# Abstract Interpretation and Program Verification

### **Program Analysis: An Example**

```
int x = 0, y = 0, z;
read(z);
while (f(x, z) > 0) {
 if ( g(z, y) > 10) {
    x = x + 1; y = y + 100;
  else if ( h(z) > 20) {
    if (x >= 4) {
       x = x + 1; y = y + 1;
```

IDEAS?
➢ Run test cases
➢ Get code analyzed by many people
➢ Convince yourself by adhoc reasoning

What is the relation between x and y on exiting while loop?

# **Program Verification: An Example**

```
int x = 0, y = 0, z;
read(z);
while (f(x, z) > 0) {
  if (g(z, y) > 10) {
    x = x + 1; y = y + 100;
  else if ( h(z) > 20) {
    if (x >= 4) {
       x = x + 1; y = y + 1;
assert( x < 4 OR y >= 2 );
```

IDEAS?
➢Run test cases
➢Get code analyzed by many people
➢Convince yourself by adhoc reasoning

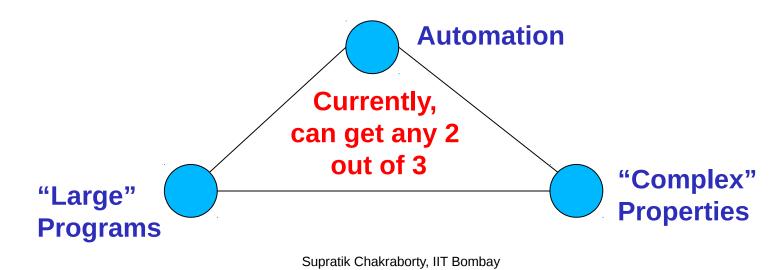
#### **INVARIANT or PROPERTY**

# **Verification & Analysis: Close Cousins**

- Both investigate relations between program variables at different program locations
- $\succ$ Verification: A (seemingly) special case of analysis
  - Yes/No questions
  - No simpler than program analysis
- Both problems undecidable (in general) for languages with loops, integer addition and subtraction
  - Exact algorithm for program analysis/verification that works for all programs & properties: an impossibility
- This doesn't reduce the importance of proving programs correct
  - Can we solve this in special (real-life) cases?

# **Hope for Real-Life Software**

- Certain classes of analyses/property-checking of real-life software feasible in practice
  - Uses domain specific techniques, restrictions on program structure...
  - "Safety" properties of avionics software, device drivers, ...
- ➤A practitioner's perspective



# **Some Driving Factors**

 $\succ$ Compiler design and optimizations

- Since earliest days of compiler design
- ➢Performance optimization
  - Renewed importance for embedded systems
- Testing, verification, validation
  - Increasingly important, given criticality of software
- $\blacktriangleright$ Security and privacy concerns

 $\succ$ Distributed and concurrent applications

Human reasoning about all scenarios difficult

# **Successful Approaches in Practical Software Verification**

- Use of sophisticated abstraction and refinement techniques
  - Domain specific as well as generic
- ➢Use of constraint solvers
  - Propositional, quantified boolean formulas, first-order theories, Horn clauses ...
- $\succ$ Use of scalable symbolic reasoning techniques
  - Several variants of decision diagrams, combinations of decision diagrams & satisfiability solvers ...
- $\succ$ Incomplete techniques that scale to real programs

# Focus of today's talk

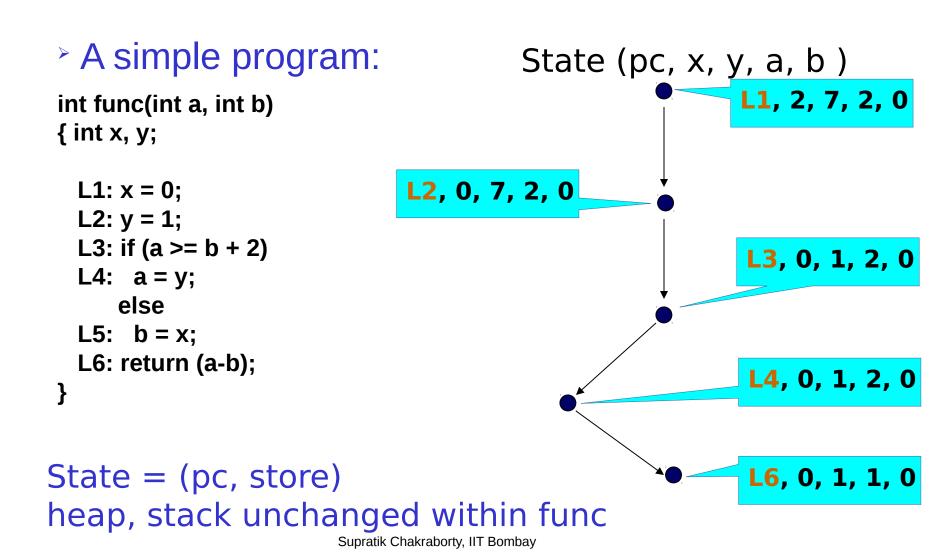
#### **Abstract Interpretation Framework**

- Elegant unifying framework for several program analysis & verification techniques
- Several success stories
  - Checking properties of avionics code in Airbus
  - Checking properties of device drivers in Windows
  - Many other examples
    - Medical, transportation, communication ...
- But, NOT a panacea
- Often used in combination with other techniques

# **Sequential Program State**

- Given sequential program P
  - State: information necessary to determine complete future behaviour
  - (pc, store, heap, call stack)
  - pc: program counter/location
  - store: map from program variables to values
  - heap: dynamically allocated/freed memory and pointer relations thereof
  - call stack: stack of call frames

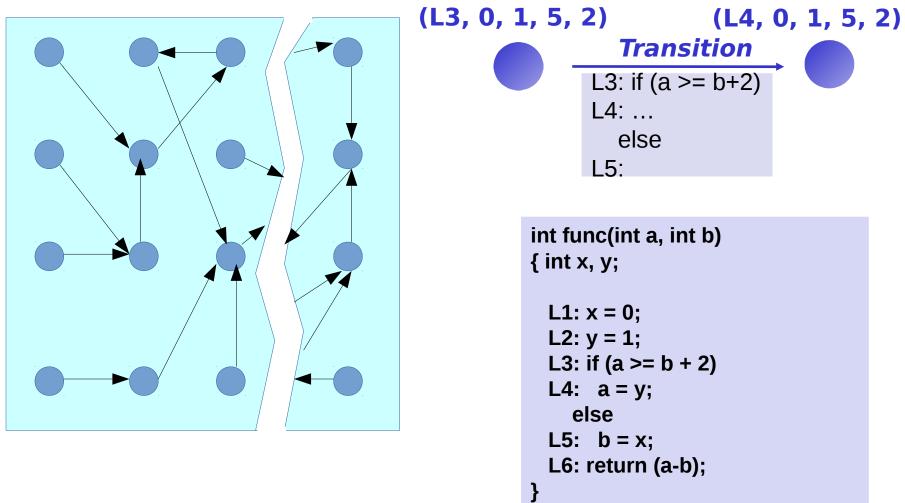
### **Programs as State Transition Systems**



#### **Programs as State Transition Systems** State (pc, x, y, a, b) L1, -1, 10, 9, 1 L1, 2, 7, 2, 0 int func(int a, int b) L1, 3, 20, 8, 7 { int x, y; L1: x = 0;L2: y = 1; L3: if $(a \ge b + 2)$ L4, 0, 1, 9, 1 L5, 0, 1, 8, 7 L4: a = y;else L4, 0, 1, 2, 0 L5: b = x;L6: return (a-b); L6, 0, 1, 1, 0 L6, 0, 1, 8, 0 L6, 0, 1, 1, 1 Supratik Chakrapony, III Bompay

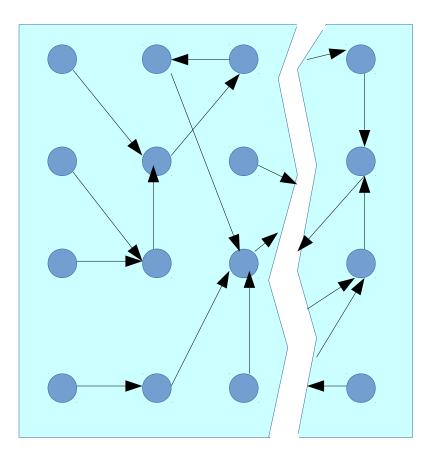
#### **Programs as State Transition Systems**

State: pc, x, y, a, b



# **Specifying Program Properties**

State: pc, x, y, a, b



Pre-condition:
{ a + b >= 0 }
int func(int a, int b)
{ int x, y;

```
L1: x = 0;

L2: y = 1;

L3: if (a >= b + 2)

// assert (a-b <= 1);

L4: a = y;

else

L5: b = x;

L6: return (a-b);

}

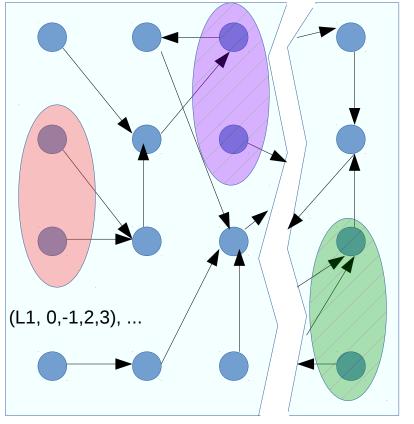
Post-condition:

{ ret_val <= 1 }
```

# **Specifying Program Properties**

State: pc, x, y, a, b

(L4, 0,1, 5, 4), ...



<sup>(</sup>L6, 0,1, 8, 4), ...

Pre-condition:
{ a + b >= 0 }
int func(int a, int b)
{ int x, y;

```
L1: x = 0;

L2: y = 1;

L3: if (a >= b + 2)

// assert (a-b <= 1);

L4: a = y;

else

L5: b = x;

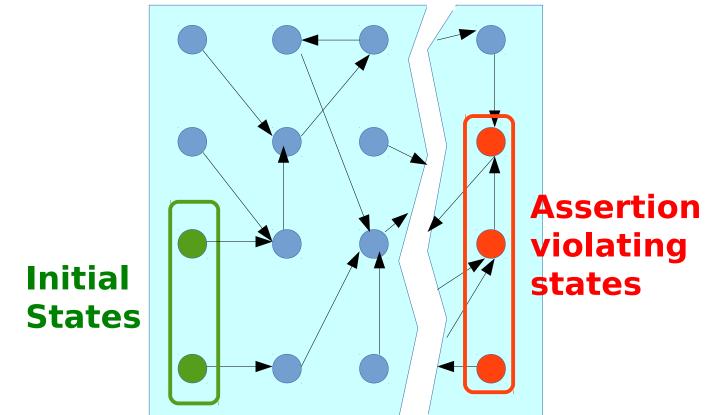
L6: return (a-b);

}

Post-condition:

{ ret_val <= 1 }
```

# **Assertion Checking as Reachability**



Path from initial to assertion violating state ? Absence of path: System cannot exhibit error Presence of path: System can exhibit error What happens with procedure calls/returns?

