
Knowledge Compilation for Boolean Functional
Synthesis

Supratik Chakraborty

Indian Institute of Technology Bombay

Joint work with S. Akshay, Jatin Arora, Ajith John, S. Krishna,
Divya Raghunathan, Shetal Shah

1

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.

Often easy to specify relationally;
Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs

E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2))

∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2)

∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)

∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs

Multiple solutions:
G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)
What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?

Interesting as long as ∃X∃Y ϕ(X,Y) = 1
F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)

Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)
What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?

Interesting as long as ∃X∃Y ϕ(X,Y) = 1
F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)
What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?

Interesting as long as ∃X∃Y ϕ(X,Y) = 1
F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)

What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?
Interesting as long as ∃X∃Y ϕ(X,Y) = 1
F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)
What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?

Interesting as long as ∃X∃Y ϕ(X,Y) = 1
F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)
What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?

Interesting as long as ∃X∃Y ϕ(X,Y) = 1

F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)
What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?

Interesting as long as ∃X∃Y ϕ(X,Y) = 1
F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

A challenging example: Bounded Integer Factorization

n-bit integers Y1,Y2; 2n bit integer X

Relational specification ϕ(X,Y1,Y2)

(X = Y1 ×[n] Y2) ∧ (Y1 6= 1[n]) ∧ (Y2 6= 1[n])

Synthesize F(X),G(X) s.t. ϕ(X,F(X),G(X)) = 1 for all
non-prime X.

For every non-prime X, finds non-trivial factors

From prime X, values of F (X) and G (X) inconsequential.

∃Y1,Y2 ϕ(X,Y1,Y2) = 0 for such X.

4

A challenging example: Bounded Integer Factorization

n-bit integers Y1,Y2; 2n bit integer X

Relational specification ϕ(X,Y1,Y2)

(X = Y1 ×[n] Y2) ∧ (Y1 6= 1[n]) ∧ (Y2 6= 1[n])

Synthesize F(X),G(X) s.t. ϕ(X,F(X),G(X)) = 1 for all
non-prime X.

For every non-prime X, finds non-trivial factors

From prime X, values of F (X) and G (X) inconsequential.

∃Y1,Y2 ϕ(X,Y1,Y2) = 0 for such X.

4

A challenging example: Bounded Integer Factorization

n-bit integers Y1,Y2; 2n bit integer X

Relational specification ϕ(X,Y1,Y2)

(X = Y1 ×[n] Y2) ∧ (Y1 6= 1[n]) ∧ (Y2 6= 1[n])

Synthesize F(X),G(X) s.t. ϕ(X,F(X),G(X)) = 1 for all
non-prime X.

ϕ
Algorithm

Bool. Func. Synth (BFnS)
F,G

X

Y1 Y2

For every non-prime X, finds non-trivial factors

From prime X, values of F (X) and G (X) inconsequential.

∃Y1,Y2 ϕ(X,Y1,Y2) = 0 for such X.

4

A challenging example: Bounded Integer Factorization

n-bit integers Y1,Y2; 2n bit integer X

Relational specification ϕ(X,Y1,Y2)

(X = Y1 ×[n] Y2) ∧ (Y1 6= 1[n]) ∧ (Y2 6= 1[n])

Synthesize F(X),G(X) s.t. ϕ(X,F(X),G(X)) = 1 for all
non-prime X.

ϕ
Algorithm

Bool. Func. Synth (BFnS)
F,G

X

Y1 Y2

For every non-prime X, finds non-trivial factors

From prime X, values of F (X) and G (X) inconsequential.

∃Y1,Y2 ϕ(X,Y1,Y2) = 0 for such X.

4

Applications of Boolean Functional Synthesis

1. Cryptanalysis: Interesting but hard for synthesis!

2. Disjunctive decomposition of symbolic transition relations
[Trivedi et al’02]

3. Quantifier elimination, of course!

∃Y ϕ(X,Y) ≡ ϕ(X,F(X))

4. Certifying QBF-SAT solvers

Nice survey of applications by Shukla et al’19

5. Reactive controller synthesis

Synthesizing moves to stay within winning region

6. Program synthesis

Combinatorial sketching [Solar-Lezama et al’06, Srivastava et
al’13]
Complete functional synthesis [Kuncak et al’10]

7. Repair/partial synthesis of circuits [Fujita et al’13]

5

Existing Approaches

1. Closely related to most general Boolean unifiers
Boole’1847, Lowenheim’1908, Macii’98

2. Extract Sk. functions from proof of validity of ∀X∃Yϕ(X,Y)
Bendetti’05, Jussilla et al’07, Balabanov et al’12, Heule et
al’14

3. Using templates: Solar-Lezama et al’06, Srivastava et al’13

4. Self-substitution + function composition: Jiang’09, Trivedi’03
5. Synthesis from special normal form representation of

specification
From ROBDDs: Tronci’98, Kukula et al’00, Kuncak et al’10,
Fried et al’16, Tabajara et al’17
From SynNNF: Akshay et al’09

6. Incremental determinization: Rabe et al’17,’18
7. Quantifier instantiation techniques in SMT solvers

Barrett et al’15, Bierre et al’17

8. Input/output component separation: C. et al’18
9. Guess/learn Skolem function candidate + check + repair

John et al’15, Akshay et al’17,’18,’20, Golia et al’20
6

Representation of Specification & Skolem Functions

Boolean circuit (DAG)

∧, ∨ and ¬ -labeled internal nodes, variable-labeled leaves

Specification ϕ(X,Y): (|X|+ |Y|)-input, 1-output circuit

Other forms (ROBDD/CNF/DNF ...) efficiently converted

Desired Sk. fn. vector F(X): |X|-input, |Y|-output circuit

No additional restrictions (ROBDD/CNF/DNF ...)

ϕ(X,Y)
Specification

¬

∨

∧

∨

¬

∧

xi xj yk yl

|X| + |Y| inputs︸ ︷︷ ︸

Boolean Functional

Synthesis
¬

∨

∧

∨

¬

∧

xi xj

|X| inputs︸ ︷︷ ︸

Fk(X) Fl(X)

|Y| Skolem Functions

7

Representation of Specification & Skolem Functions

Boolean circuit (DAG)

∧, ∨ and ¬ -labeled internal nodes, variable-labeled leaves

Specification ϕ(X,Y): (|X|+ |Y|)-input, 1-output circuit

Other forms (ROBDD/CNF/DNF ...) efficiently converted

Desired Sk. fn. vector F(X): |X|-input, |Y|-output circuit

No additional restrictions (ROBDD/CNF/DNF ...)

ϕ(X,Y)
Specification

¬

∨

∧

∨

¬

∧

xi xj yk yl

|X| + |Y| inputs︸ ︷︷ ︸

Boolean Functional

Synthesis
¬

∨

∧

∨

¬

∧

xi xj

|X| inputs︸ ︷︷ ︸

Fk(X) Fl(X)

|Y| Skolem Functions

7

Representation of Specification & Skolem Functions

Boolean circuit (DAG)

∧, ∨ and ¬ -labeled internal nodes, variable-labeled leaves

Specification ϕ(X,Y): (|X|+ |Y|)-input, 1-output circuit

Other forms (ROBDD/CNF/DNF ...) efficiently converted

Desired Sk. fn. vector F(X): |X|-input, |Y|-output circuit

No additional restrictions (ROBDD/CNF/DNF ...)

ϕ(X,Y)
Specification

¬

∨

∧

∨

¬

∧

xi xj yk yl

|X| + |Y| inputs︸ ︷︷ ︸

Boolean Functional

Synthesis
¬

∨

∧

∨

¬

∧

xi xj

|X| inputs︸ ︷︷ ︸

Fk(X) Fl(X)

|Y| Skolem Functions

7

How Hard is Boolean Functional Synthesis?

BFnS is NP-hard

Not surprising!

Can we always synthesize compact Skolem functions (perhaps
spending exponential time)?

Lower bound results in circuit-size typically refer to monotone
circuits [Razbarov 1985; Alon and Boppana 1987]

Monotone: Input 0→ 1 can’t cause output 1→ 0
Skolem functions need not be monotone (reason for hope?)

Bad news: [CAV2018]

Unless ΠP
2 = ΣP

2 , there exist ϕ(X,Y) for which Skolem
function sizes are super-polynomial in |ϕ|.
Unless non-uniform exponential-time hypothesis fails, there
exist ϕ(X,Y) for which Skolem function sizes are exponential
in |ϕ|.

Efficient algorithms for Boolean functional synthesis unlikely

8

How Hard is Boolean Functional Synthesis?

BFnS is NP-hard

Not surprising!

Can we always synthesize compact Skolem functions (perhaps
spending exponential time)?

Lower bound results in circuit-size typically refer to monotone
circuits [Razbarov 1985; Alon and Boppana 1987]

Monotone: Input 0→ 1 can’t cause output 1→ 0
Skolem functions need not be monotone (reason for hope?)

Bad news: [CAV2018]

Unless ΠP
2 = ΣP

2 , there exist ϕ(X,Y) for which Skolem
function sizes are super-polynomial in |ϕ|.
Unless non-uniform exponential-time hypothesis fails, there
exist ϕ(X,Y) for which Skolem function sizes are exponential
in |ϕ|.

Efficient algorithms for Boolean functional synthesis unlikely

8

How Hard is Boolean Functional Synthesis?

BFnS is NP-hard

Not surprising!

Can we always synthesize compact Skolem functions (perhaps
spending exponential time)?

Lower bound results in circuit-size typically refer to monotone
circuits [Razbarov 1985; Alon and Boppana 1987]

Monotone: Input 0→ 1 can’t cause output 1→ 0
Skolem functions need not be monotone (reason for hope?)

Bad news: [CAV2018]

Unless ΠP
2 = ΣP

2 , there exist ϕ(X,Y) for which Skolem
function sizes are super-polynomial in |ϕ|.
Unless non-uniform exponential-time hypothesis fails, there
exist ϕ(X,Y) for which Skolem function sizes are exponential
in |ϕ|.

Efficient algorithms for Boolean functional synthesis unlikely

8

How Hard is Boolean Functional Synthesis?

BFnS is NP-hard

Not surprising!

Can we always synthesize compact Skolem functions (perhaps
spending exponential time)?

Lower bound results in circuit-size typically refer to monotone
circuits [Razbarov 1985; Alon and Boppana 1987]

Monotone: Input 0→ 1 can’t cause output 1→ 0
Skolem functions need not be monotone (reason for hope?)

Bad news: [CAV2018]

Unless ΠP
2 = ΣP

2 , there exist ϕ(X,Y) for which Skolem
function sizes are super-polynomial in |ϕ|.
Unless non-uniform exponential-time hypothesis fails, there
exist ϕ(X,Y) for which Skolem function sizes are exponential
in |ϕ|.

Efficient algorithms for Boolean functional synthesis unlikely

8

How Hard is Boolean Functional Synthesis?

BFnS is NP-hard

Not surprising!

Can we always synthesize compact Skolem functions (perhaps
spending exponential time)?

Lower bound results in circuit-size typically refer to monotone
circuits [Razbarov 1985; Alon and Boppana 1987]

Monotone: Input 0→ 1 can’t cause output 1→ 0
Skolem functions need not be monotone (reason for hope?)

Bad news: [CAV2018]

Unless ΠP
2 = ΣP

2 , there exist ϕ(X,Y) for which Skolem
function sizes are super-polynomial in |ϕ|.
Unless non-uniform exponential-time hypothesis fails, there
exist ϕ(X,Y) for which Skolem function sizes are exponential
in |ϕ|.

Efficient algorithms for Boolean functional synthesis unlikely

8

How Hard is Boolean Functional Synthesis?

BFnS is NP-hard

Not surprising!

Can we always synthesize compact Skolem functions (perhaps
spending exponential time)?

Lower bound results in circuit-size typically refer to monotone
circuits [Razbarov 1985; Alon and Boppana 1987]

Monotone: Input 0→ 1 can’t cause output 1→ 0
Skolem functions need not be monotone (reason for hope?)

Bad news: [CAV2018]

Unless ΠP
2 = ΣP

2 , there exist ϕ(X,Y) for which Skolem
function sizes are super-polynomial in |ϕ|.

