Knowledge Compilation for Boolean Functional Synthesis

Supratik Chakraborty

Indian Institute of Technology Bombay

Joint work with S. Akshay, Jatin Arora, Ajith John, S. Krishna, Divya Raghunathan, Shetal Shah

• Boolean functions: fundamental building blocks in computing.

- Boolean functions: fundamental building blocks in computing.
- Often easy to specify relationally;
 - Relation between inputs and outputs

- Boolean functions: fundamental building blocks in computing.
- Often easy to specify relationally;
 - Relation between inputs and outputs
 - E.g. (Simplified) Arbiter

- Boolean functions: fundamental building blocks in computing.
- Often easy to specify relationally;
 - Relation between inputs and outputs
 - E.g. (Simplified) Arbiter

 $\bullet \ ((R_1 \vee R_2) \to (G_1 \vee G_2))$

- Boolean functions: fundamental building blocks in computing.
- Often easy to specify relationally;
 - Relation between inputs and outputs
 - E.g. (Simplified) Arbiter

 $\bullet \ ((R_1 \vee R_2) \to (G_1 \vee G_2)) \land \neg (G_1 \land G_2)$

- Boolean functions: fundamental building blocks in computing.
- Often easy to specify relationally;
 - Relation between inputs and outputs
 - E.g. (Simplified) Arbiter

 $\bullet \ ((R_1 \vee R_2) \to (G_1 \vee G_2)) \land \neg (G_1 \land G_2) \land (G_1 \to R_1)$

- Boolean functions: fundamental building blocks in computing.
- Often easy to specify relationally;
 - Relation between inputs and outputs
 - E.g. (Simplified) Arbiter

 $\bullet ((R_1 \vee R_2) \to (G_1 \vee G_2)) \wedge \neg (G_1 \wedge G_2) \wedge (G_1 \to R_1) \\ \wedge (G_2 \to R_2)$

- Boolean functions: fundamental building blocks in computing.
- Often easy to specify relationally;
 - Relation between inputs and outputs
 - E.g. (Simplified) Arbiter

- $((R_1 \lor R_2) \to (G_1 \lor G_2)) \land \neg (G_1 \land G_2) \land (G_1 \to R_1) \land (G_2 \to R_2)$
- Doesn't specify how to obtain G_1 , G_2 as functions of R_1 , R_2 .

- Boolean functions: fundamental building blocks in computing.
- Often easy to specify relationally;
 - Relation between inputs and outputs
 - E.g. (Simplified) Arbiter

- $((R_1 \lor R_2) \to (G_1 \lor G_2)) \land \neg (G_1 \land G_2) \land (G_1 \to R_1) \land (G_2 \to R_2)$
- Doesn't specify how to obtain G_1 , G_2 as functions of R_1 , R_2 .
- But we need them in functional form
 - Outputs as functions of inputs

- Boolean functions: fundamental building blocks in computing.
- Often easy to specify relationally;
 - Relation between inputs and outputs
 - E.g. (Simplified) Arbiter

- $((R_1 \lor R_2) \to (G_1 \lor G_2)) \land \neg (G_1 \land G_2) \land (G_1 \to R_1) \land (G_2 \to R_2)$
- Doesn't specify how to obtain G_1 , G_2 as functions of R_1 , R_2 .
- But we need them in functional form
 - Outputs as functions of inputs
 - Multiple solutions:

•
$$G_1 = (R_1 \wedge \neg R_2), G_2 = R_2$$

•
$$G_1 = R_1$$
, $G_2 = (\neg R_1 \land R_2)$

- Boolean functions: fundamental building blocks in computing.
- Often easy to specify relationally;
 - Relation between inputs and outputs
 - E.g. (Simplified) Arbiter

$$R_1 \longrightarrow G_1$$
 $R_2 \longrightarrow G_2$
 $R_1 \longrightarrow G_2$

- $((R_1 \lor R_2) \to (G_1 \lor G_2)) \land \neg (G_1 \land G_2) \land (G_1 \to R_1) \land (G_2 \to R_2)$
- Doesn't specify how to obtain G_1 , G_2 as functions of R_1 , R_2 .
- But we need them in functional form
 - Outputs as functions of inputs
 - Multiple solutions:

•
$$G_1 = (R_1 \wedge \neg R_2), G_2 = R_2$$

•
$$G_1 = R_1, G_2 = (\neg R_1 \land R_2)$$

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

Formal definition

Given Boolean relation $\varphi(x_1,..,x_n,y_1,..,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Formal definition

Given Boolean relation $\varphi(x_1,..,x_n,y_1,..,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Synthesize Boolean functions $F_j(X)$ for each y_j s.t.

$$\forall X \big(\exists y_1 \dots y_m \ \varphi(X, y_1 \dots y_m) \ \Leftrightarrow \ \varphi(X, F_1(X), \dots F_m(X)) \ \big)$$

Formal definition

Given Boolean relation $\varphi(x_1,...,x_n,y_1,...,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Synthesize Boolean functions $F_j(X)$ for each y_j s.t.

$$\forall X \big(\exists y_1 \dots y_m \ \varphi(X, y_1 \dots y_m) \ \Leftrightarrow \ \varphi(X, F_1(X), \dots F_m(X)) \ \big)$$

Formal definition

Given Boolean relation $\varphi(x_1,...,x_n,y_1,...,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Synthesize Boolean functions $F_j(X)$ for each y_j s.t.

$$\forall X (\exists y_1 \dots y_m \varphi(X, y_1 \dots y_m) \Leftrightarrow \varphi(X, F_1(X), \dots F_m(X)))$$

- Uninteresting if |X| is "small" (say, constant)
 - Tabulate with $2^{|X|}$ calls to $SAT(\varphi(X, Y))$

Formal definition

Given Boolean relation $\varphi(x_1,..,x_n,y_1,..,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Synthesize Boolean functions $F_j(X)$ for each y_j s.t.

$$\forall X (\exists y_1 \dots y_m \varphi(X, y_1 \dots y_m) \Leftrightarrow \varphi(X, F_1(X), \dots F_m(X)))$$

- Uninteresting if |X| is "small" (say, constant)
 - Tabulate with $2^{|X|}$ calls to $SAT(\varphi(X, Y))$
- What if $\forall X \exists Y \varphi(X, Y) = 0$ ("unrealizable" specification)?

Formal definition

Given Boolean relation $\varphi(x_1,..,x_n,y_1,..,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Synthesize Boolean functions $F_j(X)$ for each y_j s.t.

$$\forall X \big(\exists y_1 \dots y_m \ \varphi(X, y_1 \dots y_m) \Leftrightarrow \varphi(X, F_1(X), \dots F_m(X)) \big)$$

- Uninteresting if |X| is "small" (say, constant)
 - Tabulate with $2^{|X|}$ calls to $SAT(\varphi(X, Y))$
- What if $\forall X \exists Y \varphi(X, Y) = 0$ ("unrealizable" specification)?
 - Interesting as long as $\exists X \exists Y \ \varphi(X, Y) = 1$

Formal definition

Given Boolean relation $\varphi(x_1,..,x_n,y_1,..,y_m)$

- x_i input variables (vector X)
- y_j output variables (vector Y)

Synthesize Boolean functions $F_j(X)$ for each y_j s.t.

$$\forall X (\exists y_1 \dots y_m \varphi(X, y_1 \dots y_m) \Leftrightarrow \varphi(X, F_1(X), \dots F_m(X)))$$

- Uninteresting if |X| is "small" (say, constant)
 - Tabulate with $2^{|X|}$ calls to $SAT(\varphi(X, Y))$
- What if $\forall X \exists Y \varphi(X, Y) = 0$ ("unrealizable" specification)?
 - Interesting as long as $\exists X\exists Y \varphi(X,Y)=1$
 - F(X) must give right value of Y for all X s.t. $\exists Y \varphi(X, Y) = 1$
 - F(X) inconsequential for other X

• *n*-bit integers Y_1, Y_2 ; 2*n* bit integer X

- *n*-bit integers Y_1, Y_2 ; 2*n* bit integer X
- Relational specification $\varphi(X, Y_1, Y_2)$
 - $\bullet \ (\mathsf{X} = {\color{red}\mathsf{Y_1}} \times_{[n]} {\color{red}\mathsf{Y_2}}) \wedge ({\color{red}\mathsf{Y_1}} \neq 1_{[n]}) \wedge ({\color{red}\mathsf{Y_2}} \neq 1_{[n]})$

- *n*-bit integers Y_1, Y_2 ; 2*n* bit integer X
- Relational specification $\varphi(X, Y_1, Y_2)$

$$\bullet \ (\mathsf{X} = {\color{red}\mathsf{Y_1}} \times_{[n]} {\color{red}\mathsf{Y_2}}) \wedge ({\color{red}\mathsf{Y_1}} \neq 1_{[n]}) \wedge ({\color{red}\mathsf{Y_2}} \neq 1_{[n]})$$

• Synthesize F(X), G(X) s.t. $\varphi(X, F(X), G(X)) = 1$ for all non-prime X.

- *n*-bit integers Y_1, Y_2 ; 2*n* bit integer X
- Relational specification φ(X, Y₁, Y₂)

$$\bullet \ (\mathsf{X} = {\color{red}\mathsf{Y_1}} \times_{[n]} {\color{red}\mathsf{Y_2}}) \wedge ({\color{red}\mathsf{Y_1}} \neq 1_{[n]}) \wedge ({\color{red}\mathsf{Y_2}} \neq 1_{[n]})$$

• Synthesize F(X), G(X) s.t. $\varphi(X, F(X), G(X)) = 1$ for all non-prime X.

