
Algorithms for Boolean Functional Synthesis

Supratik Chakraborty

Indian Institute of Technology Bombay

Joint work with S. Akshay, Jatin Arora, Ajith John, S. Krishna,
Divya Raghunathan, Shetal Shah

1

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.

Often easy to specify relationally;
Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs

E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2))

∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2)

∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)

∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs

Multiple solutions:
G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Relations and Functions

Boolean functions: fundamental building blocks in computing.
Often easy to specify relationally;

Relation between inputs and outputs
E.g. (Simplified) Arbiter

Arbiter
R1

R2

G1

G2

((R1 ∨ R2) → (G1 ∨ G2)) ∧¬(G1 ∧ G2) ∧(G1 → R1)
∧(G2 → R2)

Doesn’t specify how to obtain G1,G2 as functions of R1,R2.

But we need them in functional form
Outputs as functions of inputs
Multiple solutions:

G1 = (R1 ∧ ¬R2), G2 = R2

G1 = R1, G2 = (¬R1 ∧ R2)

Boolean Functional Synthesis

Synthesizing Boolean functions from a relational specification.

2

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)
What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?

Interesting as long as ∃X∃Y ϕ(X,Y) = 1
F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)

Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)
What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?

Interesting as long as ∃X∃Y ϕ(X,Y) = 1
F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)
What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?

Interesting as long as ∃X∃Y ϕ(X,Y) = 1
F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)

What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?
Interesting as long as ∃X∃Y ϕ(X,Y) = 1
F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)
What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?

Interesting as long as ∃X∃Y ϕ(X,Y) = 1
F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)
What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?

Interesting as long as ∃X∃Y ϕ(X,Y) = 1

F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation ϕ(x1, .., xn, y1, .., ym)

xi input variables (vector X)

yj output variables (vector Y)

Synthesize Boolean functions Fj(X) for each yj s.t.

∀X
(
∃y1 . . . ym ϕ(X, y1 . . . ym) ⇔ ϕ(X,F1(X), . . .Fm(X))

)
Fj(X) is also called a Skolem function for yj in ϕ.

Uninteresting if |X| is “small” (say, constant)
Tabulate with 2|X| calls to SAT

(
ϕ(X,Y)

)
What if ∀X∃Y ϕ(X,Y) = 0 (“unrealizable” specification) ?

Interesting as long as ∃X∃Y ϕ(X,Y) = 1
F(X) must give right value of Y for all X s.t. ∃Yϕ(X,Y) = 1

F(X) inconsequential for other X

3

A challenging example: Bounded Integer Factorization

n-bit integers Y1,Y2; 2n bit integer X

Relational specification ϕ(X,Y1,Y2)

(X = Y1 ×[n] Y2) ∧ (Y1 6= 1[n]) ∧ (Y2 6= 1[n])

Synthesize F(X),G(X) s.t. ϕ(X,F(X),G(X)) = 1 for all
non-prime X.

For every non-prime X, finds non-trivial factors

From prime X, values of F (X) and G (X) inconsequential.

∃Y1,Y2 ϕ(X,Y1,Y2) = 0 for such X.

4

A challenging example: Bounded Integer Factorization

n-bit integers Y1,Y2; 2n bit integer X

Relational specification ϕ(X,Y1,Y2)

(X = Y1 ×[n] Y2) ∧ (Y1 6= 1[n]) ∧ (Y2 6= 1[n])

Synthesize F(X),G(X) s.t. ϕ(X,F(X),G(X)) = 1 for all
non-prime X.

For every non-prime X, finds non-trivial factors

From prime X, values of F (X) and G (X) inconsequential.

∃Y1,Y2 ϕ(X,Y1,Y2) = 0 for such X.