Unless non-uniform exponential-time hypothesis fails, there
exist ϕ(X,Y) for which Skolem function sizes are exponential
in |ϕ|.

Efficient algorithms for Boolean functional synthesis unlikely

8

How Hard is Boolean Functional Synthesis?

BFnS is NP-hard

Not surprising!

Can we always synthesize compact Skolem functions (perhaps
spending exponential time)?

Lower bound results in circuit-size typically refer to monotone
circuits [Razbarov 1985; Alon and Boppana 1987]

Monotone: Input 0→ 1 can’t cause output 1→ 0
Skolem functions need not be monotone (reason for hope?)

Bad news: [CAV2018]

Unless ΠP
2 = ΣP

2 , there exist ϕ(X,Y) for which Skolem
function sizes are super-polynomial in |ϕ|.
Unless non-uniform exponential-time hypothesis fails, there
exist ϕ(X,Y) for which Skolem function sizes are exponential
in |ϕ|.

Efficient algorithms for Boolean functional synthesis unlikely

8

How Hard is Boolean Functional Synthesis?

BFnS is NP-hard

Not surprising!

Can we always synthesize compact Skolem functions (perhaps
spending exponential time)?

Lower bound results in circuit-size typically refer to monotone
circuits [Razbarov 1985; Alon and Boppana 1987]

Monotone: Input 0→ 1 can’t cause output 1→ 0
Skolem functions need not be monotone (reason for hope?)

Bad news: [CAV2018]

Unless ΠP
2 = ΣP

2 , there exist ϕ(X,Y) for which Skolem
function sizes are super-polynomial in |ϕ|.
Unless non-uniform exponential-time hypothesis fails, there
exist ϕ(X,Y) for which Skolem function sizes are exponential
in |ϕ|.

Efficient algorithms for Boolean functional synthesis unlikely
8

Some good news [CAV2018, FMCAD2019]

If ϕ is represented in special normal form, synthesis solvable in
polynomial (in |ϕ|) time and space.

Synthesis Negation Normal Form (SynNNF)

Subsumes well-known forms like ROBDD, DNNF, ...

Caveat: (Conditional) Lower bounds imply compilation to
SynNNF inefficient in general.

Silver Lining: Experimental evidence shows (refined) SynNNF
common in practice

Compilation to ROBDD (using any variable order), FDD or
DNNF already yields SynNNF

Mature compilation tools exist for these normal forms
Efficient synthesis doesn’t require full capabilities of these
stronger normal forms.

9

Some good news [CAV2018, FMCAD2019]

If ϕ is represented in special normal form, synthesis solvable in
polynomial (in |ϕ|) time and space.

Synthesis Negation Normal Form (SynNNF)

Subsumes well-known forms like ROBDD, DNNF, ...

Caveat: (Conditional) Lower bounds imply compilation to
SynNNF inefficient in general.

Silver Lining: Experimental evidence shows (refined) SynNNF
common in practice

Compilation to ROBDD (using any variable order), FDD or
DNNF already yields SynNNF

Mature compilation tools exist for these normal forms
Efficient synthesis doesn’t require full capabilities of these
stronger normal forms.

9

Some good news [CAV2018, FMCAD2019]

If ϕ is represented in special normal form, synthesis solvable in
polynomial (in |ϕ|) time and space.

Synthesis Negation Normal Form (SynNNF)

Subsumes well-known forms like ROBDD, DNNF, ...

Caveat: (Conditional) Lower bounds imply compilation to
SynNNF inefficient in general.

Silver Lining: Experimental evidence shows (refined) SynNNF
common in practice

Compilation to ROBDD (using any variable order), FDD or
DNNF already yields SynNNF

Mature compilation tools exist for these normal forms
Efficient synthesis doesn’t require full capabilities of these
stronger normal forms.

9

Some good news [CAV2018, FMCAD2019]

If ϕ is represented in special normal form, synthesis solvable in
polynomial (in |ϕ|) time and space.

Synthesis Negation Normal Form (SynNNF)

Subsumes well-known forms like ROBDD, DNNF, ...

Caveat: (Conditional) Lower bounds imply compilation to
SynNNF inefficient in general.

Silver Lining: Experimental evidence shows (refined) SynNNF
common in practice

Compilation to ROBDD (using any variable order), FDD or
DNNF already yields SynNNF

Mature compilation tools exist for these normal forms
Efficient synthesis doesn’t require full capabilities of these
stronger normal forms.

9

Some good news [CAV2018, FMCAD2019]

If ϕ is represented in special normal form, synthesis solvable in
polynomial (in |ϕ|) time and space.

Synthesis Negation Normal Form (SynNNF)

Subsumes well-known forms like ROBDD, DNNF, ...

Caveat: (Conditional) Lower bounds imply compilation to
SynNNF inefficient in general.

Silver Lining: Experimental evidence shows (refined) SynNNF
common in practice

Compilation to ROBDD (using any variable order), FDD or
DNNF already yields SynNNF

Mature compilation tools exist for these normal forms

Efficient synthesis doesn’t require full capabilities of these
stronger normal forms.

9

Some good news [CAV2018, FMCAD2019]

If ϕ is represented in special normal form, synthesis solvable in
polynomial (in |ϕ|) time and space.

Synthesis Negation Normal Form (SynNNF)

Subsumes well-known forms like ROBDD, DNNF, ...

Caveat: (Conditional) Lower bounds imply compilation to
SynNNF inefficient in general.

Silver Lining: Experimental evidence shows (refined) SynNNF
common in practice

Compilation to ROBDD (using any variable order), FDD or
DNNF already yields SynNNF

Mature compilation tools exist for these normal forms
Efficient synthesis doesn’t require full capabilities of these
stronger normal forms.

9

Easy Case of Synthesis (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

10

Easy Case of Synthesis (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

— Set of all valuations of X.

10

Easy Case of Synthesis (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

Γ

— Can’t set y to 1 to satisfy ϕ: Γ(X) , ¬ϕ(X, y)[y 7→ 1]

E.g. If ϕ ≡ (x1 ∨ y) ∧ (x1 ∨ x2 ∨ ¬y), then
Γ(X) = ¬ ((x1 ∨ 1) ∧ (x1 ∨ x2 ∨ 0)) = ¬(x1 ∨ x2) = ¬x1 ∧ ¬x2

10

Easy Case of Synthesis (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

∆

— Can’t set y to 0 to satisfy ϕ: ∆(X) , ¬ϕ(X, y)[y 7→ 0]

E.g. If ϕ ≡ (x1 ∨ y) ∧ (x1 ∨ x2 ∨ ¬y), then
∆(X) = ¬ ((x1 ∨ 0) ∧ (x1 ∨ x2 ∨ 1)) = ¬x1

10

Easy Case of Synthesis (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

Γ

∆

— Can’t set y to 1 to satisfy ϕ: Γ(X) , ¬ϕ(X, y)[y 7→ 1]
— Can’t set y to 0 to satisfy ϕ: ∆(X) , ¬ϕ(X, y)[y 7→ 0]

10

Easy Case of Synthesis (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

Γ

∆

Lemma [Trivedi’03, Jiang’09,Fried et al’16]

Every Skolem function for y in ϕ must

Evaluate to 1 in (∆ \ Γ) and to 0 in (Γ \∆)

Be an interpolant of (∆ \ Γ) and (Γ \∆)

10

Easy Case of Synthesis (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

Γ

∆

— Specific interpolants of (∆ \ Γ) & (Γ \∆)

¬Γ , ϕ(X, y)[y 7→ 1] ≡ ϕ(X, 1)

∆ , ¬ϕ(X, y)[y 7→ 0] ≡ ¬ϕ(X, 0).

10

Easy Case of Synthesis (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

Γ

∆

— Specific interpolants of (∆ \ Γ) & (Γ \∆)

¬Γ , ϕ(X, y)[y 7→ 1] ≡ ϕ(X, 1): Easy solution for 1 output var

∆ , ¬ϕ(X, y)[y 7→ 0] ≡ ¬ϕ(X, 0).

10

What Happens If |Y | > 1?

Suppose ϕ(X,Y) ≡ (x1 ∨ x2 ∨ y1) ∧ (y1 ⊕ y2)

F2(X) must be ¬F1(X) in all solutions

F2(X) and F1(X) cannot be synthesized independently.

Can we reduce to a synthesis problem on 1 output?

Yes!!!
Informally, synthesize F2(X) s.t. “we can always find y1 to
satisfy ϕ(X, y1,F2(X))”
Formally, ϕ1(X, y2) ≡ ∃y1 ϕ(X, y1, y2) is the new spec

Synthesize F2(X) from ϕ1(X, y2)

Example: ϕ1(X, y2) ≡ (x1 ∨ x2 ∨ ¬y2)
F2(X) ≡ ϕ1(X, 1) ≡ (x1 ∨ x2)

Synthesize F1(X) from ϕ(X, y1,F2(X))

ϕ(X, y1, (x1 ∨ x2)) ≡ (x1 ∨ x2)⊕ y1
F1(X) ≡ ϕ(X, 1, (x1 ∨ x2)) ≡ ¬(x1 ∨ x2)

11

What Happens If |Y | > 1?

Suppose ϕ(X,Y) ≡ (x1 ∨ x2 ∨ y1) ∧ (y1 ⊕ y2)

F2(X) must be ¬F1(X) in all solutions

F2(X) and F1(X) cannot be synthesized independently.

Can we reduce to a synthesis problem on 1 output?

Yes!!!
Informally, synthesize F2(X) s.t. “we can always find y1 to
satisfy ϕ(X, y1,F2(X))”
Formally, ϕ1(X, y2) ≡ ∃y1 ϕ(X, y1, y2) is the new spec

Synthesize F2(X) from ϕ1(X, y2)

Example: ϕ1(X, y2) ≡ (x1 ∨ x2 ∨ ¬y2)
F2(X) ≡ ϕ1(X, 1) ≡ (x1 ∨ x2)

Synthesize F1(X) from ϕ(X, y1,F2(X))

ϕ(X, y1, (x1 ∨ x2)) ≡ (x1 ∨ x2)⊕ y1
F1(X) ≡ ϕ(X, 1, (x1 ∨ x2)) ≡ ¬(x1 ∨ x2)

11

What Happens If |Y | > 1?

Suppose ϕ(X,Y) ≡ (x1 ∨ x2 ∨ y1) ∧ (y1 ⊕ y2)

F2(X) must be ¬F1(X) in all solutions

F2(X) and F1(X) cannot be synthesized independently.

Can we reduce to a synthesis problem on 1 output?

Yes!!!
Informally, synthesize F2(X) s.t. “we can always find y1 to
satisfy ϕ(X, y1,F2(X))”
Formally, ϕ1(X, y2) ≡ ∃y1 ϕ(X, y1, y2) is the new spec

Synthesize F2(X) from ϕ1(X, y2)

Example: ϕ1(X, y2) ≡ (x1 ∨ x2 ∨ ¬y2)
F2(X) ≡ ϕ1(X, 1) ≡ (x1 ∨ x2)

Synthesize F1(X) from ϕ(X, y1,F2(X))

ϕ(X, y1, (x1 ∨ x2)) ≡ (x1 ∨ x2)⊕ y1
F1(X) ≡ ϕ(X, 1, (x1 ∨ x2)) ≡ ¬(x1 ∨ x2)

11

What Happens If |Y | > 1?

Suppose ϕ(X,Y) ≡ (x1 ∨ x2 ∨ y1) ∧ (y1 ⊕ y2)

F2(X) must be ¬F1(X) in all solutions

F2(X) and F1(X) cannot be synthesized independently.

Can we reduce to a synthesis problem on 1 output?

Yes!!!
Informally, synthesize F2(X) s.t. “we can always find y1 to
satisfy ϕ(X, y1,F2(X))”

Formally, ϕ1(X, y2) ≡ ∃y1 ϕ(X, y1, y2) is the new spec

Synthesize F2(X) from ϕ1(X, y2)

Example: ϕ1(X, y2) ≡ (x1 ∨ x2 ∨ ¬y2)
F2(X) ≡ ϕ1(X, 1) ≡ (x1 ∨ x2)

Synthesize F1(X) from ϕ(X, y1,F2(X))

ϕ(X, y1, (x1 ∨ x2)) ≡ (x1 ∨ x2)⊕ y1
F1(X) ≡ ϕ(X, 1, (x1 ∨ x2)) ≡ ¬(x1 ∨ x2)

11

What Happens If |Y | > 1?