- For every non-prime X, finds non-trivial factors
- From prime X, values of F(X) and G(X) inconsequential.
 - $\exists Y_1, Y_2 \varphi(X, Y_1, Y_2) = 0$ for such X.

Applications of Boolean Functional Synthesis

- 1. Cryptanalysis: Interesting but hard for synthesis!
- 2. Disjunctive decomposition of symbolic transition relations [Trivedi et al'02]
- 3. Quantifier elimination, of course!
 - $\exists Y \varphi(X, Y) \equiv \varphi(X, F(X))$
- 4. Certifying QBF-SAT solvers
 - Nice survey of applications by Shukla et al'19
- 5. Reactive controller synthesis
 - Synthesizing moves to stay within winning region
- 6. Program synthesis
 - Combinatorial sketching [Solar-Lezama et al'06, Srivastava et al'13]
 - Complete functional synthesis [Kuncak et al'10]
- 7. Repair/partial synthesis of circuits [Fujita et al'13]

Existing Approaches

- 1. Closely related to most general Boolean unifiers
 - Boole'1847, Lowenheim'1908, Macii'98
- 2. Extract Sk. functions from proof of validity of $\forall X \exists Y \varphi(X, Y)$
 - Bendetti'05, Jussilla et al'07, Balabanov et al'12, Heule et al'14
- 3. Using templates: Solar-Lezama et al'06, Srivastava et al'13
- 4. Self-substitution + function composition: Jiang'09, Trivedi'03
- Synthesis from special normal form representation of specification
 - From ROBDDs: Tronci'98, Kukula et al'00, Kuncak et al'10, Fried et al'16, Tabajara et al'17
 - From SynNNF: Akshay et al'09
- 6. Incremental determinization: Rabe et al'17,'18
- 7. Quantifier instantiation techniques in SMT solvers
 - Barrett et al'15, Bierre et al'17
- 8. Input/output component separation: C. et al'18
- 9. Guess/learn Skolem function candidate + check + repair
 - John et al'15, Akshay et al'17,'18,'20, Golia et al'20

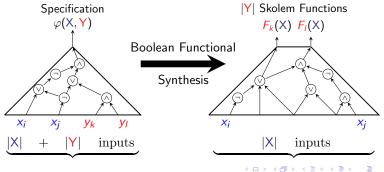
Representation of Specification & Skolem Functions

Representation of Specification & Skolem Functions

- Boolean circuit (DAG)
 - ullet \wedge , \vee and \neg -labeled internal nodes, variable-labeled leaves

Representation of Specification & Skolem Functions

- Boolean circuit (DAG)
 - ullet \wedge , \vee and \neg -labeled internal nodes, variable-labeled leaves
- Specification $\varphi(X, Y)$: (|X| + |Y|)-input, 1-output circuit
 - Other forms (ROBDD/CNF/DNF ...) efficiently converted
- Desired Sk. fn. vector F(X): |X|-input, |Y|-output circuit
 - No additional restrictions (ROBDD/CNF/DNF ...)



BFnS is NP-hard

Not surprising!

BFnS is NP-hard

Not surprising!

BFnS is NP-hard

Not surprising!

Can we always synthesize compact Skolem functions (perhaps spending exponential time)?

• Lower bound results in circuit-size typically refer to monotone circuits [Razbarov 1985; Alon and Boppana 1987]

BFnS is NP-hard

Not surprising!

- Lower bound results in circuit-size typically refer to monotone circuits [Razbarov 1985; Alon and Boppana 1987]
 - \bullet Monotone: Input $0 \to 1$ can't cause output $1 \to 0$
 - Skolem functions need not be monotone (reason for hope?)

BFnS is NP-hard

Not surprising!

- Lower bound results in circuit-size typically refer to monotone circuits [Razbarov 1985; Alon and Boppana 1987]
 - ullet Monotone: Input 0 o 1 can't cause output 1 o 0
 - Skolem functions need not be monotone (reason for hope?)
- Bad news: [CAV2018]
 - Unless $\Pi_2^P = \Sigma_2^P$, there exist $\varphi(X, Y)$ for which Skolem function sizes are super-polynomial in $|\varphi|$.

BFnS is NP-hard

Not surprising!

- Lower bound results in circuit-size typically refer to monotone circuits [Razbarov 1985; Alon and Boppana 1987]
 - ullet Monotone: Input 0 o 1 can't cause output 1 o 0
 - Skolem functions need not be monotone (reason for hope?)
- Bad news: [CAV2018]
 - Unless $\Pi_2^P = \Sigma_2^P$, there exist $\varphi(X, Y)$ for which Skolem function sizes are super-polynomial in $|\varphi|$.
 - Unless non-uniform exponential-time hypothesis fails, there exist $\varphi(X,Y)$ for which Skolem function sizes are exponential in $|\varphi|$.

BFnS is NP-hard

Not surprising!

- Lower bound results in circuit-size typically refer to monotone circuits [Razbarov 1985; Alon and Boppana 1987]
 - ullet Monotone: Input 0 o 1 can't cause output 1 o 0
 - Skolem functions need not be monotone (reason for hope?)
- Bad news: [CAV2018]
 - Unless $\Pi_2^P = \Sigma_2^P$, there exist $\varphi(X, Y)$ for which Skolem function sizes are super-polynomial in $|\varphi|$.
 - Unless non-uniform exponential-time hypothesis fails, there exist $\varphi(X,Y)$ for which Skolem function sizes are exponential in $|\varphi|$.

- Synthesis Negation Normal Form (SynNNF)
 - Subsumes well-known forms like ROBDD, DNNF, ...

- Synthesis Negation Normal Form (SynNNF)
 - Subsumes well-known forms like ROBDD, DNNF, ...
- Caveat: (Conditional) Lower bounds imply compilation to SynNNF inefficient in general.

- Synthesis Negation Normal Form (SynNNF)
 - Subsumes well-known forms like ROBDD, DNNF, ...
- Caveat: (Conditional) Lower bounds imply compilation to SynNNF inefficient in general.
- Silver Lining: Experimental evidence shows (refined) SynNNF common in practice

- Synthesis Negation Normal Form (SynNNF)
 - Subsumes well-known forms like ROBDD, DNNF, ...
- Caveat: (Conditional) Lower bounds imply compilation to SynNNF inefficient in general.
- Silver Lining: Experimental evidence shows (refined) SynNNF common in practice
- Compilation to ROBDD (using any variable order), FDD or DNNF already yields SynNNF
 - Mature compilation tools exist for these normal forms

- Synthesis Negation Normal Form (SynNNF)
 - Subsumes well-known forms like ROBDD, DNNF, ...
- Caveat: (Conditional) Lower bounds imply compilation to SynNNF inefficient in general.
- Silver Lining: Experimental evidence shows (refined) SynNNF common in practice
- Compilation to ROBDD (using any variable order), FDD or DNNF already yields SynNNF
 - Mature compilation tools exist for these normal forms
 - Efficient synthesis doesn't require full capabilities of these stronger normal forms.

Find F(X) such that $\exists y \ \varphi(X, y) \equiv \varphi(X, F(X))$

Find F(X) such that $\exists y \ \varphi(X, y) \equiv \varphi(X, F(X))$

Set of all valuations of X.

Find F(X) such that $\exists y \ \varphi(X, y) \equiv \varphi(X, F(X))$

— Can't set y to 1 to satisfy φ : $\Gamma(X) \triangleq \neg \varphi(X,y)[y \mapsto 1]$

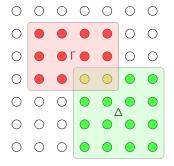
E.g. If
$$\varphi \equiv (x_1 \vee y) \wedge (x_1 \vee x_2 \vee \neg y)$$
, then $\Gamma(X) = \neg((x_1 \vee 1) \wedge (x_1 \vee x_2 \vee 0)) = \neg(x_1 \vee x_2) = \neg x_1 \wedge \neg x_2$

Find F(X) such that $\exists y \ \varphi(X, y) \equiv \varphi(X, F(X))$

— Can't set y to 0 to satisfy
$$\varphi \colon \Delta(X) \triangleq \neg \varphi(X, y)[y \mapsto 0]$$

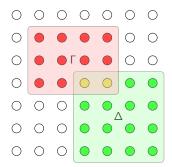
E.g. If
$$\varphi \equiv (x_1 \vee y) \wedge (x_1 \vee x_2 \vee \neg y)$$
, then $\Delta(X) = \neg ((x_1 \vee 0) \wedge (x_1 \vee x_2 \vee 1)) = \neg x_1$

Find F(X) such that $\exists y \ \varphi(X, y) \equiv \varphi(X, F(X))$



- Can't set y to 1 to satisfy φ : $\Gamma(X) \triangleq \neg \varphi(X, y)[y \mapsto 1]$
- Can't set y to 0 to satisfy φ : $\Delta(X) \triangleq \neg \varphi(X,y)[y \mapsto 0]$

Find F(X) such that $\exists y \ \varphi(X, y) \equiv \varphi(X, F(X))$



Lemma [Trivedi'03, Jiang'09, Fried et al'16]

Every Skolem function for \mathbf{y} in φ must

- Evaluate to 1 in $(\Delta \setminus \Gamma)$ and to 0 in $(\Gamma \setminus \Delta)$
- Be an **interpolant** of $(\Delta \setminus \Gamma)$ and $(\Gamma \setminus \Delta)$

Find F(X) such that $\exists y \ \varphi(X, y) \equiv \varphi(X, F(X))$

- Specific interpolants of $(\Delta \setminus \Gamma)$ & $(\Gamma \setminus \Delta)$
 - $\neg \Gamma \triangleq \varphi(X, y)[y \mapsto 1] \equiv \varphi(X, 1)$
 - $\Delta \triangleq \neg \varphi(X, y)[y \mapsto 0] \equiv \neg \varphi(X, 0).$