# **State Space: How large is it?**

- > State = (pc, store, heap, call stack)
  - pc: finite valued
  - store: finite if all variables have finite types
  - Every program statement effects a state transition
  - enum {wait, critical, noncritical} pr\_state (finite)
  - int a, b, c (infinite)
  - bool \*p, \*q (infinite)
  - heap: unbounded in general
  - call stack: unbounded in general

Bad news: State space infinite in general

# **Dealing with State Space Size**

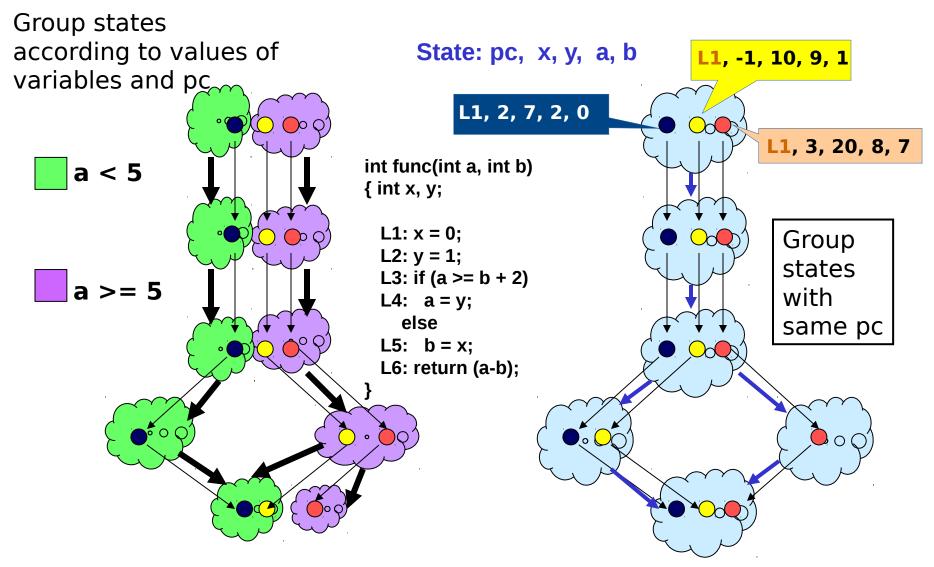
- Infinite state space
  - Difficult to represent using state transition diagram
  - · Can we still do some reasoning?
- Solution: Use of abstraction
  - Naive view
    - Bunch sets of states together "intelligently"
    - Don't talk of individual states, talk of a representation of a set of states

**Concrete states** 

Abstract states

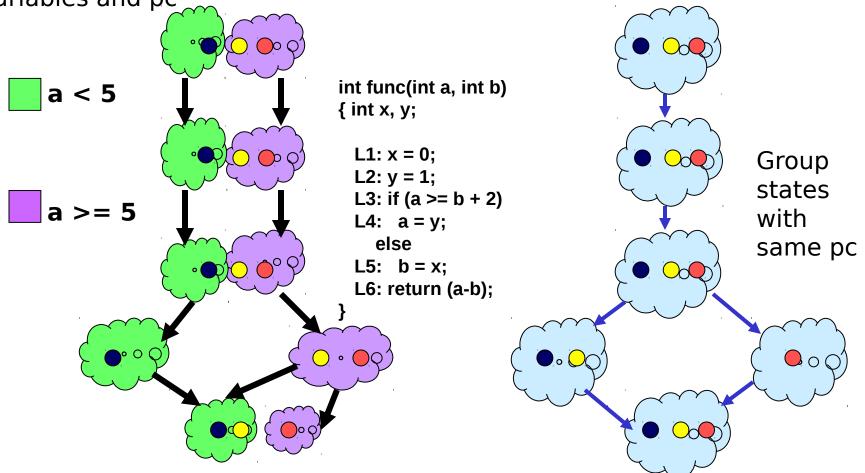
- Transitions between state set representations
- Granularity of reasoning shifted
- Extremely powerful general technique
  - Allows reasoning about large/infinite state spaces

# **Simple Abstractions**



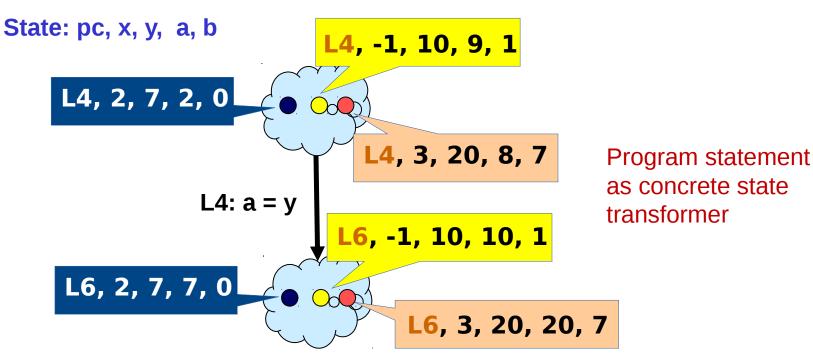
### **Programs as State Set Transformers**

Group states according to values of variables and pc



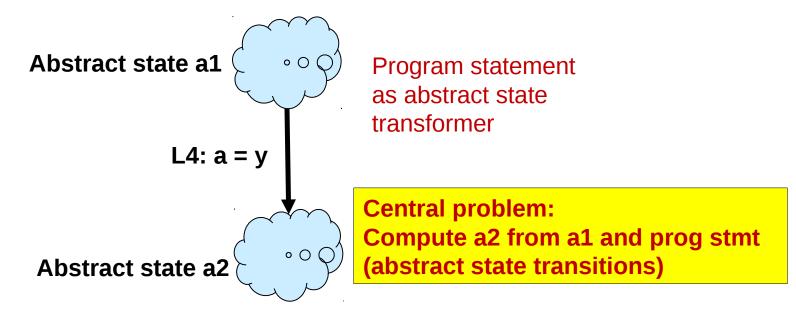
#### **Programs as Abstr State Transformers**

- Recall: Set of (potentially infinite) concrete states is an abstract state
- > Think of program as abstract state transformer

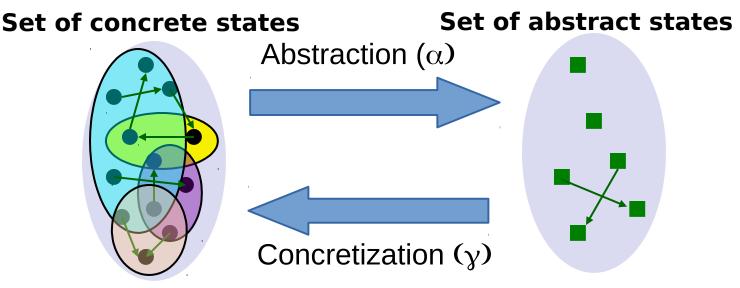


### **Programs as Abstr State Transformers**

- Recall: Set of (potentially infinite) concrete states is an abstract state
- > Think of program as abstract state transformer

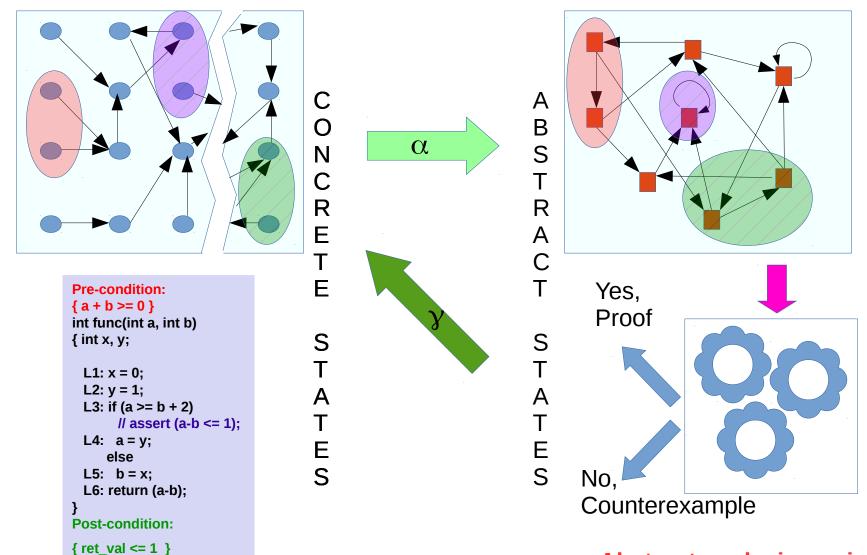


# **A Generic View of Abstraction**



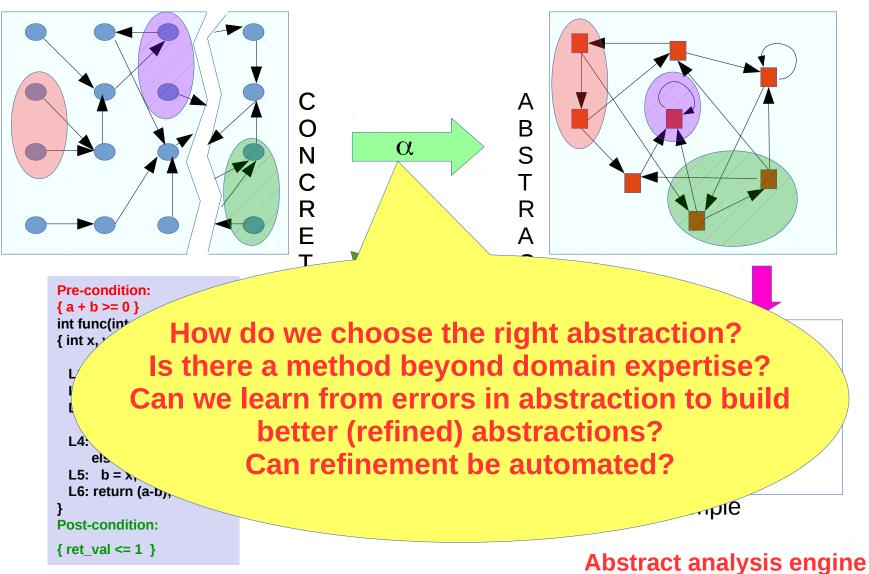
- > Every subset of concrete states mapped to unique abstract state
- Desirable to capture containment relations
- > Transitions between state sets (abstract states)