Suppose ϕ(X,Y) ≡ (x1 ∨ x2 ∨ y1) ∧ (y1 ⊕ y2)

F2(X) must be ¬F1(X) in all solutions

F2(X) and F1(X) cannot be synthesized independently.

Can we reduce to a synthesis problem on 1 output?

Yes!!!
Informally, synthesize F2(X) s.t. “we can always find y1 to
satisfy ϕ(X, y1,F2(X))”
Formally, ϕ1(X, y2) ≡ ∃y1 ϕ(X, y1, y2) is the new spec

Synthesize F2(X) from ϕ1(X, y2)

Example: ϕ1(X, y2) ≡ (x1 ∨ x2 ∨ ¬y2)
F2(X) ≡ ϕ1(X, 1) ≡ (x1 ∨ x2)

Synthesize F1(X) from ϕ(X, y1,F2(X))

ϕ(X, y1, (x1 ∨ x2)) ≡ (x1 ∨ x2)⊕ y1
F1(X) ≡ ϕ(X, 1, (x1 ∨ x2)) ≡ ¬(x1 ∨ x2)

11

What Happens If |Y | > 1?

Suppose ϕ(X,Y) ≡ (x1 ∨ x2 ∨ y1) ∧ (y1 ⊕ y2)

F2(X) must be ¬F1(X) in all solutions

F2(X) and F1(X) cannot be synthesized independently.

Can we reduce to a synthesis problem on 1 output?

Yes!!!
Informally, synthesize F2(X) s.t. “we can always find y1 to
satisfy ϕ(X, y1,F2(X))”
Formally, ϕ1(X, y2) ≡ ∃y1 ϕ(X, y1, y2) is the new spec

Synthesize F2(X) from ϕ1(X, y2)

Example: ϕ1(X, y2) ≡ (x1 ∨ x2 ∨ ¬y2)

F2(X) ≡ ϕ1(X, 1) ≡ (x1 ∨ x2)

Synthesize F1(X) from ϕ(X, y1,F2(X))

ϕ(X, y1, (x1 ∨ x2)) ≡ (x1 ∨ x2)⊕ y1
F1(X) ≡ ϕ(X, 1, (x1 ∨ x2)) ≡ ¬(x1 ∨ x2)

11

What Happens If |Y | > 1?

Suppose ϕ(X,Y) ≡ (x1 ∨ x2 ∨ y1) ∧ (y1 ⊕ y2)

F2(X) must be ¬F1(X) in all solutions

F2(X) and F1(X) cannot be synthesized independently.

Can we reduce to a synthesis problem on 1 output?

Yes!!!
Informally, synthesize F2(X) s.t. “we can always find y1 to
satisfy ϕ(X, y1,F2(X))”
Formally, ϕ1(X, y2) ≡ ∃y1 ϕ(X, y1, y2) is the new spec

Synthesize F2(X) from ϕ1(X, y2)

Example: ϕ1(X, y2) ≡ (x1 ∨ x2 ∨ ¬y2)
F2(X) ≡ ϕ1(X, 1) ≡ (x1 ∨ x2)

Synthesize F1(X) from ϕ(X, y1,F2(X))

ϕ(X, y1, (x1 ∨ x2)) ≡ (x1 ∨ x2)⊕ y1
F1(X) ≡ ϕ(X, 1, (x1 ∨ x2)) ≡ ¬(x1 ∨ x2)

11

What Happens If |Y | > 1?

Suppose ϕ(X,Y) ≡ (x1 ∨ x2 ∨ y1) ∧ (y1 ⊕ y2)

F2(X) must be ¬F1(X) in all solutions

F2(X) and F1(X) cannot be synthesized independently.

Can we reduce to a synthesis problem on 1 output?

Yes!!!
Informally, synthesize F2(X) s.t. “we can always find y1 to
satisfy ϕ(X, y1,F2(X))”
Formally, ϕ1(X, y2) ≡ ∃y1 ϕ(X, y1, y2) is the new spec

Synthesize F2(X) from ϕ1(X, y2)

Example: ϕ1(X, y2) ≡ (x1 ∨ x2 ∨ ¬y2)
F2(X) ≡ ϕ1(X, 1) ≡ (x1 ∨ x2)

Synthesize F1(X) from ϕ(X, y1,F2(X))

ϕ(X, y1, (x1 ∨ x2)) ≡ (x1 ∨ x2)⊕ y1
F1(X) ≡ ϕ(X, 1, (x1 ∨ x2)) ≡ ¬(x1 ∨ x2)

11

What Happens If |Y | > 1?

Suppose ϕ(X,Y) ≡ (x1 ∨ x2 ∨ y1) ∧ (y1 ⊕ y2)

F2(X) must be ¬F1(X) in all solutions

F2(X) and F1(X) cannot be synthesized independently.

Can we reduce to a synthesis problem on 1 output?

Yes!!!
Informally, synthesize F2(X) s.t. “we can always find y1 to
satisfy ϕ(X, y1,F2(X))”
Formally, ϕ1(X, y2) ≡ ∃y1 ϕ(X, y1, y2) is the new spec

Synthesize F2(X) from ϕ1(X, y2)

Example: ϕ1(X, y2) ≡ (x1 ∨ x2 ∨ ¬y2)
F2(X) ≡ ϕ1(X, 1) ≡ (x1 ∨ x2)

Synthesize F1(X) from ϕ(X, y1,F2(X))

ϕ(X, y1, (x1 ∨ x2)) ≡ (x1 ∨ x2)⊕ y1

F1(X) ≡ ϕ(X, 1, (x1 ∨ x2)) ≡ ¬(x1 ∨ x2)

11

What Happens If |Y | > 1?

Suppose ϕ(X,Y) ≡ (x1 ∨ x2 ∨ y1) ∧ (y1 ⊕ y2)

F2(X) must be ¬F1(X) in all solutions

F2(X) and F1(X) cannot be synthesized independently.

Can we reduce to a synthesis problem on 1 output?

Yes!!!
Informally, synthesize F2(X) s.t. “we can always find y1 to
satisfy ϕ(X, y1,F2(X))”
Formally, ϕ1(X, y2) ≡ ∃y1 ϕ(X, y1, y2) is the new spec

Synthesize F2(X) from ϕ1(X, y2)

Example: ϕ1(X, y2) ≡ (x1 ∨ x2 ∨ ¬y2)
F2(X) ≡ ϕ1(X, 1) ≡ (x1 ∨ x2)

Synthesize F1(X) from ϕ(X, y1,F2(X))

ϕ(X, y1, (x1 ∨ x2)) ≡ (x1 ∨ x2)⊕ y1
F1(X) ≡ ϕ(X, 1, (x1 ∨ x2)) ≡ ¬(x1 ∨ x2)

11

Generalizing to Arbitrarily Many Outputs (Y)

Fix a linear ordering of outputs: y1 ≺ y2 ≺ · · · ≺ ym

Synthesize Fm(X) from ∃ y1 . . . ym−1 ϕ(X, y1, . . . ym−1 , ym)

Synthesize Fm−1(X) from

∃ y1 . . . ym−2 ϕ(X, y1, . . . ym−2 , ym−1, Fm(X))

...

Synthesize F1(X) from ϕ(X, y1, F2(X), . . .Fm(X))

Centrality of quantifying yi ’s & composing Fj(X)’s in given order

How do we compute

∃ y1, . . . yi ϕ(X, y1, . . . yi , Fi+1(X), . . . Fm(X)) efficiently?

12

Generalizing to Arbitrarily Many Outputs (Y)

Fix a linear ordering of outputs: y1 ≺ y2 ≺ · · · ≺ ym

Synthesize Fm(X) from ∃ y1 . . . ym−1 ϕ(X, y1, . . . ym−1 , ym)

Synthesize Fm−1(X) from

∃ y1 . . . ym−2 ϕ(X, y1, . . . ym−2 , ym−1, Fm(X))

...

Synthesize F1(X) from ϕ(X, y1, F2(X), . . .Fm(X))

Centrality of quantifying yi ’s & composing Fj(X)’s in given order

How do we compute

∃ y1, . . . yi ϕ(X, y1, . . . yi , Fi+1(X), . . . Fm(X)) efficiently?

12

Generalizing to Arbitrarily Many Outputs (Y)

Fix a linear ordering of outputs: y1 ≺ y2 ≺ · · · ≺ ym

Synthesize Fm(X) from ∃ y1 . . . ym−1 ϕ(X, y1, . . . ym−1 , ym)

Synthesize Fm−1(X) from

∃ y1 . . . ym−2 ϕ(X, y1, . . . ym−2 , ym−1, Fm(X))

...

Synthesize F1(X) from ϕ(X, y1, F2(X), . . .Fm(X))

Centrality of quantifying yi ’s & composing Fj(X)’s in given order

How do we compute

∃ y1, . . . yi ϕ(X, y1, . . . yi , Fi+1(X), . . . Fm(X)) efficiently?

12

Generalizing to Arbitrarily Many Outputs (Y)

Fix a linear ordering of outputs: y1 ≺ y2 ≺ · · · ≺ ym

Synthesize Fm(X) from ∃ y1 . . . ym−1 ϕ(X, y1, . . . ym−1 , ym)

Synthesize Fm−1(X) from

∃ y1 . . . ym−2 ϕ(X, y1, . . . ym−2 , ym−1, Fm(X))

...

Synthesize F1(X) from ϕ(X, y1, F2(X), . . .Fm(X))

Centrality of quantifying yi ’s & composing Fj(X)’s in given order

How do we compute

∃ y1, . . . yi ϕ(X, y1, . . . yi , Fi+1(X), . . . Fm(X)) efficiently?

12

Generalizing to Arbitrarily Many Outputs (Y)

Fix a linear ordering of outputs: y1 ≺ y2 ≺ · · · ≺ ym

Synthesize Fm(X) from ∃ y1 . . . ym−1 ϕ(X, y1, . . . ym−1 , ym)

Synthesize Fm−1(X) from

∃ y1 . . . ym−2 ϕ(X, y1, . . . ym−2 , ym−1, Fm(X))

...

Synthesize F1(X) from ϕ(X, y1, F2(X), . . .Fm(X))

Centrality of quantifying yi ’s & composing Fj(X)’s in given order

How do we compute

∃ y1, . . . yi ϕ(X, y1, . . . yi , Fi+1(X), . . . Fm(X)) efficiently?

12

Generalizing to Arbitrarily Many Outputs (Y)

Fix a linear ordering of outputs: y1 ≺ y2 ≺ · · · ≺ ym

Synthesize Fm(X) from ∃ y1 . . . ym−1 ϕ(X, y1, . . . ym−1 , ym)

Synthesize Fm−1(X) from

∃ y1 . . . ym−2 ϕ(X, y1, . . . ym−2 , ym−1, Fm(X))

...

Synthesize F1(X) from ϕ(X, y1, F2(X), . . .Fm(X))

Centrality of quantifying yi ’s & composing Fj(X)’s in given order

How do we compute

∃ y1, . . . yi ϕ(X, y1, . . . yi , Fi+1(X), . . . Fm(X)) efficiently?

12

Generalizing to Arbitrarily Many Outputs (Y)

Fix a linear ordering of outputs: y1 ≺ y2 ≺ · · · ≺ ym

Synthesize Fm(X) from ∃ y1 . . . ym−1 ϕ(X, y1, . . . ym−1 , ym)

Synthesize Fm−1(X) from

∃ y1 . . . ym−2 ϕ(X, y1, . . . ym−2 , ym−1, Fm(X))

...

Synthesize F1(X) from ϕ(X, y1, F2(X), . . .Fm(X))

Centrality of quantifying yi ’s & composing Fj(X)’s in given order

How do we compute

∃ y1, . . . yi ϕ(X, y1, . . . yi , Fi+1(X), . . . Fm(X)) efficiently?