Find F(X) such that $\exists y \ \varphi(X, y) \equiv \varphi(X, F(X))$

- Specific interpolants of $(\Delta \setminus \Gamma)$ & $(\Gamma \setminus \Delta)$
 - $\neg \Gamma \triangleq \varphi(X, y)[y \mapsto 1] \equiv \varphi(X, 1)$: Easy solution for 1 output var
 - $\Delta \triangleq \neg \varphi(X, y)[y \mapsto 0] \equiv \neg \varphi(X, 0).$

Suppose $\varphi(X, Y) \equiv (x_1 \lor x_2 \lor y_1) \land (y_1 \oplus y_2)$

```
Suppose \varphi(X, Y) \equiv (x_1 \lor x_2 \lor y_1) \land (y_1 \oplus y_2)
```

- $F_2(X)$ must be $\neg F_1(X)$ in all solutions
 - $F_2(X)$ and $F_1(X)$ cannot be synthesized independently.

```
Suppose \varphi(X, Y) \equiv (x_1 \lor x_2 \lor y_1) \land (y_1 \oplus y_2)
```

- $F_2(X)$ must be $\neg F_1(X)$ in all solutions
 - $F_2(X)$ and $F_1(X)$ cannot be synthesized independently.

```
Suppose \varphi(X, Y) \equiv (x_1 \lor x_2 \lor y_1) \land (y_1 \oplus y_2)
```

- $F_2(X)$ must be $\neg F_1(X)$ in all solutions
 - $F_2(X)$ and $F_1(X)$ cannot be synthesized independently.

- Yes!!!
 - Informally, synthesize $F_2(X)$ s.t. "we can always find y_1 to satisfy $\varphi(X, y_1, F_2(X))$ "

```
Suppose \varphi(X, Y) \equiv (x_1 \lor x_2 \lor y_1) \land (y_1 \oplus y_2)
```

- $F_2(X)$ must be $\neg F_1(X)$ in all solutions
 - $F_2(X)$ and $F_1(X)$ cannot be synthesized independently.

- Yes!!!
 - Informally, synthesize $F_2(X)$ s.t. "we can always find y_1 to satisfy $\varphi(X, y_1, F_2(X))$ "
 - Formally, $\varphi_1(X, y_2) \equiv \exists y_1 \varphi(X, y_1, y_2)$ is the new spec

```
Suppose \varphi(X, Y) \equiv (x_1 \lor x_2 \lor y_1) \land (y_1 \oplus y_2)
```

- $F_2(X)$ must be $\neg F_1(X)$ in all solutions
 - $F_2(X)$ and $F_1(X)$ cannot be synthesized independently.

- Yes!!!
 - Informally, synthesize $F_2(X)$ s.t. "we can always find y_1 to satisfy $\varphi(X, y_1, F_2(X))$ "
 - Formally, $\varphi_1(X, y_2) \equiv \exists y_1 \varphi(X, y_1, y_2)$ is the new spec
- Synthesize $F_2(X)$ from $\varphi_1(X, y_2)$
 - Example: $\varphi_1(X, \underline{y_2}) \equiv (x_1 \lor x_2 \lor \neg \underline{y_2})$

```
Suppose \varphi(X, Y) \equiv (x_1 \lor x_2 \lor y_1) \land (y_1 \oplus y_2)
```

- $F_2(X)$ must be $\neg F_1(X)$ in all solutions
 - $F_2(X)$ and $F_1(X)$ cannot be synthesized independently.

- Yes!!!
 - Informally, synthesize $F_2(X)$ s.t. "we can always find y_1 to satisfy $\varphi(X, y_1, F_2(X))$ "
 - Formally, $\varphi_1(X, y_2) \equiv \exists y_1 \varphi(X, y_1, y_2)$ is the new spec
- Synthesize $F_2(X)$ from $\varphi_1(X, y_2)$
 - Example: $\varphi_1(X, y_2) \equiv (x_1 \lor x_2 \lor \neg y_2)$ $F_2(X) \equiv \varphi_1(X, 1) \equiv (x_1 \lor x_2)$

```
Suppose \varphi(X, Y) \equiv (x_1 \lor x_2 \lor y_1) \land (y_1 \oplus y_2)
```

- $F_2(X)$ must be $\neg F_1(X)$ in all solutions
 - $F_2(X)$ and $F_1(X)$ cannot be synthesized independently.

- Yes!!!
 - Informally, synthesize $F_2(X)$ s.t. "we can always find y_1 to satisfy $\varphi(X, y_1, F_2(X))$ "
 - Formally, $\varphi_1(X, y_2) \equiv \exists y_1 \varphi(X, y_1, y_2)$ is the new spec
- Synthesize $F_2(X)$ from $\varphi_1(X, y_2)$
 - Example: $\varphi_1(X, y_2) \equiv (x_1 \lor x_2 \lor \neg y_2)$ $F_2(X) \equiv \varphi_1(X, 1) \equiv (x_1 \lor x_2)$
- Synthesize $F_1(X)$ from $\varphi(X, y_1, F_2(X))$

```
Suppose \varphi(X, Y) \equiv (x_1 \lor x_2 \lor y_1) \land (y_1 \oplus y_2)
```

- $F_2(X)$ must be $\neg F_1(X)$ in all solutions
 - $F_2(X)$ and $F_1(X)$ cannot be synthesized independently.

- Yes!!!
 - Informally, synthesize $F_2(X)$ s.t. "we can always find y_1 to satisfy $\varphi(X, y_1, F_2(X))$ "
 - Formally, $\varphi_1(X, y_2) \equiv \exists y_1 \varphi(X, y_1, y_2)$ is the new spec
- Synthesize $F_2(X)$ from $\varphi_1(X, y_2)$
 - Example: $\varphi_1(X, y_2) \equiv (x_1 \lor x_2 \lor \neg y_2)$ $F_2(X) \equiv \varphi_1(X, 1) \equiv (x_1 \lor x_2)$
- Synthesize $F_1(X)$ from $\varphi(X, y_1, F_2(X))$

```
Suppose \varphi(X, Y) \equiv (x_1 \lor x_2 \lor y_1) \land (y_1 \oplus y_2)
```

- $F_2(X)$ must be $\neg F_1(X)$ in all solutions
 - $F_2(X)$ and $F_1(X)$ cannot be synthesized independently.

- Yes!!!
 - Informally, synthesize $F_2(X)$ s.t. "we can always find y_1 to satisfy $\varphi(X, y_1, F_2(X))$ "
 - Formally, $\varphi_1(X, y_2) \equiv \exists y_1 \varphi(X, y_1, y_2)$ is the new spec
- Synthesize $F_2(X)$ from $\varphi_1(X, y_2)$
 - Example: $\varphi_1(X, y_2) \equiv (x_1 \lor x_2 \lor \neg y_2)$ $F_2(X) \equiv \varphi_1(X, 1) \equiv (x_1 \lor x_2)$
- Synthesize $F_1(X)$ from $\varphi(X, y_1, F_2(X))$
 - $\varphi(X, y_1, (x_1 \lor x_2)) \equiv (x_1 \lor x_2) \oplus y_1$ $F_1(X) \equiv \varphi(X, 1, (x_1 \lor x_2)) \equiv \neg(x_1 \lor x_2)$

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$

• Synthesize $F_m(X)$ from $\exists y_1 \dots y_{m-1} \varphi(X, y_1, \dots y_{m-1}, y_m)$

- Synthesize $F_m(X)$ from $\exists y_1 \dots y_{m-1} \varphi(X, y_1, \dots y_{m-1}, y_m)$
- Synthesize $F_{m-1}(X)$ from

$$\exists \underbrace{y_1 \dots y_{m-2}} \varphi(X, \underbrace{y_1, \dots y_{m-2}}, y_{m-1}, \underbrace{F_m(X)})$$

- Synthesize $F_m(X)$ from $\exists y_1 \dots y_{m-1} \varphi(X, y_1, \dots y_{m-1}, y_m)$
- Synthesize $F_{m-1}(X)$ from

$$\exists \underbrace{y_1 \dots y_{m-2}} \varphi(X, \underbrace{y_1, \dots y_{m-2}}, y_{m-1}, \underbrace{F_m(X)})$$

- •
- Synthesize $F_1(X)$ from $\varphi(X, y_1, F_2(X), \dots F_m(X))$

- Synthesize $F_m(X)$ from $\exists y_1 \dots y_{m-1} \varphi(X, y_1, \dots y_{m-1}, y_m)$
- Synthesize $F_{m-1}(X)$ from

$$\exists \underbrace{y_1 \dots y_{m-2}} \varphi(X, \underbrace{y_1, \dots y_{m-2}}, y_{m-1}, \underbrace{F_m(X)})$$

- •
- Synthesize $F_1(X)$ from $\varphi(X, y_1, F_2(X), \dots F_m(X))$

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$

- Synthesize $F_m(X)$ from $\exists y_1 \dots y_{m-1} \varphi(X, y_1, \dots y_{m-1}, y_m)$
- Synthesize $F_{m-1}(X)$ from

$$\exists \underbrace{y_1 \ldots y_{m-2}} \varphi(X, \underbrace{y_1, \ldots y_{m-2}}, y_{m-1}, \underbrace{F_m(X)})$$

- •
- Synthesize $F_1(X)$ from $\varphi(X, y_1, | F_2(X), \dots F_m(X) |)$

Centrality of quantifying y_i 's & composing $F_j(X)$'s in **given order**

Fix a linear ordering of outputs: $y_1 \prec y_2 \prec \cdots \prec y_m$

- Synthesize $F_m(X)$ from $\exists y_1 \dots y_{m-1} \varphi(X, y_1, \dots y_{m-1}, y_m)$
- Synthesize $F_{m-1}(X)$ from

$$\exists \underbrace{y_1 \dots y_{m-2}} \varphi(X, \underbrace{y_1, \dots y_{m-2}}, y_{m-1}, \underbrace{F_m(X)})$$

- •
- Synthesize $F_1(X)$ from $\varphi(X, y_1, | F_2(X), \dots F_m(X))$

Centrality of quantifying y_i 's & composing $F_j(X)$'s in **given order**

How do we compute

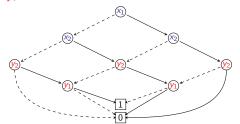
$$\exists \underline{y_1, \ldots y_i} \varphi(X, \underline{y_1, \ldots y_i}, \overline{F_{i+1}(X), \ldots F_m(X)})$$
 efficiently?