# **The Game Plan**

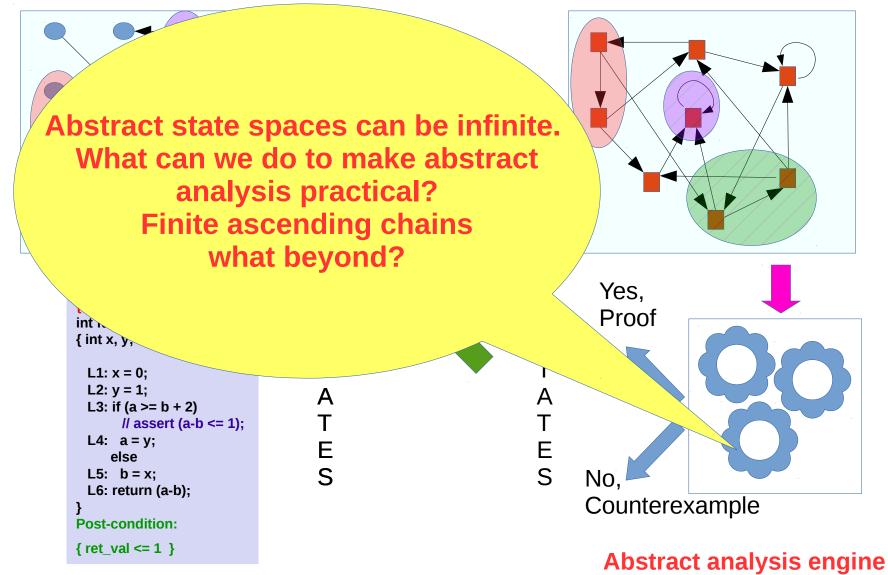


#### Abstract analysis engine

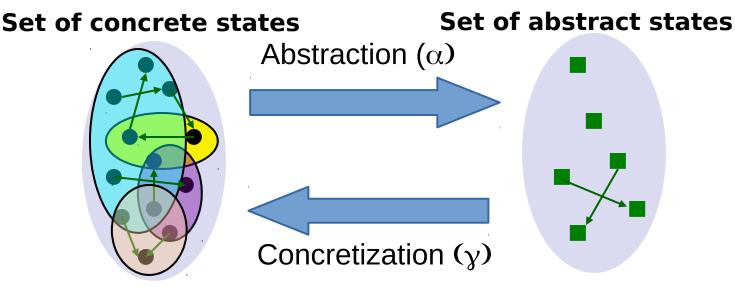
# **The Game Plan**



# **The Game Plan**

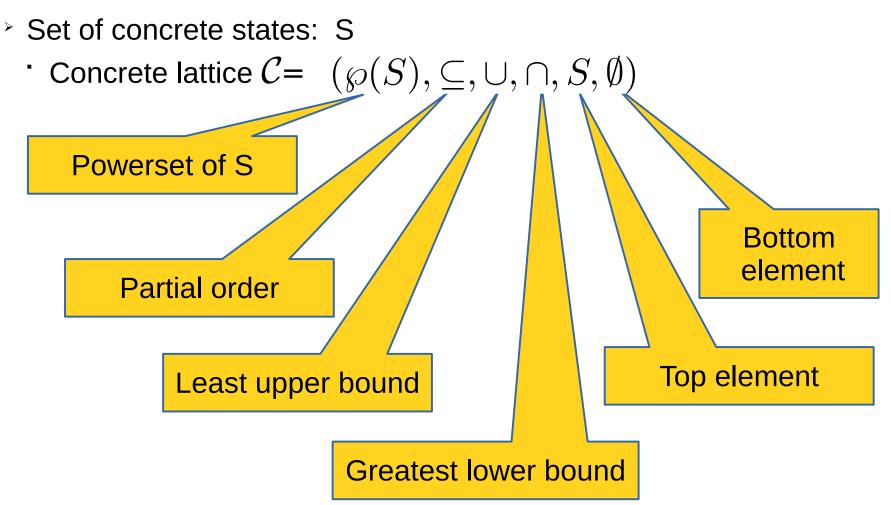


# **Desirable Properties of Abstraction**



- > Suppose  $S_1 \subseteq S_2$  : subsets of concrete states
  - Any behaviour starting from  $S_1$  can also happen starting from  $S_2$
  - If  $\alpha(S_1) = a_1, \alpha(S_2) = a_2$  we want this monotonicity in behaviour in abstr state space too
    - Need ordering of abstract states, similar in spirit to  $S_1 \subseteq S_2$

### **Structure of Concrete State Space**



#### **Structure of Abstract State Space**

- > Abstract lattice  $\mathcal{A}$ = ( $\mathcal{A}$ , ⊆,  $\Box$ ,  $\Box$ ,  $\top$ ,  $\bot$ )
- -> Abstraction function  $\alpha:\wp(S)\to\mathcal{A}$ 
  - Monotone:  $S_1 \subseteq S_2 \Rightarrow \alpha(S_1) \sqsubseteq \alpha(S_2)$  for all  $S_1, S_2 \subseteq S$
  - $\alpha(S) = \top$ ,  $\alpha(\emptyset) = \bot$
- - Monotone:  $a_1 \sqsubseteq a_2 \Rightarrow \gamma(a_1) \subseteq \gamma(a_2)$  for all  $a_1, a_2 \in \mathcal{A}$
  - $\gamma(\top) = S$ ,  $\gamma(\bot) = \emptyset$

#### **A Simple Abstract Domain**

- Simplest domain for analyzing numerical programs
- Represent values of each variable separately using intervals
- Example:
- L0: x = 0; y = 0;
- L1: while (x < 100) do
  - L2: x = x+1;

L3: 
$$y = y+1;$$

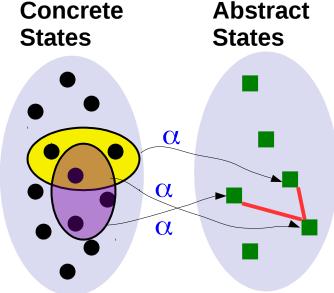
L4: end while

If the program terminates, does x have the value 100 on termination?

- > Abstract states: intervals of values of x, pc implicit [-10, 7]: { (x, y) | -10 <= x <= 7 } (-∞, 20]: { (x, y) | x <= 20 }</p>
  - $\Box$  relation: Inclusion of intervals [-10, 7]  $\Box$  [-20, 9]
  - □ and □: union and intersection of intervals
     [-10, 9] □ [-20, 7] = [-20, 9]
     [-10, 9] □ [-20, 7] = [-10, 7]
  - $\perp$  is empty interval of x
  - $\top$  is (- $\infty$ , + $\infty$ )

- > Abstract states: intervals of values of x, pc implicit [-10, 7]: { (x, y) | -10 <= x <= 7 } (-∞, 20]: { (x, y) | x <= 20 }</p>
  - $\sqsubseteq$  relation: Inclusion of intervals [-10, 7]  $\sqsubseteq$  [-20, 9]
  - □ and □: union and intersection
     [-10, 9] □ [-20, 7] = [-20, 9]
     [-10, 9] □ [-20, 7] = [-10, 7]
  - $\perp$  is empty interval of x

•  $\top$  is (- $\infty$ , + $\infty$ )



 $\begin{array}{l} \alpha(\ \{(L1,\ 1,\ 3),\ (L1,\ 2,\ 4),\ (L1,\ 5,\ 7)\}\ )=[1,\ 5]\\ \alpha(\ \{(L1,\ 5,\ 7),\ (L1,\ 7,\ 6),\ (L1,\ 9,\ 10)\}\ )=[5,\ 9]\\ \alpha(\ \{(L1,\ 5,\ 7)\}\ )=[5,\ 5] \end{array}$ 

- > Abstract states: pairs of intervals (one for x, y), pc implicit
  - ([-10, 7], (- $\infty$ , 20])
  - $\Box$  relation: Inclusion of intervals ([-10, 7], (- $\infty$ , 20])  $\Box$  ([-20, 9], (- $\infty$ , + $\infty$ ))
  - □ and □: union and intersection of intervals
     ([-10, 9], (-∞, 20])□([-20, 7], [3,+∞)) = ([-10, 7], [3, 20])
     ([-10, 9], (-∞, 20])□([-20, 7], [3,+∞)) = ([-20, 9], (-∞, +∞))
  - ·  $\perp$  is empty interval of x and y
  - $\top$  is ( (- $\infty$ , + $\infty$ ), (- $\infty$ , + $\infty$ ) )

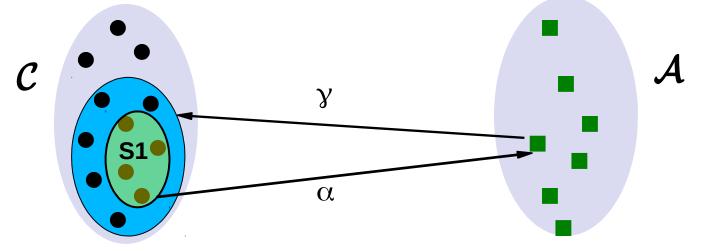
# Desirable Properties of $\alpha$ and $\gamma$

For all  $S_1 \subseteq \mathcal{C}$   $S_1 \subseteq \gamma(\alpha(S_1))$ 

Set of concrete states

•

Set of abstract states

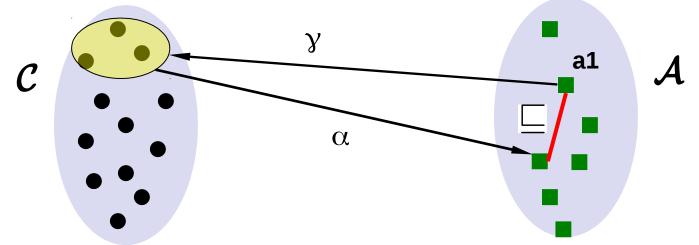


## Desirable Properties of $\alpha$ and $\gamma$

$$S_1 \subseteq \gamma(\alpha(S_1))$$
 forall  $S_1 \subseteq \mathcal{C}$   
 $\alpha(\gamma(a_1)) \sqsubseteq a_1$  forall  $a_1 \in \mathcal{A}$ 

Set of concrete states

Set of abstract states



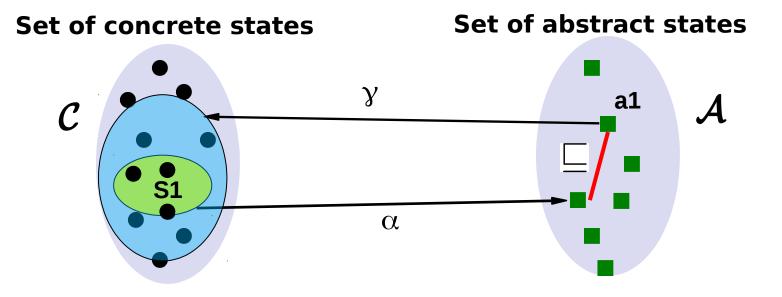
# $\alpha$ and $\gamma$ form a Galois connection

