA, a fault occurred.
Bounding private data. We store fingerprints, primes, and information about recursive
calls in the private memory, whose amount is limited to P memory words. Since Ω(1) data
are necessary per recursion level, we need to limit the depth of the recursion tree, depending
on P . Let c be the number of local variables used by the algorithm and let ρ be the largest
integer such that c ρ ≤ P : notice that ρ = Θ (P ). At each call, we split the table into λ× λ
quadrants, where λ = dn1/ρe: this guarantees that private data fits into P memory words.
Lazy fault detection. With non-constant λ and O(1) fingerprints per recursion level,
checking the correctness of the input for all the recursive calls would result in non-negligible
time overhead. Hence, we detect faults lazily and perform fingerprint tests only when all
subproblems have been recursively solved.
Data replication at decreasing resiliency levels. To resume computation after the
detection of a fault, we use r-resilient variables. Since working at resiliency level δ throughout
the computation would asymptotically increase the running time, we exploit a hierarchy of
decreasing resiliency levels, tied with the depth of the recursive call: calls that are deeper
in the recursion tree correspond to smaller subproblems and have a lower level of resiliency.
It is worth noticing that the corruption of r-resilient variables, with r < δ, together with
lazy fault detection, might force the algorithm to perform entire subtree computations on
wrong data. The corruption will be detected only by fingerprints at level r, but the wasted
computation time will be amortized on Θ (r) faults. This will be crucial to bound the total
cost of error recovery.
Amplified fingerprints. We will see in Section 4 that, during the execution of the algorithm,
read and write data access patterns do not necessarily coincide. This is an issue, since updating
a fingerprint ϕA while reading a vector A = 〈a0, . . . , ak〉 according to an arbitrary pattern
could require logarithmic time per access, due to exponentiation (see Section 2). Moreover,
some values are possibly read ω(1) times and should appear in fingerprints tied with different
exponents. To address these issues, we exploit regularities in data access patterns. We
define an amplified write fingerprint as ϕA =

∑k
i=0(ai

∑si

j=1 2wfi,j ) mod pd, where si is the
amplifying factor for element ai (i.e., the number of times ai will be read), and values fi,j
are distinct positive integers characterizing the access pattern. The correctness of read data
can be verified by updating the amplified read fingerprint ϕA adding ai2wfi,j during the j-th
reading of ai. In our algorithm, factors 2wfi,j can be computed in O(1) amortized time:
these computations depend on the access pattern and will be therefore discussed later.

4 Recursive local-dependency dynamic programming

We now describe in more details how functions Boundary and Traceback-Path can be
made resilient. We present a cache-efficient implementation in Section 4.1 and its analysis
in Section 4.2. We assume that the input sequences are δ-resilient and that both of them
have length n: the latter assumption can be removed by splitting the longer sequence Y into
dm/ne segments.

FSTTCS 2011



438 Dynamic programming in faulty memory hierarchies (cache-obliviously)

(a) (b)

Figure 1 (a) DP quadrants, boundaries, and auxiliary vectors; (b) cache-oblivious traceback path
computation with virtual quadrants.

Insert and extract. Throughout the computation, we repeatedly extract and merge vector
segments, changing their resiliency level and updating their fingerprints, by means of two
auxiliary functions, called insert and extract. Function insert combines two vectors:
given as input a vector A stored at resiliency level r, a vector A′ stored at resiliency level
r′ ≤ r, two write fingerprints ϕA and ϕA′ , it reads by majority values in A′ and appends
them to A, increasing their resiliency from r′ to r (we assume that enough memory has been
already allocated in A). At the same time, insert updates the write fingerprint ϕA with
the new values and computes a read fingerprint ϕA′ to check correctness of the read data: if
ϕA′ 6= ϕA′ , the function fails. Symmetrically, function extract takes a small vector out of a
larger one.
Resilient boundary. Function Boundary, when called at recursion depth d, receives as
input L, T , and the projections of X and Y , all stored at resiliency level δd = dδ/λde, and
the corresponding write fingerprints produced by its caller (initialization can be appropriately
done at recursion depth 0). All the input vectors have the same length nd = dn/λde
and are stored in the unreliable memory, while fingerprints are private. Similarly to [12],
Boundary recursively solves λ2 subproblems in row-major order. However, the parameters
of the recursive calls are vectors of length nd+1 = dn/λd+1e stored at resiliency level
δd+1 = dδ/λd+1e, together with their write fingerprints, and the output is stored into two
auxiliary (horizontal and vertical) vectors H and V . These vectors have length (λ− 1)nd,
resiliency δd, and are associated with a write and a read fingerprint (see Fig. 1.a). Appropriate
fingerprint tests are also performed during the computation, as detailed below. Consider an
internal quadrant 〈i, j〉, with 1 < i, j < λ. During the recursive call at depth d, the algorithm
works as follows:
Step 1. The input boundaries L′ and T ′, of length nd+1 and resiliency δd+1, are extracted
from V and H, respectively, together with their write fingerprints. The projection Y ′ of
sequence Y on the quadrant is obtained similarly (X ′ is extracted from X only if j = 1).
These extract operations also update the read fingerprints ϕH , ϕV , and ϕY .
Step 2. Given L′, T ′, Y ′, and X ′ (together with their write fingerprints) computed in step



S. Caminiti, I. Finocchi, E.G. Fusco, and F. Silvestri 439

1, the recursive call on quadrant 〈i, j〉 returns the output boundaries D′ and R′, of length
nd+1 and resiliency δd+1, and their write fingerprints ϕD′ and ϕR′ . If this call fails, all data
at resiliency level δd+1 are discarded, the prime number pd+1 associated with recursion level
d+ 1 is renewed, and the computation restarts from step 1. Backup copies of ϕV , ϕH , and
ϕY are used to restore the computation state. The projection of X is extracted once per row
and requires an additional backup fingerprint based on prime number pd.
Step 3. Upon successful termination of the recursive call, the output boundaries D′ and R′
of quadrant 〈i, j〉 are merged with H and V , respectively. If insert fails (due to a fingerprint
mismatch on δd+1-resilient data) the computation is restarted from step 1. Otherwise, the
write fingerprints ϕH and ϕV are updated.
Quadrants on the first column and quadrants on the first row (i.e., j = 1 and i = 1,
respectively) are handled similarly, but L′ and T ′ are extracted from L and T (instead of V
and H), respectively. When computing quadrants on the last row or column, the resulting
output is inserted into the output vectors R and D with resiliency δd.

No fingerprint test is performed at the end of step 1 to establish the correctness of the
extracted subsequences: such a test would require reading V and H from scratch, and would
have a prohibitive running time. The following fingerprint tests are instead (lazily) performed,
depending on the quadrant:

ϕV = ϕV and ϕH = ϕH must hold if 〈i, j〉 = 〈λ, λ〉;
ϕL = ϕL and ϕT = ϕT must hold if 〈i, j〉 = 〈λ, 1〉 or 〈1, λ〉, respectively;
ϕY = ϕY must hold for each i ∈ [1, λ] and j = λ;
ϕX = ϕX must hold if 〈i, j〉 = 〈λ, 1〉.

A mismatch on any of the above tests implies failure of the recursive call at depth d and will
be handled by higher recursive calls (see step 2).
Resilient traceback path. The resilient implementation of Traceback-Path computes
the traceback path segment π traversing a quadrant, stored at resiliency level δd, and its
write fingerprint ϕπ. Traceback-Path calls resilient Boundary to obtain vectors H and
V , containing the output boundaries (at resiliency level δd) of the λ2 quadrants of size
nd+1 × nd+1. Then, it computes π backward from H and V by calling itself on (at most
2λ− 1) subquadrants intersected by π. Segments of π (at resiliency level δd+1) obtained by
the recursive calls are stitched and increased in resiliency using function insert. Fingerprint
mismatches at resiliency level δd cause the current call of Traceback-Path to fail, while
mismatches at level δd+1 or failed subroutine invocations cause the computation to be
repeated. Since the backward access pattern to H, V , L, and T is inverted with respect to
the order in which data are written, we use amplified fingerprints as described in Section 3.
E.g., the read fingerprint of vector H can be efficiently computed by saving in the private
memory a running value 2w(|H|−i−1) mod pd and performing a single multiplication by 2w
per update. We also notice that some quadrants may not be intersected by the traceback
path, but we force the algorithm to read vector segments corresponding to these quadrants
in order to correctly update the read fingerprints.

4.1 Cache-oblivious implementation
To improve temporal locality we access data in Z-order [20], and to improve spatial locality
we shrink the size of data structures in the unreliable memory by recycling space as soon as
written data are no longer needed. While this is quite standard in the design of cache-oblivious
algorithms, it has non-trivial consequences on fingerprint computation.

FSTTCS 2011



440 Dynamic programming in faulty memory hierarchies (cache-obliviously)

Amplified fingerprints vs. Z-order. When using the Z-order, read operations on vectors
H and V do not follow the write Z-order in which their write fingerprints ϕH and ϕV have
been produced. We have thus to change the read fingerprint computation to reflect this
different order while maintaining O(1) amortized time per operation. Consider, e.g., the
computation of ϕH for calls at recursion depth d = ρ− 1 (similar reasonings can be applied
to the other vectors and recursion depths). Since d = ρ − 1, we have that nd ≤ λ, each
subproblem is a single entry of the DP table C, and vector H corresponds to a portion of C of
size nd×nd. We use ϕH =

∑|H|−1
x=0 H[x]2wx mod pd as a write fingerprint. The computation

of cell (i, j), requires values from cells (i, j − 1), (i− 1, j), and (i− 1, j − 1). It can be shown
that the ranks of these cells in vector H (say r1, r2, and r3) can be computed from the rank
r of cell (i, j) as r1 = r− left(exp(j)), r2 = r− up(exp(i)), and r3 = r− diag(exp(i), exp(j)),
where exp(k) is the exponent of 2 in the factorization of k, diag(h, k) = up(h) + left(k), and
up and left are defined as follows:

left(k) =
{

1 if k = 0
22k−1 + left(k − 1) otherwise up(k) =

{
2 if k = 0
22k + up(k − 1) otherwise

Since each written value is read three times (from below, from the right, and from the bottom-
right diagonal), we maintain three read fingerprints ϕH,R, ϕH,B , and ϕH,D. While reading,
e.g., cell (i, j− 1) to compute cell (i, j), we update ϕH,R by adding H[r1]2w(|H|−r) · 2−w(r−r1)

mod pd. To make this computation efficient, we precompute the inverse 2−w of 2w in the ring
Zpd

, for all selected primes pd. Computing left(exp(j)) for all j ∈ [0, λ − 1] requires O (λ)
sums and divisions by 2, and thus the amortized cost of each computation is constant. Within
the same bound it is also possible to compute 2−w left(exp(j)) mod pd, starting from 2−w
and performing constantly many products for each sum in the computation of left(exp(j)).
Similar reasonings apply to functions up and diag.
Amplified fingerprints vs. virtual quadrants. To optimize cache misses, the length of
vectors H and V , at recursion depth d, should be reduced from λnd to Θ (nd). We adapt
a technique proposed in [11, 12]: at any time, only appropriate subvectors of H and V are
stored, obtaining the missing parts, when necessary, by repeating forward computations. In
more details, the (nd × nd)-size DP table is split into four quadrants of size (nd/2× nd/2),
which are superimposed over the λ× λ submatrices. Let Q be the quadrant containing the
entry point of π: the input boundaries for Q are obtained by applying function Boundary to
at most three quadrants, and the traceback path π is computed by combining the output of at
most three recursive calls of Traceback-Path on the intersected quadrants. It can be shown
that the additional forward computations do not asymptotically increase the running time,
and that the active boundaries stored in H and V (see Fig. 1.b) have length O(nd) [11, 12].

To apply this technique in our setting, two main issues need to be settled. A first
technical issue is that recursion on (nd/2i × nd/2i)-size quadrants cannot be explicit, since
the recursion tree would exceed the amount of private memory when P = o (logn). Hence,
in our implementation (nd/2i × nd/2i)-size quadrants are only virtual: recursive calls of
Traceback-Path on virtual quadrants inside an nd × nd quadrant are simulated iteratively
(this can be done using only a constant number of indexes and variables), while real recursive
calls are performed when nd/2i becomes smaller than nd+1. The resiliency is kept at level δd
during simulated recursion, and drops to δd+1 on real recursive calls.

The main issue is that, with virtual quadrants, the data access pattern becomes more
complex and requires opportunely crafted amplified fingerprints to enable error detection
while keeping negligible the time overhead. Consider as an example vector H and suppose for
the moment that recursive calls of function Traceback-Path are performed, during simulated



S. Caminiti, I. Finocchi, E.G. Fusco, and F. Silvestri 441

recursion, on all quadrants. The access pattern on H is given by a layer of log2 λ levels,
where layer i corresponds to an inverted Z-order on 4i data segments of length nd/2i. Hence,
the number of elements in layer i is nd2i and the overall number of elements preceding the
first element of layer i is given by

∑i−1
j=1 nd2i = nd(2i − 2). Write fingerprints are computed

according to the subdivision in layers. Let l be the current depth of simulated recursion
and let D′ be the output received from a call to function Boundary. Layers involved in
the fingerprint computation are layers l to log2 λ. As elements h ∈ D′ are inserted into
H, ϕH is updated in constant amortized time by adding h

∑log2 λ
i=l 2w(nd(2i−2)+rind/2i+si)

mod pd, where ri is the rank, in layer i, of the segment containing h and si is the number of
elements preceding h in this segment. Vector V and the projections of the input sequences
are handled in a similar way. Updates to read fingerprints are done accordingly to the current
layer on quadrants intersected by the traceback path π, paying attention to work also on
quadrants that are not intersected by π (to keep the read fingerprints consistent with the
write fingerprints).

4.2 Analysis
Let α be the number of faults actually introduced by the adversary during an execution of
the algorithm: notice that α ≤ δ. We recall that the two input sequences have length m and
n, with m ≥ n, and that ρ = Θ(logλ n) = Θ(P ) is the recursion depth (see Section 3).

I Theorem 1. Algorithm Resilient-LCS computes, with high probability, a correct longest
common subsequence of the input sequences X and Y .

Proof. If no memory fault is introduced by the adversary, the correctness of the algorithm
follows from [10]. In general, the first call of function Traceback-Path has resiliency δ0 = δ:
this implies that majority values cannot be corrupted and computation is never aborted.
It is not difficult to see that at most ρ+ α selections of prime numbers are needed during
an execution of the algorithm. It follows from [8] that, for any constants k and γ, it is
possible to independently select ρ + α numbers in [mk−1,mk], uniformly at random, so
that all selected numbers are prime with probability at least 1 − (ρ + α)/mγ . We now
consider the probability that fingerprint tests do not fail. It can be shown using standard
techniques that each fingerprint test fails to identify a corrupted variable with probability
at most 1/(σmk−2), for some positive constant σ. Since no more than α variables can
be corrupted by the adversary during the execution of the algorithm, we have that the
overall probability of detecting all faults is at least 1−α/(σmk−2), provided that all selected
numbers are primes. The probability that the algorithm computes the LCS correctly is thus
at least (1 − α/(σmk−2))(1 − (ρ + α)/mγ). By appropriately choosing constants k and γ,
this probability can be made larger than 1− 1/mε, for any ε > 0. J

The following theorem gives the running time of algorithm Resilient-LCS.

I Theorem 2. Algorithm Resilient-LCS requires O(mn + δmnc/PP ) time in the worst
case, where P is the available private memory, c < P is a small constant, m and n (with
m ≥ n) are the lengths of the input sequences, and δ is an upper bound on the number of
memory faults.

Proof. Algorithm Resilient-LCS consists of dm/ne calls of Traceback-Path with input
size n. Hence, functions Boundary and Traceback-Path are always called on two strings
of length n. We first consider the time spent in successful computation and then take into
account the time spent in computation discarded due to the detection of some fault. W.l.o.g

FSTTCS 2011



442 Dynamic programming in faulty memory hierarchies (cache-obliviously)

we assume n, δ and λ to be powers of two. Since at some recursion depth d the resiliency
level δd = δ/λd may become smaller than one, we suppose vectors to be Θ (δd + 1)-resilient.

Consider a successful computation of function Boundary at recursion depth d with input
size nd and resiliency level δd. If nd ≤ λ, the function requires TB(nd, δd) = O

(
n2
d(δd + 1)

)
time. If nd > λ, the time TB(nd, δd) becomes O

(
n2
d + δdndλ logλ nd

)
since Boundary

performs λ2 recursive calls with input size nd/λ and resiliency δd/λ, and each call requires
O (nd(δd + 1)/λ) time for preparing inputs and fingerprints. Therefore TB(n, δ) = O(n2 +
δnλ logλ n) = O(n2 + δnnc/PP ), by definition of λ.

Inducing a recomputation at level 1 ≤ i ≤ k, with k = logλ min{n, δ}, requires δ/λi faults
(there cannot be recomputation at level i = 0 since boundaries are δ-resilient). Hence at
most αλi/δ recomputations can be induced. Since there are λ2i subproblems at level i, the
following summation bounds from above the time spent in unsuccessful computation:

k∑
i=1

αλi

δ

TB (n, δ)
λ2i ≤ TB (n, δ)

k∑
i=1

1
λi
≤ TB (n, δ)

If δ < n, recursive calls done at levels deeper than k are all done at resiliency level 1.
The adversary can induce up to α recomputations at these levels, each of which has cost
bounded by TB (n, δ) /λ2k. Hence the time spent in unsuccessful computation at levels
j ∈ [k + 1, logλ n] is upper bounded by: αTB (n, δ) /λ2k = αTB (n, δ) /δ2 < TB (n, δ) . In all
cases, this time does not exceed the time spent in successful computation.

Consider a successful computation of Traceback-Path at recursion depth d with input
size nd and resiliency level δd. If nd ≤ λ the function requires O

(
n2
d(δd + 1)

)
time. If nd > λ,

the time is O
(
n2
d + ndδdλ

log2 3 logλ nd
)
since the function performs at most 2λ− 1 recursive

calls with input size nd/λ and resiliency δd/λ, and calls at most 3j times function Boundary
with input size nd/2j and resiliency δd + 1, for each 1 ≤ j ≤ log2 λ. As done previously, it
can be shown that the time spent in unsuccessful computation does not exceed the time
spent in successful computation. Multiplying these bounds by dm/ne calls and recalling that
λ = n1/Θ(P ), the theorem follows. J

Theorem 2 implies that, when P = Θ (logn) and δ = O(n/ logn), the running time
of algorithm Resilient-LCS is O (nm), matching the running time of the non resilient
cache-oblivious algorithm given in [10]. Furthermore, for any small constant private memory,
the algorithm can still tolerate a polynomial number of faults within the non-resilient bounds.
Theorem 3 gives the cache complexity of algorithm Resilient-LCS.

I Theorem 3. Algorithm Resilient-LCS incurs O(mn/(BM)+δmnc/PP/B) cache misses
in the worst case, where c < P is a small constant.

It follows from Theorem 3 that, when the available private memory is Θ (logn) and
δ = O(n/(M logn)), algorithm Resilient-LCS incurs O(nm/(BM)) misses, which is
optimal for algorithms based on Equation (1), as proved in [10]. Notice that, in the
hierarchical faulty memory model, we have an additional lower bound Ω (δm/B), given by
the number of cache misses needed to read the input sequences at resiliency level δ. Hence,
in any case, the number of cache misses is at most a logn factor away from optimal.

