
Extending Quantifier Elimination to Linear

Inequalities on Bit-vectors

Ajith K John1 and Supratik Chakraborty2

1 Homi Bhabha National Institute, BARC, Mumbai, India
2 Dept. of Computer Sc. & Engg., IIT Bombay, India

Abstract. We present an algorithm for existentially quantifying vari-
ables from conjunctions of linear modular equalities (LMEs), disequal-
ities (LMDs) and inequalities (LMIs). We use sound but relatively less
complete and cheaper heuristics first, and expensive but more complete
techniques are used only when required. Our experiments demonstrate
that our algorithm outperforms alternative quantifier elimination tech-
niques based on bit-blasting and Omega Test. We also extend this algo-
rithm to work with Boolean combinations of LMEs, LMDs and LMIs.

1 Introduction

Existential quantifier elimination (henceforth called QE) is the process of trans-
forming a formula containing existential quantifiers into a semantically equiv-
alent quantifier-free formula. This has a number of important applications in
formal verification and program analysis, such as computing abstractions of
symbolic transition relations, computing strongest postconditions of program
statements, computing predicate abstractions and generating code fragments by
automatic program synthesis techniques.

Verification and analysis tools often assume unbounded data types like integer
or real for program variables. QE techniques for unbounded data types [4, 8] are
therefore often used in program analysis, verification and synthesis. However, a
program executing on a machine with fixed-width words really uses fixed-width
bit-vector operations. It is known [2, 12] that program analysis assuming un-
bounded data types may not be sound if the implementation uses fixed-width
words, and if overflows are not detected and accounted for. This motivates us to
investigate QE techniques for constraints involving fixed-width words. Specifi-
cally, we present techniques for QE from Boolean combinations of linear modular
(bit-vector) equalities, disequalities and inequalities.

Let p be a positive integer constant, x1, . . . , xn be p-bit non-negative integer
variables, and a0, . . . , an be integer constants in {0, . . . , 2p − 1}. A linear term
over x1, . . . , xn is a term of the form a1 · x1 + · · · an · xn + a0. A Linear Modular
Equality (henceforth called LME) is a formula of the form t1 = t2 (mod 2p),
where t1 and t2 are linear terms over x1, . . . , xn. Similarly, a Linear Modular
Disequality (henceforth called LMD) is a formula of the form t1 6= t2 (mod 2p),
and a Linear Modular Inequality (henceforth called LMI) is a formula of the

form t1 ⊲⊳ t2 (mod 2p), where ⊲⊳∈ {<,≤}. For brevity, we will use “LMC”
(for Linear Modular Constraint) when the distinction between LME, LMD and
LMI is not important. In the LMCs given above, 2p is conventionally called
the modulus of the LMC. Since every variable in an LMC with modulus 2p

represents a p-bit integer, we will assume without loss of generality that whenever
we consider a conjunction of LMCs sharing a variable, all the LMCs have the
same modulus.

In our earlier work [1], we had presented a QE algorithm for Boolean combina-
tions of LMEs and LMDs that is efficient in practice. Unfortunately, techniques
for dealing with LMIs involve significantly more technicalities than those for
dealing with LMEs and LMDs, and require development of more sophisticated
techniques. This paper presents results of our investigations in this direction.
Earlier Work: Efficient procedures for reasoning about LMEs and LMDs were
discussed in [1, 10–12]. Bjørner et al [2] showed that the satisfiability problem
for conjunctions of difference logic constraints in modular arithmetic is NP-
complete. Their work also demonstrated that several intuitive equivalences that
hold for inequalities over reals and integers do not necessarily hold for LMIs.
QE from a conjunction of LMCs can be achieved by bit-blasting [3], followed by
bit-level QE. However this technique irretrievably destroys the word-level struc-
ture of the problem, and scales poorly as the width of bit-vectors increases. A
QE problem for a conjunction of LMCs can also be presented as a QE problem
for a conjunction of inequalities in Integer Linear Arithmetic (ILA) and congru-
ences [7]. Alternatively, each LMC can be reduced to a set of ILA constraints [3],
and QE techniques for ILA, such as Omega Test [8], can be used to eliminate
integers corresponding to specified bit-vectors. Unfortunately, these techniques
have been found to scale poorly in practice [3]. In addition, recovering word-level
constraints from the results is often difficult, especially when several variables
are quantified. In this paper, we present an alternative approach that tries to
overcome most of these drawbacks in practice.

2 QE from a Conjunction of LMCs

Let A denote a conjunction of LMCs over variables x1, . . . , xn. We wish to com-
pute a Boolean combination of LMCs, say ϕ, such that ϕ ≡ ∃x1 · · · ∃xt. A. Let
us initially focus on the simpler problem of existentially quantifying a single vari-
able from a conjunction of LMCs. For clarity of exposition, we use x to denote
the variable to be quantified
Notation and Preliminaries: To simplify notation, we assume that all LMCs
in the remainder of the paper have modulus 2p for some positive integer p, unless
stated otherwise. We use letters x, y, z, x1, x2, . . . to denote variables, use a, a1,
a2, . . ., b, b1, b2, . . . to denote constants, and use s, s1, s2, . . ., t, t1, t2, . . . to denote
linear terms. The letters d, d1, d2, . . . are used to denote LMDs, l, l1, l2, . . . are
used to denote LMIs, and c, c1, c2, . . . are used to denote LMCs. Furthermore,
we use D, D1, D2, . . . to denote conjunctions of LMDs, I, I1, I2, . . . to denote
conjunctions of LMIs, and C, C1, C2, . . ., A, A1, A2, . . . to denote conjunctions of

LMCs. For a linear term t, we use −t to denote the additive inverse of t modulo
2p.

Since (t1 < t2) is semantically equivalent to both (t2 ≥ 1)∧ (t1 ≤ t2 − 1) and
(t1 ≤ 2p − 2)∧ (t1 +1 ≤ t2), there is no loss of generality in assuming that LMIs
are restricted to be of the form t1 ≤ t2. However, for clarity of exposition, we
allow LMIs of the form t1 < t2, whenever convenient. An LME or LMD t1 ⊲⊳ t2,
where ⊲⊳∈ {=, 6=}, can be equivalently expressed as 2µ ·x ⊲⊳ t, where t is a linear
term free of x, and µ is an integer such that 0 ≤ µ ≤ p (see [1]). Note that this
does not sacrifice generality since we can set µ to p if the LME/LMD is free of
x.