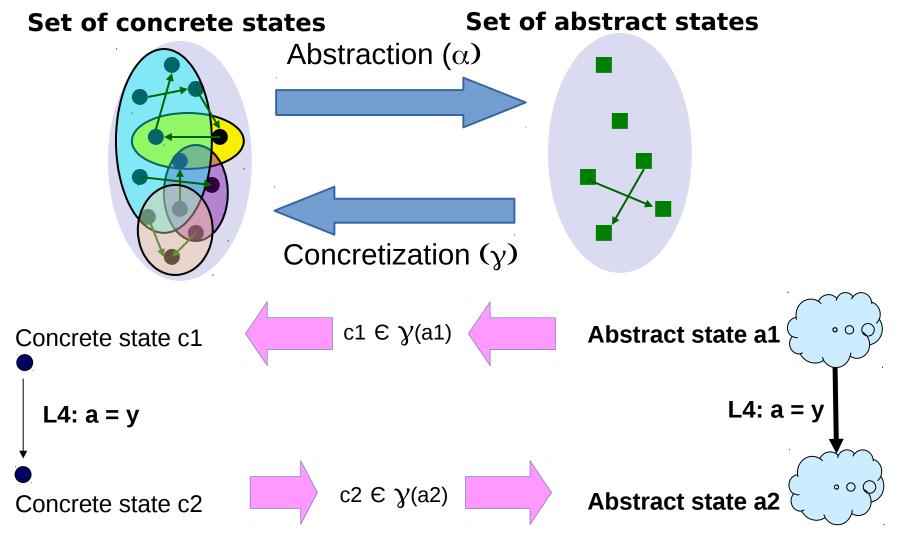
# Desirable Properties of $\alpha$ and $\gamma$

 $\succ \alpha_{\rm and} \ \gamma_{\rm form}$  a Galois connection

· Second (equivalent) view:

 $\alpha(S_1) \sqsubseteq a_1 \Leftrightarrow S_1 \subseteq \gamma(a_1) \text{ for all } S_1 \subseteq S, a_1 \in \mathcal{A}$ 





- Concrete state set transformer function
  - Example:

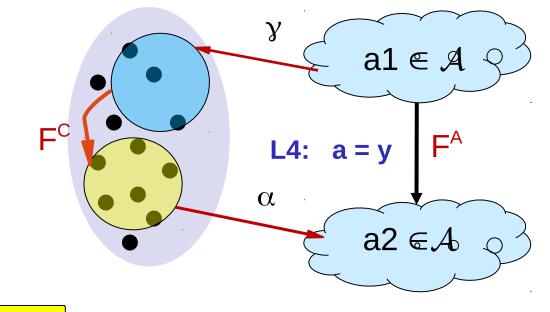
S1 = { (L4, x, y, a, b) | ..... }: set of concr. states

**S1** ° Monotone concrete L4: a = ystate set transformer function for stmt at L4 **S2** °  $S2 = \{ (L6, x, y, a', b) | \exists (L4, x, y, a, b) \in S1, a' = y \}$ =  $F^{c}(S1)$  : set of concrete states

- > Abstract state transformer function
  - Example:

used

#### Set of concrete states

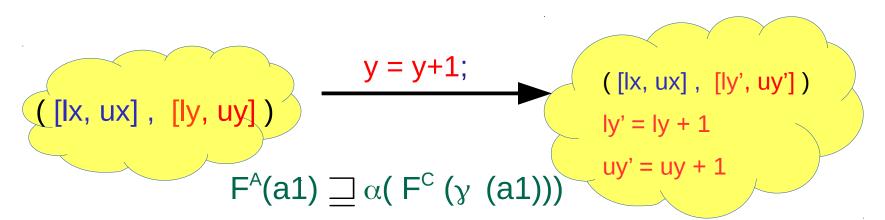


 $a^2 = \alpha (F^c (\gamma (a1)))$  ideally, but  $F^A(a1) \supseteq \alpha (F^c (\gamma (a1)))$  often

## **Example Abstr State Transition**

- L0: x = 0; y = 0;
- L1: while (x < 100) do
  - L2: x = x+1;
  - L3: y = y+1;
- L4: end while

Abstract states: pairs of intervals (one for x, y), pc implicit



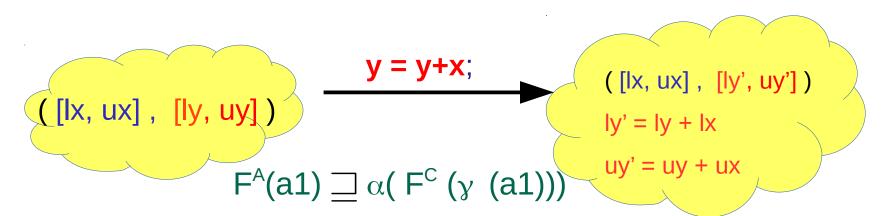
## **Example Abstr State Transition**

- L0: x = 0; y = 0;
- L1: while (x < 100) do

L2: x = x+1;

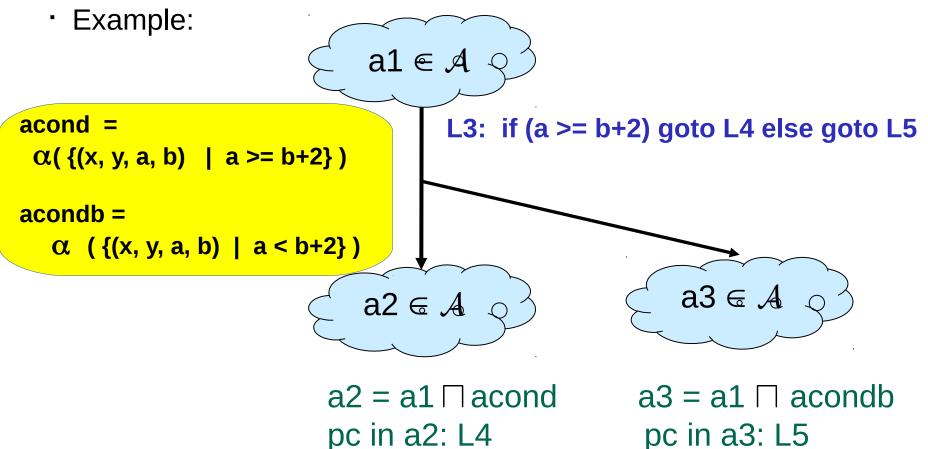
- L3: **y = y+x**;
- L4: end while

Abstract states: pairs of intervals (one for x, y), pc implicit

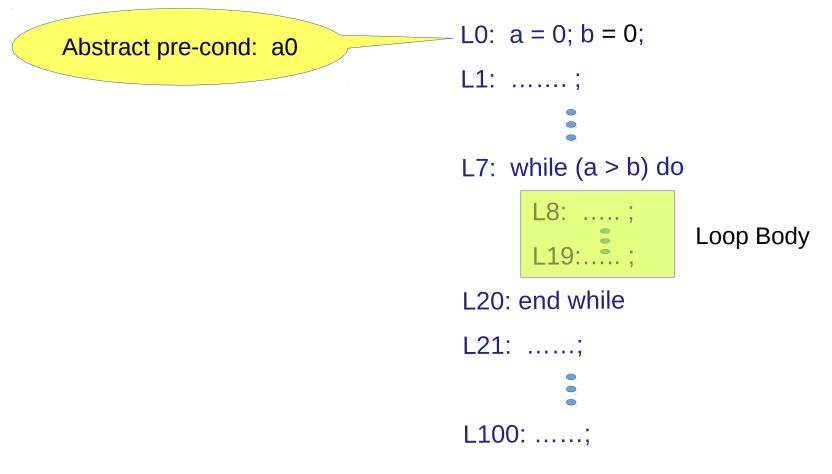


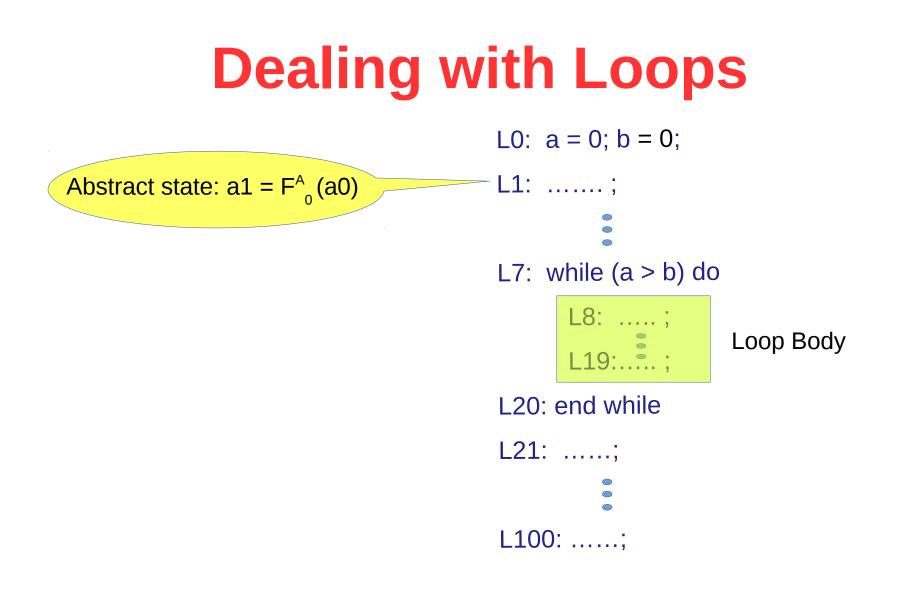
Supratik Chakraborty, IIT Bombay

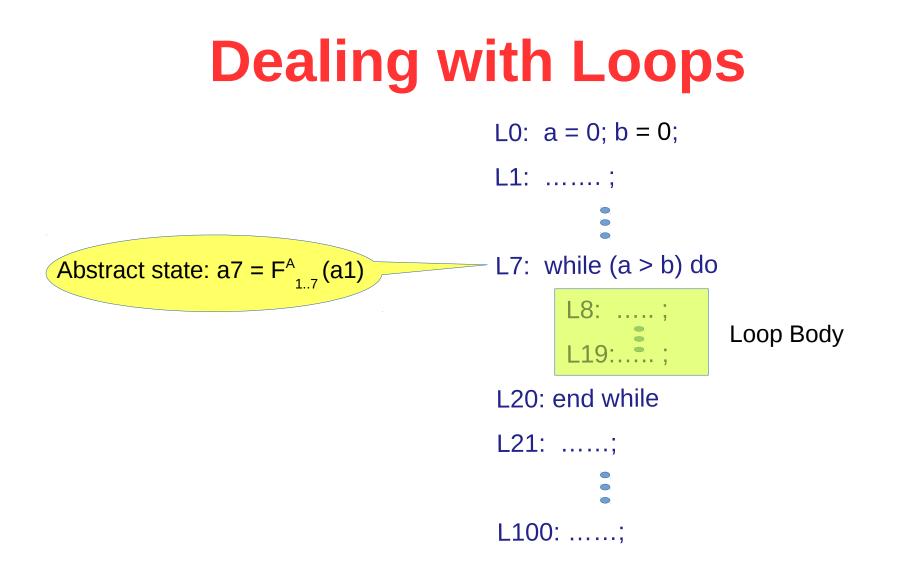
> Abstract state transformer for if-then-else