5 Extension to non-local problems

The techniques described in previous sections can be used to extend significantly the class
of problems that are efficiently solvable in the presence of memory faults. Here, we sketch



S. Caminiti, I. Finocchi, E.G. Fusco, and F. Silvestri 443

resilient and cache-efficient algorithms for problems that fit in the Gaussian Elimination
Paradigm [11] and for the Fast Fourier Transform. These algorithms compute the correct
solution with high probability, when up to δ faults are inserted by an adversary.

Gaussian Elimination Paradigm (GEP). This paradigm includes all problems that
can be solved by a triply nested for loop which updates each entry of an n × n input
matrix C at most n times. Some notable examples are matrix multiplication, Gaussian
elimination and LU decomposition without pivoting, and Floyd-Warshall all-pairs shortest
paths. I-GEP [13] is a subclass of GEP which includes all the aforementioned problems. In
I-GEP, it is possible to perform certain reorderings of the updates of matrix C guaranteeing
that the final result remains correct, despite the fact that the intermediate states of C
are different. In [12, 13, 14], cache-oblivious algorithms for I-GEP are provided for single
processors, parallel, and multicore machines. Our algorithm Resilient-I-GEP is based on
the multicore version [12]: it works recursively and relies on a subdivision of the input matrix
into a varying number of square subproblems, depending on the recursion depth.

Let λ = dn1/ρe be defined as in Section 3, where ρ = Θ (P ). At recursion depth d,
Resilient-I-GEP receives as input four δd-resilient nd × nd submatrices of C, which are
divided into λ2 submatrices of size nd/λ× nd/λ. Initially, the four matrices coincide with
C, which is stored δ-resiliently. The algorithm performs λ passes on these submatrices,
solving λ3 subproblems in total: the four input matrices of each subproblem are stored
dδd/λe-resiliently. The execution of the λ3 subproblems follows the order described in [13],
which guarantees cache efficiency. For each of the Θ (P ) recursive levels, the algorithm
stores in the private memory O (1) fingerprints which are opportunely crafted to reflect the
execution order of the λ3 subproblems and are similar in spirit to the amplified fingerprints
used in Resilient-LCS. Algorithm Resilient-I-GEP solves I-GEP problems correctly with
high probability: its running time is O

(
n3 + n2+c/P δP

)
and the number of cache misses is

O(n3/(B
√
M) + n2+c/P δP/B), where c < P is a suitable small constant. If P = Θ (logn),

the algorithm matches the running time of its non-resilient counterpart when δ = O (n/ logn).
Optimal cache efficiency is achieved for δ = O (n/(M logn)).

Fast Fourier Transform (FFT). Algorithm Resilient-FFT is built on the cache-oblivious
FFT algorithm in [20]. It computes the FFT of a δ-resilient n-size vector by computing 2

√
n

FFTs on dδ/
√
ne-resilient

√
n-size vectors. As usual, each input vector is associated with a

fingerprint stored in private memory. The algorithm is correct with high probability and
requires Θ (log logn) private memory. Its running time is O (n logn+ nδ), while the cache
complexity is O ((n logM n)/B + nδ/B + 1). The running time matches the corresponding
bound of the non-resilient algorithm when δ = O (logn). Optimal cache efficiency is achieved
for δ = O (logM n). For larger values of δ, the algorithm matches the resilient lower bounds
given by the misses and time required for reading the input vector resiliently.

References

1 A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Commun. ACM, 31(9):1116–1127, 1988.

2 Y. Aumann and M. A. Bender. Fault tolerant data structures. In Proc. 37th FOCS, pages
580–589, 1996.

3 M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of
memories. Algorithmica, 12(2–3):225–244, 1994.

4 R. S. Boyer and J. S. Moore. MJRTY: A fast majority vote algorithm. In Automated
Reasoning: Essays in Honor of Woody Bledsoe, pages 105–118, 1991.

FSTTCS 2011



444 Dynamic programming in faulty memory hierarchies (cache-obliviously)

5 G. S. Brodal, R. Fagerberg, I. Finocchi, F. Grandoni, G. F. Italiano, A. G. Jørgensen,
G. Moruz, and T. Mølhave. Optimal resilient dynamic dictionaries. In Proc. 15th ESA,
volume 4698 of LNCS, pages 347–358, 2007.

6 G. S. Brodal, A. G. Jørgensen, and T. Mølhave. Fault tolerant external memory algorithms.
In Proc. 11th WADS, volume 5664 of LNCS, pages 411–422, 2009.

7 G. S. Brodal, A. G. Jørgensen, G. Moruz, and T. Mølhave. Counting in the presence of
memory faults. In Proc. 20th ISAAC, volume 5878 of LNCS, pages 842–851, 2009.

8 S. Caminiti, I. Finocchi, and E. G. Fusco. Local dependency dynamic programming in the
presence of memory faults. In STACS, volume 9 of LIPIcs, pages 45–56, 2011.

9 V. Chen, E. Grigorescu, and R. de Wolf. Efficient and error-correcting data structures for
membership and polynomial evaluation. In Proc. 27th STACS, volume 5 of LIPIcs, pages
203–214, 2010.

10 R. A. Chowdhury, H. S. Le, and V. Ramachandran. Cache-oblivious dynamic programming
for bioinformatics. Trans. Comput. Biology Bioinform., 7(3):495–510, 2010.

11 R. A. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming. In Proc.
17th SODA, pages 591–600, 2006.

12 R. A. Chowdhury and V. Ramachandran. Cache-efficient dynamic programming algorithms
for multicores. In Proc. 20th SPAA, pages 207–216, 2008.

13 R. A. Chowdhury and V. Ramachandran. The cache-oblivious gaussian elimination
paradigm: Theoretical framework, parallelization and experimental evaluation. Theor.
Comput. Syst., 47:878–919, 2010.

14 R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachandran. Oblivious algorithms
for multicores and network of processors. In Proc. 24th IPDPS, 2010.

15 Paul Christiano, Erik D. Demaine, and Shaunak Kishore. Lossless fault-tolerant data
structures with additive overhead. In Proc. 14th WADS, volume 6844 of LNCS, 2011.

16 E. D. Demaine. Cache-oblivious algorithms and data structures. Lecture Notes from the
EEF Summer School on Massive Data Sets, BRICS, 2001.

17 I. Finocchi, F. Grandoni, and G. F. Italiano. Optimal resilient sorting and searching in the
presence of memory faults. Theor. Comput. Sci., 410(44):4457–4470, 2009.

18 I. Finocchi, F. Grandoni, and G. F. Italiano. Resilient dictionaries. ACM Trans. on
Algorithms, 6(1), 2009.

19 I. Finocchi and G. F. Italiano. Sorting and searching in faulty memories. Algorithmica,
52(3):309–332, 2008.

20 M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.
In Proc. 40th FOCS, pages 285–298, 1999.

21 Fabian Gieseke, Gabriel Moruz, and Jan Vahrenhold. Resilient k-d trees: K-means in space
revisited. In ICDM, pages 815–820, 2010.

22 B. L. Jacob, S. W. Ng, and D. T. Wang. Memory Systems: Cache, DRAM, Disk. Morgan
Kaufmann, 2008.

23 A. G. Jørgensen, G. Moruz, and T. Mølhave. Priority queues resilient to memory faults.
In Proc. 10th WADS, volume 4619 of LNCS, pages 127–138, 2007.

24 R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM J.
Res. Dev., 31(2):249–260, 1987.

25 F. T. Leighton, Y. Ma, and C. G. Plaxton. Breaking the Θ(n log2 n) barrier for sorting
with faults. J. Comput. Syst. Sci., 54(2):265–304, 1997.

26 B. Schroeder, E. Pinheiro, and W. D. Weber. DRAM errors in the wild: a large-scale field
study. Commun. ACM, 54(2):100–107, 2011.



Deciding Probabilistic Simulation between
Probabilistic Pushdown Automata and
Finite-State Systems
Hongfei Fu∗1 and Joost-Pieter Katoen†2

1,2 RWTH Aachen University, Ahornstraße 55, D-52074 Aachen, Germany

Abstract
This paper studies the decidability and computational complexity of checking probabilistic simu-
lation pre-order between probabilistic pushdown automata (pPDA) and (probabilistic) finite-state
systems. We show that checking classical and combined probabilistic similarity are EXPTIME-
complete in both directions and become polynomial if both the number of control states of the
pPDA and the size of the finite-state system are fixed. These results show that checking probab-
ilistic similarity is as hard as checking similarity in the standard, i.e., non-probabilistic setting.

1998 ACM Subject Classification F.2.2, F.3.1

Keywords and phrases infinite-state systems, probabilistic simulation, probabilistic pushdown
automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.445

1 Introduction

Probabilities are a convenient means to model uncertainty [15, 11] in transition systems.
They are essential for modelling, e.g., randomized algorithms, unreliable and unpredictable
system behaviour, or environmental uncertainties. Discrete-Time Markov Chains (DTMC)
and Markov Decision Processes (MDPs) are popular probabilistic extensions of transition
systems. An important technique in the formal verification of probabilistic systems is se-
mantical equivalence or pre-order checking. Here, one focuses on comparing the behaviour
of a probabilistic system (the “implementation”) with its intended behaviour (the “spe-
cification”). Probabilistic bisimulation [16, 18, 3] and simulation [16, 12, 18, 3] are typical
instances that act as a basis for comparison. For finite-state systems, efficient algorithms
have been established for both notions [6, 1, 2]. An additional interest in checking prob-
abilistic (bi)simulation between two systems is the preservation of temporal logic formulas:
e.g., probabilistic bisimulation equivalence preserves PCTL while probabilistic simulation
equivalence preserves a safety fragment of PCTL [3, 18].

This paper considers probabilistic pushdown automata (pPDA) [7] as implementation
models and Segala’s probabilistic automata [18] as specifications. pPDA are a natural ab-
stract model for probabilistic procedural programs and are equally expressive as recursive
Markov chains [9]. In fact, there are linear-time transformations between these two mod-
els [9]. Whereas the verification of pPDA and recursive Markov chains has been addressed
quite extensively in the literature [8, 13], their use in semantical equivalence checking has
so far been restricted to a study of (strong) probabilistic bisimulation [5]. Probabilistic

∗ Supported by a CSC scholarship.
† Supported by the EU FP7 project MoVeS.

© Hongfei Fu and Joost-Pieter Katoen;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 445–456

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.445
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


446 Deciding Probabilistic Simulation between pPDA and Finite-State Systems

automata [18] are an orthogonal extension of labelled transition systems with probabilities
and subsume both DTMCs and MDPs. They are used as semantical model of probabilistic
process algebras and constitute the core of PIOA, an input/output version that is frequently
used for describing randomized distributed algorithms. In this paper we study the decidab-
ility and complexity of checking (combined) strong simulation pre-order between pPDA and
finite-state probabilistic automata. Our motivation is that system specifications can often
be captured by a finite system, thus for many practical problems it is useful and sufficient to
check if a (possibly infinite) probabilistic system is semantically equivalent to a finite one.

Our approach to tackle the above problem is to attempt to lift techniques for related
problems in the non-probabilistic setting to the probabilistic one. The obvious candidate is
the result by Kučera and Mayr [14] stating that strong simulation pre-order between PDA
and finite-state systems (in both directions) is decidable in EXPTIME. Their proof technique
relies on the EXPTIME-completeness of model checking modal µ-Calculus against PDA.
As model checking PCTL over fully probabilistic PDA is undecidable [4], extending this
approach is however hopeless. Instead, we take an alternative route and extend the method
by Stirling [19, 20] for showing the decidability of bisimulation equivalence over PDA’s. This
extension will be non-trivial as (non-probabilistic) strong simulation pre-order is undecidable
over PDA’s [10]. Our technique enables us to show that probabilistic (combined) simulation
pre-order (in both directions) is in EXPTIME. The problem is decidable in PTIME if both
the number of control states of the pPDA and the size of the finite-state system are fixed. By
exploiting a hardness result in [14], we achieve that the considered problem is EXPTIME-
complete.

2 Preliminaries

2.1 Probabilistic Transition Systems
In this subsection we introduce the notion of probabilistic transition systems (pTS) which
corresponds to “simple probabilistic automata” defined in [18].

I Definition 1 (Probability Distribution). Let S be a countable set. A function µ : S → [0, 1]
is a probability distribution over S if

∑
s∈S µ(s) = 1. We say that µ is finite, if the set

bµc := {s ∈ S | µ(s) > 0} is finite, and µ(s) ∈ Q for all s ∈ S. Let D(S) (resp. Df(S))
denote the set of probability distributions (resp. finite probability distributions) over S.

The definition of probabilistic transition system is given as follows:

I Definition 2 (Probabilistic Transition System). A probabilistic transition system (pTS) T
is a triple (S,A,Ω) where S is a countable set of states, A is a countable set of actions and
Ω ⊆ S ×A×D(S) is a set of transitions. We define the following notations related to T :

derT (s, a) := {µ ∈ D(S) | (s, a, µ) ∈ Ω} for s ∈ S and a ∈ A.
DerT (s) :=

⋃
a∈A

⋃
µ∈derT (s,a)bµc for s ∈ S.

ActT (s) := {a ∈ A | derT (s, a) 6= ∅} for s ∈ S.
We write s a−→n µ ∈ Ω instead of (s, a, µ) ∈ Ω (where ‘n’ stands for “non-combined”). We
omit ‘T ’, ‘Ω’ in the notations above if the context is clear.

The following definition illustrates the notion of “combined transitions”, which is originally
introduced by Segala [18] to model stochastic adversaries.

I Definition 3 (Combined Transitions). Let (S,A,Ω) be a pTS. We write s a−→c µ (where
‘c’ stands for “combined”) if there exists a finite or infinite sequence {(µi, di)}i (where



H. Fu and J.-P. Katoen 447

µi ∈ D(S) and di ∈ R≥0 for every i) such that: (i) s a−→n µi for all i; (ii)
∑
idi = 1; and (iii)

µ(s) =
∑
idi · µi(s) for all s ∈ S.

In this paper, we will also concern the notion of “finiteness” in a pTS.

I Definition 4. A pTS T is locally finite if for all s ∈ S and a ∈ A, der(s, a) is a finite
subset of Df(S). Further T is finite if T is locally finite and both S and A are finite.

2.2 Probabilistic Simulation
In this subsection we introduce the notion of probabilistic simulations which corresponds to
strong simulation and strong probabilistic simulation defined by Segala [18]. Below we fix a
pTS T = (S,A,Ω). The following definition originates from [12].

I Definition 5. [12] Let R ⊆ S × S. The binary relation R ⊆ D(S) × D(S) is defined as
follows: µRν iff there is a weight function w : S × S → [0, 1] such that:

for all s ∈ S,
∑
t∈S w(s, t) = µ(s);

for all t ∈ S,
∑
s∈S w(s, t) = ν(t);

for all (s, t) ∈ S × S, if w(s, t) > 0 then (s, t) ∈ R.
For the sake of simplicity, we write µRν instead of µRν.

In this paper, it is somewhat convenient to consider an equivalent definition of Definition 5.

I Definition 6. Let R ⊆ S×S. The binary relation R ⊆ D(S)×D(S) is defined as follows:
µRν iff there is a weight function w : bµc × bνc → [0, 1] such that:

for all s ∈ bµc,
∑
t∈bνc w(s, t) = µ(s);

for all t ∈ bνc,
∑
s∈bµc w(s, t) = ν(t);

for all (s, t) ∈ bµc × bνc, if w(s, t) > 0 then (s, t) ∈ R.

Then the definition of probabilistic simulation is given as follows, where vn (resp. vc)
corresponds to strong simulation (resp. strong probabilistic simulation) in [18], respectively.

I Definition 7 (κ-Simulation). Let κ ∈ {n, c}. A binary relation R ⊆ S×S is a κ-simulation
iff for all (s, t) ∈ R: (i) Act(s) = Act(t) and (ii) whenever s a−→n µ there is t a−→κ ν such that
µRν. The κ-similarity, denoted vκ, is the union of all κ-simulations.

By definition, one can verify that vκ is a κ-simulation. Below we define approximants of
κ-simulation. We use κ to indicate either ‘n’ or ‘c’.

I Definition 8. The family {vnκ}n∈N0 of approximations of vκ is inductively defined by:
v0
κ= {(s, t) ∈ S × S | Act(s) = Act(t)};

(s, t)∈vn+1
κ iff (s, t)∈v0

κ and whenever s a−→n µ there is t a−→κ ν such that µ vnκ ν.

The following property can be easily proved by induction on n.

I Lemma 9. For any n ∈ N0, vn+1
κ ⊆vnκ and vκ⊆vnκ.

Then the relationship between vκ and {vnκ}n∈N0 is clarified in the following lemma.

I Lemma 10. If the underlying pTS T is locally finite, then s vκ t iff s vnκ t for all n ∈ N0.

Proof. Define vωκ :=
⋂
n∈N0

vnκ. We prove that vωκ=vκ. “vκ⊆vωκ” follows directly from
Lemma 9. For “vωκ⊆vκ”, we prove that vωκ is a κ-simulation. Fix any (s, t)∈vωκ and
a ∈ A. Define R :=

⋃
µ∈derT (s,a)bµc×

⋃
ν∈derT (t,a)bνc. Then R is finite as T is locally finite.

Consider any (s′, t′) ∈ R. If (s′, t′) 6∈vωκ , then there is a minimal N(s′, t′) ∈ N0 such that

FSTTCS 2011



448 Deciding Probabilistic Simulation between pPDA and Finite-State Systems

(s′, t′)6∈vN(s′,t′)
κ . Define N = max{N(s′, t′) | (s′, t′) ∈ R\ vωκ} (where max ∅ = 0). Together

with Lemma 9, we have R∩ vNκ = R∩ vωκ . Since s vN+1
κ t, then for any s a−→n µ, there is

t
a−→κ ν such that µ vNκ ν. Then µ(vNκ ∩R)ν. Thus µ vωκ ν by R∩ vNκ = R∩ vωκ . J

In this paper we consider κ-similarity between two separate pTS’s. This is interpreted in
the standard way by taking the disjoint union of the two pTS’s.

2.3 Probabilistic Pushdown Automata
In this subsection we extend the fully probabilistic pushdown automata defined by Kučera
et al [13] to our setting.

I Definition 11 (Probabilistic Pushdown Automata). A probabilistic pushdown automaton
(pPDA) is a quadruple (Q,Γ, L,∆) where: Q is a finite set of control states; Γ is a finite set
of stack symbols; L is a finite set of labels; ∆ ⊆ (Q× Γ)× L×Df(Q× Γ∗) is a finite set of
transition rules. Instead of (pX, a, µ) ∈ ∆ (where p ∈ Q,X ∈ Γ) we write pX

a
� µ ∈ ∆,

and omit ‘∆’ if it is clear from the context.

Semantics of pPDA Let P = (Q,Γ, L,∆) be a pPDA. For any µ ∈ D(Q × Γ∗) and γ ∈ Γ∗,
the distribution µγ ∈ D(Q× Γ∗) is defined as follows: for any pα ∈ Q× Γ∗,

µγ(pα) =
{
µ(pβ) if α = βγ for some (unique) β ∈ Γ∗

0 otherwise

Then the pPDA P induces a locally finite pTS (S,A,Ω) with S = Q × Γ∗, A = L and
Ω = {pXγ a−→n µγ | pX

a
� µ ∈ ∆, γ ∈ Γ∗}. Here elements of the state set Q× Γ∗ are called

“configurations”. Note that pβγ a−→κ µ with β ∈ Γ+ iff pβ a−→κ µ
′ and µ = µ′γ for some µ′.