For every linear term t1 and variable x, we define κ(x, t1) to be an integer in
{0, . . . , p} such that t1 is equivalent to 2κ(x,t1) · e · x+ t, where t is a linear term
free of x, and e is an odd number in {1, . . . , 2p − 1}. Note that if t1 is free of
x, then κ(x, t1) = p. The definition of κ(x, ·) can be extended to (conjunctions
of) LMCs as follows. Let c be an LME/LMD equivalent to 2µ · x ⊲⊳ t, where
⊲⊳∈ {=, 6=} and t is free of x. We define κ(x, c) to be µ in this case. If t1, t2 are
linear terms, then κ(x, t1 ≤ t2) is defined to be min(κ(x, t1), κ(x, t2)). Finally,

if c1, . . . , cm are LMCs, then κ(x,
m∧
i=1

(ci)) is defined to be
m

min
i=1

(κ(x, ci)). Observe

that if C is a conjunction of (possibly one) LMCs and if κ(x,C) = k, then only
the least significant p− k bits of x affect the satisfaction of C. We will say that
x is in the support of C if κ(x,C) < p.

Lemma 1. Let A be a conjunction of LMCs containing at least one LME. Let
2k1 · x = t1 be the LME with the minimum κ(x, ·) value among the LMEs in A.
Then ∃x.A ≡ C1 ∧ ∃x.C2, where C1 is a conjunction of LMCs free of x, and
C2 is a conjunction of 2k1 · x = t1 and (possibly zero) LMIs and LMDs, each of
which has κ(x, ·) less than k1.

We omit the proof of this and other lemmas due to space constraints. The reader
is referred to [14] for all proofs.
Example: All LMCs in this example have modulus 8. Consider the problem
of computing ∃y. ((21y = 5x + 2) ∧(20y 6= 6x + 7z) ∧ (20 · 5y + z ≤ 21y) ∧
(21 · 3y ≤ x + z)). This can be equivalently expressed as ∃y. ((2y = 5x + 2)∧
(y 6= 6x+7z)∧ (5y+ z ≤ 5x+2)∧ (3 · (5x+2) ≤ x+ z)). Simplifying modulo 8,
we get (7x+6 ≤ x+ z)∧∃y. ((2y = 5x+2)∧ (y 6= 6x+7z)∧ (5y+ z ≤ 5x+2)).
Note that the result is of the form C1 ∧ ∃x.C2, as specified in Lemma 1.

Our QE algorithm for conjunctions of LMCs uses a layered approach. Rela-
tively less complete but sound and cheap heuristics are invoked first, and more
complete but expensive techniques are used only when required. We now out-
line heuristic QE1 Layer1 that forms the crux of the first (and also the cheap-
est) layer. Given a conjunction of LMCs A and a variable x to be quantified,
QE1 Layer1 computes ∃x.A as C1 ∧ ∃x.C2 based on Lemma 1. If the κ(x, ·)
of all LMDs and LMIs in A are at least as large as k1 (as in Lemma 1), then
C2 consists of the single LME 2k1 · x = t1. In this case, ∃x.C2 simplifies to
2p−k1 · t1 = 0, and QE1 Layer1 suffices to compute ∃x.A. However, in general,

C2 may contain LMDs and LMIs with κ(x, ·) values less than k1. We describe
techniques to address such cases in the following subsections.

2.1 Identifying Unconstraining LMIs and LMDs

Our goal in this subsection is to express C2, obtained after application ofQE1 Layer1,
as C ∧ D ∧ I, where (i) D is a conjunction of (zero or more) LMDs in C2,
(ii) I is a conjunction of (zero or more) LMIs in C2, (iii) C is the conjunc-
tion of the remaining LMCs in C2, and (iv) ∃x. (C) ⇒ ∃x. (C ∧ D ∧ I). Since
∃x. (C ∧D ∧ I) ⇒ ∃x. (C) always holds, this would allow us to compute ∃x.C2,
or equivalently ∃x. (C ∧D ∧ I), as ∃x.C. We call D and I as “unconstraining”
LMDs and LMIs, respectively, in such cases.

Given C, D and I satisfying conditions (i), (ii) and (iii) above, we first focus
on finding sufficient and efficiently checkable conditions for condition (iv) to
hold. Let x[i] denote the ith bit of a bit-vector x, where x[0] denotes its least
significant bit. For i ≤ j, let x[i : j] denote the slice of bit-vector x consisting
of bits x[i] through x[j]. Given slice x[i : j], its value is the natural number
encoded by the bits in the slice. A key notion used in the subsequent discussion
is that of “engineering” a solution of a constraint to make it satisfy another
constraint. Formally, we say that a solution θ1 of a conjunction ϕ of LMCs
can be engineered with respect to slice x[i : j] to satisfy a (possibly different)
conjunction ψ of LMCs if there exists a solution θ2 of ψ that matches θ1 except
possibly in the bits of slice x[i : j]. The central idea in the second layer of our QE
algorithm is to efficiently compute an under-approximation η of the number of
ways in which an arbitrary solution of C can be engineered to satisfy C ∧D∧ I.
It is easy to see that if η ≥ 1, then ∃x. (C) ⇒ ∃x. (C ∧D ∧ I).

Let I be
∧n

i=1(li), where each li is an LMI of the form si ⊲⊳ ti, the operator
⊲⊳ is in {≤,≥}, si is a linear term with x in its support, and ti is a linear term
free of x. Note that this implies some loss of generality, since we disallow LMIs
of the form s ⊲⊳ t, where both s and t have x in their support. However, our
experiments indicate that this is not very restrictive in practice. Let s1, . . . , sr
be the distinct linear terms in I with x in their support. We partition I into
I1, . . . , Ir, where each Ij is the conjunction of only those LMIs in I that contain
the linear term sj . We assume without loss of generality that each Ij contains
the trivial LMIs sj ≥ 0 and sj ≤ 2p − 1. Let Ij have nj LMIs, of which the first
mj(< nj) are of the form sj ≥ tq, where 1 ≤ q ≤ mj . Let the remaining LMIs
in Ij be of the form sj ≤ tq, where mj + 1 ≤ q ≤ nj .