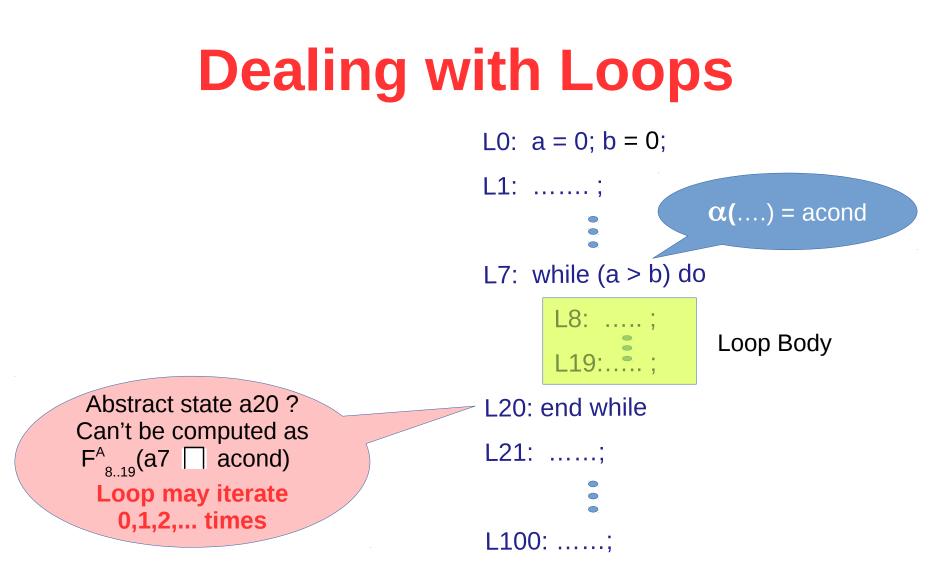




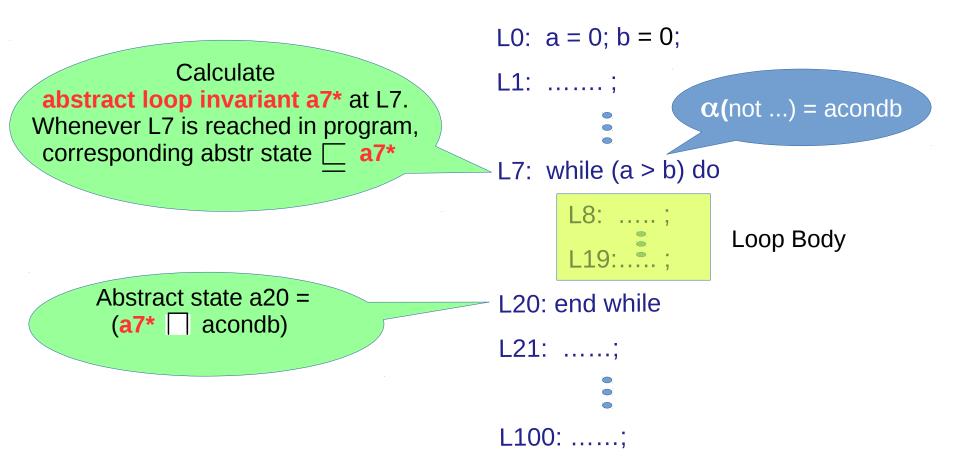


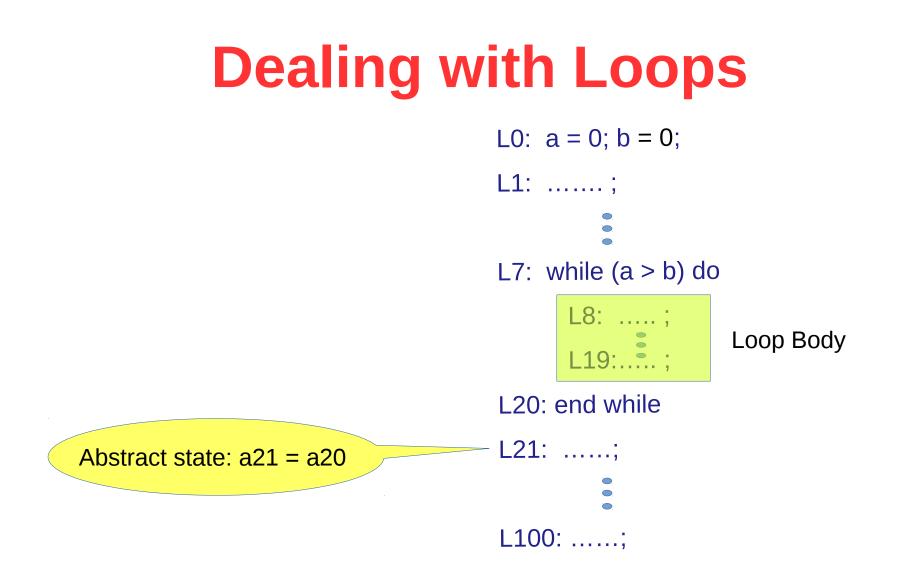


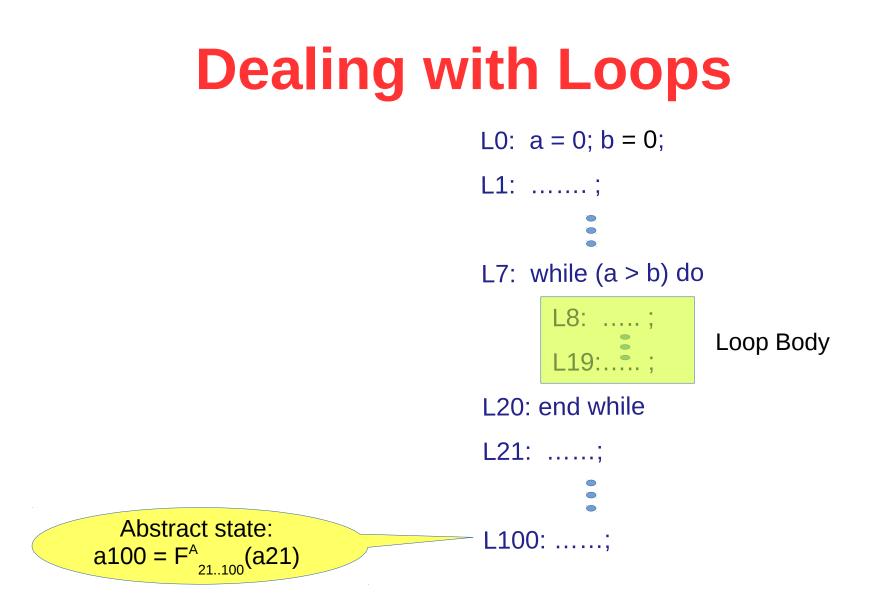




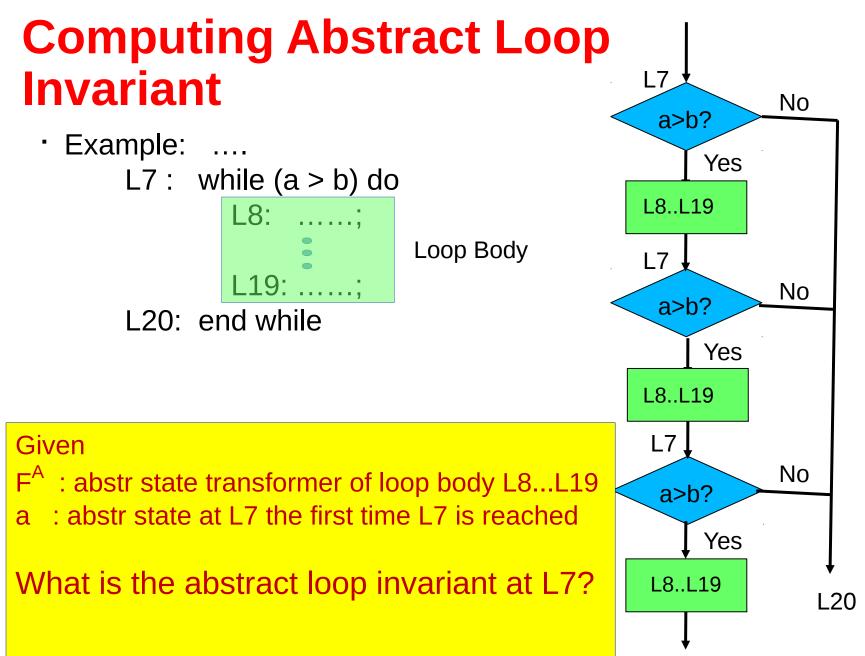
## **Dealing with Loops**







#### Loops can be handled if we know how to compute abstract loop invariants Supratik Chakraborty, IIT Bombay



## **Computing Abstract Loop Invariant**

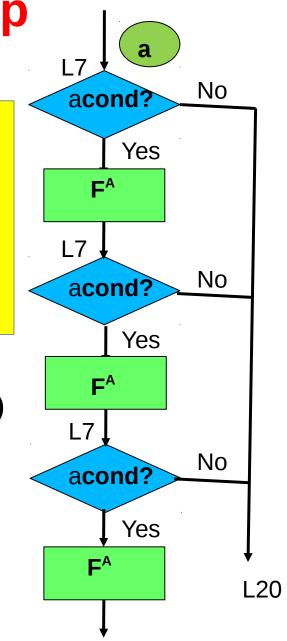
#### Given

- F<sup>A</sup> : abstr state transformer of loop body,
- a : abstr state at L7 the first time L7 is reached

What is the abstract loop invariant at L7?

acond =  $\alpha$ ({s | s is a concrete state with a > b})