In this paper, we study the decidability and complexity of the following decision problems:
given a configuration pα of a pPDA P and a state f of a finite pTS F , decide whether
pα vκ f and whether f vκ pα, where κ ∈ {n, c}. We prove that both of these problems are
EXPTIME-complete.

3 Extended Stack Symbols

In this section we adopt and extend the method by Colin Stirling for PDA’s, which is called
“extended stack symbols” [19, 20], to our setting. Based on extended stack symbols, Stirling
presented a tableaux proof system that decides the bisimilarity between two PDA’s. Here
we establish extended stack symbols for probabilistic simulation. Then in Section 4 we
present a tableaux proof system demonstrating the EXPTIME-decidability of probabilistic
simulation between pPDA and a finite pTS. Our extended stack symbols will take a different
form from Stirling’s.

Below we fix a pPDA P = (Q,Γ, L,∆) and a finite pTS F = (F,A,Ω). For any sets
X ,Y, we denote Π[X ,Y] := X × Y ∪ Y × X .

I Definition 12 (Extended Stack Symbol). An extended stack symbol U is a function from
Q to 2F . The set of all extended stack symbols is denoted by E .

Intuitively, an extended stack symbol represents the behaviour of configurations with more
symbols on the stack and maps this to corresponding states in F . We now extend pPDA P

by setting its stack symbol set to Γ ∪ E . In the extension of P we do not modify ∆, thus a
configuration pUα with U ∈ E has no outgoing transitions.



H. Fu and J.-P. Katoen 449

Let us compare Stirling’s extended symbols with ours. In [19, 20], an extended stack
symbol U is a function that maps a control state p to a configuration qα ∈ Q × Γ∗. Then
the semantics is rather straightforward: the extended configuration pU behaves exactly as
qα. However in our setting, U is much more syntactical: qU can be deemed as the set of all
f ∈ F such that f v qα (or qα v f , which depends on the context) for some α ∈ Γ+. For
example, consider pXα (where p ∈ Q, X ∈ Γ) and f ∈ F . If pXα v f then we expect that
pXU v f where U(q) := {g ∈ F | qα v g}, for arbitrary q ∈ Q. Analoguously if f v pXα

then we expect that f v pXU , where U(q) := {g ∈ F | g v qα} for arbitrary q ∈ Q. In this
way we reduce pXα to pXU with shorter length, which is the key to make the contruction
of our tableaux trees finite. Note that to talk about “pXU v f” or “f v pXU” we need to
extend simulation preorders to extended stack symbols, which will be captured by “extended
κ-simulations”. First we define extended configurations concerned in this paper.

I Definition 13 (Extended Configuration). Define C := Q× (Γ∗ · (E + ε)) and Ce := Q× E .

C is the set of extended configurations of concern: we only consider extended configurations
that contain at most one extended stack symbol at the end of the configuration. Note that
C\Ce = Q× (ε+ Γ+ · (E+ ε)) is the set of all configurations where the extended stack symbol
(if it occurs) is guarded by a non-empty sequence of (normal) stack symbols.

I Definition 14 (Extended κ-Simulation). Define
Re := {(qU, f) ∈ Ce × F | f ∈ U(q)} ∪ {(f, qU) ∈ F × Ce | f ∈ U(q)}

A relation R ⊆ Π[C, F ] is an extended κ-simulation iff for all (s, t) ∈ R
if (s, t) ∈ Π[Ce, F ] then (s, t) ∈ Re; and
if (s, t) ∈ Π[C\Ce, F ] then Act(s) = Act(t) and whenever s a−→n µ there is t a−→κ ν such
that µRν.

The extended κ-similarity, denoted �κ, is the union of all extended κ-simulations.

Next we extend simulation approximants to extended stack symbols.

I Definition 15. The family {�nκ}n∈N0 is inductively defined as follows:
�0
κ:= {(s, t) ∈ Π[C\Ce, F ] | Act(s) = Act(t)} ∪ Re;
�n+1
κ := {(s, t) ∈ Π[C\Ce, F ] | Act(s) = Act(t) and (∀s a−→n µ)(∃t a−→κ ν).(µ �nκ ν)} ∪ Re.

By similar proofs for vκ, we have the following two lemmas:

I Lemma 16. For any n ∈ N0, �n+1
κ ⊆�nκ and �κ⊆�nκ.

I Lemma 17. For any (s, t) ∈ Π[C, F ], s �κ t iff s �nκ t for all n ∈ N0.

The following theorem clarifies the relation between �κ and vκ.

I Theorem 18. For any (s, t) ∈ Π[Q× Γ∗, F ], s �κ t iff s vκ t.

Proof. It can be shown by induction on n that s �nκ t iff s vnκ t for all n ∈ N0. Then the
result follows from Lemma 10 and Lemma 17. J

Theorem 18 allows us to decide �κ instead of vκ.

4 Tableaux Proof System

In this section we demonstrate the EXPTIME-decidability of κ-similarity through a tableaux
proof system. Below we fix a pPDA P = (Q,Γ, L,∆) and a finite pTS F = (F,A,Ω). We
use p, q to range over Q, X,Y to range over Γ, a to range over A ∪ L, f, g to range over F ,

FSTTCS 2011



450 Deciding Probabilistic Simulation between pPDA and Finite-State Systems

U to range over E , and α, β, γ to range over Γ∗ · (E + ε). We extend P with extended stack
symbols as described in Section 3.

Due to Theorem 18, the decision problem for κ-similarity can be reformulated and sim-
plified as follows: Given a pair (s, t) ∈ Π[Q × Γ, F ], decide if s �κ t. We only consider
elements in Q× Γ since for any pXα ∈ Q× Γ∗, we can always add a new control state pinit

and a new stack symbol Xinit and augment ∆ with the set {pinitXinit
a
� µα | pX

a
� µ}, so

that pinitXinit mimics pXα.

The Tableaux System We use tableaux to solve this problem along the lines of [19, 20]. A
tableaux is a goal-directed proof system that consists of a set of goals Goals and a set RULE
of rules which is essentially a decidable subset of Goals × Pf(Goals), where Pf(Goals) is the
set of finite subsets of Goals. Graphically, a rule (goal, {goal1, . . . , goaln}) ∈ RULE can be
viewed as a proof step:

goal
goal1 . . . goaln

where goal is what currently is to be proved and goal1 . . . goaln are the subgoals what it
reduces to. Each rule is backward sound: in this instance if all goali are true then so is goal.
An application of a rule (goal, {goal1, . . . , goaln}) to a goal goal is to make all the subgoals
goal1 . . . goaln children of goal. Then a tableaux tree is a proof tree built from a specified
goal (the root of the tree) and repeated application of rules. The leaves of a tableaux tree are
divided into terminal and nonterminal leaves. Terminal leaves are divided into successful
and unsuccessful leaves. A tableaux tree is successful iff it is finite and all its leaves are
successful.

Below we formulate our tableaux proof system. Given a (ordinary) rooted tree T , we
define V (T ) to be the set of vertices of T , and lf(T ) ⊆ V (T ) to be the set of leaves of T .

I Definition 19 (Goals). Define Goals := Π[C, F ]. A goal (pα, f) ∈ Goals (resp. (f, pα) ∈
Goals) is also written as pα � f (resp. f � pα), which corresponds to the proof analogue of
pα �κ f (resp. f �κ pα). Below we define the notion of basic successfulness of goals:
A goal s � t is basically successful iff: A goal s � t is basically unsuccessful iff:
1. s � t = pU � f such that f ∈ U(p); or 1. s � t = pU � f such that f 6∈ U(p); or
2. s � t = f � pU such that f ∈ U(p); or 2. s � t = f � pU such that f 6∈ U(p); or
3. (s, t) ∈ Π[C\Ce, F ] and Act(s) = Act(t) = ∅. 3. (s, t) ∈ Π[C\Ce, F ] and Act(s) 6= Act(t).

I Definition 20 (Proof Tree). A proof tree is a pair (T,L) for which T is a (possibly infinite)
rooted tree and L : V (T )→ Goals is a labeling function. Denote L(T ) be the range of L. A
leaf v ∈ lf(T ) is successful iff either L(v) is basically successful, or there is v′ ∈ V (T ) such
that v′ 6= v, v′ lies on the path from the root of T to v and L(v′) = L(v). A leaf v ∈ lf(T )
is unsuccessful iff L(v) is basically unsuccessful. A leaf v ∈ lf(T ) is terminal if either v is
successful or unsuccessful; otherwise it is non-terminal.

Note that if v with L(v) = (s, t) is non-terminal, then (s, t) ∈ Π[C\Ce, F ] and Act(s) =
Act(t) 6= ∅. Below we define rules in our tableaux system. There are two kinds of rules in
our tableaux system: UNF (Unfolding) and RED (Reduction).

I Definition 21 (Rules). UNFκ ⊆ Goals× Pf(Goals) is defined by: (s � t,G) ∈ UNFκ iff
s � t ∈ Π[Q× (Γ · (E + ε)), F ] and Act(s) = Act(t) 6= ∅;
G ⊆ Der(s)×Der(t) and for any s a−→n µ, there is t a−→κ ν such that µGν.

REDκ ⊆ Goals× Pf(Goals) is defined as REDa
κ ∪ REDb

κ, where



H. Fu and J.-P. Katoen 451

(s � t,G) ∈ REDa
κ iff s � t = pXα � f such that

Act(pX) = Act(f) 6= ∅ and α ∈ Γ+ · (E + ε); and
G = {pXU � f} ∪ {qα � g | q ∈ Q, g ∈ U(q)} for some U ∈ E .

(s � t,G) ∈ REDb
κ iff s � t = f � pXα such that

Act(f) = Act(pX) 6= ∅ and α ∈ Γ+ · (E + ε); and
G = {f � pXU} ∪ {g � qα | q ∈ Q, g ∈ U(q)} for some U ∈ E .

We denote RULEκ := UNFκ ∪ REDκ

Intuitively, a rule of UNFκ expands a goal s � t one-step further (cf. Lemma 25) and a rule
of REDκ reduce a goal pXα � f (resp. f � pXα) to pXU � f (resp. f � pXU) together
with all information at α encoded in U . Here we use ‘a’ to indicate the case s � t ∈ C × F
and ‘b′ to indicate the case s � t ∈ F × C; we will continue using this in the sequel.

The following definition illustrates the application of rules.

I Definition 22 (Rule Application). Suppose B = (T,L) be a proof tree, v ∈ lf(T ) and
(gl,G) ∈ RULEκ such that v is non-terminal and L(v) = gl. The proof tree (T ′,L′) after the
application of (gl,G) at v, denoted Bv[gl,G], is defined as follows: T ′ = T∪{(v, v′)|v′ ∈ V new}
and L′ = L ∪ Lnew, where V new ∩ V (T ) = ∅ and Lnew a bijection from V new to G.

Then the set of tableaux trees which is closed under rule application is defined as follows.

I Definition 23 (Tableaux Trees). Let s � t ∈ Π[C, F ]. The set of tableaux trees rooted at
s � t, denoted Tab[s � t], is the smallest set satisfying the following conditions:

The proof tree with only a single root labeled with s � t belongs to Tab[s � t].
If B = (T,L) ∈ Tab[s � t], then Bv[gl,G] ∈ Tab[s � t] for all v ∈ lf(T ), (gl,G) ∈ RULEκ
such that v is non-terminal and L(v) = gl.
If there is an infinite sequence {(Tn,Ln)}n∈N0 with each (Tn,Ln) ∈ Tab[s � t] such that
Tn ⊆ Tn+1 and Ln ⊆ Ln+1 for all n, then (

⋃
n Tn,

⋃
n Ln) ∈ Tab[s � t].

The tableaux trees have the following finiteness property which can be proved inductively
from Definition 23.

I Lemma 24. For each α ∈ Γ∗, we define Suffix(α) := {α′ | α′ is a suffix of α} (here ε is a
suffix of any α ∈ Γ∗). Let Suffix :=

⋃
{Suffix(α) | ∃q ∈ Q∃pX

a
� µ ∈ ∆.(qα ∈ bµc)}. Define

Ga
∗ = {pβα � f | β ∈ Γ ∪ Suffix, α ∈ E ∪ {ε}, p ∈ Q, f ∈ F}
Gb
∗ = {f � pβα | β ∈ Γ ∪ Suffix, α ∈ E ∪ {ε}, p ∈ Q, f ∈ F}

Then if s � t ∈ Ga
∗ , then for any (T,L) ∈ Tab[s � t], L(T ) ⊆ Ga

∗ . Analoguously if s � t ∈ Gb
∗ ,

then for any (T,L) ∈ Tab[s � t], L(T ) ⊆ Gb
∗ .

Below we prove that rules of UNFκ and REDκ are backward sound.

I Lemma 25. Let (s � t,G) ∈ UNFκ. If s′ �nκ t′ for all s′ � t′ ∈ G, then s �n+1
κ t.

Proof. Directly from Definition 15 and Definition 21. J

I Lemma 26. Let (pXα � f, {pXU � f} ∪ Ga
α,U ) ∈ REDa

κ where

Ga
α,U := {qα � g | q ∈ Q, g ∈ U(q)}.

If pXU �n+1
κ f and qα �nκ g for all qα � g ∈ Ga

α,U , then pXα �n+1
κ f .

FSTTCS 2011



452 Deciding Probabilistic Simulation between pPDA and Finite-State Systems

Proof. We prove by induction on n that for all pγα � f ∈ Goals with γ ∈ Γ+ it holds that
for any U ∈ E , if pγU �n+1

κ f and qα �nκ g for all qα � g ∈ Ga
α,U , then pγα �n+1

κ f .
Base Step: n = 0. Since pγU �1

κ f , for any pγ
a−→n µ, there is f a−→κ ν such that

µU �0
κ ν. Let w : bµUc × bνc → [0, 1] be a weight function for µU �0

κ ν (cf. Definition 6).
We define a weight function w′ : bµαc × bνc → [0, 1] by: w′(qβα, g) = w(qβU, g) for all
qβ ∈ bµc (note that β ∈ Γ∗) and g ∈ bνc. We prove that w′ is a weight function for
µα �0

κ ν. The first two conditions in Definition 6 are straightforward to verify. For the
third condition, suppose w′(qβα, g) > 0 with qβ ∈ bµc. Then w(qβU, g) > 0 and hence
qβU �0

κ g. If β 6= ε then by Definition 15 Act(qβ) = Act(g) and we have qβα �0
κ g. If β = ε

then g ∈ U(q) and we have qα � g ∈ Ga
α,U ; thus qα �0

κ g. In either case qβα �0
κ g. So

w′ is a weight function for µα �0
κ ν. Also from pγU �1

κ f we have Act(pγα) = Act(f). So
pγα �1

κ f .
Inductive Step: Suppose pγU �n+2

κ f and qα �n+1
κ g for all qα � g ∈ Ga

α,U . We
prove that pγα �n+2

κ f . Since pγU �n+2
κ f , for any pγ a−→n µ, there is f a−→κ ν such that

µU �n+1
κ ν. Consider any (qβU, g) ∈�n+1

κ with β ∈ Γ∗: if β = ε then qβα �n+1
κ g since

qα � g ∈ Ga
α,U ; if β ∈ Γ+ then we have qβα �n+1

κ g by induction hypothesis. So by the
same construction of weight function in the base step we have µα �n+1

κ ν. Also we have
Act(pγα) = Act(f). Thus pγα �n+2

κ f . J

Similarly we can prove the following analogue to Lemma 26.

I Lemma 27. Let (f � pXα, {f � pXU} ∪ Gb
α,U ) ∈ REDb

κ where

Gb
α,U := {g � qα | q ∈ Q, g ∈ U(q)}.

If f �n+1
κ pXU and g �nκ qα for all g � qα ∈ Gb

α,U , then f �n+1
κ pXα.

Based on Lemma 25 through Lemma 27, we obtain the soundness of our tableaux system:

I Proposition 28. If there is a successful tableaux tree rooted at s � t, then s �κ t.

Proof. We only prove the case when s � t ∈ C × F , the other case is similar. The proof
is by contraposition. Let p0α0 � f0 = s � t. Suppose (T,L) is a successful tableaux tree
rooted at p0α0 � f0 however p0α0 6�κf0. Then by Lemma 17, there is n0 ∈ N0 such that
p0α0 �n0

κ f0 however p0α0 6�n0+1
κ f0. Note that we have (p0α0, f0) ∈�0

κ or otherwise the goal
p0α0 � f0 would be unsuccessful. By the backward soundness of UNFκ and REDκ, if the
rule applied to p0α0 � f0 belongs to UNFκ, then there is a child p1α1 � f1 of p0α0 � f0
such that p1α1 6�n0

κ f1; and if the rule applied to p0α0 � f0 belongs to REDa
κ, then either

pXU 6�n0+1
κ f or p′α 6�n0

κ f
′ for some p′α � f ′ ∈ Ga

α,U with corresponding X, U and α. In
either case there is a child p1α1 � f1 of p0α0 � f0 such that p1α1 6�n0+1

κ f1. Let n1 ∈ N0 such
that p1α1 6�n1+1

κ f1 and p1α1 �n1
κ f1. Then n1 ≤ n0. In this way we can recursively construct

a finite sequence {(piαi � fi, ni)}1≤i≤k such that piαi 6�ni+1
κ fi and piαi �ni

κ fi, and the last
goal pkαk � fk is a successful leaf. Since pkαk 6�nk+1

κ fk, pkαk�κfk cannot be basically
successful. So the only possibility is that there is j < k such that pkαk � fk = pjαj � fj .
Consider the step from pk−1αk−1 � fk−1 to pkαk � fk:

if the step is due to UNFκ, then nk < nk−1 ≤ nj ;
if the step is due to REDa

κ and pkαk � fk ∈ Ga
α,U with corresponding α and U , then

nk < nk−1 ≤ nj ;
if the step is due to REDa

κ and pkαk � fk = pXU � f with corresponding X and U ,
then pk−1αk−1 � fk−1 6= pXU � f and so j < k − 1. Then from j to j + 1 the rule is a
UNFκ which implies nj+1 < nj , hence nk < nj .



H. Fu and J.-P. Katoen 453

Thus in either case nk < nj . But then we have pkαk 6�nk+1
κ fk and pkαk �

nj
κ fk. Contradic-

tion. J

To show the completeness of the tableaux, we first prove a useful lemma below.

I Lemma 29. Suppose pXα �κ f and U be an extended symbol such that U(q) := {g ∈ F |
qα �κ g} for all q ∈ Q. Then pXU �κ f .

Proof. We prove that R := {(qβU, g) | q ∈ Q, β ∈ Γ∗, qβα �κ g} is an extended κ-
simulation. Consider any (qβU, g) ∈ R. If β = ε, then qα �κ g and thus g ∈ U(q); then
(qU, g) ∈ Re. On the other hand, suppose that β ∈ Γ+. Then Act(qβU) = Act(qβα) =
Act(g). Further for any qβ a−→n µ, by qβα �κ g there is g a−→κ ν such that µα �κ ν. We
prove that µURν. By µα �κ ν, there is a weight function w : bµαc×bνc → [0, 1] for µα and
ν. We construct a function w′ : bµUc × bνc → [0, 1] by: w′(q′γU, g′) = w(q′γα, g′) for all
q′γ ∈ bµc and g′ ∈ bνc (note that γ ∈ Γ∗). Then we show that w′ is a weight function for µU
and ν. The first two conditions in Definition 6 are straightforward to verify. For the third
condition, consider any q′γ ∈ bµc and g′ ∈ bνc: if w′(q′γU, g′) > 0, then w(q′γα, g′) > 0 and
hence q′γα �κ g′; then by definition we obtain that (q′γU, g′) ∈ R. Thus R is an extended
κ-simulation. J

Similarly, we can obtain the following lemma:

I Lemma 30. Suppose f �κ pXα and U be an extended symbol such that U(q) := {g ∈ F |
g �κ qα} for all q ∈ Q. Then f �κ pXU .