12

Synthesis from ROBDDs

Tronci’98, Kukula et al’00, Kuncak et al’10, Fried et al’16,
Tabajara et al’17

Spec ϕ(X,Y) as ROBDD, Skolem functions as ROBDDs

Key idea: Input (X) first ordering of variables

Allows easy quantification of yi ’s and composition of Fj(X)’s in
BDD order of yi ’s

0

1

y1 y1

y2 y2 y2

x2 x2

x1

∃y1ϕ(X,Y) = y2
F2(X) = 1

ϕ(X, y1,F2(X)) = y1
F1(X) = 1

13

Synthesis from ROBDDs

Tronci’98, Kukula et al’00, Kuncak et al’10, Fried et al’16,
Tabajara et al’17

Spec ϕ(X,Y) as ROBDD, Skolem functions as ROBDDs

Key idea: Input (X) first ordering of variables

Allows easy quantification of yi ’s and composition of Fj(X)’s in
BDD order of yi ’s

0

1

y1 y1

y2 y2 y2

x2 x2

x1

∃y1ϕ(X,Y) = y2
F2(X) = 1

ϕ(X, y1,F2(X)) = y1
F1(X) = 1

13

Synthesis from ROBDDs

Tronci’98, Kukula et al’00, Kuncak et al’10, Fried et al’16,
Tabajara et al’17

Spec ϕ(X,Y) as ROBDD, Skolem functions as ROBDDs

Key idea: Input (X) first ordering of variables

Allows easy quantification of yi ’s and composition of Fj(X)’s in
BDD order of yi ’s

0

1

y1 y1

y2 y2 y2

x2 x2

x1

∃y1ϕ(X,Y) = y2
F2(X) = 1

ϕ(X, y1,F2(X)) = y1
F1(X) = 1

13

Synthesis from ROBDDs

Tronci’98, Kukula et al’00, Kuncak et al’10, Fried et al’16,
Tabajara et al’17

Spec ϕ(X,Y) as ROBDD, Skolem functions as ROBDDs

Key idea: Input (X) first ordering of variables

Allows easy quantification of yi ’s and composition of Fj(X)’s in
BDD order of yi ’s

0

1

y1 y1

y2 y2 y2

x2 x2

x1

∃y1ϕ(X,Y) = y2
F2(X) = 1

ϕ(X, y1,F2(X)) = y1
F1(X) = 1

13

Synthesis from ROBDDs

Tronci’98, Kukula et al’00, Kuncak et al’10, Fried et al’16,
Tabajara et al’17

Spec ϕ(X,Y) as ROBDD, Skolem functions as ROBDDs

Key idea: Input (X) first ordering of variables

Allows easy quantification of yi ’s and composition of Fj(X)’s in
BDD order of yi ’s

0

1

y1 y1

y2 y2 y2

x2 x2

x1

∃y1ϕ(X,Y) = y2
F2(X) = 1

ϕ(X, y1,F2(X)) = y1
F1(X) = 1

13

Synthesis from ROBDDs

Tronci’98, Kukula et al’00, Kuncak et al’10, Fried et al’16,
Tabajara et al’17

Spec ϕ(X,Y) as ROBDD, Skolem functions as ROBDDs

Key idea: Input (X) first ordering of variables

Allows easy quantification of yi ’s and composition of Fj(X)’s in
BDD order of yi ’s

0

1

y1 y1

y2 y2 y2

x2 x2

x1

∃y1ϕ(X,Y) = y2
F2(X) = 1

ϕ(X, y1,F2(X)) = y1
F1(X) = 1

13

Synthesis from ROBDDs

Tronci’98, Kukula et al’00, Kuncak et al’10, Fried et al’16,
Tabajara et al’17
Spec ϕ(X,Y) as ROBDD, Skolem functions as ROBDDs
Key idea: Input (X) first ordering of variables

Allows easy quantification of yi ’s and composition of Fj(X)’s in
BDD order of yi ’s

0

1

y1 y1

y2 y2 y2

x2 x2

x1

∃y1ϕ(X,Y) = y2
F2(X) = 1

ϕ(X, y1,F2(X)) = y1
F1(X) = 1

Significant optimizations in Fried et al’16, Tabajara et al’17

Spec ROBDD can be exp. larger with input-first ordering
ϕ(X,Y) ≡

∧n
i=1(xi ⇔ yi)

Size Ω(2n) with input-first ordering, Θ(n) with interleaved
input-output ordering,

14

Synthesis from ROBDDs

Tronci’98, Kukula et al’00, Kuncak et al’10, Fried et al’16,
Tabajara et al’17
Spec ϕ(X,Y) as ROBDD, Skolem functions as ROBDDs
Key idea: Input (X) first ordering of variables

Allows easy quantification of yi ’s and composition of Fj(X)’s in
BDD order of yi ’s

0

1

y1 y1

y2 y2 y2

x2 x2

x1

∃y1ϕ(X,Y) = y2
F2(X) = 1

ϕ(X, y1,F2(X)) = y1
F1(X) = 1

Significant optimizations in Fried et al’16, Tabajara et al’17
Spec ROBDD can be exp. larger with input-first ordering

ϕ(X,Y) ≡
∧n

i=1(xi ⇔ yi)
Size Ω(2n) with input-first ordering, Θ(n) with interleaved
input-output ordering,

14

Going beyond Input-First Ordered ROBDDs

ROBDDs have much more structure than we need.

What if we’re fine with Skolem functions as circuits, not as
ROBDDs?

Can we avoid exponential blow-ups?

What if the best variable order for the specification is not
input-first?

Can we synthesize efficiently for such specs?

15

Going beyond Input-First Ordered ROBDDs

ROBDDs have much more structure than we need.

What if we’re fine with Skolem functions as circuits, not as
ROBDDs?

Can we avoid exponential blow-ups?

What if the best variable order for the specification is not
input-first?

Can we synthesize efficiently for such specs?

15

Going beyond Input-First Ordered ROBDDs

ROBDDs have much more structure than we need.

What if we’re fine with Skolem functions as circuits, not as
ROBDDs?

Can we avoid exponential blow-ups?

What if the best variable order for the specification is not
input-first?

Can we synthesize efficiently for such specs?

15

Decomposable NNF (DNNF) and weak DNNF are better!

z z/¬z

ϕ(X,Y) in DNNF except on X

∧

z is yj
Disallowed paths

yi ¬yi

ϕ(X,Y) in wDNNF except on X

∧

(Dis)allowed paths

yl yl

X
∧

¬yk ¬yk
xj xj/¬xj

16

Decomposable NNF (DNNF) and weak DNNF are better!

z z/¬z

ϕ(X,Y) in DNNF except on X

∧

z is yj
Disallowed paths

yi ¬yi

ϕ(X,Y) in wDNNF except on X

∧

(Dis)allowed paths

yl yl

X
∧

¬yk ¬yk
xj xj/¬xj

16

Decomposable NNF (DNNF) and weak DNNF are better!

z z/¬z

ϕ(X,Y) in DNNF except on X

∧

z is yj
Disallowed paths

yi ¬yi

ϕ(X,Y) in wDNNF except on X

∧

(Dis)allowed paths

yl yl

X
∧

¬yk ¬yk
xj xj/¬xj

16

Decomposable NNF (DNNF) and weak DNNF are better!

z z/¬z

ϕ(X,Y) in DNNF except on X

∧

z is yj
Disallowed paths

yi ¬yi

ϕ(X,Y) in wDNNF except on X

∧

(Dis)allowed paths

yl yl

X
∧

¬yk ¬yk

xj xj/¬xj

16

Decomposable NNF (DNNF) and weak DNNF are better!

z z/¬z

ϕ(X,Y) in DNNF except on X

∧

z is yj
Disallowed paths

yi ¬yi

ϕ(X,Y) in wDNNF except on X

∧

(Dis)allowed paths

yl yl

X
∧

¬yk ¬yk
xj xj/¬xj

16

Decomposable NNF (DNNF) and weak DNNF are better!

z z/¬z

ϕ(X,Y) in DNNF except on X

∧

z is yj
Disallowed paths

yi ¬yi

ϕ(X,Y) in wDNNF except on X

∧

(Dis)allowed paths

yl yl

X
∧

¬yk ¬yk
xj xj/¬xj

Allows quantification of yi ’s and composition of Fj ’s in arbitrary
order

17

Current Talk

Is there a weaker (than wDNNF) representation form of ϕ
that guarantees poly-time (in |ϕ|) synthesis?

YES: Synthesis Negation Normal Form (SynNNF)

Subsumes and exponentially more succinct than
BDD/DNNF/wDNNF/...

Can we synthesize Skolem functions from a “simplified”
specification?

YES: Folklore wisdom

Formalized as refinement w.r.t. synthesis

Can we algorithmically compile ϕ to a refined SynNNF spec
ϕ̃?

YES: Super-polynomial time in worst-case

Practical performance promising!

18

Current Talk

Is there a weaker (than wDNNF) representation form of ϕ
that guarantees poly-time (in |ϕ|) synthesis?

YES: Synthesis Negation Normal Form (SynNNF)

Subsumes and exponentially more succinct than
BDD/DNNF/wDNNF/...

Can we synthesize Skolem functions from a “simplified”
specification?

YES: Folklore wisdom

Formalized as refinement w.r.t. synthesis

Can we algorithmically compile ϕ to a refined SynNNF spec
ϕ̃?

YES: Super-polynomial time in worst-case

Practical performance promising!

18

Current Talk

Is there a weaker (than wDNNF) representation form of ϕ
that guarantees poly-time (in |ϕ|) synthesis?

YES: Synthesis Negation Normal Form (SynNNF)

Subsumes and exponentially more succinct than
BDD/DNNF/wDNNF/...

Can we synthesize Skolem functions from a “simplified”
specification?

YES: Folklore wisdom

Formalized as refinement w.r.t. synthesis

Can we algorithmically compile ϕ to a refined SynNNF spec
ϕ̃?

YES: Super-polynomial time in worst-case

Practical performance promising!

18

Current Talk

Is there a weaker (than wDNNF) representation form of ϕ
that guarantees poly-time (in |ϕ|) synthesis?

YES: Synthesis Negation Normal Form (SynNNF)

Subsumes and exponentially more succinct than
BDD/DNNF/wDNNF/...

Can we synthesize Skolem functions from a “simplified”
specification?

YES: Folklore wisdom

Formalized as refinement w.r.t. synthesis

Can we algorithmically compile ϕ to a refined SynNNF spec
ϕ̃?

YES: Super-polynomial time in worst-case

Practical performance promising!

18

Current Talk

Is there a weaker (than wDNNF) representation form of ϕ
that guarantees poly-time (in |ϕ|) synthesis?

YES: Synthesis Negation Normal Form (SynNNF)

Subsumes and exponentially more succinct than
BDD/DNNF/wDNNF/...

Can we synthesize Skolem functions from a “simplified”
specification?

YES: Folklore wisdom

Formalized as refinement w.r.t. synthesis

Can we algorithmically compile ϕ to a refined SynNNF spec
ϕ̃?

YES: Super-polynomial time in worst-case

Practical performance promising!

18

Current Talk

Is there a weaker (than wDNNF) representation form of ϕ
that guarantees poly-time (in |ϕ|) synthesis?

YES: Synthesis Negation Normal Form (SynNNF)

Subsumes and exponentially more succinct than
BDD/DNNF/wDNNF/...

Can we synthesize Skolem functions from a “simplified”
specification?

YES: Folklore wisdom

Formalized as refinement w.r.t. synthesis

Can we algorithmically compile ϕ to a refined SynNNF spec
ϕ̃?

YES: Super-polynomial time in worst-case

Practical performance promising!
18

Classical Knowledge Compilation

Wikipedia

... a family of approaches for addressing the intractability of a
number of artificial intelligence problems. A propositional model is
compiled in an off-line phase in order to support some queries in
polytime.

Compilerϕ

CNF

Circuit...

ϕ̂

BDD/DNNF/...

Polytime Engine

Model Count
Consistency

All Models...

19

Classical Knowledge Compilation

Wikipedia

... a family of approaches for addressing the intractability of a
number of artificial intelligence problems. A propositional model is
compiled in an off-line phase in order to support some queries in
polytime.

Compilerϕ

CNF

Circuit...

ϕ̂

BDD/DNNF/...