**Current view of abstract loop invariant** 



### **Computing Abstract Loop Invariant**

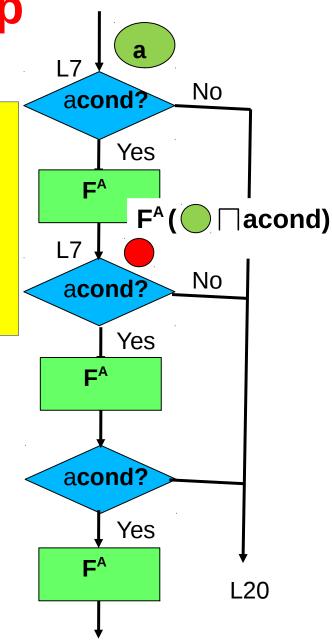
#### Given

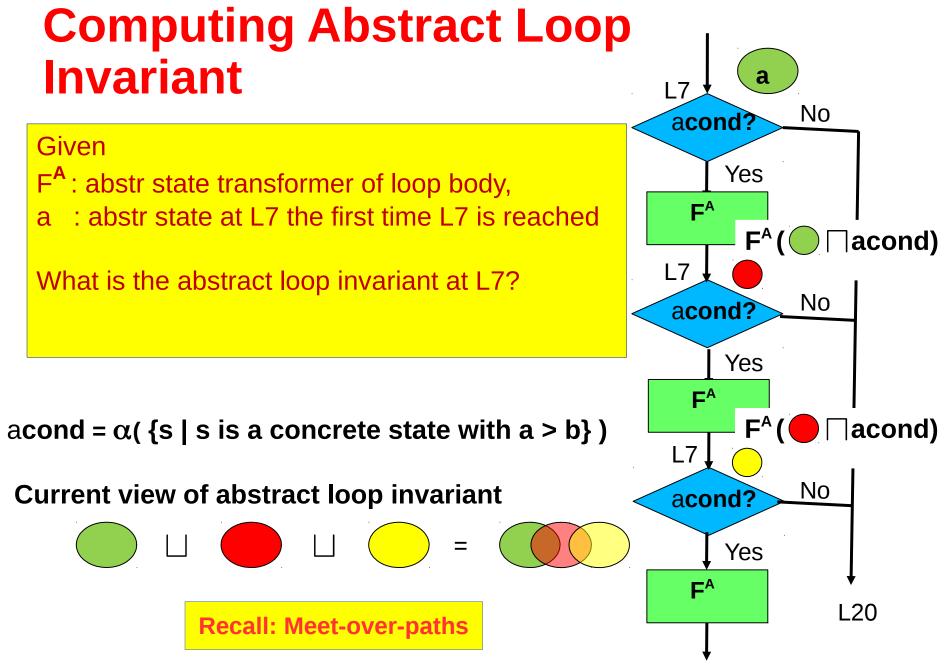
- F<sup>A</sup> : abstr state transformer of loop body,
- a : abstr state at L7 the first time L7 is reached

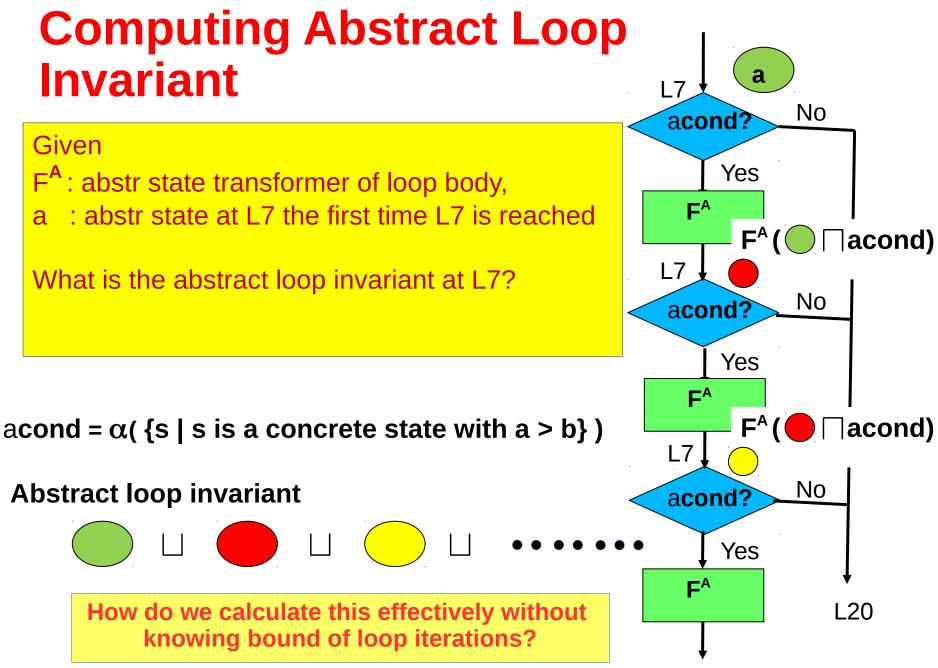
What is the abstract loop invariant at L7?

acond =  $\alpha$ ({s | s is a concrete state with a > b})

**Current view of abstract loop invariant** 



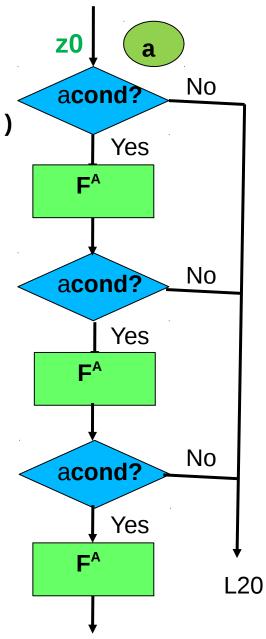




Supratik Chakraborty, IIT Bombay

acond =  $\alpha$  ({s | s is a concrete state with a > b})

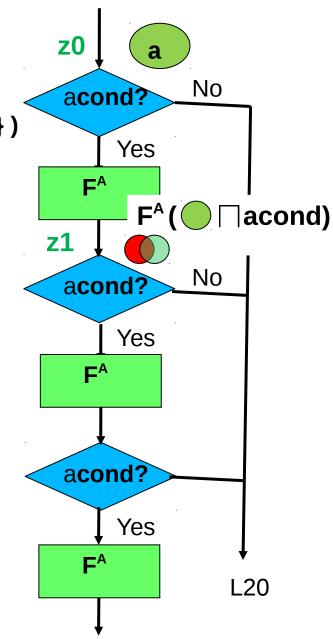
Successive views of of loop invariant at L7: z0 = a



acond =  $\alpha$  ({s | s is a concrete state with a > b})

Successive views of of loop invariant at L7: z0 = a

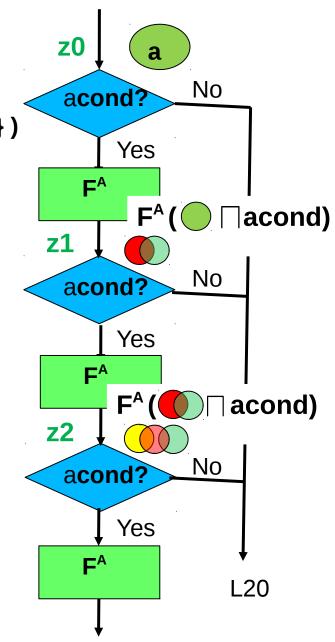
 $z1 = a \sqcup F^{A}$  ( $z0 \sqcap acond$ )



acond =  $\alpha$  ({s | s is a concrete state with a > b})

Successive views of of loop invariant at L7:

z0 = a  $z1 = a \sqcup F^{A}$  ( $z0 \sqcap acond$ )  $z2 = a \sqcup F^{A}$  ( $z1 \sqcap acond$ )

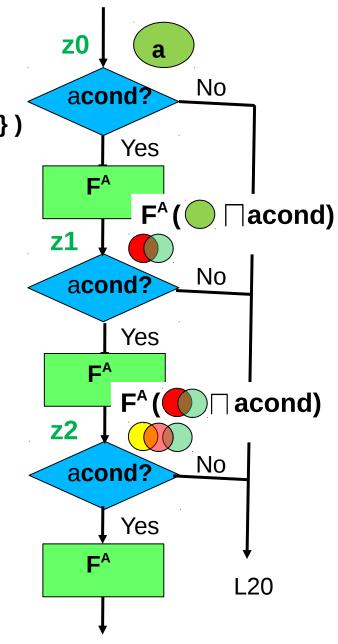


acond =  $\alpha$  ({s | s is a concrete state with a > b})

Successive views of of loop invariant at L7:

z0 = a z1 = a ∐ F<sup>A</sup> (z0 ∏ acond) z2 = a ∐ F<sup>A</sup> (z1 ∏ acond)

. . . . . .

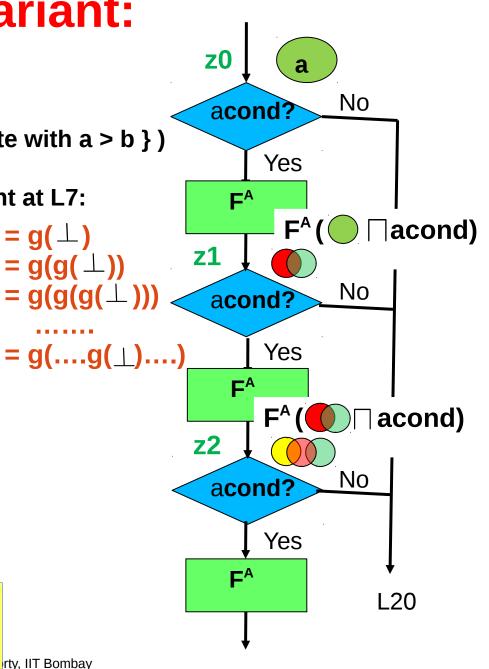


acond =  $\alpha$  ({s | s is a concrete state with a > b})

Successive views of of loop invariant at L7:  $z0 = a = a \sqcup F^{A} ( \bot \Box acond ) = g(\bot)$   $z1 = a \sqcup F^{A} (z0 \Box acond) = g(g(z))$   $z2 = a \sqcup F^{A} (z1 \Box acond) = g(g(g))$ .....  $z_{i+1} = a \sqcup F^{A} (z_{i} \Box acond) = g(g(g))$  $z0 \sqsubseteq z1 \sqsubseteq z2 \sqsubseteq ...$ 

Reasonable requirements:  $F^{A}(\perp) = \perp$ If a1  $\_$  a2 then  $F^{A}(a1) \_ F^{A}(a2)$ 

g(z) = a ⊔ F<sup>A</sup>(z ⊓ acond) g() monotone



acond =  $\alpha$  ({s | s is a concrete state with a > b})