Then the completeness of the tableaux system is as follows:

I Proposition 31. Let s � t ∈ Ga
∗ ∪ Gb

∗ . If s �κ t then there is a successful tableaux tree
rooted at s � t.

Proof. We only prove the case when s � t ∈ Ga
∗ , the other case is similar. Define

Tab′[s � t] := {(T,L) ∈ Tab[s � t] | T is finite and s′ �κ t′ for all s′ � t′ ∈ L(T )}

Below we recursively construct a sequence {Bn}n with each Bn ∈ Tab′[s � t].
Initially B0 is the tableaux tree which contains only a fixed root labeled with s � t.

Then suppose Bn ∈ Tab′[s � t] is constructed. If all leaves s′ � t′ of Bn are terminal (and
successful since s′ �κ t′), then the construction is ended. Otherwise, we fix arbitrarily a
non-terminal leaf v of Bn and the construction of Bn+1 is divided into two cases below:
1. L(v) = pXα � f with α ∈ E ∪ {ε}. Then Bn+1 = Bnv [L(v),G] with

G = {(qβ, g) ∈ Der(pXα)×Der(f) | qβ �κ g}.
2. L(v) = pXα � f with α ∈ Γ+ · (E + ε). Then Bn+1 = Bnv [L(v),G] with

G = {pXU � f} ∪ Ga
α,U

where U is defined by: U(q) = {g ∈ F | qα �κ g} for all q ∈ Q. Following Lemma 29,
we obtain pXU �κ f .

Then in either case Bn+1 ∈ Tab′[s � t]. The construction of {Bn}n ends in finitely many
steps. This is shown by contraposition. Suppose this is not the case. Denote Bn = (Tn,Ln)
and B = (

⋃
n Tn,

⋃
n Ln). Then B is an infinite finitely-branching proof tree. Thus by

König’s Lemma there is an infinite path in B. However, by Lemma 24 on such infinite path
there must be v, v′ with v 6= v′ such that L(v) = L(v′). By Definition 20, either v or v′ is
successful, thus the construction should end at v or v′. Contradiction. Then the tableaux
tree Bl which is the last element of {Bn}n is a successful tableaux tree. J

FSTTCS 2011



454 Deciding Probabilistic Simulation between pPDA and Finite-State Systems

Below we illustrate our main result, where we use a refinement technique to achieve the
EXPTIME-upperbound. We define |P | (resp. |F|) to be the integrated size of Q,Γ, L,∆
(resp. F,A,Ω).

I Theorem 32. The problem whether s �κ t for a given (s, t) ∈ Π[Q× Γ, F ] is decidable in
O(H(|P |, |F|) · 8|F ||Q|) time where H is a fixed multivariate polynomial. Thus, if |Q| and
|F | are fixed, then the problem can be decided in PTIME.

Proof. We assume that s � t ∈ (Q × Γ) × F and κ = c, the other cases are similar. We
present a refinement algorithm to decide if s �c t. Formally, we construct a finite decreasing
sequence of sets of goals {Gn}n where the last element Gm is expected to contain all the
correct goals in Ga

∗ . The construction is as follows: Initially G0 = Ga
∗ . Then Gn+1 ⊆ Ga

∗
is constructed from Gn as follows: s � t ∈ Gn+1 iff either s � t is basically successful,
or s � t ∈ Gn and there is (s � t,G) ∈ RULEc such that G ⊆ Gn. Here note that
|Ga
∗ | = O(|P |3|F |2|F ||Q|).
The computation from Gn to Gn+1 can be done in O(H ′(|P |, |F|) ·4|F ||Q|) time where H ′

is a fixed multivariate polynomial. Given s � t ∈ Gn, we can check whether s � t ∈ Gn+1 as
follows: If s � t = pXα � f with α ∈ Γ+ · (E + ε), we check if {pXU � f} ∪ Ga

α,U ⊆ Gn for
some U ∈ E . If s � t = pXα � f with α ∈ E ∪ {ε}, we check if for any pXα a−→n µ, there
is f a−→c ν such that µGnν; this can be checked by checking if the following linear inequality
system (with variables {xν}ν∈der(f,a) and {y(s′,t′)}(s′,t′)∈bµc×F ) has a solution:∑

ν∈der(f,a) xν = 1, and xν ≥ 0 for all ν ∈ der(f, a).∑
t′∈F y(s′,t′) = µ(s′) for all s′ ∈ bµc.∑
s′∈bµc y(s′,t′) =

∑
ν∈der(f,a) xν · ν(t′) for all t′ ∈ F .

y(s′,t′) ≥ 0 for all (s′, t′) ∈ bµc × F , and y(s′,t′) = 0 for all (s′, t′) 6∈ Gn.
This can be solved in polynomial time in |P | and |F| [17].

Since Gn+1 ⊆ Gn there is m ≤ |Ga
∗ | such that Gm+1 = Gm. We show that for any

s � t ∈ Ga
∗ , s �c t iff s � t ∈ Gm. Suppose s �c t. Let (T,L) ∈ Tab′[s � t] be the tableaux

tree constructed in the proof of Proposition 31. It follows by induction on n that L(T ) ⊆ Gn
for all n ∈ N0. Thus s � t ∈ Gm. Suppose now that s � t ∈ Gm. Since for any s′ � t′ ∈ Gm
which is not basically successful, there is (s′ � t′,G) ∈ RULEc such that G ⊆ Gm. Thus we
can iteratively apply rules to the root s � t and form a successful tableaux tree similar to
the construction in the proof of Proposition 31. Thus, s �c t by Proposition 28. J

I Remark. The major difference between our tableaux proof system and Colin Stirling’s [19,
20] is at the RED (Reduction) rules: here we need to tackle extended stack symbols in our
setting, which is different from Stirling’s version. Another difference is that we are able to
derive a primitive upperbound by a refinement technique, which is not feasible in [19, 20].

5 EXPTIME-Hardness

In this section we show that deciding vκ is EXPTIME-hard, whenever κ = n or κ = c.
We prove this by providing a rather straightforward reduction from the non-probabilistic
EXTPIME-hardness result obtained in [14]. Our main efforts lie in the treatment of the
additional “Act(s) = Act(t)” condition in Definition 7 which is not involved in the definition
of non-probabilistic simulation preorder. First we define a variation of vκ.

I Definition 33. Let T = (S,A,Ω) be a pTS. Define 4κ to be the union of all binary
relations R ⊆ S × S such that for any (s, t) ∈ R, whenever s a−→n µ there is t a−→κ ν with
µRν.



H. Fu and J.-P. Katoen 455

In other words, 4κ is defined in a similar way of �κ, however without the “Act(s) = Act(t)”
requirement. Then we embed non-probabilistic transition systems into pTS’s.

I Definition 34. A distribution µ is Dirac if |bµc| = 1. The Dirac distribution µ with
bµc = {s} is also written as δ[s]. A pTS (S,A,Ω) is Dirac if µ is dirac for any (s, a, µ) ∈ Ω.
A pPDA (Q,Γ, L,∆) is Dirac if µ is Dirac for any pX

a
� µ ∈ ∆.

Note that a Dirac pPDA induces a Dirac pTS. Dirac pTS’s correspond to labeled transition
systems without probability. It is easy to see that 4n is the non-probabilistic simulation
preorder over labeled transition systems. By [14], deciding 4n is EXPTIME-hard between
Dirac pPDA and finite Dirac pTS in both direction. Below we reduce 4κ to vκ under Dirac
pTS’s. The following proposition allows us to focus solely on the case κ = n.

I Proposition 35. If the underlying pTS T = (S,A,Ω) is Dirac, then 4n=4c and vn=vc.

Now we reduce 4n between a Dirac pPDA P = (Q,Γ, L,∆) and a Dirac finite pTS F =
(F,A,Ω), to vn between a Dirac pPDA (Q′,Γ′, L,∆′) and a Dirac finite pTS (F ′, A,Ω′).
The reduction is as follows:
1. Q′ = Q ∪ {p⊥} and F ′ = F ∪ {f⊥} where p⊥ 6∈ Q and f⊥ 6∈ F .
2. Γ′ = Γ ∪ {Z⊥} where Z⊥ 6∈ Γ is a new bottom stack symbol.
3. ∆′ = ∆ ∪ {(pX, a, δ[p⊥]) | p ∈ Q,X ∈ Γ′, a ∈ L ∪A}
4. Ω′ = Ω ∪ {(f, a, δ[f⊥]) | f ∈ F, a ∈ L ∪A}.
It is not hard to prove that for all pα ∈ Q × Γ∗ and f ∈ F , pα 4n f (resp. f 4n pα) iff
pαZ⊥ vn f (resp. f vn pαZ⊥). Thus deciding vn between Dirac pPDA’s and Dirac finite
pTS’s is EXPTIME-hard. Then:

I Theorem 36. Deciding vn and vc between probabilistic pushdown automata and finite
probabilistic transition systems in both directions is EXPTIME-complete.

6 Conclusion

We have shown that deciding probabilistic simulation preorder between a probabilistic
pushdown automata (Q,Γ, L,∆) and a finite probabilistic transition system (F,A,Ω) is
EXPTIME-complete. This result holds for both directions. Further if |Q| and |F | are
fixed, then the problem is decidable in polynomial time. These results extend their non-
probabilistic counterparts in [14]. We obtain these results by extending Colin Stirling’s
method [19, 20] which is originally used to demonstrate the decidability of bisimulation over
pushdown automata. Our extension is nontrivial and has a different form from the original
one. A future direction is to explore if this method can be extended to weak semantical
equivalences such as weak probabilistic bisimulation or weak probabilistic simulation [3, 18].

Acknowledgement
Thanks to anonymous referees for valuable comments. The first author is supported by a
CSC scholarship. The second author is supported by the EU FP7 project MoVeS.

References
1 Christel Baier, Bettina Engelen, and Mila E. Majster-Cederbaum. Deciding bisimilarity

and similarity for probabilistic processes. J. Comput. Syst. Sci., 60(1):187–231, 2000.
2 Christel Baier, Holger Hermanns, and Joost-Pieter Katoen. Probabilistic weak simulation

is decidable in polynomial time. Inf. Process. Lett., 89(3):123–130, 2004.

FSTTCS 2011



456 Deciding Probabilistic Simulation between pPDA and Finite-State Systems

3 Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Verena Wolf. Comparative
branching-time semantics for Markov chains. Inf. Comput., 200(2):149–214, 2005.

4 Tomás Brázdil, Antonín Kučera, and Oldrich Strazovský. On the decidability of temporal
properties of probabilistic pushdown automata. In STACS, pages 145–157, 2005.

5 Tomás Brázdil, Antonín Kučera, and Oldrich Strazovský. Deciding probabilistic bisimilarity
over infinite-state probabilistic systems. Acta Inf., 45(2):131–154, 2008.

6 Stefano Cattani and Roberto Segala. Decision algorithms for probabilistic bisimulation. In
CONCUR, pages 371–385, 2002.

7 Javier Esparza, Antonín Kučera, and Richard Mayr. Model checking probabilistic push-
down automata. In LICS, pages 12–21, 2004.

8 Kousha Etessami and Mihalis Yannakakis. Algorithmic verification of recursive probabilistic
state machines. In TACAS, pages 253–270, 2005.

9 Kousha Etessami and Mihalis Yannakakis. Recursive Markov chains, stochastic grammars,
and monotone systems of nonlinear equations. J. ACM, 56(1), 2009.

10 Jan Friso Groote and Hans Hüttel. Undecidable equivalences for basic process algebra. Inf.
Comput., 115(2):354–371, 1994.

11 Bengt Jonsson, Kim G. Larsen, and Wang Yi. Probabilistic extensions of process algebras.
In Handbook of Process Algebra, pages 685–710. Elsevier, 2001.

12 Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of probabilistic
processes. In LICS, pages 266–277, 1991.

13 Antonín Kučera, Javier Esparza, and Richard Mayr. Model checking probabilistic push-
down automata. Logical Methods in Computer Science, 2(1), 2006.

14 Antonín Kučera and Richard Mayr. On the complexity of checking semantic equivalences
between pushdown processes and finite-state processes. Inf. Comput., 208(7):772–796, 2010.

15 Marta Z. Kwiatkowska. Model checking for probability and time: from theory to practice.
In LICS, pages 351–360, 2003.

16 Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf.
Comput., 94(1):1–28, 1991.

17 Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1986.

18 Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic processes.
In CONCUR, pages 481–496, 1994.

19 Colin Stirling. Decidability of bisimulation equivalence for normed pushdown processes.
Theor. Comput. Sci., 195(2):113–131, 1998.

20 Colin Stirling. Decidability of bisimulation equivalence for pushdown processes. Unpublished
manuscript, available at http://homepages.inf.ed.ac.uk/cps/, 2000.



Parameterised Pushdown Systems with
Non-Atomic Writes
Matthew Hague

Oxford University, Department of Computer Science, and
Laboratoire d’Informatique Gaspard-Monge, Université Paris-Est

Abstract
We consider the master/slave parameterised reachability problem for networks of pushdown sys-
tems, where communication is via a global store using only non-atomic reads and writes. We
show that the control-state reachability problem is decidable. As part of the result, we provide a
constructive extension of a theorem by Ehrenfeucht and Rozenberg to produce an NFA equivalent
to certain kinds of CFG. Finally, we show that the non-parameterised version is undecidable.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Verification, Concurrency, Pushdown Systems, Reachability, Paramet-
erised Systems, Non-atomicity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.457

1 Introduction

A parameterised reachability problem is one where the system is defined in terms of a given
input, usually a number n. We then ask whether there is some n such that the resulting
system can reach a given state. An early result shows that this problem is undecidable,
even when the system defined for each n is a finite state machine: one simply has to define
the nth system to simulate a Turing machine up to n steps [2]. Thus, the Turing machine
terminates iff there is some n such that the nth system reaches a halting state.

Such a result, however, is somewhat pathological. More natural parameterised problems
concentrate on the replication of components. For instance, we may have a leadership
election algorithm amongst several nodes. For this algorithm we would want to know, for
example, whether there is some n such that, when n nodes are present, the routine fails to
elect a leader. This problem walks the line between decidability and undecidability, even
with finite-state components: in a ring network, when nodes can communicate to their
left and right neighbours directly, Suzuki proves undecidability [32]; but, in less disciplined
topologies, the problem becomes decidable [16].

In particular, the above decidability result considers the following problem: given a
master process U and slave C, can the master in parallel with n slaves reach a given state.
Communication in this system is by anonymous pairwise synchronisation (that is, a receive
request can be satisfied by any thread providing the matching send, rather than a uniquely
identified neighbour). This problem reduces to Petri-nets, which can, for each state of C,
keep a count of the number of threads in that state. When communication is via a finite-
state global store, which all threads can read from and write to (atomically), it is easy to
see that decidability can be obtained by the same techniques.

These results concern finite-state machines. This is ideal for hardware or simple pro-
tocols. When the components are more sophisticated (such as threads created by a web-
server), a more natural and expressive (infinite-state) program model — allowing one to

© M. Hague;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 457–468

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.457
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


458 Parameterised Pushdown Systems with Non-Atomic Writes

accurately simulate the control flow of first-order recursive programs [20] — is given by
pushdown systems (PDSs). Such systems have proved popular in the sequential setting
(e.g. [8, 14, 29, 27]), with several successful implementations [6, 7, 29]. Unfortunately, when
two PDSs can communicate, reachability quickly becomes undecidable [26].

In recent years, many researchers have tackled this problem, proposing many different
approximations, and restrictions on topology and communication behaviour (e.g. [23, 9, 10,
11, 30, 28, 18]). A pleasantly surprising (and simple) result in this direction was provided
by Kahlon [21]: the parameterised reachability problem for systems composed of n slaves C
communicating by anonymous synchronisation is decidable. This result relies heavily on the
inability of the system to restrict the number of active processes, or who they communicate
with. Indeed, in the presence of a master process U , or communication via a global store,
undecidability is easily obtained.

In this work we study the problem of adding the master process and global store. To
regain decidability, we only allow non-atomic accesses to the shared memory. We then
show — by extending a little-cited theorem of Ehrenfeucht and Rozenberg [13] — that we
can replace the occurrences of C with regular automata1. This requires the introduction of
different techniques than those classically used. Finally, a product construction gives us our
result. In addition, we show that, when n is fixed, the problem remains undecidable, for all
n. For clarity, we present the single-variable case here. In the appendix we show that the
techniques extend easily to the case of k shared variables.

After discussing further related work, we begin in Section 2 with the preliminaries. In
Section 3 we define the systems that we study. Our main result is given is Section 4 and
the accompanying undecidability proof appears in Section 5. In Section 6 we show how to
obtain a constructive version of Ehrenfeucht and Rozenberg’s theorem. Finally, we conclude
in Section 7. A version of this paper complete with appendix is available [17].

Related Work Many techniques attack parameterisation (e.g. network invariants and sym-
metry). Due to limited space, we only discuss PDSs here. In addition to results on para-
meterised PDSs, Kahlon shows decidability of concurrent PDSs communicating via nested-
locks [22]. In contrast, we cannot use locks to guarantee atomicity here.

A closely related model was studied by Bouajjani et al. in 2005. As we do, they allow
PDSs to communicate via a global store. They do not consider parameterised problems
directly, but they do allow the dynamic creation of threads. By dynamically creating an
arbitrary number of threads at the start of the execution, the parameterised problem can be
simulated. Similarly, parameterisation can simulate thread creation by activating hitherto
dormant threads. However, since Bouajjani et al. allow atomic read/write actions to occur,
the problem they consider is undecidable; hence, they consider context-bounded reachability.

Context-bounded reachability is a popular technique based on the observation that many
bugs can be identified within a small number of context switches [25]. This idea has been
extended to phase-bounded systems where only one stack may be decreasing in any one
phase [3, 31]. Finally, in another extension of context-bounded model-checking, Ganty et
al. consider bounded under-approximations where runs are restricted by intersecting with a
word of the form a∗1 . . . a

∗
n [15]. In contrast to this work, these techniques are only accurate

up to a given bound. That is, they are sound, but not complete. Recently, La Torre et al.
gave a sound algorithm for parameterised PDSs together with a technique that may detect

1 A reviewer points out that the upward-closure of a context free language has been proved regular by
Atig et al. [5] with the same complexity, which is sufficient for our purposes. However, a constructive
version of Ehrenfeucht and Rozenberg is a stronger result, and hence remains a contribution.



M. Hague 459

completeness in the absence of recursion [34].
Several models have been defined for which model-checking can be sound and complete.

For example, Bouajjani et al. also consider acyclic topologies [5, 11]. As well as restricting
the network structure, Sen and Viswanathan [30], La Torre et al. [33] and later Heußner et
al. [18], show how to obtain decidability by only allowing communications to occur when
the stack satisfies certain conditions.

One of the key properties that allow parameterized problems to become decidable is
that once a copy of the duplicated process has reached a given state, then any number of
additional copies may also be in that state. In effect, this means that any previously seen
state may be returned to at any time. This property has also been used by Delzanno et al.
to analyse recursive ping-pong protocols [12] using Monotonic Set-extended Prefix Rewriting.
However, unlike our setting, these systems do not have a master process.

Finally, recent work by Abdulla et al. considers parameterised problems with non-atomic
global conditions [1]. That is, global transitions may occur when the process satisfy a global
condition that is not evaluated atomically. However, the processes they consider are finite-
state in general. Although a procedure is proposed when unbounded integers are allowed,
this is not guaranteed to terminate.