Consider the inequality Zj : uj ≤ sj ≤ vj , where uj denotes max
mj

q=1(tq)

and vj denotes min
nj

q=mj+1(tq). Although Zj is not a LMI, it is semantically

equivalent to Ij . For notational convenience, let us denote κ(x, sj) by kj . Clearly,
the value of slice x[p− kj : p− 1] does not affect the satisfaction of Zj . We wish
to compute the number of ways, say Nj , in which an arbitrary solution of C can
be engineered with respect to slice x[0 : p − kj − 1] to satisfy Zj . Towards this
end, we compute an integer δj in {0, . . . , 2p − 1} such that δj ≤ vj − uj + 1.
Intuitively, δj represents the minimum number of consecutive values that sj can

take for every combination of values of other variables, if we were to treat sj as
a fresh p-bit variable and if Zj were to be satisfied. In general, however, sj is of
the form aj · x+ wj , where wj is a linear term free of x, and aj is a multiple of
2kj . Therefore, for every combination of values of variables other than x, there
exist at least ⌊δj/2

kj⌋ consecutive values that x[0 : p − kj − 1] can take while
satisfying Zj . Hence, Nj ≥ ⌊δj/2

kj⌋. For notational convenience, let us denote

⌊δj/2
kj⌋ by N̂j .

To understand how δj is computed, recall that for every g in {1 . . .mj} and
for every h in {mj+1 . . . nj}, we have tg ≤ sj ≤ th. For every such pair of indices
g and h, let δg,h be an integer in {0, . . . , 2p − 1} such that δg,h ≤ th − tg + 1.
The value of δj can then be obtained as the minimum of all δg,h values. For
reasons of simplicity and efficiency, we compute the values of δg,h conservatively
as follows: (i) if tg and th are constants, then δg,h = max(th − tg +1, 0), (ii) if th
is a constant and tg can be expressed as 2τ · t, where τ ∈ {0, 1, . . . , p− 1}, then
δg,h = max(th − (2p − 2τ)+ 1, 0), (iii) if tg is a constant and th can be expressed
as 2τ · t+ a, where τ ∈ {0, 1, . . . , p− 1}, then δg,h = max(a mod 2τ − tg + 1, 0),
and (iv) δg,h = 0 otherwise.

Let D be
∧m

i=1(di), where each di is an LMD. Let k0 denote κ(x,C), and let
C be such that k0 is greater than both maxmi=1 κ(x, di) and maxrj=1 kj (recall that
kj = κ(x, sj)). To simplify the exposition, suppose further that k1 > . . . > kr.
We partition the bits of x into r + 2 slices as shown in Fig. 1, where slice0
represents x[0 : p−k0−1], slicej represents x[p−kj−1 : p−kj −1] for 1 ≤ j ≤ r,
and slicer+1 represents x[p− kr : p− 1]. Note that the value of slice0 potentially
affects the satisfaction of C as well as that of Z1 through Zr, the value of slicej
potentially affects the satisfaction of Zj through Zr for 1 ≤ j ≤ r, and the value
of slicer+1 does not affect the satisfaction of any Zj or C.

Fig. 1. Slicing of bits of x by k0, . . . , kr

We have already seen that for ev-
ery combination of values of variables
other than x, there exist at least N̂j

consecutive values that can be as-
signed to x[0 : p − kj − 1], while sat-
isfying Zj . Thus, if Z0 denotes True,

and if θ is a solution of C ∧
∧j−1

i=0 Zi,
where 0 ≤ i < j ≤ r, then there exist
at least ⌊N̂j/2

p−ki⌋ consecutive val-
ues that can be assigned to the slice
x[p − ki : p − kj − 1] while satisfying

Zj . Since slice0 through slicei are unchanged, each such engineered solution must

also satisfy C ∧
∧j−1

i=0 Zi.
Let Yi,j denote the number of ways in which an arbitrary solution of C ∧∧j−1

i=0 Zi can be engineered with respect to bits in slicei+1 through slicej , to

satisfy C ∧
∧j

i=0 Zi. By the argument given above, Yi,j ≥ ⌊N̂j/2
p−ki⌋, and the

values of x[p − ki : p − kj − 1] in the corresponding engineered solutions are
consecutive. The latter fact implies that if we focus only on slicei+1, then there

are at least min(⌊N̂j/2
p−ki⌋, 2ki−ki+1) consecutive values of slicei+1 in the cor-

responding engineered solutions. Note that the min expression is necessary since
slicei+1 can only have one of 2ki−ki+1 distinct values. For notational convenience,

let us denote min(⌊N̂j/2
p−ki⌋, 2ki−ki+1) by αi,j .

The above argument indicates that a solution θ of C ∧
∧j−1

i=0 Zi can be engi-

neered to satisfy C ∧
∧j

i=0 Zi by using at least αi,j different consecutive val-
ues of slicei+1, for 0 ≤ i < j ≤ r. Let the corresponding set of values of
slicei+1 be denoted Sθ

i+1,j . If
⋂r

j=i+1 S
θ
i+1,j is non-empty, there exists a com-

mon value of slicei+1 that permits us to engineer θ with respect to slicei+1

through slicer to satisfy Zi+1 through Zr, respectively. It is therefore desirable
to have |

⋂r
j=i+1 S

θ
i+1,j | ≥ 1. Using the Inclusion-Exclusion principle, we find

that |
⋂r

j=i+1 S
θ
i,j | ≥ (

∑r
j=i+1 αi,j) − (r − i − 1) · 2ki−ki+1 . Note that the lower

bound is independent of θ. For notational convenience, let us denote the lower
bound by Wi.

If Wi ≥ 1 for all i ∈ {1, . . . r}, an arbitrary solution θ of C can be engineered
to satisfy C ∧

∧r
i=1 Zi as follows. Since W1 ≥ 1, we choose a value of slice1, say

v1, from
⋂r

j=1 S
θ
1,j . Let θ1 denote θ with slice1 (possibly) changed to have value

v1. Then θ1 satisfies C ∧ Z1. Since W2 ≥ 1, we can now choose a value of slice2,
say v2, from

⋂r
j=2 S

θ1
2,j , and repeat the procedure until we have chosen values for

slice1 through slicer. Finally, since slicer+1 does not affect the satisfaction of C
or of any Zi, we can choose an arbitrary value for slicer+1. Clearly, there are at
least (

∏r−1
i=0 |Wi|) · 2

kr ways in which values of different slices can be chosen, so

as to engineer θ to satisfy C ∧
∧r

i=1 Zi. Let us denote (
∏r−1

i=0 |Wi|) · 2
kr by µI .