- Tronci'98, Kukula et al'00, Kuncak et al'10, Fried et al'16, Tabajara et al'17
- Spec $\varphi(X, Y)$ as ROBDD, Skolem functions as ROBDDs

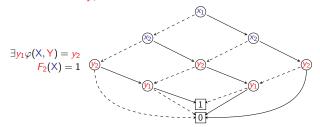
- Tronci'98, Kukula et al'00, Kuncak et al'10, Fried et al'16, Tabajara et al'17
- Spec $\varphi(X, Y)$ as ROBDD, Skolem functions as ROBDDs
- Key idea: Input (X) first ordering of variables

- Tronci'98, Kukula et al'00, Kuncak et al'10, Fried et al'16, Tabajara et al'17
- Spec $\varphi(X, Y)$ as ROBDD, Skolem functions as ROBDDs
- Key idea: Input (X) first ordering of variables
 - Allows easy quantification of y_i 's and composition of $F_j(X)$'s in **BDD order of** y_i 's

- Tronci'98, Kukula et al'00, Kuncak et al'10, Fried et al'16, Tabajara et al'17
- Spec $\varphi(X, Y)$ as ROBDD, Skolem functions as ROBDDs
- Key idea: Input (X) first ordering of variables
 - Allows easy quantification of y_i 's and composition of $F_j(X)$'s in **BDD order of** y_i 's

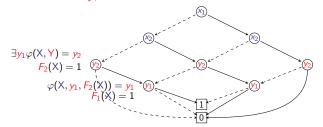


- Tronci'98, Kukula et al'00, Kuncak et al'10, Fried et al'16, Tabajara et al'17
- Spec $\varphi(X, Y)$ as ROBDD, Skolem functions as ROBDDs
- Key idea: Input (X) first ordering of variables
 - Allows easy quantification of y_i 's and composition of $F_j(X)$'s in **BDD order of** y_i 's



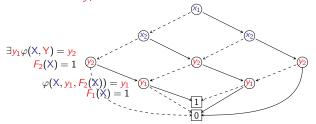
Synthesis from ROBDDs

- Tronci'98, Kukula et al'00, Kuncak et al'10, Fried et al'16, Tabajara et al'17
- Spec $\varphi(X, Y)$ as ROBDD, Skolem functions as ROBDDs
- Key idea: Input (X) first ordering of variables
 - Allows easy quantification of y_i 's and composition of $F_j(X)$'s in **BDD order of** y_i 's



Synthesis from ROBDDs

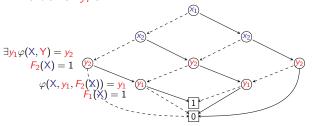
- Tronci'98, Kukula et al'00, Kuncak et al'10, Fried et al'16, Tabajara et al'17
- Spec $\varphi(X, Y)$ as ROBDD, Skolem functions as ROBDDs
- Key idea: Input (X) first ordering of variables
 - Allows easy quantification of y_i's and composition of F_j(X)'s in BDD order of y_i's



Significant optimizations in Fried et al'16, Tabajara et al'17

Synthesis from ROBDDs

- Tronci'98, Kukula et al'00, Kuncak et al'10, Fried et al'16, Tabajara et al'17
- Spec $\varphi(X, Y)$ as ROBDD, Skolem functions as ROBDDs
- Key idea: Input (X) first ordering of variables
 - Allows easy quantification of y_i 's and composition of $F_j(X)$'s in BDD order of y_i 's



- Significant optimizations in Fried et al'16, Tabajara et al'17
- Spec ROBDD can be exp. larger with input-first ordering
 - $\varphi(X, Y) \equiv \bigwedge_{i=1}^{n} (x_i \Leftrightarrow y_i)$
 - Size $\Omega(2^n)$ with input-first ordering, $\Theta(n)$ with interleaved input-output ordering,

Going beyond Input-First Ordered ROBDDs

ROBDDs have much more structure than we need.

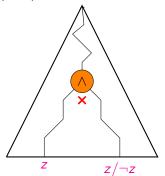
Going beyond Input-First Ordered ROBDDs

- ROBDDs have much more structure than we need.
- What if we're fine with Skolem functions as circuits, not as ROBDDs?
 - Can we avoid exponential blow-ups?

Going beyond Input-First Ordered ROBDDs

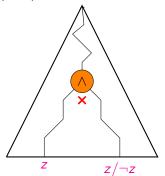
- ROBDDs have much more structure than we need.
- What if we're fine with Skolem functions as circuits, not as ROBDDs?
 - Can we avoid exponential blow-ups?
- What if the best variable order for the specification is not input-first?
 - Can we synthesize efficiently for such specs?

 $\varphi(X, Y)$ in DNNF except on X



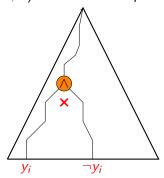
z is y_j Disallowed paths

 $\varphi(X, Y)$ in DNNF except on X



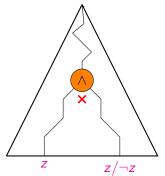
z is y_j
Disallowed paths

 $\varphi(X, Y)$ in wDNNF except on X



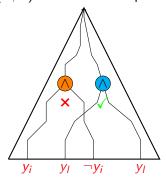
(Dis)allowed paths

 $\varphi(X, Y)$ in DNNF except on X



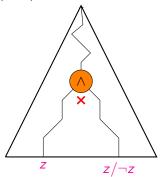
z is y_j
Disallowed paths

 $\varphi(X, Y)$ in wDNNF except on X



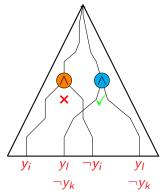
(Dis)allowed paths

 $\varphi(X, Y)$ in DNNF except on X



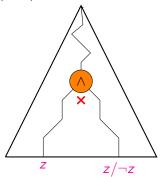
z is y_j
Disallowed paths

 $\varphi(X, Y)$ in wDNNF except on X

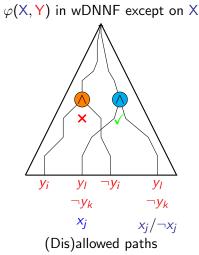


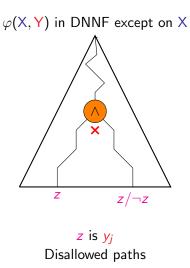
(Dis)allowed paths

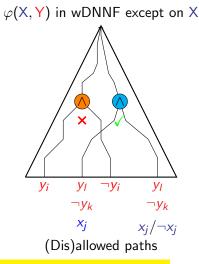
 $\varphi(X, Y)$ in DNNF except on X



z is y_j Disallowed paths







Allows quantification of y_i 's and composition of F_j 's in arbitrary order

Is there a weaker (than wDNNF) representation form of φ that guarantees poly-time (in $|\varphi|$) synthesis?

Is there a weaker (than wDNNF) representation form of φ that guarantees poly-time (in $|\varphi|$) synthesis?

- YES: Synthesis Negation Normal Form (SynNNF)
- Subsumes and exponentially more succinct than BDD/DNNF/wDNNF/...

Is there a weaker (than wDNNF) representation form of φ that guarantees poly-time (in $|\varphi|$) synthesis?

- YES: Synthesis Negation Normal Form (SynNNF)
- Subsumes and exponentially more succinct than BDD/DNNF/wDNNF/...

Can we synthesize Skolem functions from a "simplified" specification?

Is there a weaker (than wDNNF) representation form of φ that guarantees poly-time (in $|\varphi|$) synthesis?

- YES: Synthesis Negation Normal Form (SynNNF)
- Subsumes and exponentially more succinct than BDD/DNNF/wDNNF/...

Can we synthesize Skolem functions from a "simplified" specification?

- YES: Folklore wisdom
- Formalized as refinement w.r.t. synthesis

Is there a weaker (than wDNNF) representation form of φ that guarantees poly-time (in $|\varphi|$) synthesis?

- YES: Synthesis Negation Normal Form (SynNNF)
- Subsumes and exponentially more succinct than BDD/DNNF/wDNNF/...

Can we synthesize Skolem functions from a "simplified" specification?

- YES: Folklore wisdom
- Formalized as refinement w.r.t. synthesis

Can we algorithmically compile φ to a refined SynNNF spec $\widetilde{\varphi}$?

Is there a weaker (than wDNNF) representation form of φ that guarantees poly-time (in $|\varphi|$) synthesis?

- YES: Synthesis Negation Normal Form (SynNNF)
- Subsumes and exponentially more succinct than BDD/DNNF/wDNNF/...

Can we synthesize Skolem functions from a "simplified" specification?

- YES: Folklore wisdom
- Formalized as refinement w.r.t. synthesis

Can we algorithmically compile φ to a refined SynNNF spec $\widetilde{\varphi}$?