Successive views of of loop invariant at L7:

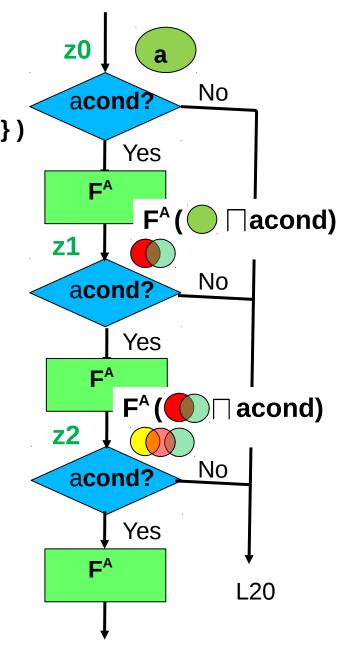
$$z0 = g(\perp)$$
  
 $z1 = g(g(\perp))$   
 $z2 = g(g(g(\perp)))$   
.....  
 $z_i = g(....g(\perp)...)$ 

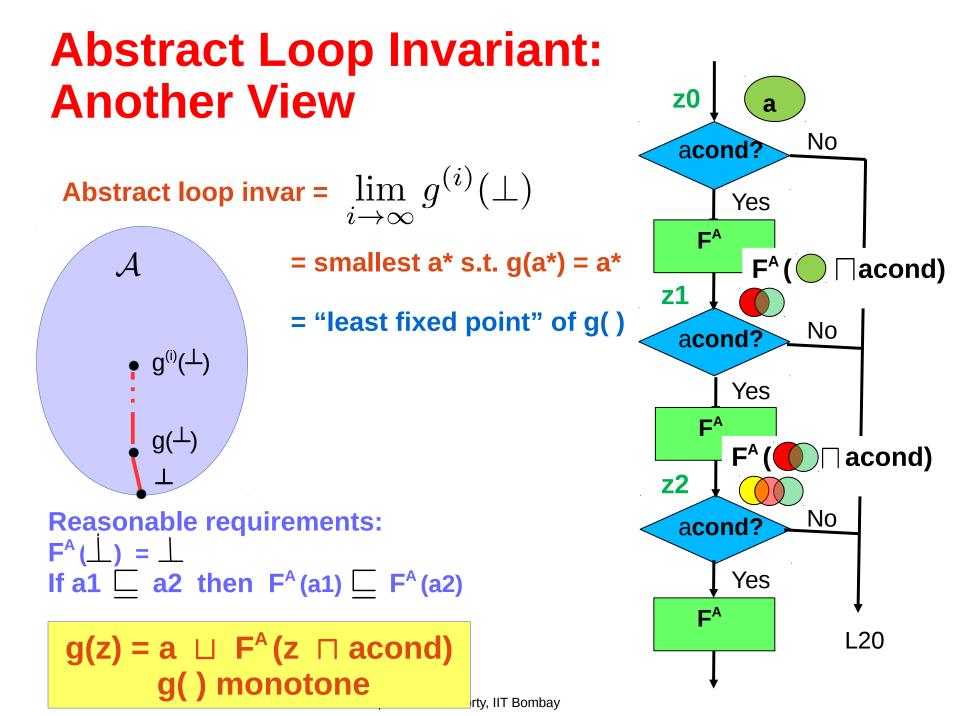
Abstract loop invar =  $\lim_{i \to \infty} g^{(i)}(\bot)$ 

rty, IIT Bombay

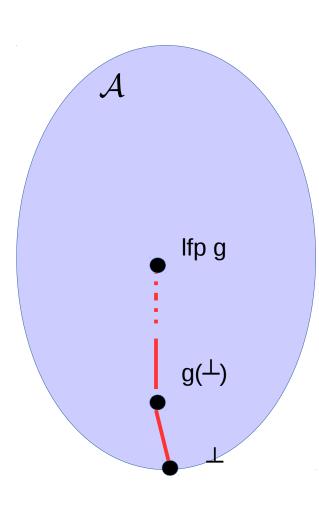
**Reasonable requirements:**  $F^{A}(\perp) = \perp$ If a1  $\_$  a2 then  $F^{A}(a1) \_ F^{A}(a2)$ 

```
g(z) = a ⊔ F<sup>A</sup>(z ⊓ acond)
g() monotone
```





## **Abstract Loop Invariant: Least Fixed Point View**



Abstract loop invar a\* computable if  $\mathcal{A}$  has no infinite ascending chains

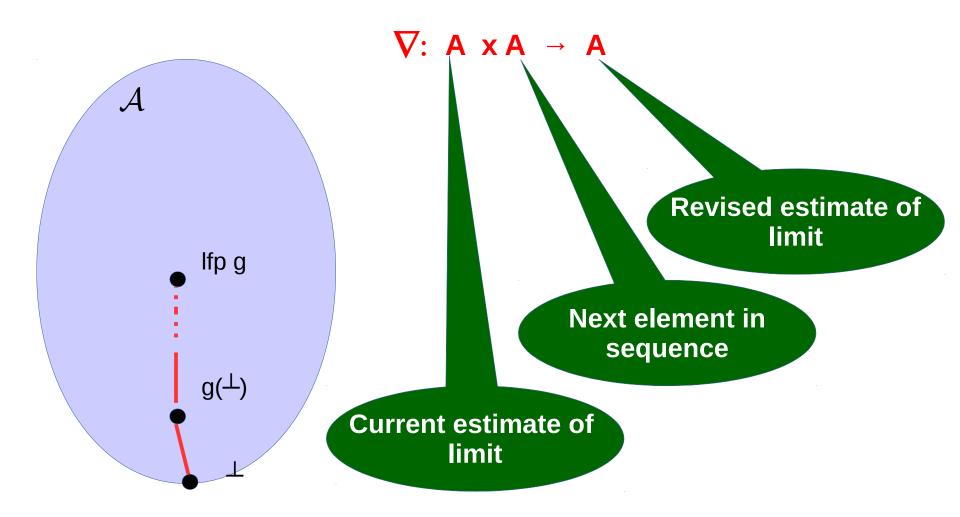
What if there are infinite ascending chains? Can we at least compute an overapprox of a\*?

**Observe the sequence** 

 $g(\perp) \sqsubseteq g^2(\perp) \sqsubseteq \dots \sqsubseteq g^{(i)}(\perp)$  upto i terms

and extrapolate ("informed guess") to a proposed overapprox of a\*

#### Special extrapolation (widen) operator abla



 $\mathcal{A}$ 

lfp g

g(⊥)

 $\nabla$ : A x A  $\rightarrow$  A

Required properties of  $\nabla$ 

For every a1, a2 in A a1  $\bigtriangledown$  a2  $\supseteq$  a1 and a1  $\bigtriangledown$  a2  $\supseteq$  a2

For every  $a0 \sqsubseteq a1 \sqsubseteq a2 \sqsubseteq ..., the sequence$ <math>z0 = a0  $z1 = z0 \bigtriangledown a1$   $z2 = z1 \bigtriangledown a2$ .....

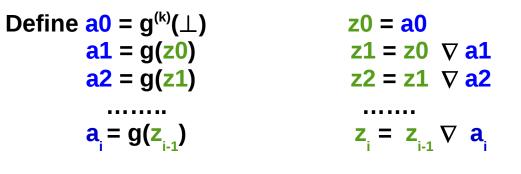
 $\mathbf{z}_{i+1} = \mathbf{z}_i \nabla \mathbf{a}_{i+1}$ 

stabilizes, i.e. There exists an i >= 0 s.t.  $z_i = z_{i+1} = z_{i+2} = ...$ 

#### Stabilized value $z^* \supseteq$ limit of a0, a1, a2, ....

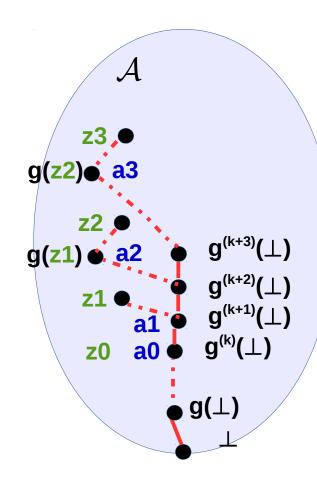
#### $\nabla$ : A x A $\rightarrow$ A

Compute  $g(\perp)$ ,  $g^2(\perp)$ , ...  $g^{(k)}(\perp)$  for parameter k > 0



Fact :  $g^{(k+j)}(\perp) \sqsubseteq a_j \sqsubseteq a_{j+1}$  for all  $j \ge 0$ 

**Recall g: A** → **A** is monotone

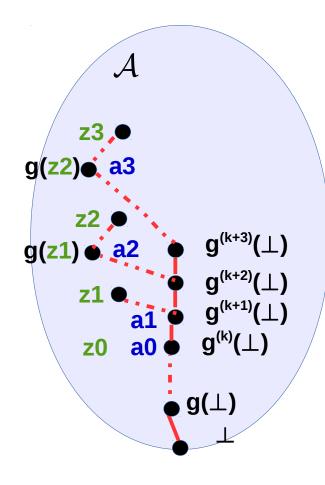


#### $\nabla$ : A x A $\rightarrow$ A

Compute  $g(\perp)$ ,  $g^2(\perp)$ , ...  $g^{(k)}(\perp)$  for parameter k > 0

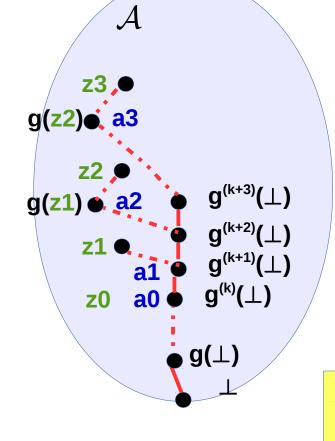
| Define <mark>a0</mark> = g <sup>(k)</sup> (⊥)        | <b>z0 = a0</b>                                            |
|------------------------------------------------------|-----------------------------------------------------------|
| <mark>a1</mark> = g(z0)                              | z1 = z0 ∇ a1                                              |
| <mark>a2</mark> = g(z1)                              | z2 = z1 ∇ a2                                              |
|                                                      | •••••                                                     |
| <b>a</b> <sub>i</sub> = g( <b>z</b> <sub>i-1</sub> ) | $\mathbf{z}_{i} = \mathbf{z}_{i-1} \nabla \mathbf{a}_{i}$ |