For every combination of values of variables other than x, let µD be an over-
approximation of the number of values that can be assigned to slice0 through
slicer+1 such that D is violated. As shown in [1], µD =

∑m
i=1(2

κ(x,di)). Thus, we
have at least µI − µD ways of assigning values to slice1 through slicer+1 when
engineering a solution of C to satisfy C ∧D ∧

∧r
i=1 Zi. The details of extending

these ideas to the general case, where k1 ≥ . . . ≥ kr can be found in [14].

Lemma 2. If η = µI − µD ≥ 1, then ∃x. (C ∧D ∧ I) ≡ ∃x. (C)

Example: Consider the problem of computing ∃x. ((z = 4x+ y) ∧(6x+ y ≤ 4)
∧(x 6= z)) with modulus 8. Suppose C ≡ (z = 4x + y), D ≡ (x 6= z), and
I ≡ (6x + y ≤ 4). Here p = 3, k0 = 2, k1 = 1, r = 1, δ1 = 5, and µD = 1.
Therefore W0 = α0,1 = Y0,1 = 1, and µZ = |W0| · 2

1 = 2. Hence η = 1, which
implies that ∃x. (C ∧D ∧ I) ≡ ∃x. (C).

We now present procedure QE1 Layer2, that applies the technique described
above to problem instances of the form ∃x.C2, obtained after invokingQE1 Layer1.
QE1 Layer2 initially expresses ∃x.C2 as ∃x. (C ∧ D ∧ I), where C denotes
2k1 · x = t1 and D ∧ I denotes the conjunction of LMDs and LMIs in C2. If
η (as in Lemma 2) is at least 1, then D ∧ I is dropped from C2. Otherwise,
the LMCs in D ∧ I with the largest κ(x, ·) value (i.e. LMCs whose satisfaction
depends on the least number of bits of x) are identified and included in C, and
the above process repeats. If all the LMIs and LMDs in ∃x.C2 are dropped in
this manner, then ∃x.C2 reduces to ∃x. (2k1 · x = t1), and QE1 Layer2 can re-
turn the equivalent form 2p−k1 · t1 = 0. Otherwise, QE1 Layer2 returns ∃x.C3,

where C3 is a conjunction of possibly fewer LMCs compared to C2, such that
∃x.C3 ≡ ∃x.C2. The next subsection describes techniques to eliminate quanti-
fiers from such problem instances.

2.2 Fourier-Motzkin Elimination for LMIs

In this subsection, we present a Fourier-Motzkin (FM) style QE technique for
conjunctions of LMIs. There are two obvious problems when trying to apply FM
elimination for reals [3] to a conjunction of LMIs. Recall that FM elimination
“normalizes” each inequality l w.r.t. the variable x being quantified by express-
ing l in an equivalent form x ⊲⊳ t, where ⊲⊳∈ {≤,≥} and t is a term free of x.
However, normalizing an LMI w.r.t. a variable requires greater care, since stan-
dard equivalences used for normalizing inequalities over reals do not carry over
to LMIs [2]. Moreover, due to the lack of density of integers, FM elimination
cannot be directly lifted to normalized LMIs. This motivates us to (i) define a
weak normal form for LMIs, and (ii) adapt FM elimination to achieve QE from
normalized LMIs.

Note that Omega Test [8] also defines a normal form for inequalities over inte-
gers, and adapts FM elimination over reals for QE from normalized inequalities
over integers. However, our experiments indicate that our approach convincingly
outperforms Omega Test.
A weak normal form for LMIs: We say that an LMI l with x in its support
is normalized w.r.t. x if it is of the form a ·x ⊲⊳ t, or of the form a ·x ⊲⊳ b ·x, where
⊲⊳∈ {≤,≥}, and t is a linear term free of x. We will henceforth use NF1 to refer
to the first normal form (a · x ⊲⊳ t) and NF2 to refer to the second normal form
(a · x ⊲⊳ b · x). A Boolean combination of LMCs ϕ is said to be normalized w.r.t.
x if every LMI in ϕ with x in its support is normalized w.r.t. x.

We will now show that every LMI with x in its support can be equivalently
expressed as a Boolean combination of LMCs normalized w.r.t. x. Before going
into the details of normalizing LMIs, it would be useful to introduce some nota-
tion. We define Ω(t1, t2) as the condition under which t1 + t2 overflows a p-bit
representation, i.e., t1 + t2 interpreted as an integer exceeds 2p − 1. Note that
Ω(t1, t2) is equivalent to both (t2 6= 0) ∧ (t1 ≥ −t2) and (t1 6= 0) ∧ (t2 ≥ −t1).

Suppose we wish to normalize x+ 2 ≤ y modulo 8 w.r.t. x. Noting that 6 is
the additive inverse of 2 modulo 8, if Ω(x+ 2, 6) ≡ Ω(y, 6), then (x+ 2 ≤ y) ≡
(x ≤ y+6) holds; otherwise (x+2 ≤ y) ≡ (x > y+6) holds. Note that Ω(x+2, 6)
≡ Ω(y, 6) can be equivalently expressed as (x ≤ 5) ≡ (y ≥ 2). Hence, (x+2 ≤ y)
can be equivalently expressed in the normalized form ite(ϕ, (x ≤ y + 6), (x >
y + 6)), where ϕ denotes (x ≤ 5) ≡ (y ≥ 2), and ite(α, β, γ) is a shorthand for
(α ∧ β) ∨ (¬α ∧ γ). The Ω predicate thus allows us to perform a case-split and
normalize each branch. The following Lemma generalizes this idea.

Lemma 3. Let l1 : (a · x + t1 ≤ b · x + t2) be an LMI, where t1 and t2 are
linear terms without x in their supports. Then, l1 ≡ ite(ϕ, l2,¬l2), where l2 ≡
(a · x − b · x ≤ t2 − t1), and ϕ is a Boolean combination of LMCs normalized
w.r.t. x.