4

A challenging example: Bounded Integer Factorization

n-bit integers Y1,Y2; 2n bit integer X

Relational specification ϕ(X,Y1,Y2)

(X = Y1 ×[n] Y2) ∧ (Y1 6= 1[n]) ∧ (Y2 6= 1[n])

Synthesize F(X),G(X) s.t. ϕ(X,F(X),G(X)) = 1 for all
non-prime X.

ϕ
Algorithm

Bool. Func. Synth (BFnS)
F,G

X

Y1 Y2

For every non-prime X, finds non-trivial factors

From prime X, values of F (X) and G (X) inconsequential.

∃Y1,Y2 ϕ(X,Y1,Y2) = 0 for such X.

4

A challenging example: Bounded Integer Factorization

n-bit integers Y1,Y2; 2n bit integer X

Relational specification ϕ(X,Y1,Y2)

(X = Y1 ×[n] Y2) ∧ (Y1 6= 1[n]) ∧ (Y2 6= 1[n])

Synthesize F(X),G(X) s.t. ϕ(X,F(X),G(X)) = 1 for all
non-prime X.

ϕ
Algorithm

Bool. Func. Synth (BFnS)
F,G

X

Y1 Y2

For every non-prime X, finds non-trivial factors

From prime X, values of F (X) and G (X) inconsequential.

∃Y1,Y2 ϕ(X,Y1,Y2) = 0 for such X.

4

Applications of Boolean Functional Synthesis

1. Cryptanalysis: Interesting but hard for synthesis!

2. Disjunctive decomposition of symbolic transition relations
[Trivedi et al’02]

3. Quantifier elimination, of course!

∃Y ϕ(X,Y) ≡ ϕ(X,F(X))

4. Certifying QBF-SAT solvers

Nice survey of applications by Shukla et al’19

5. Reactive controller synthesis

Synthesizing moves to stay within winning region

6. Program synthesis

Combinatorial sketching [Solar-Lezama et al’06, Srivastava et
al’13]
Complete functional synthesis [Kuncak et al’10]

7. Repair/partial synthesis of circuits [Fujita et al’13]

5

Existing Approaches

1. Closely related to most general Boolean unifiers
Boole’1847, Lowenheim’1908, Macii’98

2. Extract Sk. functions from proof of validity of ∀X∃Yϕ(X,Y)
Bendetti’05, Jussilla et al’07, Balabanov et al’12, Heule et
al’14

3. Using templates: Solar-Lezama et al’06, Srivastava et al’13

4. Self-substitution + function composition: Jiang’09, Trivedi’03
5. Synthesis from special normal form representation of

specification
From ROBDDs: Kukula et al’00, Kuncak et al’10, Fried et
al’16, Tabajara et al’17
From SynNNF: Akshay et al’09

6. Incremental determinization: Rabe et al’17,’18
7. Quantifier instantiation techniques in SMT solvers

Barrett et al’15, Bierre et al’17

8. Input/output component separation: C. et al’18
9. Guess/learn Skolem function candidate + check + repair

John et al’15, Akshay et al’17,’18,’20, Golia et al’20
6

How Hard (or Easy) Is BFnS?

Boolean circuit: DAG with AND-, OR-, NOT-labeled nodes

Input: ϕ(X,Y) as (|X|+ |Y|)-input, 1-output circuit

Output: Sk. func. vector F(X): |X|-input, |Y|-output circuit

BFnS is NP-hard

Unlikely, we will get a poly-time algorithm

What about size of Skolem functions?

Does there always exist compact Skolem functions, although
synthesizing may take exponential time?

Lower bound results in circuit-size refer to monotone circuits
[Razbarov 1985; Alon and Boppana 1987]

Monotone circuit

Output can’t change 1 → 0 due to an input changing 0 → 1.

Skolem functions need not be monotone
Different argument for lower bounds on Skolem circuits

7

How Hard (or Easy) Is BFnS?