2 Preliminaries

We recall the definitions of finite automata and pushdown systems and their language
counter-parts. We also state a required result by Ehrenfeucht and Rozenberg.

I Definition 1 (Non-Deterministic Finite Word Automata). We define a non-deterministic
finite word automaton (NFA) A as a tuple (Q,Γ,∆, q0,F) where Q is a finite set of states, Γ
is a finite alphabet, q0 ∈ Q is an initial state, F ⊆ Q is a set of final states, and ∆ ⊆ Q×Γ×Q
is a finite set of transitions.

We will denote a transition (q, γ, q′) using the notation q γ−→ q′. We call a sequence q1
γ1−→

q2
γ2−→ · · · γz−1−−−→ qz a run of A. It is an accepting run if q1 = q0 and qz ∈ F . The language

L(A) of an NFA is the set of all words labelling an accepting run. Such a language is regular.

I Definition 2 (Pushdown Systems). A pushdown system (PDS) P is defined as a tuple
(Q,Σ,Γ,∆, q0,F) where Q is a finite set of control states, Σ is a finite stack alphabet with
a special bottom-of-stack symbol ⊥, Γ is a finite output alphabet, q0 ∈ Q is an initial state,
F ⊆ Q is a set of final states, and ∆ ⊆ (Q× Σ)× Γ× (Q× Σ∗) is a finite set of transition
rules.

We will denote a transition rule ((q, a), γ, (q′, w′)) using the notation (q, a)
γ
↪−→ (q′, w′). The

bottom-of-stack symbol is neither pushed nor popped. That is, for each rule (q, a)
γ
↪−→

(q′, w′) ∈ ∆ we have, when a 6=⊥, w does not contain ⊥, and, a =⊥ iff w′ = w ⊥ and w does
not contain ⊥. A configuration of P is a tuple (q, w), where q ∈ Q is the current control
state and w ∈ Σ∗ is the current stack contents. There exists a transition (q, aw) γ−→ (q′, w′w)
of P whenever (q, a)

γ
↪−→ (q′, w′) ∈ ∆. We call a sequence c0

γ1−→ c1
γ2−→ · · · γz−→ cz a run of

P. It is an accepting run if c0 = (q0,⊥) and cz = (q, w) with q ∈ F . The language L(P)
of a pushdown system is the set of all words labelling an accepting run. Such a language
is context-free. Note, in some cases, we omit the output alphabet Γ. In this case, the only
character is the empty character ε, with which all transitions are labelled. In general, we
will omit the empty character ε when it labels a transition.

FSTTCS 2011



460 Parameterised Pushdown Systems with Non-Atomic Writes

We use a theorem of Ehrenfeucht and Rozenberg [13]. With respect to a context-free
language L, a strong iterative pair is a tuple (x, y, z, u, t) of words such that for all i ≥ 0
we have xyizuit ∈ L, where y and u are non-empty words. A strong iterative pair is very
degenerate if, for all i, j ≥ 0 we have that xyizujt ∈ L.

I Theorem 3 ([13]). For a given context-free language L, if all strong iterative pairs are
very degenerate, then L is regular.

However, Ehrenfeucht and Rozenberg do not present a constructive algorithm for obtaining
a regular automaton accepting the same language as an appropriate context-free language.
Hence, we provide such an algorithm in Section 6.

3 Non-Atomic Pushdown Systems

Given an alphabet G, let r(G) = { r(g) | g ∈ G } and w(G) = { w(g) | g ∈ G }. These
alphabets represent read and write actions respectively of the value g.

I Definition 4 (Non-atomic Pushdown Systems). Over a finite alphabet G, a non-atomic
pushdown system (naPDS) is a tuple P = (Q,Σ,∆, q0,G) where Q is a finite set of control-
states, Σ is a finite stack alphabet with a bottom-of-stack symbol ⊥, q0 ∈ Q is a designated
initial control state and ∆ ⊆ (Q× Σ)× (r(G) ∪ w(G) ∪ { ε })× (Q× Σ∗).

That is, a non-atomic pushdown system is a PDS where the output alphabet is used to
signal the interaction with a global store, and there are no final states: we are interested in
the behaviour of the system, rather than the language it defines.

IDefinition 5 (Networks of naPDSs). A network of n non-atomic pushdown systems (NPDS)
is a tuple N = (P1, . . . ,Pn,G, g0) where, for all 1 ≤ i ≤ n, Pi =

(
Qi,Σi,∆i, q

i
0,G
)
is a

NPDS over G and g0 ∈ G is the initial value of the global store.

A configuration of an NPDS is a tuple (q1, w1, . . . , qn, wn, g) where g ∈ G and for each i,
qi ∈ Qi and wi ∈ Σ∗i . There is a transition (q1, w1, . . . , qn, wn, g) −→ (q′1, w′1, . . . , q′n, w′n, g′)
whenever, for some 1 ≤ i ≤ n and all 1 ≤ j ≤ n with i 6= j, we have q′j = qj , w′j = wj , and

(qi, wi) −→ (q′i, w′i) is a transition of Pi and g′ = g; or
(qi, wi)

r(g)−−→ (q′i, w′i) is a transition of Pi and g′ = g; or

(qi, wi)
w(g′)
−−−−→ (q′i, w′i) is a transition of Pi.

A path π of N is a sequence of configurations c1c2 . . . cm such that, for all 1 ≤ i < m,
ci −→ ci+1. A run of N is a path such that c1 =

(
q1

0 ,⊥, . . . , qn0 ,⊥, g0
)
.

4 The Parameterised Reachability Problem

We define and prove decidability of the parameterised reachability problem for naPDSs. We
finish with a few remarks on the extension to multiple variables, and on complexity issues.

I Definition 6 (Parameterised Reachability). For given naPDSs U and C over G, initial store
value g0 and control state q, the parameterised reachability problem asks whether there is

some n such that the NPDS Nn =

U , C, . . . , C︸ ︷︷ ︸
n

,G, g0

 has a run to some configuration

containing the control state q.

In this section, we aim prove the following theorem.



M. Hague 461

I Theorem 7. The parameterised reachability problem for NPDSs is decidable.

Without loss of generality, we can assume q is a control-state of U (a C process can
write its control-state to the global store for U to read). The idea is to build an automaton
which describes for each g ∈ G the sequences g1 . . . gm ∈ G∗ that need to be read by some
C process to be able to write g to the global store. We argue using Theorem 3 that such
read languages are regular (and construct regular automata using Lemma 18). Broadly this
is because, between any two characters to be read, any number of characters may appear in
the store and then be overwritten before the process reads the required character. We then
combine the resulting languages with U to produce a context-free language that is empty iff
the control-state q is reachable.

4.1 Regular Read Languages
For each g ∈ G we will define a read-language Lw(g) which intuitively defines the language
of read actions that C must perform before being able to write g to the global store. Since
C may have to write other characters to the store before g, we use the symbol # as an
abstraction for these writes. The idea is that, for any run of the parameterised system, we
can construct another run where each copy of C is responsible for a single particular write
to the global store, and Lw(g) describes what C must do to be able to write g.

To this end, given a non-atomic pushdown system P we define for each g ∈ G the
pushdown system Pw(g) which is P augmented with a new unique control-state f , and a

transition (q, a) ↪−→ (f, a) whenever P has a rule (q, a)
w(g)
↪−−−→ (q′, w). Furthermore, replace all

(q, a)
w(g′)
↪−−−→ (q′, w) rules with (q, a)

#
↪−→ (q′, w) where # /∈ G. These latter rules signify that

the global store contents have been changed, and that a new value must be written before
reading can continue. This implicitly assumes that C does not try to read the last value it
has written. This can be justified since, whenever this occurs, because we are dealing with
the parameterised version of the problem, we can simply add another copy of C to produce
the required write.

We interpret f as the sole accepting control state of Pw(g) and thus L
(
Pw(g)

)
is the

language of reads (and writes) that must occur for g to be written. We then allow any
number of (ignored) read and # events2 to occur. That is, any word in the read language
contains a run of C with any number of additional actions that do not affect the reachability
property interspersed. Let R = { r(g′) | g′ ∈ G } ∪ { # }, we define the read language
Lw(g) ⊆ R∗ for w(g) as

Lw(g) =
{
R∗γ1R

∗ . . . R∗γzR
∗ ∣∣ γ1 . . . γz ∈ L

(
Pw(g)

) }
.

Note, in particular, that γ1 . . . γz ∈ R∗.

I Lemma 8. For all g ∈ G, Lw(g) is regular and an NFA A accepting Lw(g), of doubly-
exponential size, can be constructed in doubly-exponential time.

Proof. Take any strong iterative pair (x, y, z, t, u) of Lw(g). To satisfy the preconditions of
Theorem 3, we observe that xzu ∈ Lw(g) since we have a strong iterative pair. Then, from
the definition of Lw(g) we know xR∗zR∗u ⊆ Lw(g) and hence, for all i, j, xyiztju ⊆ Lw(g)
as required. Thus Lw(g) is regular. The construction of A comes from Lemma 18. J

2 Extra # events will not allow spurious runs, as they only add extra behaviours that may cause the
system to become stuck. This is because # is never read by a process.

FSTTCS 2011



462 Parameterised Pushdown Systems with Non-Atomic Writes

4.2 Simulating the System
We build a PDS that recognises a non-empty language iff the parameterised reachability
problem has a positive solution. The intuition behind the construction of Psys is that, if a
collection of C processes have been able to use the output of U to produce a write of some g
to the global store, then we may reproduce that group of processes to allow as many writes
g to occur as needed. Hence, in the construction below, once qi ∈ Fi has been reached,
gi can be written at any later time. The # character is used to prevent sequences such as
r(g)w(g′)r(g) occurring in read languages, where no process is able to provide the required
write w(g) that must occur after w(g′). Note that, if we did not use # in the read languages,
such sequences could occur because the w(g′) would effectively be ignored.

The construction itself is a product construct between U and the regular automata
accepting the read languages of C. The regular automata read from the global variable,
writing # when a # action should occur. Essentially, they mimic the behaviour of an
arbitrary number of C processes in their interaction — via the global store — with U and
each other. The value of the global store is held in the last component of the product.

I Definition 9 (Psys). Given an naPDS U =
(
QU ,Σ,∆U , qU0 ,G

)
with initial store value g0,

a control-state f ∈ QU , and, for each g ∈ G, a regular automaton

Aw(g) =
(
Qw(g), R,∆w(g),Fw(g), q

w(g)
0

)
,

we define the PDS Psys = (Q,Σ,∆, q0,F) where, if G = { g0, . . . , gm }, then
Q = QU ×Qw(g0) × · · · × Qw(gm) × (G ∪ { # }),
q0 =

(
qU0 , q

w(g0)
0 , . . . , q

w(gm)
0 , g0

)
,

F = { f } × Qw(g0) × · · · × Qw(gm) × (G ∪ { # }),
and ∆ is the smallest set containing all (q, a) ↪−→ (q′, w) where q = (qU , q0, . . . , qm, g) and,

q′ = (q′U , q0, . . . , qm, g) and (qU , a) ↪−→ (q′U , w) ∈ ∆U , or

q′ = (q′U , q0, . . . , qm, g) and (qU , a)
r(g)
↪−−→ (q′U , w) ∈ ∆U , or

q′ = (q′U , q0, . . . , qm, g
′) and (qU , a)

w(g′)
↪−−−→ (q′U , w) ∈ ∆U , or

q′ = (qU , q0, . . . , q
′
i, . . . , qm, g) and qi

r(g)−−→ q′i ∈ ∆i, qi /∈ Fi and w = a, or
q′ = (qU , q0, . . . , q

′
i, . . . , qm,#) and qi

#−→ q′i ∈ ∆i, qi /∈ Fi and w = a, or
q′ = (qU , q0, . . . , qm, gi), qi ∈ Fi and w = a.

The last transition in the above definition — which corresponds to some copy of C writing
gi to the global store — can be applied any number of times; each application corresponds
to a different copy of C, and, since we are considering the parameterised problem, we can
choose as many copies of C as are required.

I Lemma 10. The PDS Psys has a run to some control-state in F iff the parameterised
reachability problem for U , C, G, g0 and q has a positive solution.

The full proof of correctness is given in the appendix. To construct a run reaching q from
an accepting run of Psys we first observe that U is modelled directly. We then add a copy
of C for every individual write to the global component of Psys. These slaves are able to
read from/write to the global component finally enabling them to perform their designated
write. This is because (a part of) the changes to the global store is in the read language of
the required write.

In the other direction, we build an accepting run of Psys from a run of the parameterised
system reaching q. To this end, we observe again that we can simulate U directly. To



M. Hague 463

simulate the slaves, we take, for every character g ∈ G written to the store, the copy of C
responsible for its first write. From this we get runs of the Aw(g) that can be interleaved with
the simulation of U and each other to create the required accepting run, where additional
writes of each g are possible by virtue of Aw(g) having reached an accepting state (hence we
require no further simulation for these writes).

Example Let U perform the actions r(1)r(2)w(ok)r(f) and C run either w(1)r(ok)w(go) or
w(2)r(go)w(f). Let L1, . . . ,L4 denote the following read languages.

Lw(1) = Lw(2) = R∗ Lw(go) = R∗#R∗r(ok)R∗ Lw(f) = R∗#R∗r(go)R∗

Take two slaves C1 and C2 and the run (the subscript denotes the active process):

w(1)C1
r(1)Uw(2)C2

r(2)Uw(ok)Ur(ok)C1
w(go)C1

r(go)C2
w(f)C2

r(f)U .

This can be simulated by the following actions on the global component of Psys:

w(#)L3
w(1)L1

r(1)Uw(#)L4
w(2)L2

r(2)Uw(ok)Ur(ok)L3
w(go)L3

r(go)L4
w(f)L4

r(f)U .

Note, we have scheduled the w(#) actions immediately before the write they correspond to.

4.3 Complexity and Multiple Stores

We obtain for each g ∈ G an automaton Aw(g) of size O
(

22f(n)
)

in O
(

22f(n)
)

time for
some polynomial f (using Lemma 18) where n is the size of the problem description. The
pushdown system Psys, then, has O

(
22f′(n)

)
many control states for a polynomial f ′. It

is well known that reachability/emptiness for PDSs is polynomial in the size of the system
(e.g. Bouajjani et al. [8]), and hence the entire algorithm takes doubly-exponential time.
For the lower bound, one can reduce from SAT to obtain an NP-hardness result (as shown
in the appendix). Further work is needed to pinpoint the complexity precisely.

The algorithm presented above only applies to a single shared variable. A more natural
model has multiple shared variables. We may allow k variables with the addition of k global
components G1, . . . ,Gk. The main change required is the use of symbols #1, . . . ,#k rather
than simply # and to build Psys to be sensitive to which store is being written to (or erased
with some #i). This does not increase the complexity since n = |G1|+ · · ·+ |Gk| in the above
analysis and the cost of the k-product of variables does not exceed the cost of the product
of the Aw(g). We give the full details in the appendix. Note that, using the global stores,
we can easily encode a PSPACE Turing machine using U , without stack, and an empty C.
Hence the problem for multiple variables is at least PSPACE-hard.

5 Non-parameterized Reachability

We consider the reachability problem when the number of processes n is fixed. In the
case when 1 ≤ n ≤ 2, undecidability is clear: even with non-atomic read/writes, the two
processes can organise themselves to overcome non-atomicity. When n > 2, it becomes
harder to co-ordinate the copies of C. A simple trick recovers undecidability. More formally,
then:

I Definition 11 (Non-parameterized Reachability). For given n and naPDSs U and C over
G, initial store value g0 and control state q, the non-parameterised reachability problem asks

FSTTCS 2011



464 Parameterised Pushdown Systems with Non-Atomic Writes

whether the NPDS Nn =

U , C, . . . , C︸ ︷︷ ︸
n

,G, g0

 has a run to some configuration containing

the control state q.

I Theorem 12. The non-parameterized reachability problem is undecidable when n ≥ 1.
When n > 1, the result holds even when U is null.

Proof. We reduce from the undecidability of the emptiness of the intersection of two context-
free languages. First fix some n ≥ 2 and two pushdown systems P1, P2 accepting the two
languages L1 and L2.

We define C to be the disjunction of C1, . . . , Cn. That is, C makes a non-deterministic
choice of which Ci to run (1 ≤ i ≤ n). Let 1, . . . , n, f, ! be characters not in the alphabet of
L1 and L2. The process C1 will execute, for each γ1 . . . γz ∈ L1, a sequence

w(1)r(n)w(γ1)r(!)w(γ2)r(!) . . . w(γz)r(!)w(f) .

It is straightforward to build C1 from P1. Similarly, the process C2 will execute, for each
a1 . . . am ∈ L2, a sequence

r(1)w(2)r(γ1)w(!)r(γ2)w(!) . . . r(γz)w(!)r(f)

and move to a fresh control-state qf . It is straightforward to build C2 from P2. The remaining
processes for 3 ≤ i ≤ n simply perform the sequence r(i− 1)w(i).

The control-state qf can be reached iff the intersection of L1 and L2 is non-empty. To
see this, first consider a word witnessing the non-emptiness of the intersection. There is
immediately a run of Nn reaching qf where each ith C process behaves as Ci.

In the other direction, take a run ofNn reaching qf . First, observe that for each 1 ≤ i ≤ n
there must be some copy of C running Ci. This is because, otherwise, there is some i not
written to the global store, and hence all i′ ≥ i, including n, are not written. Then C1 can
never write f and C2 can never move to qf . Finally, take the sequence a1 . . . am written by
C1 (and read by C2). This word witnesses non-emptiness as required.

In the case when n = 1, we simply have U run C1 and C run C2. J

6 Making Ehrenfeucht and Rozenberg Constructive

We show how to make Theorem 3 constructive. To prove regularity, Ehrenfeucht and Rozen-
berg assign to each word a set of types θ(w), and prove that, if θ(w) = θ(w′), then w ∼ w′

in the sense of Myhill and Nerode [19]. We first show how to decide θ(w) = θ(w′), and then
show how to build the automaton. For the sake of brevity, we will assume familiarity with
context-free grammars (CFGs) and their related concepts [19].

For our purposes, we consider a context-free grammar (in Chomsky normal form) G to
be a collection of rules of the form A→ BC or A→ a, where A,B and C are non-terminals
and a is a terminal in Γ. There is also a designated start non-terminal S. A word w is in
L(G) if there is a derivation-tree with root labelled by S such that an internal node labelled
by A has left- and right-children labelled by B and C when we have A→ BC in the grammar
and a leaf node is labelled by a when it has parent labelled by A (with one child) and A→ a

is in the grammar. Furthermore w is the yield of the tree; that is, w labels the leaves. Note,
all nodes must be labelled according to the scheme just described. One can also consider
the derivation of w in terms of rewrites from S, where the parent-child relationship in the
tree gives the requires rewriting steps.



M. Hague 465

6.1 Preliminaries
We first recall some relevant definitions from Ehrenfeucht and Rozenberg. We write #a(w)
to mean the number of occurrences of the character a in the word w.

I Definition 13 (Type of a Word). Let Γ be an alphabet and let x,w ∈ Γ∗, We say that w
is of type x, or that x is a type of w (denoted τ(x,w)) if
1. for every a ∈ Γ, #a(x) ≤ 1, and
2. there exists a homomorphism h such that

a. for every a ∈ Γ, h(a) ∈ a ∪ aΓ∗a, and
b. h(x) = w.

If x satisfies the above, we also say that x is a type in Γ∗.