Modified FM for normalized LMIs: We begin by illustrating the primary
idea through an example. Consider the problem of computing ∃x.C, where C ≡
(y ≤ 4x) ∧ (4x ≤ z) with modulus 16. Note that ∃x.C is “the condition under
which there exists a multiple of 4 between y and z, where y ≤ z”. It can be shown
that ∃x.C is true iff one of the following three conditions holds: (i) (y ≤ z), and y
is a multiple of 4, i.e., (y ≤ z)∧(4y = 0), (ii) (y ≤ z)∧(y ≤ 12)∧(z ≥ y+3), (iii)
(y ≤ z), (z < y + 3), and (y > z (mod 4)), i.e., (y ≤ z) ∧ (z < y + 3) ∧ (4y >
4z). Hence ∃x.C is equivalent to (y ≤ z) ∧ ϕ, where ϕ is the disjunction of
the following three formulas: (i) (4y = 0), (ii) (z ≥ y + 3) ∧ (y ≤ 12), (iii)
(z < y + 3) ∧ (4y > 4z). Note that if x, y, z were reals, we would have obtained
(y ≤ z) for ∃x.C. However, this would over-approximate ∃x.C in the case of
fixed width bit-vectors. The following Lemma generalizes this idea.

Lemma 4. Let l1 : (t1 ≤ a ·x) and l2 : (a ·x ≤ t2) be LMIs in NF1 w.r.t. x. Let
k be κ(x, a · x). Then, ∃x. (l1 ∧ l2) ≡ (t1 ≤ t2)∧ϕ, where ϕ is the disjunction of
the formulas: (i) (2p−k · t1 = 0), (ii) (t2 ≥ t1 + 2k − 1)∧(t1 ≤ 2p − 2k), and (iii)
(t2 < t1 + 2k − 1)∧(2p−k · t1 > 2p−k · t2).

Suppose we wish to compute ∃x. I, where I is a conjunction of LMIs normalized
w.r.t. x. Let I ≡ I1 ∧ I2, where I1 is the conjunction of LMIs in I that are
in NF1, and I2 is the conjunction of LMIs in I that are in NF2. In addition,
let a1, . . . , an be the distinct non-zero coefficients of x in LMIs in I1, and let
I1,i denote the conjunction of LMIs in I1 in which the coefficient of x is ai.
Finally, let ∆(t1, t2, k) denote the result of computing ∃x. ((t1 ≤ a · x) ∧ (a ·
x ≤ t2)) using Lemma 4, where k denotes κ(x, a · x). It is easy to see that
Lemma 4 can be used to compute ∃x. I1i, for every i ∈ {1, . . . n}. Similar to
FM elimination, we partition the LMIs li,j : ai · x ⊲⊳ tj in I1i into two sets
Λ≤ and Λ≥, where Λ⊲⊳ = {li,j | li,j is of the form ai · x ⊲⊳ tj}, for ⊲⊳∈ {≤,≥}.
We assume without loss of generality that the trivial LMIs ai · x ≤ 2p − 1 and
ai · x ≥ 0 are present in Λ≤ and Λ≥ respectively. We can now compute ∃x. I1i
as

∧
(ai·x≤tp)∈Λ≤, (ai·x≥tq)∈Λ≥

(∆ (tq, tp, κ (x, ai · x))).

Each conjunction of LMIs such as I1i above, where all LMIs are in NF1
w.r.t. x, and have the same coefficient of x are said to be “unified” w.r.t. x. A
Boolean combination of LMCs ϕ is said to be unified w.r.t. x if all LMIs in ϕ
with x in their support are in NF1 w.r.t. x and have the same coefficient of
x. Unfortunately, unifying I w.r.t. x is inefficient in general. Hence we propose
unifying I w.r.t. x only in the following cases, where unification can be done
efficiently: (a) I2 ≡ true, n = 2 and a2 = −a1, or (b) I2 ≡ true, and every ai is
of the form 2ki · e, where e is an odd number in {1, . . . , 2p − 1} independent of
i. In case (a) above, I can be equivalently expressed as a Boolean combination
of LMCs unified w.r.t. x, by replacing each occurrence of a2 by −a1 using the
equivalence (−t1 ≤ −t2) ≡ (t1 = 0) ∨ ((t2 6= 0) ∧ (t1 ≥ t2)). Case (b) deserves
some additional explanation.

Consider the problem of computing ∃x. I, where I ≡ (y ≤ 2x) ∧(x ≤ z) with
modulus 8. It can be shown that x ≤ z can be equivalently expressed as the
disjunction of (i)Ω(x, x)∧Ω(z, z)∧(2x ≤ 2z), (ii) ¬Ω(x, x)∧¬Ω(z, z)∧(2x ≤ 2z),
and (iii) ¬Ω(x, x)∧Ω(z, z). Hence, ∃x. I can be equivalently expressed as ∃x. ϕ′,

where ϕ′ is the disjunction of (i) Ω(x, x) ∧ Ω(z, z) ∧ (2x ≤ 2z) ∧ (y ≤ 2x), (ii)
¬Ω(x, x)∧¬Ω(z, z)∧(2x ≤ 2z)∧(y ≤ 2x), and (iii) ¬Ω(x, x)∧Ω(z, z)∧(y ≤ 2x).
Note that Ω(x, x) and Ω(z, z) can be equivalently expressed as x ≥ 4 and z ≥ 4
respectively. However, on closer inspection, it can be seen that occurrences of x ≥
4 in ∃x. ϕ′ arising from Ω(x, x) are unconstraining, and can therefore be dropped.
Thus ∃x. ϕ′ can be equivalently expressed as ∃x. ϕ, where ϕ is the disjunction of
(2x ≤ 2z)∧(y ≤ 2x) and (z ≥ 4)∧(y ≤ 2x). Note that ∃x. ϕ is equivalent to ∃x. I
and is unified w.r.t. x. In general, given ∃x. I such that I2 ≡ true and the ai’s have
the same e (as defined above), we make use of the above idea for unifying I w.r.t.

x such that
n

max
i=1

(ai) is the coefficient of x in all LMIs involving x. More details

can be found in [14]. Note that normalizing and unifying a given conjunction of
LMIs w.r.t. a variable converts it to a Boolean combination of LMCs in general.
We make use of one of the techniques in section 3 for eliminating quantifiers
from such Boolean combinations of LMCs.