- YES: Super-polynomial time in worst-case
- Practical performance promising!

Classical Knowledge Compilation

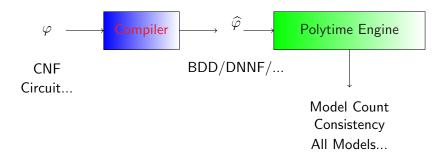
Wikipedia

... a family of approaches for addressing the intractability of a number of artificial intelligence problems. A propositional model is compiled in an off-line phase in order to support some queries in polytime.

Classical Knowledge Compilation

Wikipedia

... a family of approaches for addressing the intractability of a number of artificial intelligence problems. A propositional model is compiled in an off-line phase in order to support some queries in polytime.



Knowledge Compilation for Synthesis

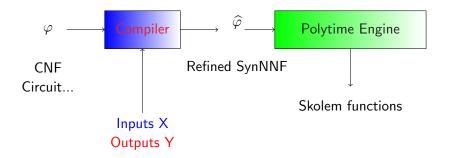
Our Definition

... a family of approaches for addressing the intractability of synthesis problems. A propositional model is compiled in an off-line phase in order to support some queries in polytime.

Knowledge Compilation for Synthesis

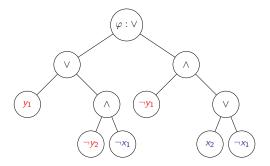
Our Definition

... a family of approaches for addressing the intractability of synthesis problems. A propositional model is compiled in an off-line phase in order to support some queries in polytime.

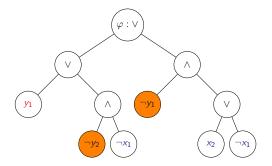


- Represent $\varphi(x_1,..,x_n,y_1,..,y_m)$ as NNF DAG
 - \bullet Boolean circuit, \wedge and \vee at internal nodes, \neg only at leaves

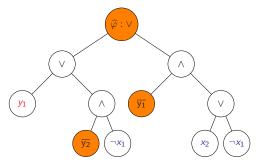
- Represent $\varphi(x_1,..,x_n,y_1,..,y_m)$ as NNF DAG
 - Boolean circuit, ∧ and ∨ at internal nodes, ¬ only at leaves



- Represent $\varphi(x_1,..,x_n,y_1,..,y_m)$ as NNF DAG
 - \bullet Boolean circuit, \wedge and \vee at internal nodes, \neg only at leaves



- Represent $\varphi(x_1,...,x_n,y_1,...,y_m)$ as NNF DAG
 - \bullet Boolean circuit, \wedge and \vee at internal nodes, \neg only at leaves

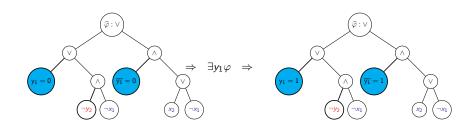


• Positive form of specification:

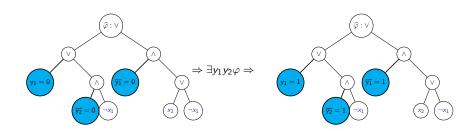
$$\widehat{\varphi}(x_1,\ldots x_n, y_1,\ldots y_m, \overline{y_1},\ldots \overline{y_m})$$

• Monotone w.r.t all y_i and $\overline{y_i}$

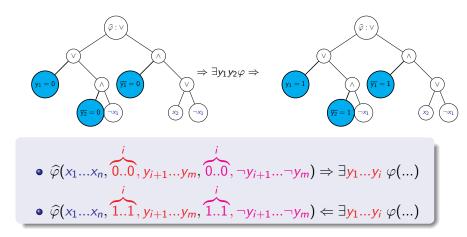
Simple properties of $\widehat{\varphi}$



Simple properties of $\widehat{\varphi}$



Simple properties of $\widehat{\varphi}$



Given

- Positive form of spec $\widehat{\varphi}(x_1, \dots, x_n, y_1, \dots, y_m, \overline{y_1}, \dots, \overline{y_m})$
- Linear order of outputs $y_1 \prec \cdots \prec y_m$

Given

- Positive form of spec $\widehat{\varphi}(x_1, \dots x_n, y_1, \dots y_m, \overline{y_1}, \dots \overline{y_m})$
- Linear order of outputs $y_1 \prec \cdots \prec y_m$

Define
$$[\widehat{\varphi}]_i$$
 as

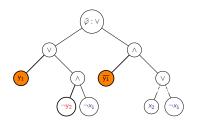
$$\widehat{\varphi}(x_1,\ldots x_n, \overbrace{1..1}^{i-1}, y_i, y_{i+1}\ldots y_m, \overbrace{1..1}^{i-1}, \overline{y_i}, \neg y_{i+1}\ldots \neg y_m).$$

Given

- Positive form of spec $\widehat{\varphi}(x_1, \dots, x_n, y_1, \dots, y_m, \overline{y_1}, \dots, \overline{y_m})$
- Linear order of outputs $y_1 \prec \cdots \prec y_m$

Define $[\widehat{\varphi}]_i$ as

$$\widehat{\varphi}(x_1,\ldots x_n, \overbrace{1..1}^{i-1}, y_i, y_{i+1}\ldots y_m, \overbrace{1..1}^{i-1}, \overline{y_i}, \neg y_{i+1}\ldots \neg y_m).$$



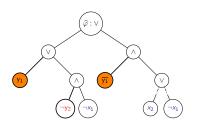
$$[\widehat{\varphi}]_1(x_1,x_2,y_1,y_2,\overline{y_1})$$

Given

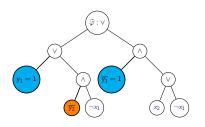
- Positive form of spec $\widehat{\varphi}(x_1, \dots x_n, y_1, \dots y_m, \overline{y_1}, \dots \overline{y_m})$
- Linear order of outputs $y_1 \prec \cdots \prec y_m$

Define $[\widehat{\varphi}]_i$ as

$$\widehat{\varphi}(x_1,\ldots x_n,\overbrace{1..1}^{i-1}, y_i, y_{i+1}\ldots y_m,\overbrace{1..1}^{i-1}, \overline{y_i}, \neg y_{i+1}\ldots \neg y_m).$$



$$[\widehat{\varphi}]_1(x_1, x_2, y_1, y_2, \overline{y_1})$$



$$[\widehat{\varphi}]_2(x_1,x_2,y_2,\overline{y_2})$$

Iterated reducts and existential quantification

Already seen $\exists y_1 \varphi(X, Y) \Rightarrow \widehat{\varphi}|_{y_1=1, \overline{y_1}=1}$

Iterated reducts and existential quantification

Already seen $\exists y_1 \varphi(X, Y) \Rightarrow \widehat{\varphi} \mid_{y_1=1, \overline{y_1}=1} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=1, \overline{y_1}=1}$

Iterated reducts and existential quantification

Already seen $\exists y_1 \varphi(X, Y) \Rightarrow \widehat{\varphi} \mid_{y_1=1, \overline{y_1}=1} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=1, \overline{y_1}=1}$ Under what conditions is the implication strict?

Already seen $\exists y_1 \varphi(X, Y) \Rightarrow \widehat{\varphi} \mid_{y_1=1, \overline{y_1}=1} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=1, \overline{y_1}=1}$ Under what conditions is the implication strict?

• When do we have $\exists y_1 \varphi(X, Y) \notin [\widehat{\varphi}]_1 |_{y_1=1, \overline{y_1}=1}$?

Already seen $\exists y_1 \varphi(X, Y) \Rightarrow \widehat{\varphi} |_{y_1=1, \overline{y_1}=1} \Leftrightarrow [\widehat{\varphi}]_1 |_{y_1=1, \overline{y_1}=1}$ Under what conditions is the implication strict?

- When do we have $\exists y_1 \varphi(X, Y) \notin [\widehat{\varphi}]_1 |_{y_1=1, \overline{y_1}=1}$?
- Exactly when

 - $\begin{array}{lll} \bullet & [\widehat{\varphi}]_1 \mid_{y_1=1,\overline{y_1}=1} & = & 1 \\ \bullet & \exists y_1 \varphi(\mathsf{X}, \overset{}{\mathsf{Y}}) \Leftrightarrow \varphi \mid_{y_1=1} & \lor \varphi \mid_{y_1=0} & = & 0 \\ \end{array}$

Already seen $\exists y_1 \varphi(X, Y) \Rightarrow \widehat{\varphi} \mid_{y_1=1, \overline{y_1}=1} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=1, \overline{y_1}=1}$ Under what conditions is the implication strict?

- When do we have $\exists y_1 \varphi(X, Y) \notin [\widehat{\varphi}]_1 |_{y_1=1, \overline{y_1}=1}$?
- Exactly when
 - $\bullet \ [\widehat{\varphi}]_1 \mid_{y_1=1,\overline{y_1}=1} = 1$
 - $\exists y_1 \varphi(X, Y) \Leftrightarrow \varphi |_{y_1=1} \lor \varphi |_{y_1=0} = 0$
 - $\bullet \varphi \mid_{y_1=1} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=1,\overline{y_1}=0} = 0$
 - $\bullet \ \varphi\mid_{\mathbf{y_1}=0} \ \Leftrightarrow \ [\widehat{\varphi}]_1\mid_{\mathbf{y_1}=0,\overline{\mathbf{y_1}}=1} \ = \ 0$

Already seen $\exists y_1 \varphi(X, Y) \Rightarrow \widehat{\varphi} \mid_{y_1=1, \overline{y_1}=1} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=1, \overline{y_1}=1}$ Under what conditions is the implication strict?