Polytime Engine

Model Count
Consistency

All Models...

19

Knowledge Compilation for Synthesis

Our Definition

... a family of approaches for addressing the intractability of
synthesis problems. A propositional model is compiled in an
off-line phase in order to support some queries in polytime.

Compilerϕ

CNF

Circuit...

ϕ̂

Refined SynNNF

Polytime Engine

Skolem functions
Inputs X

Outputs Y

20

Knowledge Compilation for Synthesis

Our Definition

... a family of approaches for addressing the intractability of
synthesis problems. A propositional model is compiled in an
off-line phase in order to support some queries in polytime.

Compilerϕ

CNF

Circuit...

ϕ̂

Refined SynNNF

Polytime Engine

Skolem functions
Inputs X

Outputs Y

20

Towards a normal form for efficient synthesis

Represent ϕ(x1, .., xn, y1, .., ym) as NNF DAG

Boolean circuit, ∧ and ∨ at internal nodes, ¬ only at leaves

ϕ : ∨

∨

y1 ∧

¬y2 ¬x1

∧

¬y1 ∨

x2 ¬x1

21

Towards a normal form for efficient synthesis

Represent ϕ(x1, .., xn, y1, .., ym) as NNF DAG

Boolean circuit, ∧ and ∨ at internal nodes, ¬ only at leaves

ϕ : ∨

∨

y1 ∧

¬y2 ¬x1

∧

¬y1 ∨

x2 ¬x1

21

Towards a normal form for efficient synthesis

Represent ϕ(x1, .., xn, y1, .., ym) as NNF DAG

Boolean circuit, ∧ and ∨ at internal nodes, ¬ only at leaves

ϕ : ∨

∨

y1 ∧

¬y2 ¬x1

∧

¬y1 ∨

x2 ¬x1

22

Towards a normal form for efficient synthesis

Represent ϕ(x1, .., xn, y1, .., ym) as NNF DAG

Boolean circuit, ∧ and ∨ at internal nodes, ¬ only at leaves

ϕ̂ : ∨

∨

y1 ∧

y2 ¬x1

∧

y1 ∨

x2 ¬x1

Positive form of specification:
ϕ̂(x1, . . . xn, y1, . . . ym, y1, . . . ym)

Monotone w.r.t all yi and yi

23

Simple properties of ϕ̂

ϕ̂ : ∨

∨

y1 = 0 ∧

¬y2 ¬x1

∧

y1 = 0 ∨

x2 ¬x1

⇒ ∃y1ϕ ⇒

ϕ̂ : ∨

∨

y1 = 1 ∧

¬y2 ¬x1

∧

y1 = 1 ∨

x2 ¬x1

24

Simple properties of ϕ̂

ϕ̂ : ∨

∨

y1 = 0 ∧

y2 = 0 ¬x1

∧

y1 = 0 ∨

x2 ¬x1

⇒ ∃y1y2ϕ⇒

ϕ̂ : ∨

∨

y1 = 1 ∧

y2 = 1 ¬x1

∧

y1 = 1 ∨

x2 ¬x1

ϕ̂(x1...xn,

i︷︸︸︷
0..0 , yi+1...ym,

i︷︸︸︷
0..0 ,¬yi+1...¬ym)⇒ ∃y1...yi ϕ(...)

ϕ̂(x1...xn,

i︷︸︸︷
1..1 , yi+1...ym,

i︷︸︸︷
1..1 ,¬yi+1...¬ym)⇐ ∃y1...yi ϕ(...)

25

Simple properties of ϕ̂

ϕ̂ : ∨

∨

y1 = 0 ∧

y2 = 0 ¬x1

∧

y1 = 0 ∨

x2 ¬x1

⇒ ∃y1y2ϕ⇒

ϕ̂ : ∨

∨

y1 = 1 ∧

y2 = 1 ¬x1

∧

y1 = 1 ∨

x2 ¬x1

ϕ̂(x1...xn,

i︷︸︸︷
0..0 , yi+1...ym,

i︷︸︸︷
0..0 ,¬yi+1...¬ym)⇒ ∃y1...yi ϕ(...)

ϕ̂(x1...xn,

i︷︸︸︷
1..1 , yi+1...ym,

i︷︸︸︷
1..1 ,¬yi+1...¬ym)⇐ ∃y1...yi ϕ(...)

25

Iterated reducts of ϕ̂

Given

Positive form of spec ϕ̂(x1, . . . xn, y1, . . . ym, y1, . . . ym)

Linear order of outputs y1 ≺ · · · ≺ ym

Define [ϕ̂]i as

ϕ̂(x1, . . . xn,

i−1︷︸︸︷
1..1 , yi, yi+1 . . . ym,

i−1︷︸︸︷
1..1 , yi, ¬yi+1 . . .¬ym).

ϕ̂ : ∨

∨

y1 ∧

¬y2 ¬x1

∧

y1 ∨

x2 ¬x1

[ϕ̂]1(x1, x2, y1, y2, y1)

aaaaaaaaaaaa

ϕ̂ : ∨

∨

y1 = 1 ∧

y2 ¬x1

∧

y1 = 1 ∨

x2 ¬x1

[ϕ̂]2(x1, x2, y2, y2)

26

Iterated reducts of ϕ̂

Given

Positive form of spec ϕ̂(x1, . . . xn, y1, . . . ym, y1, . . . ym)

Linear order of outputs y1 ≺ · · · ≺ ym

Define [ϕ̂]i as

ϕ̂(x1, . . . xn,

i−1︷︸︸︷
1..1 , yi, yi+1 . . . ym,

i−1︷︸︸︷
1..1 , yi, ¬yi+1 . . .¬ym).

ϕ̂ : ∨

∨

y1 ∧

¬y2 ¬x1

∧

y1 ∨

x2 ¬x1

[ϕ̂]1(x1, x2, y1, y2, y1)

aaaaaaaaaaaa

ϕ̂ : ∨

∨

y1 = 1 ∧

y2 ¬x1

∧

y1 = 1 ∨

x2 ¬x1

[ϕ̂]2(x1, x2, y2, y2)

26

Iterated reducts of ϕ̂

Given

Positive form of spec ϕ̂(x1, . . . xn, y1, . . . ym, y1, . . . ym)

Linear order of outputs y1 ≺ · · · ≺ ym

Define [ϕ̂]i as

ϕ̂(x1, . . . xn,

i−1︷︸︸︷
1..1 , yi, yi+1 . . . ym,

i−1︷︸︸︷
1..1 , yi, ¬yi+1 . . .¬ym).

ϕ̂ : ∨

∨

y1 ∧

¬y2 ¬x1

∧

y1 ∨

x2 ¬x1

[ϕ̂]1(x1, x2, y1, y2, y1)

aaaaaaaaaaaa

ϕ̂ : ∨

∨

y1 = 1 ∧

y2 ¬x1

∧

y1 = 1 ∨

x2 ¬x1

[ϕ̂]2(x1, x2, y2, y2)

26

Iterated reducts of ϕ̂

Given

Positive form of spec ϕ̂(x1, . . . xn, y1, . . . ym, y1, . . . ym)

Linear order of outputs y1 ≺ · · · ≺ ym

Define [ϕ̂]i as

ϕ̂(x1, . . . xn,

i−1︷︸︸︷
1..1 , yi, yi+1 . . . ym,

i−1︷︸︸︷
1..1 , yi, ¬yi+1 . . .¬ym).

ϕ̂ : ∨

∨

y1 ∧

¬y2 ¬x1

∧

y1 ∨

x2 ¬x1

[ϕ̂]1(x1, x2, y1, y2, y1)

aaaaaaaaaaaa

ϕ̂ : ∨

∨

y1 = 1 ∧

y2 ¬x1

∧

y1 = 1 ∨

x2 ¬x1

[ϕ̂]2(x1, x2, y2, y2)

26

Iterated reducts and existential quantification

Already seen ∃y1ϕ(X,Y) ⇒ ϕ̂ |y1=1,y1=1

⇔ [ϕ̂]1 |y1=1,y1=1

Under what conditions is the implication strict?

When do we have ∃y1ϕ(X,Y) 6⇐ [ϕ̂]1 |y1=1,y1=1 ?

Exactly when

[ϕ̂]1 |y1=1,y1=1 = 1
∃y1ϕ(X,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

ϕ |y1=1 ⇔ [ϕ̂]1 |y1=1,y1=0 = 0
ϕ |y1=0 ⇔ [ϕ̂]1 |y1=0,y1=1 = 0
(By monotoniciy of ϕ̂ w.r.t y1 and y1) [ϕ̂]1 |y1=0,y1=0 = 0

In other words, when [ϕ̂]1 “behaves like” y1 ∧ y1.

Insight

∃y1ϕ(X,Y) ⇔ [ϕ̂]1 |y1=1,y1=1 for all X, y2, . . . ym iff
¬∃X, y2, . . . ym

(
[ϕ̂]1 ⇔ y1 ∧ y1

)
.

Inductively, ∃y1, . . . yiϕ(X,Y) ⇔ [ϕ̂]i |yi=1,yi=1 iff
¬∃X, yi+1, . . . ym

(
[ϕ̂]i ⇔ yi ∧ yi

)
.

27

Iterated reducts and existential quantification

Already seen ∃y1ϕ(X,Y) ⇒ ϕ̂ |y1=1,y1=1 ⇔ [ϕ̂]1 |y1=1,y1=1

Under what conditions is the implication strict?

When do we have ∃y1ϕ(X,Y) 6⇐ [ϕ̂]1 |y1=1,y1=1 ?

Exactly when

[ϕ̂]1 |y1=1,y1=1 = 1
∃y1ϕ(X,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

ϕ |y1=1 ⇔ [ϕ̂]1 |y1=1,y1=0 = 0
ϕ |y1=0 ⇔ [ϕ̂]1 |y1=0,y1=1 = 0
(By monotoniciy of ϕ̂ w.r.t y1 and y1) [ϕ̂]1 |y1=0,y1=0 = 0

In other words, when [ϕ̂]1 “behaves like” y1 ∧ y1.

Insight

∃y1ϕ(X,Y) ⇔ [ϕ̂]1 |y1=1,y1=1 for all X, y2, . . . ym iff
¬∃X, y2, . . . ym

(
[ϕ̂]1 ⇔ y1 ∧ y1

)
.

Inductively, ∃y1, . . . yiϕ(X,Y) ⇔ [ϕ̂]i |yi=1,yi=1 iff
¬∃X, yi+1, . . . ym

(
[ϕ̂]i ⇔ yi ∧ yi

)
.

27

Iterated reducts and existential quantification

Already seen ∃y1ϕ(X,Y) ⇒ ϕ̂ |y1=1,y1=1 ⇔ [ϕ̂]1 |y1=1,y1=1

Under what conditions is the implication strict?

When do we have ∃y1ϕ(X,Y) 6⇐ [ϕ̂]1 |y1=1,y1=1 ?

Exactly when

[ϕ̂]1 |y1=1,y1=1 = 1
∃y1ϕ(X,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

ϕ |y1=1 ⇔ [ϕ̂]1 |y1=1,y1=0 = 0
ϕ |y1=0 ⇔ [ϕ̂]1 |y1=0,y1=1 = 0
(By monotoniciy of ϕ̂ w.r.t y1 and y1) [ϕ̂]1 |y1=0,y1=0 = 0

In other words, when [ϕ̂]1 “behaves like” y1 ∧ y1.

Insight

∃y1ϕ(X,Y) ⇔ [ϕ̂]1 |y1=1,y1=1 for all X, y2, . . . ym iff
¬∃X, y2, . . . ym

(
[ϕ̂]1 ⇔ y1 ∧ y1

)
.

Inductively, ∃y1, . . . yiϕ(X,Y) ⇔ [ϕ̂]i |yi=1,yi=1 iff
¬∃X, yi+1, . . . ym

(
[ϕ̂]i ⇔ yi ∧ yi

)
.

27

Iterated reducts and existential quantification

Already seen ∃y1ϕ(X,Y) ⇒ ϕ̂ |y1=1,y1=1 ⇔ [ϕ̂]1 |y1=1,y1=1

Under what conditions is the implication strict?