In cases other than those covered in (a) and (b) above, we propose computing
∃x. I using model enumeration, i.e., by expressing ∃x. I in the equivalent form
I|x←0 ∨ . . .∨ I|x←2p−1 where I|x←i denotes I with x replaced by the constant i.

The procedure that computes ∃x.C3 (where C3 is obtained fromQE1 Layer2)
using techniques mentioned in this subsection is called QE1 Layer3. Initially,
LMEs and LMDs in C3 are converted to LMIs using the equivalences (t1 =
t2) ≡ (t1 ≥ t2) ∧ (t1 ≤ t2) and (t1 6= t2) ≡ ¬(t1 = t2). Subsequently, ∃x.C3 is
computed either by normalizing and unifying C3 w.r.t. x, followed by QE from
the resulting Boolean combination of LMCs, or by model enumeration.

Recall that QE1 Layer1, QE1 Layer2, and QE1 Layer3 try to eliminate a
single quantifier from a conjunction of LMCs. These can be easily extended
to eliminate multiple quantifiers by invoking them iteratively. Thus we have
procedures Layer1, Layer2, and Layer3 - extensions ofQE1 Layer1,QE1 Layer2,
and QE1 Layer3 respectively, to eliminate multiple quantifiers.

Finally, we present our overall QE algorithm Project for computing ∃X.A,
where A is a conjunction of LMCs over a set of variables V such that X ⊆ V .
Initially Project tries to compute ∃X.A using Layer1. This reduces ∃X.A to
an equivalent conjunction of A1 and ∃Y.A2, where A1, A2 are conjunctions of
LMCs and Y ⊆ X. If all variables in X are eliminated by Layer1, then ∃X.A ≡
A1. Project returns A1 in this case. Otherwise, Project tries to compute ∃Y.A2

using Layer2. Layer2 reduces ∃Y.A2 to an equivalent conjunction of A3 and
∃Z.A4, where A3, A4 are conjunctions of LMCs and Z ⊆ Y . If all variables in
Y are eliminated by Layer2, then ∃X.A ≡ A1 ∧ A3. Project returns A1 ∧ A3

in this case. Otherwise, Project calls Layer3 to compute ∃Z.A4, and returns
A1 ∧A3 ∧ ∃Z.A4. Layer3

3 QE from Boolean Combinations of LMCs

In [1], we explored a Decision Diagram (DD)-based approach and an SMT solv-
ing (SMT)-based approach for extending a QE algorithm for conjunctions of
LMEs and LMDs to Boolean combinations of LMEs and LMDs. In this section,

we extend these approaches to Boolean combinations of LMEs, LMDs and LMIs.
We also present a hybrid approach that tries to combine the strengths of the
DD-based and SMT-based approaches.

Extending DD-based and SMT-based approaches: Linear Modular De-
cision Diagrams (LMDDs) [1] are BDD-like data structures used to represent
Boolean combinations of LMEs and LMDs. By allowing nodes in LMDDs to be
labeled with LMEs or LMIs, we can use LMDDs to represent Boolean combina-
tions of LMEs, LMIs and LMDs. In the subsequent discussion, we represent a
non-terminal LMDD node f as (pred(f), high(f), low(f)), where pred(f) is the
LME/LMI labeling the node, high(f) is the high child, and low(f) is the low
child, as defined in [13]. For simplicity of notation, we will use f to denote both
an LMDD and the Boolean combination of LMCs represented by it, when the
context precludes any disambiguity in interpretation.

Given an LMDD f and a variable x, the DD-based approach for comput-
ing ∃x.f is similar to that described in [1]. Specifically, we perform a recursive
traversal of the LMDD f , collecting the set of LMCs containing x (henceforth
called context) encountered along the path from the root node of LMDD f . We
call the corresponding recursive procedure QE1 LMDD. In each recursive call,
QE1 LMDD computes an LMDD for ∃x. (g∧Cx), where g is the LMDD encoun-
tered during the traversal and Cx is the conjunction of LMCs in the context. If g
is a 1-terminal, then ∃x. (g∧Cx) is computed by calling Project on ∃x.Cx. If the
root node of g is a non-terminal, then QE1 LMDD simplifies g using the LMEs
in Cx before traversing g, as described in[1]. Multiple variables can be elimi-
nated by invoking QE1 LMDD repeatedly; this is implemented in the procedure
QE LMDD. The reader is referred to [14]for additional details of QE LMDD.

In [1], we also proposed a procedure called Monniaux (originally introduced
in [9]) that uses SMT solving to eliminate quantifiers from Boolean combinations
of LMEs and LMDs. We extend Monniaux to handle Boolean combinations
of LMCs involving LMIs. Suppose we wish to compute ∃X. f , where f is a
Boolean combination of LMCs over a set of variables V and X ⊆ V . A naive
way of computing this is by converting f to DNF by enumerating all satisfying
assignments, and by invoking Project on each conjunction of LMCs. Monniaux
improves upon this by generalizing a satisfying assignment to obtain a cube of
satisfying assignments, by projecting the cube on the remaining variables (not
in X), and then conjoining its complement with f before additional satisfying
assignments are found.

Combining DD-based and SMT-based approaches: The factors that con-
tribute to the success of the DD-based approach are the presence of large shared
sub-LMDDs and the strategy of eliminating one variable at a time. Both factors
contribute to significant opportunities for reuse of results through dynamic pro-
gramming. The success of the SMT-based approach is attributable primarily to
pruning of the solution space achieved by interleaving of projection and model
enumeration. In the following discussion, we present a hybrid approach that tries
to combine the strengths of these two approaches.

The hybrid procedure, calledQE Combined, is shown in Fig. 2. The procedure
uses the following helper functions: a) qeddContext : variant of QE LMDD to
compute ∃X. (f ∧C), where f is an LMDD and C is a conjunction of LMCs over
a set of variables V , and X ⊆ V , b) getConjunct : computes the conjunction of
LMCs in a given set, c) Sat : checks if a given Boolean combination of LMCs is
satisfiable.