- When do we have $\exists y_1 \varphi(X, Y) \not= [\widehat{\varphi}]_1 |_{y_1=1, \overline{y_1}=1}$?
- Exactly when
 - $\bullet \ [\widehat{\varphi}]_1 \mid_{y_1=1,\overline{y_1}=1} = 1$
 - $\exists y_1 \varphi(X, Y) \Leftrightarrow \varphi |_{y_1=1} \lor \varphi |_{y_1=0} = 0$
 - $\varphi \mid_{y_1=1} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=1,\overline{y_1}=0} = 0$
 - $\varphi \mid_{y_1=0} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=0,\overline{y_1}=1} = 0$
 - (By monotoniciy of $\widehat{\varphi}$ w.r.t $\underline{y_1}$ and $\overline{\underline{y_1}}$) $[\widehat{\varphi}]_1 \mid_{\underline{y_1}=0,\overline{\underline{y_1}}=0} = 0$

Already seen $\exists y_1 \varphi(X, Y) \Rightarrow \widehat{\varphi} \mid_{y_1=1, \overline{y_1}=1} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=1, \overline{y_1}=1}$ Under what conditions is the implication strict?

- When do we have $\exists y_1 \varphi(X, Y) \not= [\widehat{\varphi}]_1 |_{y_1=1, \overline{y_1}=1}$?
- Exactly when
 - $\bullet \ [\widehat{\varphi}]_1 \mid_{\underline{y}_1=1,\overline{\underline{y}_1}=1} \ = \ 1$
 - $\exists y_1 \varphi(X, Y) \Leftrightarrow \varphi |_{y_1=1} \lor \varphi |_{y_1=0} = 0$
 - $\bullet \varphi \mid_{\mathbf{y}_1=1} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{\mathbf{y}_1=1,\overline{\mathbf{y}_1}=0} = 0$
 - $\bullet \varphi \mid_{\mathbf{y}_1=0} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{\mathbf{y}_1=0,\overline{\mathbf{y}_1}=1} = 0$
 - (By monotonicity of $\widehat{\varphi}$ w.r.t $\underline{y_1}$ and $\overline{\underline{y_1}}$) $[\widehat{\varphi}]_1 |_{\underline{y_1}=0,\overline{\underline{y_1}}=0} = 0$
- In other words, when $[\widehat{\varphi}]_1$ "behaves like" $y_1 \wedge \overline{y_1}$.

Already seen $\exists y_1 \varphi(X, Y) \Rightarrow \widehat{\varphi} \mid_{y_1=1, \overline{y_1}=1} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=1, \overline{y_1}=1}$ Under what conditions is the implication strict?

- When do we have $\exists y_1 \varphi(X, Y) \notin [\widehat{\varphi}]_1 |_{y_1=1, \overline{y_1}=1}$?
- Exactly when
 - $\bullet \ [\widehat{\varphi}]_1 \mid_{\underline{y}_1=1,\overline{\underline{y}_1}=1} \ = \ 1$
 - $\exists y_1 \varphi(X, Y) \Leftrightarrow \varphi |_{y_1=1} \vee \varphi |_{y_1=0} = 0$
 - $\bullet \varphi \mid_{\mathbf{y}_1=1} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{\mathbf{y}_1=1,\overline{\mathbf{y}_1}=0} = 0$
 - $\varphi \mid_{y_1=0} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=0,\overline{y_1}=1} = 0$
 - (By monotoniciy of $\widehat{\varphi}$ w.r.t $\underline{y_1}$ and $\overline{\underline{y_1}}$) $[\widehat{\varphi}]_1 \mid_{\underline{y_1}=0,\overline{\underline{y_1}}=0} = 0$
- In other words, when $[\widehat{\varphi}]_1$ "behaves like" $y_1 \wedge \overline{y_1}$.

Insight

Already seen $\exists y_1 \varphi(X, Y) \Rightarrow \widehat{\varphi} \mid_{y_1=1, \overline{y_1}=1} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=1, \overline{y_1}=1}$ Under what conditions is the implication strict?

- When do we have $\exists y_1 \varphi(X, Y) \notin [\widehat{\varphi}]_1 |_{y_1=1, \overline{y_1}=1}$?
- Exactly when
 - $\bullet \ [\widehat{\varphi}]_1 \mid_{\underline{y_1}=1,\overline{\underline{y_1}}=1} = 1$
 - $\exists y_1 \varphi(X, Y) \Leftrightarrow \varphi|_{y_1=1} \vee \varphi|_{y_1=0} = 0$
 - $\bullet \varphi |_{\mathbf{v}_1=1} \Leftrightarrow [\widehat{\varphi}]_1 |_{\mathbf{v}_1=1,\overline{\mathbf{v}_1}=0} = 0$
 - $\bullet \varphi |_{v_1=0} \Leftrightarrow [\widehat{\varphi}]_1 |_{v_1=0, \overline{v_1}=1} = 0$
 - (By monotonicity of $\widehat{\varphi}$ w.r.t $\underline{y_1}$ and $\overline{\underline{y_1}}$) $[\widehat{\varphi}]_1 |_{\underline{y_1}=0, \overline{\underline{y_1}}=0} = 0$
- In other words, when $[\widehat{\varphi}]_1$ "behaves like" $y_1 \wedge \overline{y_1}$.

Insight

• $\exists y_1 \varphi(X, Y) \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1 = 1, \overline{y_1} = 1} \text{ for all } X, y_2, \dots y_m \text{ iff } \neg \exists X, y_2, \dots y_m ([\widehat{\varphi}]_1 \Leftrightarrow y_1 \wedge \overline{y_1}).$

Already seen $\exists y_1 \varphi(X, Y) \Rightarrow \widehat{\varphi} \mid_{y_1=1, \overline{y_1}=1} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=1, \overline{y_1}=1}$ Under what conditions is the implication strict?

- When do we have $\exists y_1 \varphi(X, Y) \notin [\widehat{\varphi}]_1 |_{y_1=1, \overline{y_1}=1}$?
- Exactly when
 - $\bullet \ [\widehat{\varphi}]_1 \mid_{\underline{y_1}=1,\overline{\underline{y_1}}=1} \ = \ 1$
 - $\exists y_1 \varphi(X, Y) \Leftrightarrow \varphi |_{y_1=1} \lor \varphi |_{y_1=0} = 0$
 - $\bullet \varphi |_{\mathbf{v}_1=1} \Leftrightarrow [\widehat{\varphi}]_1 |_{\mathbf{v}_1=1,\overline{\mathbf{v}_1}=0} = 0$
 - $\varphi \mid_{y_1=0} \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=0,\overline{y_1}=1} = 0$
 - (By monotonicity of $\widehat{\varphi}$ w.r.t $\underline{y_1}$ and $\overline{\underline{y_1}}$) $[\widehat{\varphi}]_1 |_{\underline{y_1}=0,\overline{\underline{y_1}}=0} = 0$
- In other words, when $[\widehat{\varphi}]_1$ "behaves like" $y_1 \wedge \overline{y_1}$.

Insight

- $\exists y_1 \varphi(X, Y) \Leftrightarrow [\widehat{\varphi}]_1 \mid_{y_1=1, \overline{y_1}=1} \text{ for all } X, y_2, \dots y_m \text{ iff } \neg \exists X, y_2, \dots y_m ([\widehat{\varphi}]_1 \Leftrightarrow y_1 \wedge \overline{y_1}).$
- Inductively, $\exists y_1, \dots y_i \varphi(X, Y) \Leftrightarrow [\widehat{\varphi}]_i \mid_{y_i=1, \overline{y_i}=1} \text{iff} \\ \neg \exists X, y_{i+1}, \dots y_m ([\widehat{\varphi}]_i \Leftrightarrow y_i \land \overline{y_i}).$

An NNF specification $\varphi(X, Y)$ is in SynNNF w.r.t. a linear order $y_1 \prec y_2 \prec \cdots \prec y_m$ iff $\neg \exists x_1, \ldots x_n, y_{i+1} \cdots y_m \ ([\widehat{\varphi}]_i \Leftrightarrow y_i \land \overline{y_i})$ for all $i \in \{1, \ldots n\}$

```
An NNF specification \varphi(X, Y) is in SynNNF w.r.t. a linear order y_1 \prec y_2 \prec \cdots \prec y_m iff \neg \exists x_1, \ldots x_n, y_{i+1} \ldots y_m \quad ( [\widehat{\varphi}]_i \Leftrightarrow y_i \land \overline{y_i} ) \text{ for all } i \in \{1, \ldots n\}
```

Can $[\widehat{\varphi}]_i$ be made to "behave like" $y_i \wedge \overline{y_i}$ for any i?

If yes, φ is not in SynNNF; else it is in SynNNF

An NNF specification
$$\varphi(\mathsf{X}, \mathsf{Y})$$
 is in SynNNF w.r.t. a linear order $y_1 \prec y_2 \prec \cdots \prec y_m$ iff $\neg \exists x_1, \ldots x_n, y_{i+1} \ldots y_m \ (\ [\widehat{\varphi}]_i \Leftrightarrow y_i \land \overline{y_i} \)$ for all $i \in \{1, \ldots n\}$

Can $[\widehat{\varphi}]_i$ be made to "behave like" $y_i \wedge \overline{y_i}$ for any i?

If yes, φ is not in SynNNF; else it is in SynNNF

Skolem fn for y_i (in terms of y_{i+1}, \dots, y_m, X) • $\exists y_1, \dots, y_{i-1} \varphi(X, y_1, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_m)$

An NNF specification
$$\varphi(\mathsf{X}, \mathsf{Y})$$
 is in SynNNF w.r.t. a linear order $y_1 \prec y_2 \prec \cdots \prec y_m$ iff $\neg \exists x_1, \ldots x_n, y_{i+1} \ldots y_m \ \ (\ [\widehat{\varphi}]_i \Leftrightarrow \ y_i \land \overline{y_i} \)$ for all $i \in \{1, \ldots n\}$

Can $[\widehat{\varphi}]_i$ be made to "behave like" $y_i \wedge \overline{y_i}$ for any i?