Given a CFG G in Chomsky normal form, we assume a derivation tree T of G is a labelled
tree where all internal nodes are labelled with the non-terminal represented by the node, and
all leaf nodes are labelled by their corresponding characters in Γ. Given a derivation tree T ,
Ehrenfeucht and Rozenberg define a marked tree T with an expanded set of non-terminals
and terminals. Simultaneously, we will define the spine of a marked tree. Intuitively, we
take a path in the tree and mark it with the productions of G that have been used and the
directions taken.

Given an alphabet of terminals and non-terminals Σ and a derivation tree T , let Σ =
{ (A,B,C, k) | k ∈ { 1, 2 } ∧A→ BC ∈ G }∪{ (A, a) | A→ a ∈ G }. This is the marking
alphabet of G.

I Definition 14 (Spine of a Derivation Tree). Let T be a derivation tree in G and let
ρ = v0 . . . vs be a path in T where s ≥ 1, v0 is the root of T , vs is a leaf of T and
`(v0), . . . , `(vs) are the labels corresponding to nodes of ρ. Now for each node vj , 0 ≤ j ≤ s,
change its label to `(vj) as follows:
1. if A→ BC is the production used to rewrite the node j (hence `(vj) = A) and vj has a

direct descendant to the left of ρ, then `(vj) is changed to `(vj) = (A,B,C, 1),
2. if A→ BC is the production used to rewrite the node j and vj has a direct descendant

to the right of ρ, then `(vj) is changed to `(vj) = (A,B,C, 2),
3. if A → a is the production used to rewrite the node j then `(vj) is changed to `(vj) =

(A, a),
4. `(vs) = `(vs).

The resulting tree is called the marked ρ-version of T and denoted by T (ρ). The word
`(v0) . . . `(vs) is referred to as the spine of T (ρ) and denoted by Spine

(
T (ρ)

)
.

We write δ(w, z) whenever there exists some u such that the word wu has a derivation
tree T in G with a path ρ ending on the last character of w and with Spine

(
T (ρ)

)
= z.

Then, we have θ(w) = { x | δ(w, z) ∧ τ(x, z) }. Intuitively, this is the spine-type of w.
Finally, Ehrenfeucht and Rozenberg show that, whenever all strong iterative pairs of G

are very degenerate, then θ(w) = θ(w′) implies w ∼ w′. Since there are a finite number of
types x, we have regularity by Myhill and Nerode.

6.2 Building the Automaton
We show how to make the above result constructive. The first step is to decide θ(w) = θ(w′)
for given w and w′. To do this, from G and some type x, we build Gx which generates all
w such that δ(w, z) holds for some z of type x. Thus x ∈ θ(w) iff w ∈ L(Gx).

FSTTCS 2011



466 Parameterised Pushdown Systems with Non-Atomic Writes

First note that there is a simple (polynomial) regular automaton Ax recognising, for
x = a1 . . . as the language(

a1 ∪ a1Σ∗a1

)
. . .
(
as ∪ asΣ

∗
as

)
and z ∈ L(Ax) iff z is of type x. The idea is to build this automaton into the productions
of G to obtain Gx such that all characters to the left (inclusive) of the path chosen by Ax
are kept, while all those to the right are erased.

I Definition 15 (Gx). For a given word type x and CFG G, the grammar Gx has the
following production rules:

all productions in G,
Aq → Bq′Cε for each A→ BC ∈ G and q (A,B,C,1)−−−−−−→ q′ in Ax,
Aq → BCq′ for each A→ BC ∈ G and q (A,B,C,2)−−−−−−→ q′ in Ax,
Aq → a for each A→ a ∈ G and q (A,a)−−−→ q′ in Ax where q′ is a final state,
Aε → BεCε for each A→ BC ∈ G,
Aε → ε for each A→ a ∈ G.

The initial non-terminal is Sq0 where S is the initial non-terminal of G and q0 is the initial
state of Ax.

The correctness of Gx is straightforward and hence relegated to the appendix.

I Lemma 16. For all w, we have w ∈ L(Gx) iff x ∈ θ(w).

I Lemma 17 (Deciding θ(w) = θ(w′)). For given w and w′, we can decide θ(w) = θ(w′) in
O
(
2f(n)) time for some polynomial f where n is the size of G.

Proof. For a given alphabet Σ, there are
∑m
r=1 r! types where m =

∣∣Σ∣∣. Since m is polyno-
mial in n, there areO

(
2f(n)) word types. Hence, we simply check w ∈ L(Gx) and w′ ∈ L(Gx)

for each type x. This is polynomial for each x, giving O
(
2f(n)) in total. J

From this, we can construct, following Myhill and Nerode, the required automaton, using
a kind of fixed point construction beginning with an automaton containing the state qε from
which the equivalence class associated to the empty word will be accepted.

I Lemma 18. For a CFG G such that all strong iterative pairs are very degenerate, we can
build an NFA A of O

(
22f(n)

)
size in the same amount of time, where n is the size of G.

Proof. Let G be a CFG such that all strong iterative pairs are degenerate. We build an
NFA A such that L(G) = L(A) by the following worklist algorithm.

1. Let the worklist contain only ε (the empty word) and A have the initial state qε.
2. Take a word w from the worklist.
3. If w ∈ L(G), make qw a final state.
4. For each a ∈ Γ

a. if there is no state qw′ such that θ(wa) = θ(w′), add qwa to A and add wa to the
worklist,

b. take qw′ in A such that θ(wa) = θ(w′),
c. add the transition qw

a−→ qw′ to A.
5. If the worklist is not empty, go to point 2, else, return A.

Since this follows the Myhill-Nerode construction, using θ(w) = θ(w′) as a proxy for
w ∼ w′, we have that the algorithm terminates and is correct. Hence, with the observation
that there are O

(
22f(n)

)
different values of the sets θ(w), we have the lemma. J



M. Hague 467

7 Conclusions and Future Work

In this work, we have studied the parameterised master/slave reachability problem for push-
down systems with a global store. This provides an extension of work by Kahlon which did
not allow a master process, and communication was via anonymous synchronisation; how-
ever, this is obtained at the expense of atomic accesses to global variables. Our algorithm
introduces new techniques to pushdown system analysis.

An initial inspiration for this work was the study of weak-memory models, which do
not guarantee that — in a multi-threaded environment — memory accesses are sequentially
consistent. In general, if atomic read/writes are permitted, the verification problem is harder
(for example, Atig et al. relate the finite-state case to lossy channel machines [4]); hence,
we removed atomicity as a natural first step. It is not clear how to extend our algorithm to
accommodate weak-memory models and it remains an interesting avenue of future work.

Another concern is the complexity gap between the upper and lower bounds. We conjec-
ture that the upper bound can be improved, although we may require a new approach, since
the complexity comes from the construction of regular read languages. A related question is
whether we can improve the size of the automata Aw(g). Since a PDS of size n can recognise
the language

{
a2n }, we have a read language requiring an exponential number of a char-

acters; hence, the Aw(g) must be at least exponential. It is worth noting that Meyer and
Fischer give a language whose deterministic regular automaton is doubly-exponential in the
size of the corresponding deterministic PDS [24]. However, in the appendix, we provide an
example showing that this language is not very degenerate. If the PDS is not deterministic,
Meyer and Fischer prove there is no bound, in general, on the relationship in sizes.

Finally, we may also consider applications to recursive ping-pong protocols in the spirit
of Delzanno et al. [12].

Acknowledgments Nous remercions Jade Alglave pour plusieurs discussions qui ont amor-
cées ce travail. This work was funded by EPSRC grant EP/F036361/1. We also thank the
anonymous reviewers and Ahmed Bouajjani for their helpful remarks.

References
1 P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Handling parameterized systems

with non-atomic global conditions. In VMCAI, 2008
2 K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems.

Information Processing Letters (IPL), 1986.
3 M. F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is 2etime-

complete. In Developments in Language Theory, 2008.
4 M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification problem

for weak memory models. In POPL, 2010.
5 M. F. Atig, A. Bouajjani, and T. Touili. On the reachability analysis of acyclic networks

of pushdown systems. In CONCUR, 2008.
6 T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean programs. In

SPIN, 2000.
7 T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via static

analysis. In POPL, 2002.
8 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:

Application to model-checking. In CONCUR, 1997.
9 A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachability analysis of multith-

readed software with asynchronous communication. In FSTTCS, 2005.

FSTTCS 2011



468 Parameterised Pushdown Systems with Non-Atomic Writes

10 A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of
concurrent programs with procedures. SIGPLAN Not., 38(1):62–73, 2003.

11 A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic networks
of pushdown systems. CONCUR, 2005.

12 G. Delzanno, J. Esparza, and J. Srba. Monotonic set-extended prefix rewriting and veri-
fication of recursive ping-pong protocols. In ATVA, 2006.

13 A. Ehrenfeucht and G. Rozenberg. Strong iterative pairs and the regularity of context-free
languages. ITA, 19(1):43–56, 1985.

14 J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with regular valuations for
pushdown systems. In TACS, 2001.

15 P. Ganty, R. Majumdar, and B. Monmege. Bounded underapproximations. In CAV, 2010.
16 S. German and A. P. Sistla. Reasoning about systems with many processes. Journal of the

ACM, 39:675–735, 1992.
17 M. Hague. Parameterised pushdown systems with non-atomic writes. arXiv:1109.6264v1

[cs.FL], 2011.
18 A. Heußner, J. Leroux, A. Muscholl, and G. Sutre. Reachability analysis of communicating

pushdown systems. In FOSSACS, 2010.
19 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Com-

putation. Addison-Wesley, 1979.
20 N. D. Jones and S. S. Muchnick. Even simple programs are hard to analyze. J. ACM,

24:338–350, April 1977.
21 V. Kahlon. Parameterization as abstraction: A tractable approach to the dataflow analysis

of concurrent programs. In LICS, 2008.
22 V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating via locks.

In CAV, 2005.
23 R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-State Sys-

tems. PhD thesis, TU-München, 1998.
24 A. R. Meyer and M. J. Fischer. Economy of description by automata, grammars, and

formal systems. In FOCS, 1971.
25 S. Qadeer. The case for context-bounded verification of concurrent programs. In SPIN,

2008.
26 G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable. TO-

PLAS, 2000.
27 T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their ap-

plication to interprocedural dataflow analysis. Sci. Comput. Program., 58(1-2):206–263,
2005.

28 S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In
TACAS, 2005.

29 S. Schwoon. Model-checking Pushdown Systems. PhD thesis, Technical University of Mu-
nich, 2002.

30 K. Sen and M. Viswanathan. Model checking multithreaded programs with asynchronous
atomic methods. In CAV, 2006.

31 A. Seth. Global reachability in bounded phase multi-stack pushdown systems. In CAV,
2010.

32 I. Suzuki. Proving properties of a ring of finite-state machines. Inf. Process. Lett., 28:213–
214, July 1988.

33 S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of concurrent
queue systems. In TACAS, 2008.

34 S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parameterized concurrent
programs using linear interfaces. In CAV, 2010.



Higher order indexed monadic systems
Didier Caucal1 and Teodor Knapik2

1 CNRS, LIGM-Université Paris-Est
caucal@univ-mlv.fr

2 ERIM, Université de la Nouvelle Calédonie
knapik@univ-nc.nc

Abstract
A word rewriting system is called monadic if each of its right hand sides is either a single letter
or the empty word. We study the images of higher order indexed languages (defined by Maslov)
under inverse derivations of infinite monadic systems. We show that the inverse derivations of
deterministic level n indexed languages by confluent regular monadic systems are deterministic
level n+1 languages, and that the inverse derivations of level n indexed monadic systems preserve
level n indexed languages. Both results are established using a fine structural study of classes
of infinite automata accepting level n indexed languages. Our work generalizes formerly known
results about regular and context-free languages which form the first two levels of the indexed
language hierarchy.

1998 ACM Subject Classification F.4

Keywords and phrases Higher-order indexed languages, monadic systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.469

1 Introduction

A word rewriting system is a (possibly infinite) set of pairs of words called rules. The rewriting
relation −→ transforms a word xuy into xvy by applying a rule (u, v), leaving unchanged the
left and right contexts x and y. This is denoted by xuy −→ xvy. The iteration (or reflexive
and transitive closure under composition) of this relation is called the derivation relation
and written ∗−→. Word rewriting systems form a Turing-complete model of computation,
which implies in particular that the reachability problem ‘Given words u and v, is there a
derivation from u to v?’ is in general undecidable. It becomes however decidable for certain
subclasses of monadic systems, i.e. systems in which the right hand side of any rule is either
a single letter or the empty word [4]. Monadic systems form an important class generalizing
the well-known Dyck system, which we used in [10] to provide a decomposition technique
for word rewriting systems and generalize existing language preservation properties. The
current work finds a direct application in further exploiting this decomposition technique
(see the conclusion).

Given a family of languages F , we call a system F -monadic whenever the set of left
hand sides of rules with the same right hand side forms a language in F (i.e. the inverse
single-step rewriting of any letter or the empty word is a language in F ). As can be seen
by adapting the saturation method provided in [2], the (image under the) derivation of a
regular language by any F monadic system is also regular, and can be effectively computed
whenever the emptiness of the intersection of any language in F with a regular language is
decidable. This is the case for instance of regular and context-free monadic systems [15, 3],
but can be easily generalized to higher-order indexed monadic systems of any level (where
levels 0 and 1 correspond to regular and context-free languages; see [13] for a definition of

© D. Caucal and T. Knapik;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 469–480

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.469
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


470 Higher order indexed monadic systems

indexed languages). When effective, this regularity preservation property directly implies the
decidability of the reachability problem. It is also natural to ask whether this preservation
property still holds for classes of indexed languages above level 0 i.e. above regular languages,
but it turns out this is not the case: the derivation of a context-free language by a finite
monadic system can be non-recursive [3].

The situation is quite different when considering the inverse derivation relations of monadic
systems. Given a rewriting system R, we denote by Pre∗R(L) the set of all words which can be
derived by R into a word in L, i.e. the image of L by the inverse derivation of R. In contrast
to the above results, when R is a confluent finite monadic system and L is a regular set of
R-irreducible words, then Pre∗R(L) is a deterministic context-free (and in general non-regular)
language [3]. Moreover, when L is a context-free language and R a context-free monadic
system, Pre∗R(L) is also context-free [3], in other words for context-free monadic systems the
operator Pre∗R(L) effectively preserves context-freeness. In this work, we generalize these two
results to all higher levels of indexed languages.

This work relies on an automata-theoretic characterization of level n indexed languages
by automata with n-nested pushdown stores (i.e. ‘stacks of stacks’). We call these level n
automata [14]. We first show that for any confluent regular monadic system R, and any
deterministic level n indexed language L, Pre∗R(L) is a deterministic level n + 1 indexed
language (Theorem 17). This is done using the notion of Cayley automaton, in which states
correspond to R-irreducible words, there is an a-labelled edge from u to v if and only if v is
the normal form of ua, and words in the n indexed language L are seen as accepting states.
This automaton is a deterministic level n+ 1 automaton recognizing the language Pre∗R(L)
which is thus a deterministic level n+ 1 indexed language (Proposition 16).

Moreover, we show that for any level n (other than 0), the inverse derivation of any
level n indexed monadic system R preserves level n indexed languages (Theorem 22). From
any mapping h associating to each right hand side a of R a level n automaton recognizing
the set R−1(a) of the left hand sides producing a, we define the iterated substitution h∗

which transforms any level n automaton recognizing a language L into a level n automaton
recognizing Pre∗R(L).

This work is organized as follows. In Section 2 we recall the necessary definitions, in
particular concerning Thue systems and Cayley graphs. In Section 3, we define a class of
graph transformations called inverse regular path functions, a technical tool of independent
interest generalizing the notion of inverse regular mapping. Finally in Section 4, we present
our main results concerning the inverse derivations of monadic systems.

2 Thue systems and Cayley graphs

We say that a system is canonical if each word derives into a unique irreducible word. To
any canonical Thue system R is associated its Cayley graph, which recognizes from ε to
any set L of irreducible words, the inverse derivation of L (Proposition 4).

2.1 Graphs
Let T be an infinite countable set of symbols called terminals. A graph G is a set of edges
labelled over T i.e. G ⊆ V ×T×V where V is an arbitrary set such that the following set
of vertices :

VG = { s ∈ V | ∃ a ∈ T ∃ t ∈ V (s, a, t) ∈ G ∨ (t, a, s) ∈ G }

is finite or countable, and the following set of labels :



D. Caucal and T. Knapik 471

TG = { a | ∃ s, t (s, a, t) ∈ G }

is finite. A triple (s, a, t) ∈ G is an edge labelled by a from source s to target t ; it is
identified with the labelled transition s

a−→G t or directly s
a−→ t if G is understood. Any

tuple (s0, a1, s1, . . ., an, sn) for n ≥ 0 and s0
a1−→G s1 , . . . , sn−1

an−→G sn is a path from
s0 to sn labelled by u = a1. . .an ; we write s0

u=⇒G sn or directly s0
u=⇒ sn if G is

understood. The language recognized by a graph G from a vertex subset I ⊆ VG to a vertex
subset F ⊆ VG is the label set L(G, I, F ) of all paths from I to F :

L(G, I, F ) = { u ∈ T ∗G | ∃ i ∈ I ∃ f ∈ F (i u=⇒G f) }.

A regular language is any language recognized by a finite graph; we denote Reg(N∗) the
set of regular languages over N ⊆ T . A graph is deterministic if it has no two edges with
the same source and the same label: (r a−→ s ∧ r

a−→ t) =⇒ s = t. Fixing an alphabet
N ⊂ T , a graph G is N -complete if TG = N and for any a ∈ N , every vertex s ∈ VG is
source of an edge labelled by a : ∃ t (s a−→ t).

2.2 Thue systems
A Thue system R over an alphabet N ⊂ T is a (not necessarily finite) subset of N∗×N∗.
Any element (u, v) ∈ R, also denoted by u R v, is a rule of R with left hand side (l.h.s.
for short) u and right hand side (r.h.s. for short) v. By interverting left and right hand
sides of R, we get the inverse R−1 = { (v, u) | u R v } of R. The domain of R is the
set DomR = { u | ∃ v (u R v) } and its range is the set RanR = DomR−1 . The identity
relation over a language L is the system IdL = { (u, u) | u ∈ L }. Given systems R and
S, their concatenation is R.S = { (ux, vy) | u R v ∧ x S y } and their composition is
RoS = { (u,w) | ∃v (u R v ∧ v S w) }. The left concatenation (resp. right concatenation) of a
system R by a language L ⊆ N∗ is the system L.R = IdL.R = { (xu, xv) | x ∈ L ∧ u R v }
(resp. R.L = R.IdL). A congruence R is an equivalence relation on N∗ which is closed
under left and right concatenation with N∗ i.e. R is an equivalence such that R.R ⊆ R.
The rewriting of a system R is the relation →R = N∗.R.N∗ i.e. xuy →R xvy for some rule
u R v with left and right contexts x, y ∈ N∗. For any language L ⊆ N∗, PreR(L) = { u |
∃ v ∈ L (u→R v) } is the set of predecessors of L, and PostR(L) = { v | ∃ u ∈ L (u→R v) }
is the set of successors of L. The derivation →∗R by R is the reflexive and transitive closure
of →R under composition. For any language L, Pre∗R(L) = { u | ∃ v ∈ L (u→∗R v) } is the
set of ascendants of L, and Post∗R(L) = { v | ∃ u ∈ L (u→∗R v) } is the set of descendants
of L. We denote by IrrR = { u ∈ N∗ | ¬ ∃v (u →R v) } = N∗ − N∗DomRN

∗ the set of
irreducible words of R. The Thue congruence ↔∗R = →∗R ∪ R−1 is the finest congruence
containing R, and we denote by [u]↔∗

R
the Thue congruence class of u ∈ N∗. The word

problem for R is, given words u and v, to decide whether u ↔∗R v.
We say that a system R is terminating if each word derives to an irreducible word: ∀ u ∈
N∗ ∃ v ∈ IrrR (u→∗R v). Recall that R is noetherian if there is no infinite rewriting chain
u0 →R u1 →R . . . So any noetherian system is terminating but for a, b ∈ N , the system
{(a, a) , (a, b)} is terminating but not noetherian. A system R is confluent if every pair of
words with a common ancestor have a common descendant: if Pre∗R(u) ∩ Pre∗R(v) 6= ∅ then
Post∗R(u) ∩ Post∗R(v) 6= ∅. A canonical system R is a terminating and confluent system
which is equivalent to the condition that each word u derives into a unique irreducible word
u↓R called the normal form of u. In that case, the congruence class of any word is the set
of ascendants of its normal form.