QE Combined(f , X)
π ← selectPath(f);
S ← ∅; /* set of sub-problems */
simplify(f , π, S, ∅);
g ← false;
for each (〈fi, Ci〉 ∈ S)
if (Sat(fi ∧ Ci ∧ ¬g))
h ← qeddContext(fi, Ci, X);
g ← g ∨ h;

return g;

simplify(f , π, S, C)
/* C : set of LMCs encountered along π */
if (node f is a terminal)
S ← S ∪ {〈f , getConjunct(C)〉};

else if (node high(f) is in π)
S ← S ∪ {〈low(f), getConjunct(C)∧¬pred(f)〉};
simplify(high(f), π, S, C ∪ {pred(f)});

else /* node low(f) is in π */
S ← S ∪ {〈high(f), getConjunct(C)∧pred(f)〉};
simplify(low(f), π, S, C ∪ {¬pred(f)});

Fig. 2. Algorithms QE Combined and simplify

Fig. 3. Deriving fi ∧ Ci from path π

Procedure QE Combined first selects
a satisfiable path π in the LMDD f us-
ing a function selectPath. Subsequently,
the procedure simplify is invoked, which
traverses the path π, in order to con-
vert (split) f into an equivalent dis-
junction

∨n
i=1(fi ∧ Ci), where fi denotes

an LMDD and Ci denotes a conjunc-
tion of LMCs (represented in Fig. 2 as
a set S of pairs, where each pair is of
the form 〈fi, Ci〉). Fig. 3(b) illustrates
the splitting scheme followed by simplify.
QE Combined now computes g ≡ ∃X. f
as

∨n
i=1 (∃X. (fi ∧ Ci)) in the following

manner: if fi ∧Ci ∧¬g is satisfiable, then
h ≡ ∃X. (fi ∧Ci) is computed using qed-
dContext, and then h is disjoined with g.

Note that unlike Monniaux, QE Combined does not explicitly interleave projec-
tions inside model enumeration. However disjoining the result of ∃X. (fi ∧ Ci)
with g, and computing ∃X. (fi ∧ Ci) only if fi ∧ Ci ∧ ¬g is satisfiable helps in
pruning the solution space of the problem, as achieved in Monniaux.

4 Experimental Results

We performed experiments to (i) evaluate the performance ofMonniaux,QE LMDD,
and QE Combined, (ii) evaluate the effectiveness of the layers in Project, and (iii)
compare the performance of Project with alternative QE techniques. The exper-
iments were performed on a 1.83 GHz Intel(R) Core 2 Duo machine with 2GB
memory running Linux, with a timeout of 1800 seconds. We implemented our
own LMDD package for carrying out QE experiments involving LMDDs.
Benchmarks: We used a benchmark suite consisting of 198 lindd bench-
marks [4] and 23 vhdl benchmarks. Each of these benchmarks is a Boolean
combination of LMCs with a subset of the variables in their support existen-
tially quantified.

The lindd benchmarks reported in [4] are Boolean combinations of octagonal
constraints over integers, i.e., constraints of the form a·x+b·y ≤ k where x, y are
integer variables, k is an integer constant, and a, b ∈ {−1, 1}. We converted these
benchmarks to Boolean combinations of LMCs by assuming the size of integer
as 16 bits. Although these benchmarks had no LMEs explicitly, they contained
LMEs encoded as conjunctions of the form (x− y ≤ k) ∧ ¬(x− y ≤ k − 1). We
converted each such conjunction to an LME x− y = k as a pre-processing step.
The total number of variables, the number of variables to be eliminated, and the
number of bits to be eliminated in the lindd benchmarks ranged from 30 to 259,
23 to 207, and 368 to 3312 respectively.

The vhdl benchmarks were obtained in the following manner. We took a
set of word-level VHDL designs. Some of these are publicly available designs
obtained from [5], and the remaining are proprietary. We derived the symbolic
transition relations of these VHDL designs. The vhdl benchmarks were obtained
by quantifying out all the internal variables (i.e. neither input nor output of the
top-level module) from these symbolic transition relations. Effectively this gives
abstract transition relations of the designs. The coefficients of the variables in
these benchmarks were largely odd. These benchmarks contained a significant
number of LMEs (arising from assignment statements in the VHDL programs).
The total number of variables, the number of variables to be eliminated, and the
number of bits to be eliminated in the vhdl benchmarks ranged from 10 to 50,
2 to 21, and 10 to 672 respectively.
Evaluation of Monniaux, QE LMDD, and QE Combined : We mea-
sured the time taken by Monniaux, QE LMDD, and QE Combined for QE from
each benchmark. For QE LMDD and QE Combined, this included the time to
build the initial LMDD. We observed that each approach performed better than
the others for some benchmarks (see Fig. 4). Note that the points in Fig. 4(a)
are scattered, while the points in Fig. 4(b) and 4(c) are more clustered near
the 45◦ line. This shows that DD and SMT based approaches are incompara-
ble, whereas the hybrid approach inherits the strengths of both DD and SMT
based approaches. Hence, given a problem instance, we recommend the hybrid
approach, unless the approach which will perform better is known a-priori.
Evaluation of Project : Recall that Layer3 converts a conjunction of LMCs to
a Boolean combination of LMCs and callsMonniaux/QE LMDD/QE Combined

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Q
E

_L
M

D
D

 Q
E

 T
im

e

Monniaux QE Time

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Q
E

_C
om

bi
ne

d
Q

E
 T

im
e

QE_LMDD QE Time

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Q
E

_C
om

bi
ne

d
Q

E
 T

im
e

Monniaux QE Time

Fig. 4. Plots comparing (a) Monniaux and QE LMDD, (b) QE LMDD and
QE Combined, and (c) Monniaux and QE Combined (All times are in seconds)

for QE from this Boolean combination, which results in new (recursive) Project
calls. Hence two kinds of Project calls were generated while performing QE
from the benchmarks: (i) the initial/original Project calls, and the (ii) aforemen-
tioned recursive Project calls. In the subsequent discussion, whenever we men-
tion “Project calls”, it refers to the initial/original Project calls, unless stated
otherwise.