When do we have ∃y1ϕ(X,Y) 6⇐ [ϕ̂]1 |y1=1,y1=1 ?

Exactly when

[ϕ̂]1 |y1=1,y1=1 = 1
∃y1ϕ(X,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

ϕ |y1=1 ⇔ [ϕ̂]1 |y1=1,y1=0 = 0
ϕ |y1=0 ⇔ [ϕ̂]1 |y1=0,y1=1 = 0
(By monotoniciy of ϕ̂ w.r.t y1 and y1) [ϕ̂]1 |y1=0,y1=0 = 0

In other words, when [ϕ̂]1 “behaves like” y1 ∧ y1.

Insight

∃y1ϕ(X,Y) ⇔ [ϕ̂]1 |y1=1,y1=1 for all X, y2, . . . ym iff
¬∃X, y2, . . . ym

(
[ϕ̂]1 ⇔ y1 ∧ y1

)
.

Inductively, ∃y1, . . . yiϕ(X,Y) ⇔ [ϕ̂]i |yi=1,yi=1 iff
¬∃X, yi+1, . . . ym

(
[ϕ̂]i ⇔ yi ∧ yi

)
.

27

Iterated reducts and existential quantification

Already seen ∃y1ϕ(X,Y) ⇒ ϕ̂ |y1=1,y1=1 ⇔ [ϕ̂]1 |y1=1,y1=1

Under what conditions is the implication strict?

When do we have ∃y1ϕ(X,Y) 6⇐ [ϕ̂]1 |y1=1,y1=1 ?

Exactly when

[ϕ̂]1 |y1=1,y1=1 = 1
∃y1ϕ(X,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

ϕ |y1=1 ⇔ [ϕ̂]1 |y1=1,y1=0 = 0
ϕ |y1=0 ⇔ [ϕ̂]1 |y1=0,y1=1 = 0
(By monotoniciy of ϕ̂ w.r.t y1 and y1) [ϕ̂]1 |y1=0,y1=0 = 0

In other words, when [ϕ̂]1 “behaves like” y1 ∧ y1.

Insight

∃y1ϕ(X,Y) ⇔ [ϕ̂]1 |y1=1,y1=1 for all X, y2, . . . ym iff
¬∃X, y2, . . . ym

(
[ϕ̂]1 ⇔ y1 ∧ y1

)
.

Inductively, ∃y1, . . . yiϕ(X,Y) ⇔ [ϕ̂]i |yi=1,yi=1 iff
¬∃X, yi+1, . . . ym

(
[ϕ̂]i ⇔ yi ∧ yi

)
.

27

Iterated reducts and existential quantification

Already seen ∃y1ϕ(X,Y) ⇒ ϕ̂ |y1=1,y1=1 ⇔ [ϕ̂]1 |y1=1,y1=1

Under what conditions is the implication strict?

When do we have ∃y1ϕ(X,Y) 6⇐ [ϕ̂]1 |y1=1,y1=1 ?

Exactly when

[ϕ̂]1 |y1=1,y1=1 = 1
∃y1ϕ(X,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

ϕ |y1=1 ⇔ [ϕ̂]1 |y1=1,y1=0 = 0
ϕ |y1=0 ⇔ [ϕ̂]1 |y1=0,y1=1 = 0

(By monotoniciy of ϕ̂ w.r.t y1 and y1) [ϕ̂]1 |y1=0,y1=0 = 0

In other words, when [ϕ̂]1 “behaves like” y1 ∧ y1.

Insight

∃y1ϕ(X,Y) ⇔ [ϕ̂]1 |y1=1,y1=1 for all X, y2, . . . ym iff
¬∃X, y2, . . . ym

(
[ϕ̂]1 ⇔ y1 ∧ y1

)
.

Inductively, ∃y1, . . . yiϕ(X,Y) ⇔ [ϕ̂]i |yi=1,yi=1 iff
¬∃X, yi+1, . . . ym

(
[ϕ̂]i ⇔ yi ∧ yi

)
.

27

Iterated reducts and existential quantification

Already seen ∃y1ϕ(X,Y) ⇒ ϕ̂ |y1=1,y1=1 ⇔ [ϕ̂]1 |y1=1,y1=1

Under what conditions is the implication strict?

When do we have ∃y1ϕ(X,Y) 6⇐ [ϕ̂]1 |y1=1,y1=1 ?

Exactly when

[ϕ̂]1 |y1=1,y1=1 = 1
∃y1ϕ(X,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

ϕ |y1=1 ⇔ [ϕ̂]1 |y1=1,y1=0 = 0
ϕ |y1=0 ⇔ [ϕ̂]1 |y1=0,y1=1 = 0
(By monotoniciy of ϕ̂ w.r.t y1 and y1) [ϕ̂]1 |y1=0,y1=0 = 0

In other words, when [ϕ̂]1 “behaves like” y1 ∧ y1.

Insight

∃y1ϕ(X,Y) ⇔ [ϕ̂]1 |y1=1,y1=1 for all X, y2, . . . ym iff
¬∃X, y2, . . . ym

(
[ϕ̂]1 ⇔ y1 ∧ y1

)
.

Inductively, ∃y1, . . . yiϕ(X,Y) ⇔ [ϕ̂]i |yi=1,yi=1 iff
¬∃X, yi+1, . . . ym

(
[ϕ̂]i ⇔ yi ∧ yi

)
.

27

Iterated reducts and existential quantification

Already seen ∃y1ϕ(X,Y) ⇒ ϕ̂ |y1=1,y1=1 ⇔ [ϕ̂]1 |y1=1,y1=1

Under what conditions is the implication strict?

When do we have ∃y1ϕ(X,Y) 6⇐ [ϕ̂]1 |y1=1,y1=1 ?

Exactly when

[ϕ̂]1 |y1=1,y1=1 = 1
∃y1ϕ(X,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

ϕ |y1=1 ⇔ [ϕ̂]1 |y1=1,y1=0 = 0
ϕ |y1=0 ⇔ [ϕ̂]1 |y1=0,y1=1 = 0
(By monotoniciy of ϕ̂ w.r.t y1 and y1) [ϕ̂]1 |y1=0,y1=0 = 0

In other words, when [ϕ̂]1 “behaves like” y1 ∧ y1.

Insight

∃y1ϕ(X,Y) ⇔ [ϕ̂]1 |y1=1,y1=1 for all X, y2, . . . ym iff
¬∃X, y2, . . . ym

(
[ϕ̂]1 ⇔ y1 ∧ y1

)
.

Inductively, ∃y1, . . . yiϕ(X,Y) ⇔ [ϕ̂]i |yi=1,yi=1 iff
¬∃X, yi+1, . . . ym

(
[ϕ̂]i ⇔ yi ∧ yi

)
.

27

Iterated reducts and existential quantification

Already seen ∃y1ϕ(X,Y) ⇒ ϕ̂ |y1=1,y1=1 ⇔ [ϕ̂]1 |y1=1,y1=1

Under what conditions is the implication strict?

When do we have ∃y1ϕ(X,Y) 6⇐ [ϕ̂]1 |y1=1,y1=1 ?

Exactly when

[ϕ̂]1 |y1=1,y1=1 = 1
∃y1ϕ(X,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

ϕ |y1=1 ⇔ [ϕ̂]1 |y1=1,y1=0 = 0
ϕ |y1=0 ⇔ [ϕ̂]1 |y1=0,y1=1 = 0
(By monotoniciy of ϕ̂ w.r.t y1 and y1) [ϕ̂]1 |y1=0,y1=0 = 0

In other words, when [ϕ̂]1 “behaves like” y1 ∧ y1.

Insight

∃y1ϕ(X,Y) ⇔ [ϕ̂]1 |y1=1,y1=1 for all X, y2, . . . ym iff
¬∃X, y2, . . . ym

(
[ϕ̂]1 ⇔ y1 ∧ y1

)
.

Inductively, ∃y1, . . . yiϕ(X,Y) ⇔ [ϕ̂]i |yi=1,yi=1 iff
¬∃X, yi+1, . . . ym

(
[ϕ̂]i ⇔ yi ∧ yi

)
.

27

Iterated reducts and existential quantification

Already seen ∃y1ϕ(X,Y) ⇒ ϕ̂ |y1=1,y1=1 ⇔ [ϕ̂]1 |y1=1,y1=1

Under what conditions is the implication strict?

When do we have ∃y1ϕ(X,Y) 6⇐ [ϕ̂]1 |y1=1,y1=1 ?

Exactly when

[ϕ̂]1 |y1=1,y1=1 = 1
∃y1ϕ(X,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

ϕ |y1=1 ⇔ [ϕ̂]1 |y1=1,y1=0 = 0
ϕ |y1=0 ⇔ [ϕ̂]1 |y1=0,y1=1 = 0
(By monotoniciy of ϕ̂ w.r.t y1 and y1) [ϕ̂]1 |y1=0,y1=0 = 0

In other words, when [ϕ̂]1 “behaves like” y1 ∧ y1.

Insight

∃y1ϕ(X,Y) ⇔ [ϕ̂]1 |y1=1,y1=1 for all X, y2, . . . ym iff
¬∃X, y2, . . . ym

(
[ϕ̂]1 ⇔ y1 ∧ y1

)
.

Inductively, ∃y1, . . . yiϕ(X,Y) ⇔ [ϕ̂]i |yi=1,yi=1 iff
¬∃X, yi+1, . . . ym

(
[ϕ̂]i ⇔ yi ∧ yi

)
.

27

Iterated reducts and existential quantification

Already seen ∃y1ϕ(X,Y) ⇒ ϕ̂ |y1=1,y1=1 ⇔ [ϕ̂]1 |y1=1,y1=1

Under what conditions is the implication strict?

When do we have ∃y1ϕ(X,Y) 6⇐ [ϕ̂]1 |y1=1,y1=1 ?

Exactly when

[ϕ̂]1 |y1=1,y1=1 = 1
∃y1ϕ(X,Y) ⇔ ϕ |y1=1 ∨ ϕ |y1=0 = 0

ϕ |y1=1 ⇔ [ϕ̂]1 |y1=1,y1=0 = 0
ϕ |y1=0 ⇔ [ϕ̂]1 |y1=0,y1=1 = 0
(By monotoniciy of ϕ̂ w.r.t y1 and y1) [ϕ̂]1 |y1=0,y1=0 = 0

In other words, when [ϕ̂]1 “behaves like” y1 ∧ y1.

Insight

∃y1ϕ(X,Y) ⇔ [ϕ̂]1 |y1=1,y1=1 for all X, y2, . . . ym iff
¬∃X, y2, . . . ym

(
[ϕ̂]1 ⇔ y1 ∧ y1

)
.

Inductively, ∃y1, . . . yiϕ(X,Y) ⇔ [ϕ̂]i |yi=1,yi=1 iff
¬∃X, yi+1, . . . ym

(
[ϕ̂]i ⇔ yi ∧ yi

)
.

27

SynNNF: A negation normal form for efficient synthesis

An NNF specification ϕ(X,Y) is in

SynNNF w.r.t. a linear order y1 ≺ y2 ≺ · · · ≺ ym iff

¬∃x1, . . . xn, yi+1 . . . ym ([ϕ̂]i ⇔ yi ∧ yi) for all i ∈ {1, . . . n}

Can [ϕ̂]i be made to “behave like” yi ∧ yi for any i?

If yes, ϕ is not in SynNNF; else it is in SynNNF

Skolem fn for yi (in terms of yi+1, . . . ym,X)

∃y1, . . . yi−1 ϕ(X, y1, . . . yi−1, 1, yi+1, . . . ym)
Equivalently, [ϕ̂]i |yi=1,yi=0, if ϕ in SynNNF

Observations:

Not purely structural restriction on representation of ϕ

Reminiscent of Deterministic DNNF (dDNNF)

For every ∨ node representing ϕ1 ∨ ϕ2, require ϕ1 ∧ ϕ2 = ⊥.

28

SynNNF: A negation normal form for efficient synthesis

An NNF specification ϕ(X,Y) is in

SynNNF w.r.t. a linear order y1 ≺ y2 ≺ · · · ≺ ym iff

¬∃x1, . . . xn, yi+1 . . . ym ([ϕ̂]i ⇔ yi ∧ yi) for all i ∈ {1, . . . n}

Can [ϕ̂]i be made to “behave like” yi ∧ yi for any i?