If yes, φ is not in SynNNF; else it is in SynNNF

Skolem fn for y_i (in terms of $y_{i+1}, \dots y_m, X$)

- $\bullet \exists y_1, \ldots y_{i-1} \varphi(X, y_1, \ldots y_{i-1}, 1, y_{i+1}, \ldots y_m)$
- Equivalently, $[\widehat{\varphi}]_i \mid_{y_i=1,\overline{y_i}=0}$, if φ in SynNNF

An NNF specification
$$\varphi(X, Y)$$
 is in SynNNF w.r.t. a linear order $y_1 \prec y_2 \prec \cdots \prec y_m$ iff $\neg \exists x_1, \dots x_n, y_{i+1} \dots y_m \ ([\widehat{\varphi}]_i \Leftrightarrow y_i \land \overline{y_i})$ for all $i \in \{1, \dots n\}$

Can $[\widehat{\varphi}]_i$ be made to "behave like" $y_i \wedge \overline{y_i}$ for any i?

If yes, φ is not in SynNNF; else it is in SynNNF

Skolem fn for y_i (in terms of $y_{i+1}, \dots y_m, X$)

- $\exists y_1, \ldots y_{i-1} \varphi(X, y_1, \ldots y_{i-1}, 1, y_{i+1}, \ldots y_m)$
- Equivalently, $[\widehat{\varphi}]_i \mid_{y_i=1,\overline{y_i}=0}$, if φ in SynNNF

Observations:

 \bullet Not purely structural restriction on representation of φ

An NNF specification $\varphi(X, Y)$ is in SynNNF w.r.t. a linear order $y_1 \prec y_2 \prec \cdots \prec y_m$ iff $\neg \exists x_1, \dots x_n, y_{i+1} \dots y_m \ ([\widehat{\varphi}]_i \Leftrightarrow y_i \wedge \overline{y_i})$ for all $i \in \{1, \dots n\}$

Can $[\widehat{\varphi}]_i$ be made to "behave like" $y_i \wedge \overline{y_i}$ for any i?

If yes, φ is not in SynNNF; else it is in SynNNF

Skolem fn for y_i (in terms of $y_{i+1}, \dots y_m, X$)

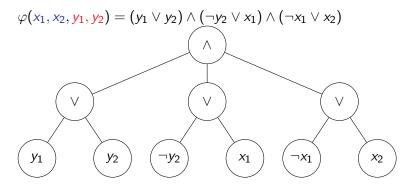
- $\exists y_1, \ldots y_{i-1} \varphi(X, y_1, \ldots y_{i-1}, 1, y_{i+1}, \ldots y_m)$
- Equivalently, $[\widehat{\varphi}]_i \mid_{y_i=1,\overline{y_i}=0}$, if φ in SynNNF

Observations:

- \bullet Not purely structural restriction on representation of φ
- Reminiscent of Deterministic DNNF (dDNNF)
 - For every \vee node representing $\varphi_1 \vee \varphi_2$, require $\varphi_1 \wedge \varphi_2 = \bot$.

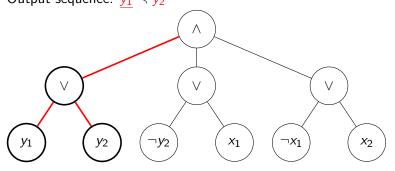
$$\varphi(x_1, x_2, y_1, y_2) = (y_1 \lor y_2) \land (\neg y_2 \lor x_1) \land (\neg x_1 \lor x_2)$$

$$\lor \qquad \lor \qquad \lor \qquad \lor$$



Representation of φ **not** in DNNF/wDNNF

$$\varphi(x_1, x_2, y_1, y_2) = (y_1 \lor y_2) \land (\neg y_2 \lor x_1) \land (\neg x_1 \lor x_2)$$
Output sequence: $y_1 \prec y_2$



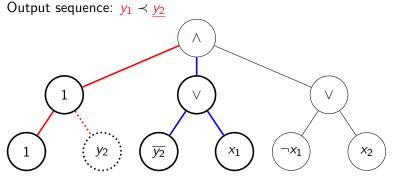
$$\varphi(x_1, x_2, y_1, y_2) = (y_1 \lor y_2) \land (\neg y_2 \lor x_1) \land (\neg x_1 \lor x_2)$$
Output sequence: $y_1 \prec y_2$

 x_1

 $\neg x_1$

*X*₂

$$\varphi(x_1, x_2, y_1, y_2) = (y_1 \lor y_2) \land (\neg y_2 \lor x_1) \land (\neg x_1 \lor x_2)$$



Representation of φ in SynNNF **w.r.t** $y_1 \prec y_2$

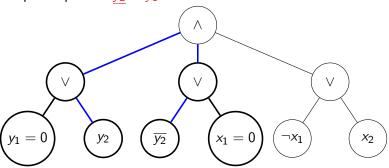
Non-SynNNF: An Example

$$\varphi(x_1, x_2, y_1, y_2) = (y_1 \lor y_2) \land (\neg y_2 \lor x_1) \land (\neg x_1 \lor x_2)$$
Output sequence: $\underline{y_2} \prec y_1$

$$(y_1 = 0) \qquad (y_2) \qquad (\overline{y_2}) \qquad (x_1 = 0) \qquad (\neg x_1) \qquad (x_2)$$

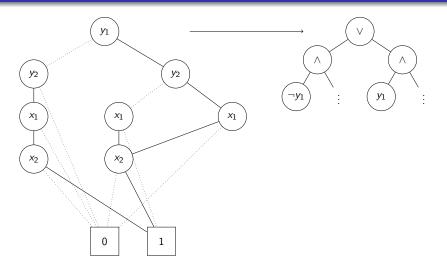
Non-SynNNF: An Example

$$\varphi(x_1, x_2, y_1, y_2) = (y_1 \lor y_2) \land (\neg y_2 \lor x_1) \land (\neg x_1 \lor x_2)$$
Output sequence: $y_2 \prec y_1$



Representation of φ not in SynNNF w.r.t $y_2 \prec y_1$

BDD and SynNNF



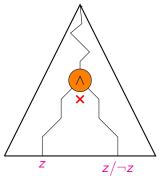
BDD and SynNNF



 $\mathsf{BDD} \to \mathsf{SynNNF}$ in linear time for any output order \prec and any BDD variable order.

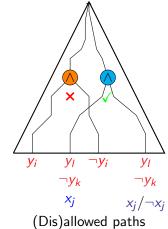
DNNF, wDNNF and SynNNF

 $\varphi(X, Y)$ in DNNF except on X

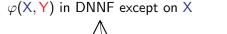


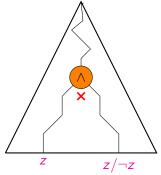
z is y_j Disallowed paths

 $\varphi(X, Y)$ in wDNNF except on X

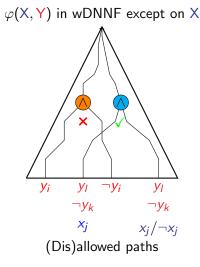


DNNF, wDNNF and SynNNF





z is y_j
Disallowed paths



A specification in DNNF or wDNNF is already in SynNNF for any output order \prec .

- Every propositional formula representable in SynNNF for every ordering of outputs
 - DNF always SynNNF for any output order

- Every propositional formula representable in SynNNF for every ordering of outputs
 - DNF always SynNNF for any output order
- A formula may have multiple SynNNF representations
 - DNF, BDD, DNNF ...

- Every propositional formula representable in SynNNF for every ordering of outputs
 - DNF always SynNNF for any output order
- A formula may have multiple SynNNF representations
 - DNF, BDD, DNNF ...
- A given representation may be SynNNF for one order of outputs and not in SynNNF for another order.

- Every propositional formula representable in SynNNF for every ordering of outputs
 - DNF always SynNNF for any output order
- A formula may have multiple SynNNF representations
 - DNF, BDD, DNNF ...
- A given representation may be SynNNF for one order of outputs and not in SynNNF for another order.
- Given an output order \prec and an NNF specification φ , checking if φ is in SynNNF w.r.t. \prec is coNP-complete.

- Every propositional formula representable in SynNNF for every ordering of outputs
 - DNF always SynNNF for any output order
- A formula may have multiple SynNNF representations
 - DNF, BDD, DNNF ...
- A given representation may be SynNNF for one order of outputs and not in SynNNF for another order.
- Given an output order \prec and an NNF specification φ , checking if φ is in SynNNF w.r.t. \prec is coNP-complete.
- Given φ , checking if φ is in SynNNF w.r.t. any (unspecificed) order \prec is in Σ_2^P .