Boolean circuit: DAG with AND-, OR-, NOT-labeled nodes

Input: ϕ(X,Y) as (|X|+ |Y|)-input, 1-output circuit

Output: Sk. func. vector F(X): |X|-input, |Y|-output circuit

BFnS is NP-hard

Unlikely, we will get a poly-time algorithm

What about size of Skolem functions?

Does there always exist compact Skolem functions, although
synthesizing may take exponential time?

Lower bound results in circuit-size refer to monotone circuits
[Razbarov 1985; Alon and Boppana 1987]

Monotone circuit

Output can’t change 1 → 0 due to an input changing 0 → 1.

Skolem functions need not be monotone
Different argument for lower bounds on Skolem circuits

7

How Hard (or Easy) Is BFnS?

Boolean circuit: DAG with AND-, OR-, NOT-labeled nodes

Input: ϕ(X,Y) as (|X|+ |Y|)-input, 1-output circuit

Output: Sk. func. vector F(X): |X|-input, |Y|-output circuit

BFnS is NP-hard

Unlikely, we will get a poly-time algorithm

What about size of Skolem functions?

Does there always exist compact Skolem functions, although
synthesizing may take exponential time?

Lower bound results in circuit-size refer to monotone circuits
[Razbarov 1985; Alon and Boppana 1987]

Monotone circuit

Output can’t change 1 → 0 due to an input changing 0 → 1.

Skolem functions need not be monotone
Different argument for lower bounds on Skolem circuits

7

How Hard (or Easy) Is BFnS?

Boolean circuit: DAG with AND-, OR-, NOT-labeled nodes

Input: ϕ(X,Y) as (|X|+ |Y|)-input, 1-output circuit

Output: Sk. func. vector F(X): |X|-input, |Y|-output circuit

BFnS is NP-hard

Unlikely, we will get a poly-time algorithm

What about size of Skolem functions?

Does there always exist compact Skolem functions, although
synthesizing may take exponential time?

Lower bound results in circuit-size refer to monotone circuits
[Razbarov 1985; Alon and Boppana 1987]

Monotone circuit

Output can’t change 1 → 0 due to an input changing 0 → 1.

Skolem functions need not be monotone
Different argument for lower bounds on Skolem circuits

7

How Hard (or Easy) Is BFnS?

Boolean circuit: DAG with AND-, OR-, NOT-labeled nodes

Input: ϕ(X,Y) as (|X|+ |Y|)-input, 1-output circuit

Output: Sk. func. vector F(X): |X|-input, |Y|-output circuit

BFnS is NP-hard

Unlikely, we will get a poly-time algorithm

What about size of Skolem functions?

Does there always exist compact Skolem functions, although
synthesizing may take exponential time?

Lower bound results in circuit-size refer to monotone circuits
[Razbarov 1985; Alon and Boppana 1987]

Monotone circuit

Output can’t change 1 → 0 due to an input changing 0 → 1.

Skolem functions need not be monotone
Different argument for lower bounds on Skolem circuits

7

How Hard (or Easy) Is BFnS?

Boolean circuit: DAG with AND-, OR-, NOT-labeled nodes

Input: ϕ(X,Y) as (|X|+ |Y|)-input, 1-output circuit

Output: Sk. func. vector F(X): |X|-input, |Y|-output circuit

BFnS is NP-hard

Unlikely, we will get a poly-time algorithm

What about size of Skolem functions?

Does there always exist compact Skolem functions, although
synthesizing may take exponential time?

Lower bound results in circuit-size refer to monotone circuits
[Razbarov 1985; Alon and Boppana 1987]

Monotone circuit

Output can’t change 1 → 0 due to an input changing 0 → 1.

Skolem functions need not be monotone
Different argument for lower bounds on Skolem circuits

7

Some Good and Bad News

Bad news: [CAV2018]

Unless ΠP
2 = ΣP

2 , there exist relational specs ϕ for which
Skolem function sizes must be super-polynomial in |ϕ|.