FSTTCS 2011



472 Higher order indexed monadic systems

I Lemma 1. For any canonical system R, we have

[L]↔∗
R

= Pre∗R(L↓R) for any L ⊆ N∗,
{ [L]↔∗

R
| L ⊆ N∗ } is a boolean algebra.

2.3 Cayley graphs
Let us begin with an elementary example. For letters a and b, the finite system R0 =
{(a, ε) , (b, ε)} is canonical: ε is the normal form of any word. The rewriting →R0 restricted
to the words in a∗b∗ is the following grid:

aab

aabb

ε a aa

ab

abbbb

b

which has an undecidable monadic second order (MSO) theory, an even an undecidable
FO∗ theory [19] where FO∗ denotes the first order logic extended with the transitive closure
operator of arity one and without parameter. The Thue systems constitute a Turing-complete
model of computation, hence their rewritings define a large family of graphs [8] having (by
Rice’s theorem) strong undecidability results. Instead of considering the rewriting →R of
any Thue system R, [5] defines the Cayley graph of R as

[R] = { u a−→ v | u, v ∈ IrrR ∧ a ∈ N ∧ ua →∗R v }.

This is inspired by the analogous notion for groups. The Cayley graph of R0 is [R0] =
{ε a−→ ε , ε

b−→ ε} and the Cayley graph [R1] of the noetherian system R1 = {(ab, b) , (b, ε)}
is depicted as follows:

aa

b

a

b

a

b

aa
b b

b

aaaε

b b b b

This graph is prefix-recognizable hence it has a decidable MSO theory [7].
Note that [R] = ∅ ⇐⇒ IrrR = ∅ ⇐⇒ ε ∈ DomR, and that [R] contains the tree

{ u a−→ ua | u ∈ N∗ ∧ a ∈ N ∧ ua ∈ IrrR }

hence V[R] = IrrR. The Cayley graphs of canonical systems are deterministic and complete.

I Lemma 2. For any system R over N ,

R is terminating =⇒ [R] is N-complete,
R is confluent =⇒ [R] is deterministic.

Let us express the path labels of Cayley graphs of canonical systems.

I Lemma 3. For any canonical system R,

u
v=⇒[R] w ⇐⇒ uv →∗R w for every u,w ∈ IrrR and v ∈ N∗.

The set of path labels of the Cayley graph of any canonical system from vertex ε to any
vertex subset F is the set of ascendants of words in F .



D. Caucal and T. Knapik 473

I Proposition 4. For any canonical system R and any F ⊆ IrrR ,

L([R], ε, F ) = Pre∗R(F ) = [F ]↔∗
R
.

Note that the Cayley graph of the empty relation is the N -complete tree:

[∅] = { u a−→ ua | u ∈ N∗ ∧ a ∈ N }.

Let us show how to construct [R] from [∅] for a general system R.
Recall that the suffix rewriting −→|R = N∗.R of any system R is the binary relation
on N∗ defined by xu−→|R xv i.e. the application of a rule u R v under any left context
x ∈ N∗ (the right context being empty). The suffix derivation −→|∗R is the reflexive and
transitive closure under composition of the suffix rewriting. We say that a system R is suffix
if

PostR(IrrR.N) ⊆ {ε} ∪ IrrR.N .

Note that this condition is effective for any finite system R and more generally for any
recognizable system : R = U1×V1 ∪ . . .∪ Un×Vn for some n ≥ 0 and U1, V1, . . . , Un, Vn ∈
Reg(N∗). In that case, DomR is regular, hence IrrR and PostR(IrrR.N) are regular
languages. The Cayley graph of a suffix system can be obtained by the suffix derivation.

I Lemma 5. For any suffix system R,

ua −→∗R v ⇐⇒ ua −→|∗R v for any u, v ∈ IrrR and a ∈ N .

In the next section, we introduce a class of graph transformations allowing us to construct
from [∅] the Cayley graph [R] of any recognizable suffix system R.

3 Path functions

We introduce a generalization of the notion of inverse regular mapping introduced in [7],
called inverse path function. We show that the Cayley graph of any recognizable suffix
system can be obtained from the complete and deterministic tree by an inverse path function
(Proposition 7).

Let Tε = T ∪ {ε} and F = { , ¬ , ∨ , ∧ , · , ∗}. We define the set Exp of boolean
path expressions as the smallest language over Tε ∪ F ∪ {( , )} such that Tε ⊆ Exp and

u , (¬u) , (u ∨ v) , (u ∧ v) , (u · v) , (u∗) ∈ Exp for any u, v ∈ Exp.

The word label w of a path s
w=⇒G t from s to t of a graph G is extended to a regular

expression u ∈ Exp by induction on the length of u as follows. For any a ∈ T and u, v ∈
Exp,

s
a=⇒ t if s

a−→ t ; s
ε=⇒ t if s = t

s
u=⇒ t if t

u=⇒ s ; s
(¬u)=⇒ t if ¬ (s u=⇒ t)

s
(u∨ v)=⇒ t if s

u=⇒ t ∨ s
v=⇒ t ; s

(u∧ v)=⇒ t if s
u=⇒ t ∧ s

v=⇒ t

s
(u · v)=⇒ t if ∃ r (s u=⇒ r ∧ r

v=⇒ t) ; s
(u∗)=⇒ t if s ( u=⇒)∗ t.

For instance s
(ε∧ (a . a))

=⇒ t means that s = t ∧ ∃ r (s a−→ r).
We can remove parentheses using the associativity of ∨ , ∧ , · and by assigning priorities to
operators as usual. Finally · can be omitted.
A function h : T −→ Exp of finite domain is called a regular path function and is applied by
inverse to any graph G to get the graph:

FSTTCS 2011



474 Higher order indexed monadic systems

h−1(G) = { s a−→ t | a ∈ Dom(h) ∧ s
h(a)
=⇒G t }.

For instance, the path function h defined by h(a) = a and h(ι) = aa ∧ ¬(aa) applied by
inverse to the previous Cayley graph [R1] gives the following graph h−1([R1]) :

a aaε

a a a a

ι

aaa aaaa

By applying to this graph the inverse of the path function g defined by

g(ι) = ι ; g(a) = (ε ∧ a∗ ι (aa)∗) a a
g(o) = ι ∨ a ι a ; g(b) = (ε ∧ (a a)∗ ι a∗) a ∨ (ε ∧ (a a)∗a ι a∗) a a

we get the following graph K = g−1(h−1([R1])) depicted as follows:

a aaa

aaε aaaaa a

b b
b b

ι, o

o

where L(K, ε, {ε, a}) ∩ {a, b}∗ = { anbn | n ≥ 0 }.
Inverse path functions are closed under composition. More precisely any path function
h : T −→ Exp is extended by morphism to a function Exp −→ Exp. The expression h(u)
is also denoted by u[h(a1)/a1, . . ., h(ap)/ap] for {a1, . . ., ap} = Dom(h) and is only defined
when Ele(u) ∩ T ⊆ Dom(h). This allows to define the composition g o h of path functions
g and h by (g o h)(a) = h(g(a)) for any a ∈ Dom(g) with g(a) ∈ Dom(h).
The family of inverse path functions is closed under composition.

I Lemma 6. For any graph G and any path functions g and h, we have

g−1(h−1(G)) = (g o h)−1(G).

For any recognizable suffix system, we can construct its Cayley graph.

I Proposition 7. For any recognizable suffix system R, we can construct a path function h

such that [R] = h−1([∅]).

Let us combine Propositions 4 and 7.

I Corollary 8. For any recognizable canonical suffix system R and for any regular language
L ⊆ IrrR, Pre∗R(L) = [L]↔∗

R
is a deterministic context-free language.

This follows from the fact that a deterministic prefix-recognizable graph recognizes, from a
vertex to a regular vertex set, a deterministic context-free language [7].

4 Monadic systems

We review language preservation properties of the derivation and inverse derivation relations
of regular and context-free monadic systems. We generalize these results to higher-order
indexed monadic systems using the Shelah-Stupp and Muchnik iterations together with
inverse path functions.



D. Caucal and T. Knapik 475

4.1 Regular and context-free monadic systems
A system R is monadic if ε is not a l.h.s. and any r.h.s. is either a single letter or ε i.e.
R ⊆ N+×Nε for Nε = N ∪ {ε}. Contrary to the usual definition of monadic systems
[15, 3, 4], we allow unitary rules a → b for a, b ∈ N . Hence a monadic system R is not
in general noetherian. However and in a standard way, we consider the equivalence ∼ on
N defined for any a, b ∈ N by a ∼ b if a →∗R b →∗R a. We take a mapping from N

into T such that a = b ⇐⇒ a ∼ b, that we extend by morphism from N∗ into T ∗. So
R = { (u, v) | u R v ∧ u 6= v } is a monadic system over N = { a | a ∈ N } such that for
any u, v ∈ N∗ (u →∗R v ⇐⇒ u →∗

R
v). The system R can still have unitary rules but

R is noetherian, and R is confluent ⇐⇒ R is confluent.
We say that a monadic system R is finite (resp. regular, context-free) if for each a ∈ Nε,
the language R−1(a) of the l.h.s. producing a is finite (resp. regular, context-free). All
these subclasses of monadic systems are effective in the sense that for each r.h.s. a ∈ Nε
we can decide whether R−1(a) ∩ L = ∅ with L ∈ Reg(N∗). Note that a monadic system
is recognizable if and only if it is regular. A particular finite monadic system is the Dyck
system: D = { (a a, ε) | a ∈ N} ∪ { (a a, ε) | a ∈ N} where a is a new letter for each
a ∈ N . The operator Post∗D preserves regularity: L ∈ Reg(N∗) =⇒ Post∗D(L) ∈ Reg(N∗).
This property has been established in [2] with a saturation method that can be extended to
any monadic system.

I Theorem 9. For any monadic system R, the operator Post∗R preserves regularity, and
effectively when R is effective.

This effective regularity preservation has been given for the context-free monadic systems [3]
(Theorem 2.5). Let us apply Theorem 9 on R when R is confluent.

I Corollary 10. The word problem is decidable for any effective confluent monadic system.

The confluence property is decidable for regular monadic systems [15] but is undecidable
for context-free monadic systems [3]. Furthermore Post∗D for the Dyck system D does not
preserve context-freeness [12]. In fact Post∗R(L) may not be recursive when L is context-free,
even if R is a confluent finite monadic system [3] (Theorem 4.1).

We will thus focus on preservation properties of Pre∗R for monadic systems R. Note that
Pre∗R does not preserve regularity: for the finite monadic system R = {(ab, ε)}, we have
Pre∗R(ε) ∩ a∗b∗ = { anbn | n ≥ 0 } hence Pre∗R(ε) is not regular. However any monadic
system is suffix, hence we can apply Corollary 8 on R for R confluent.

I Corollary 11. For any confluent regular monadic system R and any regular language
L ⊆ IrrR, the set Pre∗R(L) is a deterministic context-free language.

This was already known for the restricted case of finite confluent monadic systems [3]
(Theorem 3.9) and of unequivocal monadic systems [15]. Note that the confluence assumption
in Corollary 11 cannot be dropped: let R2 = {(ab, ε) , (aab, ε)} whose Cayley graph
restricted to the vertices in a∗ is the following non deterministic graph:

a

b

a

b

a

b

b

a aa aaaε

b b

The language Pre∗R2
(ε) ∩ a∗b∗ = { ambn | n ≤ m ≤ 2n } is context-free but not deterministic

context-free [20], hence Pre∗R2
(ε) is not a deterministic context-free language. However

Pre∗R2
(ε) is context-free. In fact, the inverse of a finite monadic system is a context-free

FSTTCS 2011



476 Higher order indexed monadic systems

grammar allowing ε as a l.h.s., and we know that the expressive power of context-free
grammars is not increased when allowing a context-free set of r.h.s. for each l.h.s.

I Proposition 12. [3] For any context-free monadic system R, the operator Pre∗R effectively
preserves context-freeness.

We propose to generalize Corollary 11 and Proposition 12 to a hierarchy of monadic systems
whose first two levels are the regular and context-free monadic systems.

4.2 Higher-order indexed monadic systems
Level n indexed languages were introduced for n = 2 by Aho et al. [1], and for arbitrary
n by Maslov [13]; level 0 and level 1 indexed languages are the regular and context-free
languages. These classes of languages coincide with the OI hierarchy of [11]. A monadic
system R is n-indexed if for each a ∈ Nε, the language R−1(a) is n-indexed; in that case,
R is effective [14] and by Theorem 9, Post∗R effectively preserves regularity.
The n-indexed languages are the languages recognized by automata using an n-nested
pushdown store [14] and called level n automata. We can describe level n+ 1 automata
from level n automata using two basic graph transformations [6]: the previously defined
inverse path functions and the full iteration defined by Muchnik [16]. This operation is a
generalization of the basic iteration G# of a graph G with a new label # ∈ T − TG defined
by Shelah and Stupp [17, 18]:

G# = { (s1, . . . , sn, s)
a−→ (s1, . . . , sn, t) | n ≥ 0 ∧ s1, . . ., sn ∈ VG ∧ s

a−→G t }

∪ { (s1, . . . , sn) #−→ (s1, . . . , sn, s) | n ≥ 0 ∧ s1, . . ., sn, s ∈ VG }.

Muchnik extended this basic iteration to the full iteration G#,& by marking with a loop
labelled by & ∈ T − (TG ∪ {#}), in each copy of G in G#, the vertex from which the copy
originates:

G#,& = G# ∪ { (s1, . . . , sn, s, s) &−→ (s1, . . . , sn, s, s) | n ≥ 0 ∧ s1, . . ., sn, s ∈ VG }.

We give below an illustration of the full iteration of a ‘triangle’.

G

&

&

&

&

&#

&

#
#

#

#
#

#
#

#

By iteratively applying from the family F0 of finite graphs the full iteration followed by an
inverse path function, we get a hierarchy of graphs [9]: for every n ≥ 0,

Fn+1 = { h−1(G#,&) | G ∈ Fn ∧ #,& ∈ T − TG ∧ h path function }.

Since inverse path functions are particular MSO-interpretations and the full iteration preserves
the decidability of the monadic theory [16, 18], all graphs in this hierarchy have a decidable
MSO theory. By Lemma 6, each family Fn is closed under inverse path functions. For n 6= 0,
Fn is also closed under Shelah and Stupp’s iteration (but not under Muchnik’s iteration).

I Theorem 13. For any n > 0, the set Fn is closed under basic iteration.



D. Caucal and T. Knapik 477

To recognize languages, we fix an input label ι ∈ T and an output label o ∈ T . An automaton
is a graph in which each input edge s

ι−→ t and each output edge s
o−→ t is a loop: s = t.

We denote by A the family of automata and An = A ∩ Fn is the family of level n automata
for any n ≥ 0. We also consider the restriction Adet of deterministic automata which have
a deterministic graph with a unique loop labelled by ι. Any automaton G recognizes the
language L(G) of path labels over TG − {ι, o} from ι to o i.e.

L(G) = { u ∈ (TG − {ι, o})∗ | ∃ s, t (s ι−→G s
u=⇒G t

o−→G t) }.

For each n ≥ 0, the n-indexed languages are the languages recognized by level n automata
[6] ; we denote by Indexn this family:

Indexn = { L(G) | G ∈ An }.

We also define the subfamily Indexdet
n of n-indexed deterministic languages :

Indexdet
n = { L(G) | G ∈ Fn ∩ Adet }.

So Indexdet
0 = Index0 is the family of regular languages, and Indexdet

1 is the family of
deterministic context-free languages. Recall that a substitution is a function h : T −→ 2T∗

of finite domain that we extend by morphism: h(uv) = h(u).h(v) for any u, v ∈ (Dom(h))∗;
we say that h is an Indexn-substitution for n ≥ 0 if h(a) ∈ Indexn for all a ∈ Dom(h).
The inverse substitution h−1 of a language L ⊆ T ∗ is the language

h−1(L) = { u ∈ (Dom(h))∗ | h(u) ∩ L 6= ∅ }.

An Index0-substitution is a regular substitution which is a particular path function. Let us
apply the closure of each family Fn under inverse path functions.

I Corollary 14. For any n ≥ 0, Indexn is closed under inverse regular substitutions.

By Theorem 13, each family Fn is closed under synchronization product with finite automata.

I Corollary 15. For any n ≥ 0, the families Indexn and Indexdet
n are closed under

intersection with any regular language.

The Cayley graph [R] of any Thue system R is extended to the Cayley automaton [R,L]
for any final set L ⊆ IrrR by

[R,L] = [R] ∪ {ε ι−→ ε} ∪ { u o−→ u | u ∈ L }.

where ι (resp. o) labelled loops mark initial (resp. final) states. For R canonical and by
Lemma 2, [R,L] is a deterministic and complete automaton recognizing by Proposition 4
the language L([R,L]) = Pre∗R(L) = [L]↔∗

R
. Let us generalize Proposition 7.

I Proposition 16. For any recognizable suffix system R, any n ≥ 0 and L ⊆ IrrR with
L ∈ Indexdet

n , we have [R,L] ∈ Fn+1 .

This entails a generalization of Corollary 8 : Pre∗R modifies by adding at most 1 the level of
n-indexed deterministic languages when R is a confluent regular monadic system.

I Theorem 17. For any recognizable system R which is canonical and suffix, for any
language L ⊆ IrrR and any n ≥ 0, L ∈ Indexdet

n =⇒ Pre∗R(L) = [L]↔∗
R
∈ Indexdet

n+1.

FSTTCS 2011



478 Higher order indexed monadic systems

Let us generalize Proposition 12 to indexed monadic systems. Like for the previous finite
monadic system R0, the rewriting →R of an n-indexed monadic system R has in general
an undecidable monadic theory, hence is not in the class Fn for any n. But for any n-
indexed language L, we can recognize the language Pre∗R(L) by a graph in Fn (in F1 for
n = 0). The construction uses automaton substitutions which are functions h of finite domain
Dom(h) ⊂ T such that h(a) is an automaton for each a ∈ Dom(h); we say that h is an
Fn-substitution for some n ≥ 0 if h(a) ∈ Fn for each a ∈ Dom(h). We also use ε-automata
G allowing the label ε (ε ∈ TG); its ε-closure is the automaton

Gε = { s a−→ t | s ε∗=⇒G
a−→G

ε∗=⇒G ∧ a 6= ε } = g−1(G)

for the path function g defined for any a ∈ TG −{ε} by g(a) = ε∗ a ε∗. The image h(G) of
an automaton G by an automaton substitution h is the automaton

h(G) = (hε(G))ε ∪ { s ι−→ s | s ι−→G s } ∪ { s o−→ s | s o−→G s }

where hε(G) is the following ε-automaton:

hε(G) =
⋃

(s,a,t)∈G { (s, a, p) b−→ (s, a, q) | p b−→h(a) q ∧ b 6= ι ∧ b 6= o }

∪ { s ε−→ (s, a, q) | ∃ t (s a−→G t) ∧ q
ι−→h(a) q }

∪ { (s, a, q) ε−→ t | s a−→G t ∧ q
o−→h(a) q }.