There exist polynomial sized SynNNF specifications that only admit

There exist polynomial sized SynNNF specifications that only admit

Exponential-sized ROBDD/FBDD representations

There exist polynomial sized SynNNF specifications that only admit

- Exponential-sized ROBDD/FBDD representations
- Exponential-sized DNNF representations

There exist polynomial sized SynNNF specifications that only admit

- Exponential-sized ROBDD/FBDD representations
- Exponential-sized DNNF representations
- $\hbox{ Super-polynomial sized dDNNF representations, unless P} = \\ \hbox{VNP}$

There exist polynomial sized SynNNF specifications that only admit

- Exponential-sized ROBDD/FBDD representations
- Exponential-sized DNNF representations
- Super-polynomial sized dDNNF representations, unless P = VNP

There exist poly-sized NNF representations that only admit super-polynomial sized SynNNF representations

Unless the polynomial hierarchy collapses

There exist polynomial sized SynNNF specifications that only admit

- Exponential-sized ROBDD/FBDD representations
- Exponential-sized DNNF representations
- ullet Super-polynomial sized dDNNF representations, unless P = VNP

There exist poly-sized NNF representations that only admit super-polynomial sized SynNNF representations

Unless the polynomial hierarchy collapses

NNF □ SynNNF □ DNNF □ dDNNF □ BDD

Operations with SynNNF

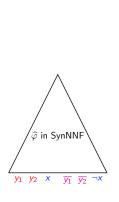
Given $\varphi_1(X, Y)$ and $\varphi_2(X, Y)$ in SynNNF w.r.t. the same ordering of Y

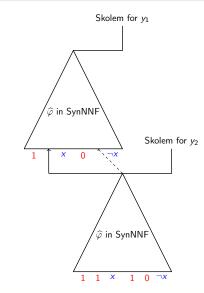
Operations with SynNNF

Given $\varphi_1(X, Y)$ and $\varphi_2(X, Y)$ in SynNNF w.r.t. the same ordering of Y

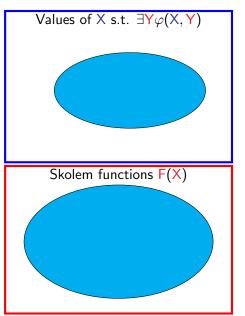
- Computing $\varphi_1 \wedge \varphi_2$ in SynNNF in poly-time not possible unless P = NP
- Computing $\varphi_1 \vee \varphi_2$ in SynNNF in same ordering of Y takes constant time
- Existentially quantifying $y_1, \ldots y_m$ takes linear time.
 - Quantifying subset of Y not possible in linear time in general.

How does SynNNF help Skolem function synthesis?

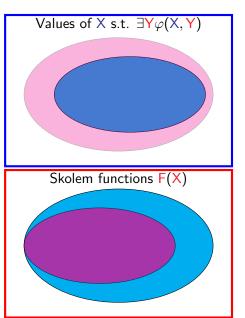




Synthesis: $m \times |\varphi|$ circuit size, $\mathcal{O}(m^2)$ additional wires.

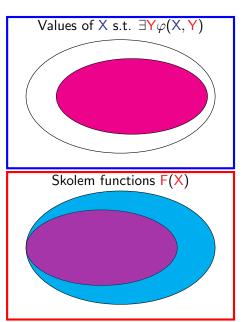


Given spec: $\varphi(X, Y)$



Given spec: $\varphi(X, Y)$

Refined spec: $\widetilde{\varphi}(X, Y)$ $\widetilde{\varphi} \leq_{syn} \varphi$



Given spec: $\varphi(X, Y)$

Strongly Refined spec: $\widetilde{\varphi}(X, Y)$ $\widetilde{\varphi} \preceq_{syn}^* \varphi$

Lemma

If $\widetilde{\varphi}(X, Y) \leq_{syn} \varphi(X, Y)$, every Skolem function vector for Y in $\widetilde{\varphi}$ is also a Skolem function vector for Y in φ .

Lemma

If $\widetilde{\varphi}(X, Y) \leq_{syn} \varphi(X, Y)$, every Skolem function vector for Y in $\widetilde{\varphi}$ is also a Skolem function vector for Y in φ .

Example:
$$(y_2 \wedge y_1) \leq_{syn} ((\neg y_1 \vee y_2 \vee x_1) \wedge (y_1 \vee \neg y_2) \wedge (y_1 \vee \neg x_1) \wedge (y_2 \vee x_2))$$

1 Both \leq_{syn} and \leq_{syn}^* are reflexive and transitive relations on Boolean relational specifications.

- **1** Both \leq_{syn} and \leq_{syn}^* are reflexive and transitive relations on Boolean relational specifications.
- ② If $\bigwedge_{x_j \in X} (F|_{x_j=0} \Leftrightarrow F|_{x_j=1})$ and $\pi \models F(Y, X)$, then form $(\pi \downarrow Y) \leq_{syn}^* F$.

- **1** Both \leq_{syn} and \leq_{syn}^* are reflexive and transitive relations on Boolean relational specifications.
- ② If $\bigwedge_{x_j \in X} (F|_{x_j=0} \Leftrightarrow F|_{x_j=1})$ and $\pi \models F(Y,X)$, then form $(\pi \downarrow Y) \leq_{syn}^* F$.
- 3 If $\bigwedge_{y_i \in Y} (F|_{y_i=0} \Leftrightarrow F|_{y_i=1})$, then $1 \leq_{syn} F$ and $F|_{Y=a} \leq_{syn}^* F$, where a is any vector in $\{0,1\}^m$.

- **1** Both \leq_{syn} and \leq_{syn}^* are reflexive and transitive relations on Boolean relational specifications.
- ② If $\bigwedge_{x_j \in X} (F|_{x_j=0} \Leftrightarrow F|_{x_j=1})$ and $\pi \models F(Y,X)$, then form $(\pi \downarrow Y) \leq_{syn}^* F$.
- ③ If $\bigwedge_{y_i \in Y} (F|_{y_i=0} \Leftrightarrow F|_{y_i=1})$, then $1 \leq_{syn} F$ and $F|_{Y=a} \leq_{syn}^* F$, where a is any vector in $\{0,1\}^m$.
- **③** If F is positive (resp. negative) unate in y_i ∈ Y, then $y_i \wedge F|_{y_i=1}$ (resp. $\neg y_i \wedge F|_{y_i=0}$) $\preceq_{syn}^* F$. pause
- $\bullet \quad \text{Let } \widetilde{F}_1 \preceq_{\textit{syn}}^* F_1 \text{ and } \widetilde{F}_2 \preceq_{\textit{syn}}^* F_2. \text{ Then } (\widetilde{F}_1 \vee \widetilde{F}_2) \preceq_{\textit{syn}}^* (F_1 \vee F_2).$

- Both \leq_{syn} and \leq_{syn}^* are reflexive and transitive relations on Boolean relational specifications.
- ② If $\bigwedge_{x_j \in X} (F|_{x_j=0} \Leftrightarrow F|_{x_j=1})$ and $\pi \models F(Y,X)$, then form $(\pi \downarrow Y) \leq_{syn}^* F$.
- ③ If $\bigwedge_{y_i \in Y} (F|_{y_i=0} \Leftrightarrow F|_{y_i=1})$, then $1 \leq_{syn} F$ and $F|_{Y=a} \leq_{syn}^* F$, where a is any vector in $\{0,1\}^m$.
- **③** If F is positive (resp. negative) unate in y_i ∈ Y, then $y_i \wedge F|_{y_i=1}$ (resp. $\neg y_i \wedge F|_{y_i=0}$) $\preceq_{syn}^* F$. pause
- $\bullet \quad \text{Let } \widetilde{F}_1 \preceq_{\textit{syn}}^* F_1 \text{ and } \widetilde{F}_2 \preceq_{\textit{syn}}^* F_2. \text{ Then } (\widetilde{F}_1 \vee \widetilde{F}_2) \preceq_{\textit{syn}}^* (F_1 \vee F_2).$
 - **2** Let $\widetilde{F}_1 \preceq_{syn} F_1$ and $\widetilde{F}_2 \preceq_{syn} F_2$. If the output supports of F_1 and F_2 , and similarly of \widetilde{F}_1 and \widetilde{F}_2 , are disjoint, then $(\widetilde{F}_1 \wedge \widetilde{F}_2) \preceq_{syn} (F_1 \wedge F_2)$. If, in addition, $\widetilde{F}_1 \preceq_{syn}^* F_1$ and $\widetilde{F}_2 \preceq_{syn}^* F_2$, then $(\widetilde{F}_1 \wedge \widetilde{F}_2) \preceq_{syn}^* (F_1 \wedge F_2)$.

Putting it all together

Tool C2Syn:

• Input: φ in CNF (or AIG)

ullet Output: Refined \widetilde{arphi} in SynNNF

- Branches only on output variables
- Aggressively tries to refine whenever possible
- Details in our FMCAD 2019 paper

Experimental Results

Comparison of run-time with

- CADET [Rabe et al 2016]
- BFSS [Akshay et al 2018]
- BDD [BDD pipeline of BFSS]

Benchmarks: QBFEVAL 2018 and Factorization (408 total)

Benchmarks	Compiled By C2Syn			BDD	Total
(Total)	Stage I	Stage II	Total	compilation	in SynNNF
QBFEVAL (402)	103	83	186	153	283
FA.QD (6)	0	6	6	6	6

Table: Compilation into SynNNF

Experimental Results

	C2Syn vs CADET		C2Syn vs BFSS		C2Syn \
Bench	C2Syn\	CADET\	C2Syn\	BFSS	(CADET \cup
mark	CADET	C2Syn	BFSS	C2Syn	BFSS)
QBFEVAL	78	105	83	78	75
FA.QD	2	0	3	0	2

Table: Comparison Results of C2Syn

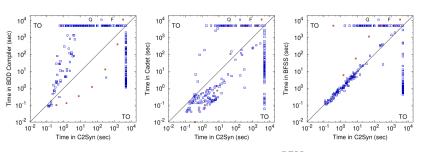


Fig. 1: Time comparisons: C2Syn vs BDD^{BFSS}, CADET, BFSS

Conclusion

- SynNNF: A new normal form for polynomial-time synthesis
- Refinement w.r.t. synthesis useful in practice
 - Formalization of folklore
- Experimental results with preliminary implementation show promise
- It appears that SynNNF can be further weakened to achieve poly-time synthesis
 - Ongoing work