Unless non-uniform exponential-time hypothesis fails, there
exist relational specs ϕ for which Skolem function sizes must
be exponential in |F |.

Efficient algorithms for Boolean functional synthesis unlikely

Good news: [CAV2018,FMCAD2019]
If ϕ is represented in special normal form, synthesis solvable in
polynomial (in |ϕ|) time and space.

Synthesis Negation Normal Form (SynNNF)
Talk in “Beyond Satisfiability” workshop on Mar 23

Reasonably common in practice

Experiments: Guess-check-repair algorithms work well in practice

8

Some Good and Bad News

Bad news: [CAV2018]

Unless ΠP
2 = ΣP

2 , there exist relational specs ϕ for which
Skolem function sizes must be super-polynomial in |ϕ|.
Unless non-uniform exponential-time hypothesis fails, there
exist relational specs ϕ for which Skolem function sizes must
be exponential in |F |.

Efficient algorithms for Boolean functional synthesis unlikely

Good news: [CAV2018,FMCAD2019]
If ϕ is represented in special normal form, synthesis solvable in
polynomial (in |ϕ|) time and space.

Synthesis Negation Normal Form (SynNNF)
Talk in “Beyond Satisfiability” workshop on Mar 23

Reasonably common in practice

Experiments: Guess-check-repair algorithms work well in practice

8

Some Good and Bad News

Bad news: [CAV2018]

Unless ΠP
2 = ΣP

2 , there exist relational specs ϕ for which
Skolem function sizes must be super-polynomial in |ϕ|.
Unless non-uniform exponential-time hypothesis fails, there
exist relational specs ϕ for which Skolem function sizes must
be exponential in |F |.

Efficient algorithms for Boolean functional synthesis unlikely

Good news: [CAV2018,FMCAD2019]
If ϕ is represented in special normal form, synthesis solvable in
polynomial (in |ϕ|) time and space.

Synthesis Negation Normal Form (SynNNF)
Talk in “Beyond Satisfiability” workshop on Mar 23

Reasonably common in practice

Experiments: Guess-check-repair algorithms work well in practice

8

Some Good and Bad News

Bad news: [CAV2018]

Unless ΠP
2 = ΣP

2 , there exist relational specs ϕ for which
Skolem function sizes must be super-polynomial in |ϕ|.
Unless non-uniform exponential-time hypothesis fails, there
exist relational specs ϕ for which Skolem function sizes must
be exponential in |F |.

Efficient algorithms for Boolean functional synthesis unlikely

Good news: [CAV2018,FMCAD2019]
If ϕ is represented in special normal form, synthesis solvable in
polynomial (in |ϕ|) time and space.

Synthesis Negation Normal Form (SynNNF)
Talk in “Beyond Satisfiability” workshop on Mar 23

Reasonably common in practice

Experiments: Guess-check-repair algorithms work well in practice

8

Some Good and Bad News

Bad news: [CAV2018]

Unless ΠP
2 = ΣP

2 , there exist relational specs ϕ for which
Skolem function sizes must be super-polynomial in |ϕ|.
Unless non-uniform exponential-time hypothesis fails, there
exist relational specs ϕ for which Skolem function sizes must
be exponential in |F |.

Efficient algorithms for Boolean functional synthesis unlikely

Good news: [CAV2018,FMCAD2019]
If ϕ is represented in special normal form, synthesis solvable in
polynomial (in |ϕ|) time and space.