Table 1. Details of Project calls (figures are per Project call)

Type Vars Quant LMIs LMEs LMDs
Contr. Time (milli seconds)

L1 L2 L3 L1 L2 L3 Project

lindd 39.9 38.1 (88, 0, 18.9) (60, 0, 10.1) (35, 0, 8.1) 51 44 5 3 5 13149 674
vhdl 9.3 7.8 (4, 0, 0.4) (16, 0, 6.3) (31, 0, 1.8) 95 4.5 0.5 1 6 161 3

Vars : Average number of variables, Quant : Average number of quantifiers, LMIs : (Maximum,
minimum, average) number of LMIs, LMEs : (Maximum, minimum, average) number of LMEs,
LMDs : (Maximum, minimum, average) number of LMDs, Contr. : Average contribution of a

layer, L1 : Layer1, L2 : Layer2, L3 : Layer3, Time : Average time spent per quantifier eliminated

The total number of Project calls generated from the lindd and vhdl bench-
marks were 52, 836 and 7, 335 respectively. Statistics of these Project calls are
shown in Table 1. The contribution of a layer is measured as the ratio of the
number of quantifiers eliminated by the layer to the number of quantifiers to be
eliminated in the Project call, multiplied by 100. The contributions of the layers
and the times taken by the layers per quantifier eliminated for individual Project
calls from lindd benchmarks are shown in Fig. 5 and Fig. 6. The Project calls
here are sorted in increasing order of contribution from Layer1.

Layer1 and Layer2 were cheap and eliminated a large fraction of quantifiers
in both lindd and vhdl benchmarks. This underlines the importance of our lay-
ered framework. The relatively large contribution of Layer1 in the Project calls
from vhdl benchmarks was due to significant number of LMEs in these problem
instances. Layer3 was found to be the most expensive layer. Most of the time
spent in Layer3 was consumed in the recursive Project calls. No Layer3 call
in our experiments required model enumeration. The large gap in the time per
quantifier in Layer2 and that in Layer3 for both sets of benchmarks points to

 0

 20

 40

 60

 80

 100

 120

 0 20000 40000 60000

La
ye

r1
 C

on
tr

ib
ut

io
n

Project Call

 0

 20

 40

 60

 80

 100

 120

 0 20000 40000 60000

La
ye

r2
 C

on
tr

ib
ut

io
n

Project Call

 0

 20

 40

 60

 80

 100

 120

 0 20000 40000 60000

La
ye

r3
 C

on
tr

ib
ut

io
n

Project Call

Fig. 5. Contribution of (a) Layer1, (b) Layer2, and (c) Layer3 for lindd benchmarks

the need for developing additional cheap layers between Layer2 and Layer3 as
part of future work.

Fig. 6. Cost of layers for lindd benchmarks

Comparison of Project with al-

ternative QE techniques: We
compared the performance of Project
with QE based on ILA using Omega
Test, and also with QE based on
bit-blasting. We implemented the fol-
lowing algorithms for this purpose:
(i) Layer1 Blast : this procedure first
quantifies out the variables using
Layer1 (recall that Layer1 is a sim-
ple extension of [1]), and then uses
bit-blasting and BDD based bit-level
QE [6] for the remaining variables.

(ii) Layer1 OT, Layer2 OT : Layer1 OT first quantifies out the variables using
Layer1, and then uses conversion to ILA and Omega Test [8] for the remaining
variables. Layer2 OT first quantifies out the variables using Layer1 followed by
Layer2, and then uses conversion to ILA and Omega Test for the remaining
variables. Layer2 OT helps us to compare the performance of Layer3 with that
of Omega Test.

We collected the instances of QE problem for conjunctions of LMCs aris-
ing from Monniaux when QE is performed on each benchmark. We performed
QE from such conjunction-level problem instances using Project, Layer1 Blast,
Layer1 OT, and Layer2 OT. Fig. 7(a) and 7(b) compare the average QE times
taken by Project against those taken by Layer1 Blast and Layer1 OT for QE
from the conjunction-level problem instances for each benchmark. Subsequently,
for each benchmark, we compared the average time consumed by Layer3 in the
Project calls with that consumed by Omega Test in the Layer2 OT calls (see
Fig. 7(c)). The results clearly demonstrated that (i) Project outperforms both
the alternative QE techniques and (ii) Layer3 outperforms Omega Test. There
were a few cases where Omega Test performed better than Layer3. This was due
to the relatively larger number of recursive Project calls in these cases.

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

La
ye

r1
_B

la
st

 T
im

e

Project Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

La
ye

r1
_O

T
 T

im
e

Project Time

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

O
m

eg
a

T
es

t T
im

e

Layer3 Time

Fig. 7. Plots comparing (a) Project and Layer1 Blast, (b) Project and Layer1 OT, and
(c) Layer3 and Omega Test (All times are in milli seconds)

5 Conclusion

The need for efficient techniques for bit-precise quantifier elimination cannot
be overemphasized. In this paper, we presented practically efficient techniques
for eliminating quantifiers from Boolean combinations of LMCs. We propose to
study quantifier elimination techniques for non-linear modular constraints as
part of future work.

References

1. A. John, S. Chakraborty. A quantifier elimination algorithm for linear modular
equations and disequations, In CAV 2011

2. N. Bjørner, A. Blass, Y. Gurevich, M. Musuvathi. Modular difference logic is hard,
In CoRR abs/0811.0987:(2008)

3. D. Kroening, O. Strichman. Decision procedures : an algorithmic point of view, Texts
In Theoretical Computer Science, Springer 2008

4. S. Chaki, A. Gurfinkel, O. Strichman. Decision diagrams for linear arithmetic, In
FMCAD 2009

5. ITC’99 benchmarks, http://www.cad.polito.it/downloads/tools/itc99.html
6. CUDD release 2.4.2 website, vlsi.colorado.edu/∼fabio/CUDD
7. H. Enderton. A mathematical introduction to logic. Academic Press, 2001
8. W. Pugh. The Omega Test: A fast and practical integer programming algorithm for

dependence analysis. Communications of the ACM, Pages 102-114, 1992
9. D. Monniaux. A quantifier elimination algorithm for linear real arithmetic, In LPAR

2008
10. V. Ganesh, D. Dill. A decision procedure for bit-vectors and arrays, In CAV 2007
11. H. Jain, E. M. Clarke, O. Grumberg. Efficient Craig interpolation for linear dio-

phantine (dis)equations and linear modular equations, In CAV 2008
12. M. Muller-Olm, H. Seidl. Analysis of modular arithmetic, ACM Transactions on

Programming Languages and Systems, 29(5):29, 2007
13. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677-691, 1986
14. A. John, S. Chakraborty. Extending quantifier elimination to linear in-

equalities on bit-vectors, Technical Report TR-12-35, CFDVS, IIT Bombay,
http://www.cfdvs.iitb.ac.in/reports/reports/tacas2013 report.pdf