If yes, ϕ is not in SynNNF; else it is in SynNNF

Skolem fn for yi (in terms of yi+1, . . . ym,X)

∃y1, . . . yi−1 ϕ(X, y1, . . . yi−1, 1, yi+1, . . . ym)
Equivalently, [ϕ̂]i |yi=1,yi=0, if ϕ in SynNNF

Observations:

Not purely structural restriction on representation of ϕ

Reminiscent of Deterministic DNNF (dDNNF)

For every ∨ node representing ϕ1 ∨ ϕ2, require ϕ1 ∧ ϕ2 = ⊥.

28

SynNNF: A negation normal form for efficient synthesis

An NNF specification ϕ(X,Y) is in

SynNNF w.r.t. a linear order y1 ≺ y2 ≺ · · · ≺ ym iff

¬∃x1, . . . xn, yi+1 . . . ym ([ϕ̂]i ⇔ yi ∧ yi) for all i ∈ {1, . . . n}

Can [ϕ̂]i be made to “behave like” yi ∧ yi for any i?

If yes, ϕ is not in SynNNF; else it is in SynNNF

Skolem fn for yi (in terms of yi+1, . . . ym,X)

∃y1, . . . yi−1 ϕ(X, y1, . . . yi−1, 1, yi+1, . . . ym)

Equivalently, [ϕ̂]i |yi=1,yi=0, if ϕ in SynNNF

Observations:

Not purely structural restriction on representation of ϕ

Reminiscent of Deterministic DNNF (dDNNF)

For every ∨ node representing ϕ1 ∨ ϕ2, require ϕ1 ∧ ϕ2 = ⊥.

28

SynNNF: A negation normal form for efficient synthesis

An NNF specification ϕ(X,Y) is in

SynNNF w.r.t. a linear order y1 ≺ y2 ≺ · · · ≺ ym iff

¬∃x1, . . . xn, yi+1 . . . ym ([ϕ̂]i ⇔ yi ∧ yi) for all i ∈ {1, . . . n}

Can [ϕ̂]i be made to “behave like” yi ∧ yi for any i?

If yes, ϕ is not in SynNNF; else it is in SynNNF

Skolem fn for yi (in terms of yi+1, . . . ym,X)

∃y1, . . . yi−1 ϕ(X, y1, . . . yi−1, 1, yi+1, . . . ym)
Equivalently, [ϕ̂]i |yi=1,yi=0, if ϕ in SynNNF

Observations:

Not purely structural restriction on representation of ϕ

Reminiscent of Deterministic DNNF (dDNNF)

For every ∨ node representing ϕ1 ∨ ϕ2, require ϕ1 ∧ ϕ2 = ⊥.

28

SynNNF: A negation normal form for efficient synthesis

An NNF specification ϕ(X,Y) is in

SynNNF w.r.t. a linear order y1 ≺ y2 ≺ · · · ≺ ym iff

¬∃x1, . . . xn, yi+1 . . . ym ([ϕ̂]i ⇔ yi ∧ yi) for all i ∈ {1, . . . n}

Can [ϕ̂]i be made to “behave like” yi ∧ yi for any i?

If yes, ϕ is not in SynNNF; else it is in SynNNF

Skolem fn for yi (in terms of yi+1, . . . ym,X)

∃y1, . . . yi−1 ϕ(X, y1, . . . yi−1, 1, yi+1, . . . ym)
Equivalently, [ϕ̂]i |yi=1,yi=0, if ϕ in SynNNF

Observations:

Not purely structural restriction on representation of ϕ

Reminiscent of Deterministic DNNF (dDNNF)

For every ∨ node representing ϕ1 ∨ ϕ2, require ϕ1 ∧ ϕ2 = ⊥.

28

SynNNF: A negation normal form for efficient synthesis

An NNF specification ϕ(X,Y) is in

SynNNF w.r.t. a linear order y1 ≺ y2 ≺ · · · ≺ ym iff

¬∃x1, . . . xn, yi+1 . . . ym ([ϕ̂]i ⇔ yi ∧ yi) for all i ∈ {1, . . . n}

Can [ϕ̂]i be made to “behave like” yi ∧ yi for any i?

If yes, ϕ is not in SynNNF; else it is in SynNNF

Skolem fn for yi (in terms of yi+1, . . . ym,X)

∃y1, . . . yi−1 ϕ(X, y1, . . . yi−1, 1, yi+1, . . . ym)
Equivalently, [ϕ̂]i |yi=1,yi=0, if ϕ in SynNNF

Observations:

Not purely structural restriction on representation of ϕ

Reminiscent of Deterministic DNNF (dDNNF)

For every ∨ node representing ϕ1 ∨ ϕ2, require ϕ1 ∧ ϕ2 = ⊥.

28

SynNNF: An Example

ϕ(x1, x2, y1, y2) = (y1 ∨ y2) ∧ (¬y2 ∨ x1) ∧ (¬x1 ∨ x2)

∧

∨

y1 y2

∨

¬y2 x1

∨

¬x1 x2

Representation of ϕ not in DNNF/wDNNF

29

SynNNF: An Example

ϕ(x1, x2, y1, y2) = (y1 ∨ y2) ∧ (¬y2 ∨ x1) ∧ (¬x1 ∨ x2)

∧

∨

y1 y2

∨

¬y2 x1

∨

¬x1 x2

Representation of ϕ not in DNNF/wDNNF

29

SynNNF: An Example

ϕ(x1, x2, y1, y2) = (y1 ∨ y2) ∧ (¬y2 ∨ x1) ∧ (¬x1 ∨ x2)
Output sequence: y1 ≺ y2

∧

∨

y1 y2

∨

¬y2 x1

∨

¬x1 x2

30

SynNNF: An Example

ϕ(x1, x2, y1, y2) = (y1 ∨ y2) ∧ (¬y2 ∨ x1) ∧ (¬x1 ∨ x2)
Output sequence: y1 ≺ y2

∧

1

1 y2

∨

y2 x1

∨

¬x1 x2

Representation of ϕ in SynNNF w.r.t y1 ≺ y2

31

SynNNF: An Example

ϕ(x1, x2, y1, y2) = (y1 ∨ y2) ∧ (¬y2 ∨ x1) ∧ (¬x1 ∨ x2)
Output sequence: y1 ≺ y2

∧

1

1 y2

∨

y2 x1

∨

¬x1 x2

Representation of ϕ in SynNNF w.r.t y1 ≺ y2

31

Non-SynNNF: An Example

ϕ(x1, x2, y1, y2) = (y1 ∨ y2) ∧ (¬y2 ∨ x1) ∧ (¬x1 ∨ x2)
Output sequence: y2 ≺ y1

∧

∨

y1 = 0 y2

∨

y2 x1 = 0

∨

¬x1 x2

Representation of ϕ not in SynNNF w.r.t y2 ≺ y1

32

Non-SynNNF: An Example

ϕ(x1, x2, y1, y2) = (y1 ∨ y2) ∧ (¬y2 ∨ x1) ∧ (¬x1 ∨ x2)
Output sequence: y2 ≺ y1

∧

∨

y1 = 0 y2

∨

y2 x1 = 0

∨

¬x1 x2

Representation of ϕ not in SynNNF w.r.t y2 ≺ y1

32

BDD and SynNNF

y1

y2

x1

x2

y2

x1

x2

x1

0 1

∨

∧

¬y1 ...

∧

y1 ...

BDD → SynNNF in linear time for any output order ≺ and any
BDD variable order.

33

BDD and SynNNF

y1

y2

x1

x2

y2

x1

x2

x1

0 1

∨

∧

¬y1 ...

∧

y1 ...

BDD → SynNNF in linear time for any output order ≺ and any
BDD variable order.

33

DNNF, wDNNF and SynNNF

z z/¬z

ϕ(X,Y) in DNNF except on X

∧

z is yj
Disallowed paths

yi ¬yi

ϕ(X,Y) in wDNNF except on X

∧

(Dis)allowed paths

yl yl

X
∧

¬yk ¬yk
xj xj/¬xj

A specification in DNNF or wDNNF is already in SynNNF for any
output order ≺.

34

DNNF, wDNNF and SynNNF

z z/¬z

ϕ(X,Y) in DNNF except on X

∧

z is yj
Disallowed paths

yi ¬yi

ϕ(X,Y) in wDNNF except on X

∧

(Dis)allowed paths

yl yl

X
∧

¬yk ¬yk
xj xj/¬xj

A specification in DNNF or wDNNF is already in SynNNF for any
output order ≺.

34

SynNNF: Some observations

Every propositional formula representable in SynNNF for every
ordering of outputs

DNF always SynNNF for any output order

A formula may have multiple SynNNF representations

DNF, BDD, DNNF ...

A given representation may be SynNNF for one order of
outputs and not in SynNNF for another order.

Given an output order ≺ and an NNF specification ϕ,
checking if ϕ is in SynNNF w.r.t. ≺ is coNP-complete.

Given ϕ, checking if ϕ is in SynNNF w.r.t. any (unspecificed)
order ≺ is in ΣP

2 .

35

SynNNF: Some observations

Every propositional formula representable in SynNNF for every
ordering of outputs

DNF always SynNNF for any output order

A formula may have multiple SynNNF representations

DNF, BDD, DNNF ...

A given representation may be SynNNF for one order of
outputs and not in SynNNF for another order.

Given an output order ≺ and an NNF specification ϕ,
checking if ϕ is in SynNNF w.r.t. ≺ is coNP-complete.

Given ϕ, checking if ϕ is in SynNNF w.r.t. any (unspecificed)
order ≺ is in ΣP

2 .

35

SynNNF: Some observations

Every propositional formula representable in SynNNF for every
ordering of outputs

DNF always SynNNF for any output order

A formula may have multiple SynNNF representations

DNF, BDD, DNNF ...

A given representation may be SynNNF for one order of
outputs and not in SynNNF for another order.

Given an output order ≺ and an NNF specification ϕ,
checking if ϕ is in SynNNF w.r.t. ≺ is coNP-complete.

Given ϕ, checking if ϕ is in SynNNF w.r.t. any (unspecificed)
order ≺ is in ΣP

2 .

35

SynNNF: Some observations

Every propositional formula representable in SynNNF for every
ordering of outputs

DNF always SynNNF for any output order

A formula may have multiple SynNNF representations

DNF, BDD, DNNF ...

A given representation may be SynNNF for one order of
outputs and not in SynNNF for another order.

Given an output order ≺ and an NNF specification ϕ,
checking if ϕ is in SynNNF w.r.t. ≺ is coNP-complete.

Given ϕ, checking if ϕ is in SynNNF w.r.t. any (unspecificed)
order ≺ is in ΣP

2 .

35

SynNNF: Some observations

Every propositional formula representable in SynNNF for every
ordering of outputs

DNF always SynNNF for any output order

A formula may have multiple SynNNF representations

DNF, BDD, DNNF ...

A given representation may be SynNNF for one order of
outputs and not in SynNNF for another order.

Given an output order ≺ and an NNF specification ϕ,
checking if ϕ is in SynNNF w.r.t. ≺ is coNP-complete.

Given ϕ, checking if ϕ is in SynNNF w.r.t. any (unspecificed)
order ≺ is in ΣP

2 .