To express the language recognized by h(G), we associate to h the (language) substitution
ĥ defined by ĥ(a) = L(h(a)) for any a ∈ Dom(h).

I Lemma 18. For any automaton substitution h and any automaton G,

L(h(G)) = ĥ(L(G))

and for any n ≥ 0, the automaton

h(G) ∈ Fn for G ∈ Fn and h is an Fn-substitution.

Let us apply Lemma 18.

I Corollary 19. For all n ≥ 0, Indexn is closed under any Indexn-substitution.

The iterated automaton substitution h∗(G) of an automaton G by an automaton substitution
h is the automaton

h∗(G) =
(⋃

n≥0 h
n
ε (G)

)ε .

Similarly the iterated language substitution h∗ of a (language) substitution h is the substi-
tution of domain Dom(h) where the vector of languages h∗(a) for a ∈ Dom(h) is the least
fixed point of the system of equations

h∗(a) = {a} ∪ h∗(h(a))

For h(a) = aa, we have h∗(a) = a+ 6=
⋃
n≥0 h

n(a) = { a2n | n ≥ 0 }. For the substitution
h defined by h(a) = bab and h(b) = b, we have h∗(a) = { bnabn | n ≥ 0 } and h∗(b) = b.
When h is a finite substitution, the equations defining h∗ form a context-free grammar,
hence h∗ is a context-free substitution. Note that h∗ remains a context-free substitution
when h is a context-free substitution. To any automaton substitution h, we associate the
monadic system

−→
h = { (u, a) | a ∈ Dom(h) ∧ u ∈ L(h(a)) }. Let us iterate Lemma 18.



D. Caucal and T. Knapik 479

I Lemma 20. For any automaton substitution h and any automaton G over TG ⊆ Dom(h),

L(h∗(G)) = ĥ∗(L(G)) = Pre∗−→
h

(L(G))

and for any n > 0, the automaton

h∗(G) ∈ Fn for G ∈ Fn and h is an Fn-substitution.

Let us apply Lemma 20.

I Corollary 21. For all n > 0, any iterated Indexn-substitution is an Indexn-substitution.

It remains to combine Theorem 13 with Lemma 20 to get for n 6= 0 that any n-indexed
monadic system preserves n-indexed languages by inverse derivation.

I Theorem 22. For any level n ≥ 1 indexed monadic system R,

L ∈ Indexn =⇒ Pre∗R(L) ∈ Indexn.

Let us combine Theorems 17 and 22.

I Corollary 23. For any confluent regular monadic system R and any n ≥ 1,

L ∈ 2IrrR ∩ Indexdet
n =⇒ Pre∗R(L) ∈ Indexn ∩ Indexdet

n+1 .

For instance taking the finite system R = {(abc, b)} which is monadic and confluent and
taking the restricted Dyck language L over the pair (a, b) i.e. the language recognized by
the automaton

a

b

a

b

a

b

ι

o

which is an irreducible deterministic context-free language, the set

Pre∗R(L) = { aman1bcn1 . . .anmbcnm | m ≥ 0 ∧ n1, . . . , nm ≥ 0 }

is a context-free language which is deterministic at level 2 but not at level 1.

5 Conclusion

We have generalized language preservation properties of regular and context-free monadic
systems to higher-order indexed monadic systems. These results were obtained by applying
two basic graph transformations: the basic iteration and inverse path functions.By applying
Theorem 13 and Theorem 22 to the decomposition of the derivation of word rewriting systems
[10], we can extend the preservation of context-free languages to n-indexed languages for
each n > 0.

Acknowledgements Many thanks to Antoine Meyer for helping us make this paper readable,
and to anonymous referees for helpful comments.

FSTTCS 2011



480 Higher order indexed monadic systems

References
1 A. Aho, R. Sethi and J. Ullman, Indexed grammars – an extension of context-free grammars,

JACM 15-4, 647–671 (1968).
2 M. Benois, Parties rationnelles du groupe libre, C.R. Académie des Sciences, Paris, Série A,

1188–1190 (1969).
3 R. Book, M. Jantzen and C. Wrathall, Monadic Thue systems, Theoretical Computer

Science 19, 231–251 (1982).
4 R. Book and F. Otto, String-rewriting systems, Texts and Monographs in Computer Science,

Springer-Verlag, 189 pages (1993).
5 H. Calbrix and T. Knapik, A string-rewriting characterization of Muller and Schupp’s

context-free graphs, 18th FSTTCS, LNCS 1530, V. Arvind, R. Ramanujam (Eds.), 331–342
(1998).

6 A. Carayol and S. Wöhrle, The Caucal hierarchy of infinite graphs in terms of logic and
higher-order pushdown automata, 23rd FSTTCS, LNCS 2914, P. Pandya, J. Radhakrishnan
(Eds.), 112–123 (2003).

7 D. Caucal, On infinite transition graphs having a decidable monadic theory, 23rd ICALP,
LNCS 1099, F. Meyer auf der Heide, B. Monien (Eds.), 194–205 (1996)
or in Theoretical Computer Science 290, 79–115 (2003).

8 D. Caucal, On the transition graphs of Turing machines, 3rd MCU, LNCS 2055, M. Mar-
genstern, Y. Rogozhin (Eds.), 177–189 (2001).

9 D. Caucal, On infinite terms having a decidable monadic theory, 27th MFCS, LNCS 2420,
K. Diks, W. Rytter (Eds.), 165–176 (2002).

10 D. Caucal and T.H. Dinh, Regularity and context-freeness over word rewriting systems,
14th FOSSACS, LNCS 6604, Martin Hofmann (Ed.), 214–228 (2011).

11 J. Engelfriet and E. Schmidt, IO and OI, Journal of Computer and System Sciences 15,
328–353 (1977).

12 M. Jantzen, M. Kudlek, K.-J. Lange and H. Petersen, Dyck1-reductions of context-free
languages, 6th FCT, LNCS 278, L. Budach, R. Bakharajev, O. Lipanov (Eds.), 218–227
(1987).

13 A. Maslov, The hierarchy of indexed languages of arbitrary level, Doklady Akademii Nauk
SSSR 217, 1013–1016 (1974).

14 A. Maslov, Multilevel pushdown automata, Problemy Peredacy Informacii 12-1, 55–62
(1976).

15 C. Ó’Dúnlaing, Infinite regular Thue systems, Theoretical Computer Science 25, 171–192
(1983).

16 A. Semenov, Decidability of monadic theories, 11th MFCS, LNCS 176, M. Chytil, V. Koubek
(Eds.), 162–175 (1984).

17 S. Shelah, The monadic theory of order, Annals of Mathematics 102, 379–419 (1975).
18 J. Stupp, The lattice model is recursive in the original model, The Hebrew University (1975).
18 I. Walukiewicz, Monadic second-order logic on tree-like structures, Theoretical Computer

Science 275, 311–346 (2002).
19 S. Wöhrle and W. Thomas, Model checking synchronized products of infinite transition

systems, Logical Methods in Computer Science 3 (4:5), 1–18 (2007).
20 S. Yu, A pumping lemma for deterministic context-free languages, Information Processing

Letters 31-1, 47–51 (1989).


	i - Frontmatter
	v - Table of Contents
	ix - Preface
	xi - Conference Organization
	xiii - External Reviewers
	xvi - Author Index
	001
	003
	004
	Summary

	006
	Introduction
	Background
	Language design for Secure Cloud Computing (SCC)
	Framework
	Shamir secret sharing
	Fully homomorphic encryption

	Implementation
	Haskell Secure Cloud Computing EDSL
	SMC & FHE Library Implementations
	Performance Evaluation

	Related work
	Conclusions

	025
	026
	Summary

	028
	Introduction
	Our results.
	Related Work.
	Preliminaries.

	Intersection Problems
	Hardness
	Intersection k-Set Cover
	Intersection k-MST

	Union Problems
	Rooted Union k-MST
	Unrooted Union k-MST

	Conclusions and Open Problems

	041
	Introduction
	Preliminaries
	Borsuk Graphs, Frankl-Rödl Graphs and Tensoring
	Strong relaxations for Vertex Cover

	Outline of Our Method and Comparison to Previous Work
	Fooling LPs derived by the Sherali-Adams System 
	Local Distributions of Vertex Covers for Borsuk Graphs

	Fooling SDPs derived by the Sherali-Adams System 
	Preliminary Observations for the Sherali-Adams SDP Solution
	An Easy level-2 Sherali-Adams SDP Solution
	The Level-(t+2) Sherali-Adams SDP Tight Integrality Gap


	055
	Introduction
	Preliminaries
	Multiobjective Optimization
	Graph Prerequisites
	Approximating Cycle Covers
	Boolean Formulas

	Multi-Color Discrepancy
	Approximating Multiobjective Maximum Traveling Salesman
	Definition
	Previous Work
	Our Results

	Approximating Multiobjective Maximum Satisfiability
	Definition
	Previous Work
	Our Results


	066
	Introduction
	Contributions
	Organization
	Notations

	Cost Automata
	Cost Functions
	B- and S-Valuations
	B- and S-Automata on Infinite Trees
	Examples

	Quasi-Weak B-Automata

	BS-Automata
	Characterization of Quasi-Weak Cost Automata
	Simulation
	Construction from Kupferman and Vardi
	Cost Traps
	Construction of Quasi-Weak B-Automaton B

	Conclusion

	078
	Introduction
	Preliminaries
	Timed automata and the reachability problem
	Symbolic semantics for timed automata

	Efficient testing of inclusion in a closure of a zone
	When is RZ empty
	Efficient inclusion testing
	Handling LU-approximation

	A New Algorithm for Reachability
	The basic algorithm
	Computing clock bounds on-the-fly
	Handling LU approximations

	Experimental results
	Conclusions

	090
	Introduction
	Preliminaries
	Shrinkability
	Robustness and Shrinking
	Shrinking as a Remedy to Unrealistic Behaviour
	Decidability of Shrinkability

	Some algebraic tools
	Parameterized Difference Bound Matrices
	Max-plus equations
	Equations on shrunk DBMs

	Deciding shrinkability
	Shrinkability w.r.t. simulation.
	Shrinkability w.r.t. non-blockingness.

	Implementation Semantics
	Related Work


	103
	Introduction
	Traces, Trace Distances, and Transition Systems
	Examples of Trace Distances

	Quantitative Ehrenfeucht-Fraïssé Games
	The Distance Spectrum
	Branching Distances
	Linear Distances

	Recursive Characterizations
	Fixed-Point Characterizations
	Recursive Characterizations for Example Distances


	115
	Introduction
	Preliminaries
	Isomorphism testing of Boolean read-once formulas
	Logspace characterization : Proof of Theorem 1
	Larger Number of Reads : Proof of Theorem 2

	Isomorphism testing of Read-once polynomials
	Polynomials with higher reads

	127
	Introduction
	Connection to Previous Work
	Our approach

	The real roots of a sum of products of sparse polynomials
	Definitions
	A generalization of Descartes' rule

	Lower bounds
	Polynomial Identity Testing
	Conclusion

	140
	Introduction
	Preliminaries
	Petri nets
	First-order languages
	Standard first-order fragments: modal languages

	Structural Properties of Unlabelled Net Reachability Graphs
	A proof schema for the undecidability of FO()
	Robustness of the proof schema
	Taming undecidability with fragments
	On the hardness of the decidable problems

	FO with Reachability Predicates
	FO with reachability relations
	When semilinearity enters into the play
	The reachability relation and the structure UG

	Pattern Matching Problem
	Concluding Remarks

	152
	Introduction
	Preliminaries
	Context-Free Languages
	Finite-index Approximation of Context-Free Languages
	Petri nets with Inhibitor Arcs
	The reachability problem for Petri nets along finite-index CFL

	From PN reachability along fiCFL to PNW reachability
	From PNW reachability to PN reachability along fiCFL
	Conclusion

	164
	Introduction
	Preliminaries
	A Linear Kernel for Planar Graphs
	An O(k3/2) kernel for d-degenerate graphs
	An O(k3/2) kernel for H-minor free graphs
	Approximation
	Conclusion and Open Questions

	176
	Introduction
	Previous Results on Boxicity and Cubicity
	Equivalent Definitions for Boxicity and Cubicity
	Our Results

	Preliminaries
	Definitions, Notations and Assumptions used in Sections 3 and 4:

	Cube Representation and Coloring
	Cubicity and Degeneracy
	An Upper Bound – Probabilistic Approach
	Deterministic Algorithm
	Running Time Analysis


	Boxicity and Crossing Number
	A Useful Lemma
	Crossing Number
	Tightness of Theorem 13: 


	Appendix
	Procedure CONSTRUCT_UNIT_INTERVAL_GRAPHS()
	The proof of Lemma 5
	The proof of Lemma 6
	The proof of Lemma 8
	A Detailed version of procedure CONSTRUCT_COLORING(i)
	The proof of Lemma 10


	191
	Introduction
	Reactive Systems and Conditions
	Comparison to a First-Order Logic on Subobjects
	Syntax and semantics
	From Conditions to the Logic on Subobjects
	From the Logic on Subobjects to Conditions

	Representative Squares
	Shift and Quantification
	Applications
	Weakest Preconditions and Strongest Postconditions
	Critical Pair Lemma

	Conclusion

	204
	Introduction
	Modeling Protocols
	Messages
	Protocol Language and Semantics

	Composition Results for Password-based Protocols
	Disjoint State
	Joint State

	Proof of our main result
	Conclusion

	217
	Introduction
	Definitions and Notation
	Bipartite Contraction and the Cost of 2-Colorings
	Solving Cheap Coloring Extension in FPT Time
	Small Treewidth
	Large Treewidth and Irrelevant Edges

	Concluding Remarks

	229
	Introduction
	Maximum Excess, Irreducible Systems and Algorithm H
	MaxLin2-AA
	Max-r-Lin2-AA
	Applications of Theorem 9
	Open Problems

	241
	Introduction
	Strong rainbow connectivity
	k-subset strong rainbow connectivity
	k-strong rainbow connectivity

	Rainbow connectivity
	Parameterized complexity

	Rainbow connectivity on directed graphs
	Conclusion
	Acknowledgements

	252
	Introduction
	Preliminaries
	Dependence Logic
	Dependence logic with a majority quantifier
	Second-order Majority Quantifiers and the Counting Hierarchy

	Majority over Functions
	SO(Most)=D(M)
	Conclusion and Open Questions

	264
	Introduction
	Preliminaries
	Undecidability
	General idea
	Domino systems
	Grid definition
	Domino encoding
	Local satisfiability

	Decidability
	Minimal tree-based models
	Catalogue of models
	Decidability procedures and complexity


	276
	Introduction
	Preliminaries
	Labelled graphs and first-order logic
	Trees and ground tree rewrite systems

	An ATIME(22poly(n), O(n)) upper bound
	A lower bound

	288
	Introduction
	Preliminaries
	A Counterexample
	Layer Systems
	Layer Systems for Confluence
	Left-Linear Systems
	General Systems

	Applications
	Conclusion

	300
	Introduction
	An application: The ski-rental problem
	Our Techniques
	Related Work
	Roadmap

	A Lower Bound on the Competitive Ratio of Semi-Stochastic Algorithms for the Ski-rental Problem
	A Semi-stochastic Algorithm for the Ski-rental Problem
	Conclusion and Future Work
	Acknowledgement

	312
	Introduction
	Visibly Pushdown Languages and Transductions
	Online Evaluation Algorithm of VPT-Transductions
	Bounded Memory Evaluation Problems
	Quadratic Height Bounded Memory Evaluation
	Conclusion and Remarks

	325
	Introduction
	Related Previous Work

	Our contributions
	Problem Definition
	The Witness Set Framework
	The selection problem
	1-Min
	K-Min

	Bypassing the Witness Set framework
	1-Min
	k-Min

	Closed intervals with point returning queries
	Minimum Spanning Tree
	Conclusion

	339
	Introduction
	Related Work
	Fooling Set
	Full Automaton
	Ranking
	Our Results
	Paper Organization

	Preliminaries
	Basic Notations
	Automata and Runs
	Acceptance Conditions and Automata Types
	-Graphs
	Full Automata

	Lower Bound
	Concluding Remarks

	351
	Introduction
	Preliminaries
	Basic Problems
	Decision problems
	Nonemptiness
	Membership
	Universality
	Containment
	Intersection with a regular language

	Computing automata
	Extending domains of variables
	The case of finite domains
	The case of infinite domains

	Future work

	363
	Introduction
	Alternating Tree Automata
	Borel classes and Wadge reductions
	Game automata
	Operations induced by automata
	Computing the Wadge degrees of WGA
	Borel rank and weak index
	Conclusions

	375
	Introduction
	Preliminaries
	Concurrent Games
	Pseudo-Nash Equilibria

	Internal Büchi Objectives
	Characterising Equilibria Using Fixpoints
	Application to Solving the Three Problems

	Game Simulations
	Definition and General Properties
	Product of a Game with Deterministic Büchi Automata
	Application to Timed Games

	Büchi-Definable Objectives
	Discussion

	387
	Introduction
	Preliminaries
	Distributed Games
	Epistemic Models and Homomorphisms

	Epistemic Unfolding
	Epistemic Unfolding up to Homomorphic Equivalence
	Hierarchical Games
	Outlook

	399
	Introduction
	Preliminaries
	Schedulers and Strategies
	Characterisation of f

	Approximating Optimal Control for Normed Markov Games
	Step Error and Global Error
	Single -Nets
	Double -Nets
	Triple -Nets and Beyond

	Experimental Results and Conclusion

	411
	Introduction
	Notations
	Belief States
	Strategy

	Algorithms for the optimal worst case cost
	Reaching Goal with probability 1
	Optimizing the worst case cost

	Hardness and undecidability results for the average cost
	Conclusion

	423
	Introduction
	Packed String Matching
	Background
	Text processing
	Pattern preprocessing

	Word-Size Instruction Emulation
	Bit-parallel emulation of wssm 
	wssm on contemporary commodity processors

	Conclusions

	433
	Introduction
	Preliminaries
	Overview of our techniques
	Recursive local-dependency dynamic programming
	Cache-oblivious implementation
	Analysis

	Extension to non-local problems

	445
	Introduction
	Preliminaries
	Probabilistic Transition Systems
	Probabilistic Simulation
	Probabilistic Pushdown Automata

	Extended Stack Symbols
	Tableaux Proof System
	EXPTIME-Hardness
	Conclusion

	457
	Introduction
	Preliminaries
	Non-Atomic Pushdown Systems
	The Parameterised Reachability Problem
	Regular Read Languages
	Simulating the System
	Complexity and Multiple Stores

	Non-parameterized Reachability
	Making Ehrenfeucht and Rozenberg Constructive
	Preliminaries
	Building the Automaton

	Conclusions and Future Work

	469
	Introduction
	Thue systems and Cayley graphs
	Graphs
	Thue systems
	Cayley graphs

	Path functions
	Monadic systems
	Regular and context-free monadic systems
	Higher-order indexed monadic systems

	Conclusion