Fact :  $g^{(k+j)}(\perp) \sqsubseteq a_j \sqsubseteq a_{j+1}$  for all  $j \ge 0$ If  $z_i = z_{i+1}$ , then  $a_{j+1} = a_{i+1}$  for all  $j \ge i$   $z_j = z_i$  for all  $j \ge 1$ Can detect when sequence stabilizes



#### $\nabla$ : A x A $\rightarrow$ A

Compute  $g(\perp)$ ,  $g^2(\perp)$ , ...  $g^{(k)}(\perp)$  for parameter k > 0



 Define  $a0 = g^{(k)}(\perp)$  z0 = a0 

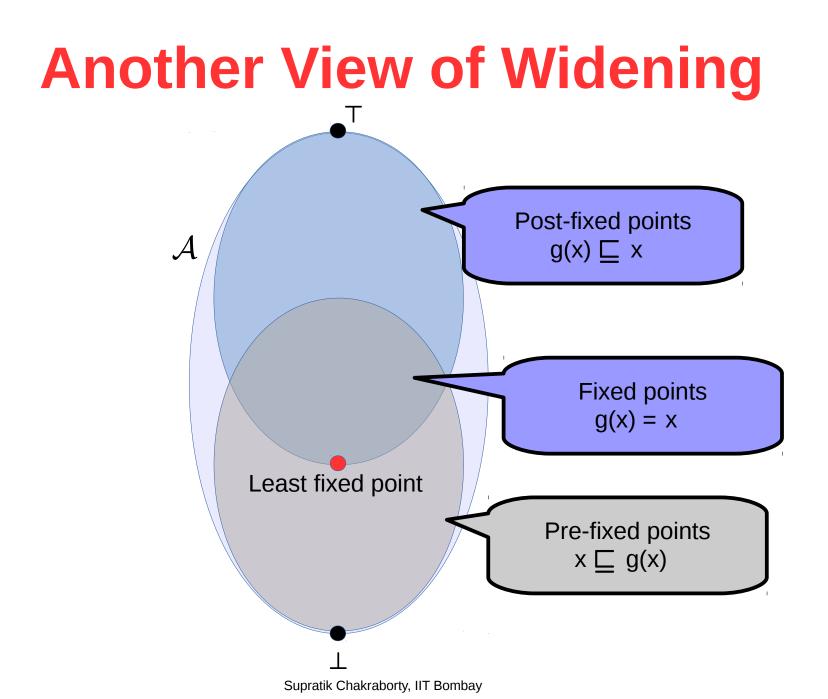
 a1 = g(z0)  $z1 = z0 \ \bigtriangledown a1$  

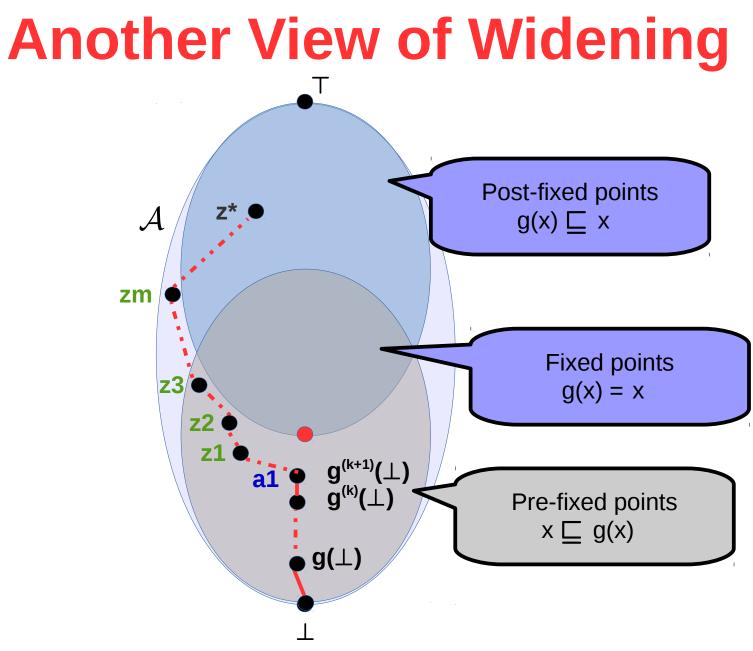
 a2 = g(z1)  $z2 = z1 \ \bigtriangledown a2$  

 .....
  $a_i = g(z_{i-1})$ 

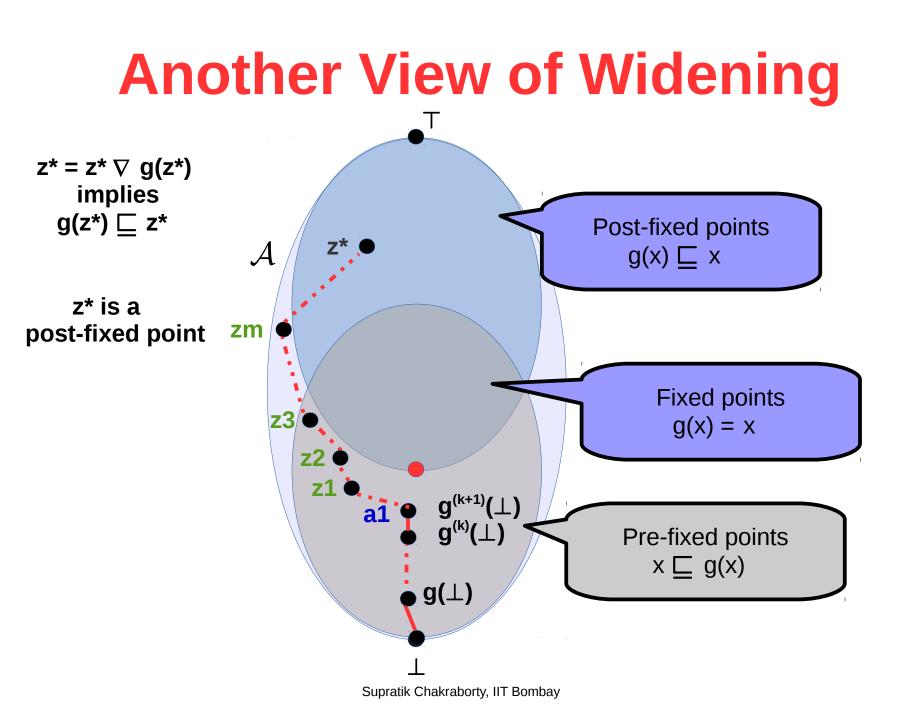
Stabilized value  $z^*$  overapproximates  $g^{(i)}(\perp)$  for all i >= 0 Abstract loop invariant

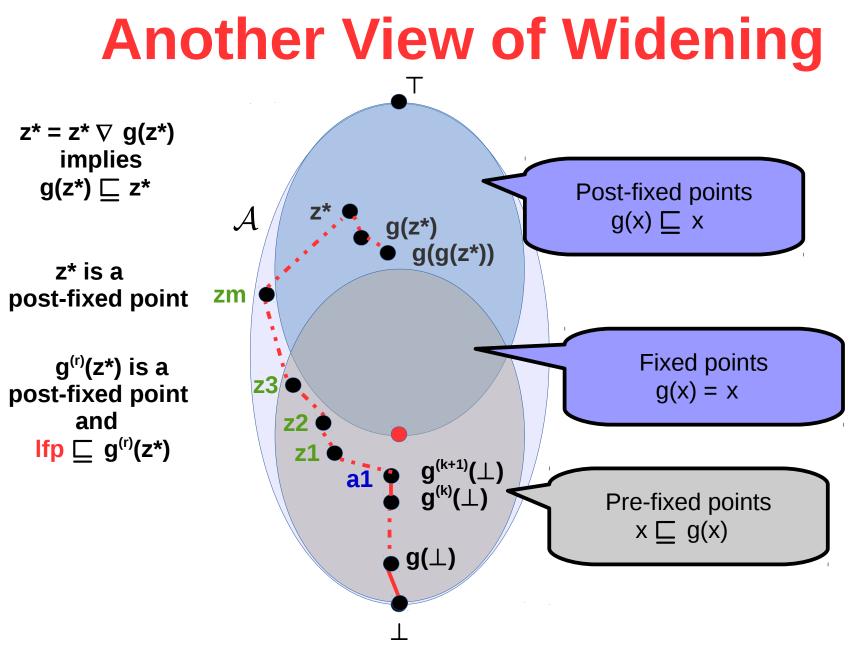
In fact,  $g^{(r)}(z^*)$  also overapproximates  $g^{(i)}(\perp)$  for all r >= 0





Supratik Chakraborty, IIT Bombay





## **Putting It All Together**

 $\succ$  Given a program P and an assertion  $\phi$  at location L

- Choose an abstract lattice (domain) A with a  ${f 
  abla}$  operator
- · Compute abstract invariant at each location of P
- If abstract invariant at L is  $a_i$ , check if  $\gamma(a_i)$  satisfies  $\phi$
- The theory of abstract interpretation guarantees that  $\gamma(a) \supseteq$  concrete invariant at L

# Bird's eye-view of program verification by abstract interpretation

## **Interval Abstract Domain**

- Simplest domain for analyzing numerical programs
- Represent values of each variable separately using intervals
- Example:
- L0: x = 0; y = 0;
- L1: while (x < 100) do
  - L2: x = x+1;

L3: 
$$y = y+1;$$

L4: end while

If the program terminates, does x have the value 100 on termination?

## **Interval Abstract Domain**

- > Abstract states: pairs of intervals (one for each of x, y)
  - [-10, 7], (- $\infty$ , 20]
  - $\cdot$   $\Box$  relation: Inclusion of intervals
  - · [-10, 7], (- $\infty$ , 20]  $\sqsubseteq$  [-20, 9], (- $\infty$ , + $\infty$ )
  - $\square$  and  $\square$ : union and intersection of intervals
  - [a, b]  $\nabla x$  [c, d] = [e, f], where
    - e = a if  $c \ge a$ , and  $e = -\infty$  otherwise
    - f = b if  $d \le b$ , and  $f = +\infty$  otherwise
  - $\nabla y$  similarly defined, and  $\nabla$  is simply ( $\nabla x$ ,  $\nabla y$ )
  - $\perp$  is empty interval of x and y
  - $\top$  is (- $\infty$ , + $\infty$ ), (- $\infty$ , + $\infty$ )

## **Analyzing our Program**

- L0: x = 0; y = 0;
- L1: while (x < 100) do
  - L2: x = x+1;
  - L3: y = y+1;
- L4: end while

## **Some Concluding Remarks**

- > Abstract interpretation: a fundamental technique for analysis of programs
- Choice of right abstraction crucial
- Often getting the right abstraction to begin with is very hard

Supratik Chakraborty, IIT Bombay

- Need automatic refinement techniques
- > Very active area of research

 $\geq$