35

SynNNF is relatively succinct

There exist polynomial sized SynNNF specifications that only
admit

Exponential-sized ROBDD/FBDD representations

Exponential-sized DNNF representations

Super-polynomial sized dDNNF representations, unless P =
VNP

There exist poly-sized NNF representations that only admit
super-polynomial sized SynNNF representations

Unless the polynomial hierarchy collapses

NNF @ SynNNF @ DNNF @ dDNNF @ BDD

36

SynNNF is relatively succinct

There exist polynomial sized SynNNF specifications that only
admit

Exponential-sized ROBDD/FBDD representations

Exponential-sized DNNF representations

Super-polynomial sized dDNNF representations, unless P =
VNP

There exist poly-sized NNF representations that only admit
super-polynomial sized SynNNF representations

Unless the polynomial hierarchy collapses

NNF @ SynNNF @ DNNF @ dDNNF @ BDD

36

SynNNF is relatively succinct

There exist polynomial sized SynNNF specifications that only
admit

Exponential-sized ROBDD/FBDD representations

Exponential-sized DNNF representations

Super-polynomial sized dDNNF representations, unless P =
VNP

There exist poly-sized NNF representations that only admit
super-polynomial sized SynNNF representations

Unless the polynomial hierarchy collapses

NNF @ SynNNF @ DNNF @ dDNNF @ BDD

36

SynNNF is relatively succinct

There exist polynomial sized SynNNF specifications that only
admit

Exponential-sized ROBDD/FBDD representations

Exponential-sized DNNF representations

Super-polynomial sized dDNNF representations, unless P =
VNP

There exist poly-sized NNF representations that only admit
super-polynomial sized SynNNF representations

Unless the polynomial hierarchy collapses

NNF @ SynNNF @ DNNF @ dDNNF @ BDD

36

SynNNF is relatively succinct

There exist polynomial sized SynNNF specifications that only
admit

Exponential-sized ROBDD/FBDD representations

Exponential-sized DNNF representations

Super-polynomial sized dDNNF representations, unless P =
VNP

There exist poly-sized NNF representations that only admit
super-polynomial sized SynNNF representations

Unless the polynomial hierarchy collapses

NNF @ SynNNF @ DNNF @ dDNNF @ BDD

36

SynNNF is relatively succinct

There exist polynomial sized SynNNF specifications that only
admit

Exponential-sized ROBDD/FBDD representations

Exponential-sized DNNF representations

Super-polynomial sized dDNNF representations, unless P =
VNP

There exist poly-sized NNF representations that only admit
super-polynomial sized SynNNF representations

Unless the polynomial hierarchy collapses

NNF @ SynNNF @ DNNF @ dDNNF @ BDD

36

Operations with SynNNF

Given ϕ1(X,Y) and ϕ2(X,Y) in SynNNF w.r.t. the same ordering
of Y

Computing ϕ1 ∧ ϕ2 in SynNNF in poly-time not possible
unless P = NP

Computing ϕ1 ∨ ϕ2 in SynNNF in same ordering of Y takes
constant time

Existentially quantifying y1, . . . ym takes linear time.

Quantifying subset of Y not possible in linear time in general.

37

Operations with SynNNF

Given ϕ1(X,Y) and ϕ2(X,Y) in SynNNF w.r.t. the same ordering
of Y

Computing ϕ1 ∧ ϕ2 in SynNNF in poly-time not possible
unless P = NP

Computing ϕ1 ∨ ϕ2 in SynNNF in same ordering of Y takes
constant time

Existentially quantifying y1, . . . ym takes linear time.

Quantifying subset of Y not possible in linear time in general.

37

How does SynNNF help Skolem function synthesis?

y1 y1y2 y2x ¬x

ϕ̂ in SynNNF 1 0x ¬x

ϕ̂ in SynNNF

1 11 0x ¬x

ϕ̂ in SynNNF

Skolem for y1

Skolem for y2

Synthesis: m × |ϕ| circuit size, O(m2) additional wires.

38

Refinement w.r.t. synthesis

Values of X s.t. ∃Yϕ(X,Y)

Skolem functions F(X)

Given spec: ϕ(X,Y)

Refined spec: ϕ̃(X,Y)

ϕ̃ �syn ϕ

Strongly

ϕ̃ �∗syn ϕ

39

Refinement w.r.t. synthesis

Values of X s.t. ∃Yϕ(X,Y)

Skolem functions F(X)

Given spec: ϕ(X,Y)

Refined spec: ϕ̃(X,Y)

ϕ̃ �syn ϕ

Strongly

ϕ̃ �∗syn ϕ

39

Refinement w.r.t. synthesis

Values of X s.t. ∃Yϕ(X,Y)

Skolem functions F(X)

Given spec: ϕ(X,Y)

Refined spec: ϕ̃(X,Y)

ϕ̃ �syn ϕ

Strongly

ϕ̃ �∗syn ϕ

39

Refinement w.r.t. synthesis

Lemma

If ϕ̃(X,Y) �syn ϕ(X,Y), every Skolem function vector for Y in ϕ̃ is
also a Skolem function vector for Y in ϕ.

Example: (y2 ∧ y1) �syn

((¬y1 ∨ y2 ∨ x1) ∧ (y1 ∨ ¬y2) ∧ (y1 ∨ ¬x1) ∧ (y2 ∨ x2))

40

Refinement w.r.t. synthesis

Lemma

If ϕ̃(X,Y) �syn ϕ(X,Y), every Skolem function vector for Y in ϕ̃ is
also a Skolem function vector for Y in ϕ.

Example: (y2 ∧ y1) �syn

((¬y1 ∨ y2 ∨ x1) ∧ (y1 ∨ ¬y2) ∧ (y1 ∨ ¬x1) ∧ (y2 ∨ x2))

40

Properties of refinement

1 Both �syn and �∗syn are reflexive and transitive relations on
Boolean relational specifications.

2 If
∧

xj∈X
(
F |xj=0 ⇔ F |xj=1

)
and π |= F (Y,X), then

form(π↓Y) �∗syn F .

3 If
∧

yi∈Y (F |yi=0 ⇔ F |yi=1), then 1 �syn F and F |Y=a �∗syn F ,
where a is any vector in {0, 1}m.

4 If F is positive (resp. negative) unate in yi ∈ Y, then
yi ∧ F |yi=1 (resp. ¬yi ∧ F |yi=0) �∗syn F . pause

5 1 Let F̃1 �∗syn F1 and F̃2 �∗syn F2. Then (F̃1 ∨ F̃2) �∗syn (F1 ∨ F2).

2 Let F̃1 �syn F1 and F̃2 �syn F2. If the output supports of F1

and F2, and similarly of F̃1 and F̃2, are disjoint, then
(F̃1 ∧ F̃2) �syn (F1 ∧ F2). If, in addition, F̃1 �∗syn F1 and

F̃2 �∗syn F2, then (F̃1 ∧ F̃2) �∗syn (F1 ∧ F2).

41

Properties of refinement

1 Both �syn and �∗syn are reflexive and transitive relations on
Boolean relational specifications.

2 If
∧

xj∈X
(
F |xj=0 ⇔ F |xj=1

)
and π |= F (Y,X), then

form(π↓Y) �∗syn F .

3 If
∧

yi∈Y (F |yi=0 ⇔ F |yi=1), then 1 �syn F and F |Y=a �∗syn F ,
where a is any vector in {0, 1}m.

4 If F is positive (resp. negative) unate in yi ∈ Y, then
yi ∧ F |yi=1 (resp. ¬yi ∧ F |yi=0) �∗syn F . pause

5 1 Let F̃1 �∗syn F1 and F̃2 �∗syn F2. Then (F̃1 ∨ F̃2) �∗syn (F1 ∨ F2).

2 Let F̃1 �syn F1 and F̃2 �syn F2. If the output supports of F1

and F2, and similarly of F̃1 and F̃2, are disjoint, then
(F̃1 ∧ F̃2) �syn (F1 ∧ F2). If, in addition, F̃1 �∗syn F1 and

F̃2 �∗syn F2, then (F̃1 ∧ F̃2) �∗syn (F1 ∧ F2).

41

Properties of refinement

1 Both �syn and �∗syn are reflexive and transitive relations on
Boolean relational specifications.

2 If
∧

xj∈X
(
F |xj=0 ⇔ F |xj=1

)
and π |= F (Y,X), then

form(π↓Y) �∗syn F .

3 If
∧

yi∈Y (F |yi=0 ⇔ F |yi=1), then 1 �syn F and F |Y=a �∗syn F ,
where a is any vector in {0, 1}m.

4 If F is positive (resp. negative) unate in yi ∈ Y, then
yi ∧ F |yi=1 (resp. ¬yi ∧ F |yi=0) �∗syn F . pause

5 1 Let F̃1 �∗syn F1 and F̃2 �∗syn F2. Then (F̃1 ∨ F̃2) �∗syn (F1 ∨ F2).

2 Let F̃1 �syn F1 and F̃2 �syn F2. If the output supports of F1

and F2, and similarly of F̃1 and F̃2, are disjoint, then
(F̃1 ∧ F̃2) �syn (F1 ∧ F2). If, in addition, F̃1 �∗syn F1 and

F̃2 �∗syn F2, then (F̃1 ∧ F̃2) �∗syn (F1 ∧ F2).

41

Properties of refinement

1 Both �syn and �∗syn are reflexive and transitive relations on
Boolean relational specifications.

2 If
∧

xj∈X
(
F |xj=0 ⇔ F |xj=1

)
and π |= F (Y,X), then

form(π↓Y) �∗syn F .

3 If
∧

yi∈Y (F |yi=0 ⇔ F |yi=1), then 1 �syn F and F |Y=a �∗syn F ,
where a is any vector in {0, 1}m.

4 If F is positive (resp. negative) unate in yi ∈ Y, then
yi ∧ F |yi=1 (resp. ¬yi ∧ F |yi=0) �∗syn F . pause

5 1 Let F̃1 �∗syn F1 and F̃2 �∗syn F2. Then (F̃1 ∨ F̃2) �∗syn (F1 ∨ F2).

2 Let F̃1 �syn F1 and F̃2 �syn F2. If the output supports of F1

and F2, and similarly of F̃1 and F̃2, are disjoint, then
(F̃1 ∧ F̃2) �syn (F1 ∧ F2). If, in addition, F̃1 �∗syn F1 and

F̃2 �∗syn F2, then (F̃1 ∧ F̃2) �∗syn (F1 ∧ F2).

41

Properties of refinement

1 Both �syn and �∗syn are reflexive and transitive relations on
Boolean relational specifications.

2 If
∧

xj∈X
(
F |xj=0 ⇔ F |xj=1

)
and π |= F (Y,X), then

form(π↓Y) �∗syn F .

3 If
∧

yi∈Y (F |yi=0 ⇔ F |yi=1), then 1 �syn F and F |Y=a �∗syn F ,
where a is any vector in {0, 1}m.

4 If F is positive (resp. negative) unate in yi ∈ Y, then
yi ∧ F |yi=1 (resp. ¬yi ∧ F |yi=0) �∗syn F . pause

5 1 Let F̃1 �∗syn F1 and F̃2 �∗syn F2. Then (F̃1 ∨ F̃2) �∗syn (F1 ∨ F2).

2 Let F̃1 �syn F1 and F̃2 �syn F2. If the output supports of F1

and F2, and similarly of F̃1 and F̃2, are disjoint, then
(F̃1 ∧ F̃2) �syn (F1 ∧ F2). If, in addition, F̃1 �∗syn F1 and

F̃2 �∗syn F2, then (F̃1 ∧ F̃2) �∗syn (F1 ∧ F2).

41

Putting it all together

Tool C2Syn:

Input: ϕ in CNF (or AIG)

Output: Refined ϕ̃ in SynNNF

Branches only on output variables

Aggressively tries to refine whenever possible

Details in our FMCAD 2019 paper

42

Experimental Results

Comparison of run-time with

CADET [Rabe et al 2016]

BFSS [Akshay et al 2018]

BDD [BDD pipeline of BFSS]

Benchmarks: QBFEVAL 2018 and Factorization (408 total)

Benchmarks Compiled By C2Syn BDD Total
(Total) Stage I Stage II Total compilation in SynNNF

QBFEval (402) 103 83 186 153 283
FA.QD (6) 0 6 6 6 6

Table: Compilation into SynNNF

43

Experimental Results

Bench
C2Syn vs CADET C2Syn vs BFSS C2Syn \

C2Syn\ CADET\ C2Syn\ bfss\ (CADET ∪
mark CADET C2Syn bfss C2Syn bfss)

QBFEval 78 105 83 78 75
FA.QD 2 0 3 0 2

Table: Comparison Results of C2Syn

44

Conclusion

SynNNF: A new normal form for polynomial-time synthesis

Refinement w.r.t. synthesis useful in practice

Formalization of folklore
CNF → Refined SynNNF much more efficient than CNF →
SynNNF

Experimental results with preliminary implementation show
promise

It appears that SynNNF can be further weakened to achieve
poly-time synthesis

Ongoing work

45