Synthesis Negation Normal Form (SynNNF)
Talk in “Beyond Satisfiability” workshop on Mar 23

Reasonably common in practice

Experiments: Guess-check-repair algorithms work well in practice

8

Overview of Guess-Check-Repair Paradigm

Generate (“guess”) candidate
Skolem functions

ϕ(X,Y1, . . .Ym)

F1, . . .Fm

Check if F1, . . .Fm is a correct Sk. func. vector Output F1, . . . ,Fm
Yes

Repair candidate
Skolem functions

No, counterexampleRepaired F1, . . . ,Fm

9

Overview of Guess-Check-Repair Paradigm

Generate (“guess”) candidate
Skolem functions

ϕ(X,Y1, . . .Ym)

F1, . . .Fm

Check if F1, . . .Fm is a correct Sk. func. vector Output F1, . . . ,Fm
Yes

Repair candidate
Skolem functions

No, counterexampleRepaired F1, . . . ,Fm

9

Overview of Guess-Check-Repair Paradigm

Generate (“guess”) candidate
Skolem functions

ϕ(X,Y1, . . .Ym)

F1, . . .Fm

Check if F1, . . .Fm is a correct Sk. func. vector Output F1, . . . ,Fm
Yes

Repair candidate
Skolem functions

No, counterexample

Repaired F1, . . . ,Fm

9

Overview of Guess-Check-Repair Paradigm

Generate (“guess”) candidate
Skolem functions

ϕ(X,Y1, . . .Ym)

F1, . . .Fm

Check if F1, . . .Fm is a correct Sk. func. vector Output F1, . . . ,Fm
Yes

Repair candidate
Skolem functions

No, counterexampleRepaired F1, . . . ,Fm

9

“Guess”-ing candidate Skolem functions (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

10

“Guess”-ing candidate Skolem functions (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

— Set of all valuations of X.

10

“Guess”-ing candidate Skolem functions (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

Γ

— Can’t set y to 1 to satisfy ϕ: Γ(X) , ¬ϕ(X, y)[y 7→ 1]

E.g. If ϕ ≡ (x1 ∨ y) ∧ (x1 ∨ x2 ∨ ¬y), then
Γ(X) = ¬ ((x1 ∨ 1) ∧ (x1 ∨ x2 ∨ 0)) = ¬(x1 ∨ x2) = ¬x1 ∧ ¬x2

10

“Guess”-ing candidate Skolem functions (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

∆

— Can’t set y to 0 to satisfy ϕ: ∆(X) , ¬ϕ(X, y)[y 7→ 0]

E.g. If ϕ ≡ (x1 ∨ y) ∧ (x1 ∨ x2 ∨ ¬y), then
∆(X) = ¬ ((x1 ∨ 0) ∧ (x1 ∨ x2 ∨ 1)) = ¬x1

10

“Guess”-ing candidate Skolem functions (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

Γ

∆

— Can’t set y to 1 to satisfy ϕ: Γ(X) , ¬ϕ(X, y)[y 7→ 1]
— Can’t set y to 0 to satisfy ϕ: ∆(X) , ¬ϕ(X, y)[y 7→ 0]

10

“Guess”-ing candidate Skolem functions (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

Γ

∆

Lemma [Trivedi’03, Jiang’09,Fried et al’16]

Every Skolem function for y in ϕ must

Evaluate to 1 in (∆ \ Γ) and to 0 in (Γ \∆)

Be an interpolant of (∆ \ Γ) and (Γ \∆)

10

“Guess”-ing candidate Skolem functions (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

Γ

∆

— Specific interpolants of (∆ \ Γ) & (Γ \∆)

¬Γ , ϕ(X, y)[y 7→ 1] ≡ ϕ(X, 1)

∆ , ¬ϕ(X, y)[y 7→ 0] ≡ ¬ϕ(X, 0).

10

“Guess”-ing candidate Skolem functions (|Y| = 1)

Find F(X) such that ∃y ϕ(X, y) ≡ ϕ(X,F(X))

Γ

∆

— Specific interpolants of (∆ \ Γ) & (Γ \∆)

¬Γ , ϕ(X, y)[y 7→ 1] ≡ ϕ(X, 1): Easy solution for 1 output var

∆ , ¬ϕ(X, y)[y 7→ 0] ≡ ¬ϕ(X, 0).

10

“Guess”-ing Game: (|Y| = 2)

Suppose relational spec is ϕ(X, y1, y2)

Skolem function for y2 depends on that for y1 in general

E.g. ϕ(X, y1, y2) ≡ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (y1 ⊕ y2)

y2 must be ¬y1
For what values of X can we not set y1 to 1 (or 0)?

Γy1(X) = ¬∃y2 ϕ(X, 1, y2) = 0
∆y1(X) = ¬∃y2 ϕ(X, 0, y2) = 0

From Γy1(X) and ∆y1(X), find Skolem function F1(X) for y1
E.g. F1(X) = ¬Γy1(X) = 1

To find Skolem function for y2, consider y2 as sole output in
ϕ(X,F1(X), y2)

E.g. ϕ(X, 1, y2) = ¬y2
Γy2(X) = ¬ϕ(X, 1, 1) = 1; ∆y2(X) = ¬ϕ(X, 1, 0) = 0
F2(X) = ¬Γy2(X) = 0

11

“Guess”-ing Game: (|Y| = 2)

Suppose relational spec is ϕ(X, y1, y2)

Skolem function for y2 depends on that for y1 in general

E.g. ϕ(X, y1, y2) ≡ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (y1 ⊕ y2)

y2 must be ¬y1
For what values of X can we not set y1 to 1 (or 0)?

Γy1(X) = ¬∃y2 ϕ(X, 1, y2) = 0
∆y1(X) = ¬∃y2 ϕ(X, 0, y2) = 0

From Γy1(X) and ∆y1(X), find Skolem function F1(X) for y1
E.g. F1(X) = ¬Γy1(X) = 1

To find Skolem function for y2, consider y2 as sole output in
ϕ(X,F1(X), y2)

E.g. ϕ(X, 1, y2) = ¬y2
Γy2(X) = ¬ϕ(X, 1, 1) = 1; ∆y2(X) = ¬ϕ(X, 1, 0) = 0
F2(X) = ¬Γy2(X) = 0

11

“Guess”-ing Game: (|Y| = 2)

Suppose relational spec is ϕ(X, y1, y2)

Skolem function for y2 depends on that for y1 in general

E.g. ϕ(X, y1, y2) ≡ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (y1 ⊕ y2)

y2 must be ¬y1
For what values of X can we not set y1 to 1 (or 0)?

Γy1(X) = ¬∃y2 ϕ(X, 1, y2) = 0
∆y1(X) = ¬∃y2 ϕ(X, 0, y2) = 0

From Γy1(X) and ∆y1(X), find Skolem function F1(X) for y1
E.g. F1(X) = ¬Γy1(X) = 1

To find Skolem function for y2, consider y2 as sole output in
ϕ(X,F1(X), y2)

E.g. ϕ(X, 1, y2) = ¬y2
Γy2(X) = ¬ϕ(X, 1, 1) = 1; ∆y2(X) = ¬ϕ(X, 1, 0) = 0
F2(X) = ¬Γy2(X) = 0

11

“Guess”-ing Game: (|Y| = 2)

Suppose relational spec is ϕ(X, y1, y2)

Skolem function for y2 depends on that for y1 in general

E.g. ϕ(X, y1, y2) ≡ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (y1 ⊕ y2)

y2 must be ¬y1

For what values of X can we not set y1 to 1 (or 0)?

Γy1(X) = ¬∃y2 ϕ(X, 1, y2) = 0
∆y1(X) = ¬∃y2 ϕ(X, 0, y2) = 0

From Γy1(X) and ∆y1(X), find Skolem function F1(X) for y1
E.g. F1(X) = ¬Γy1(X) = 1

To find Skolem function for y2, consider y2 as sole output in
ϕ(X,F1(X), y2)

E.g. ϕ(X, 1, y2) = ¬y2
Γy2(X) = ¬ϕ(X, 1, 1) = 1; ∆y2(X) = ¬ϕ(X, 1, 0) = 0
F2(X) = ¬Γy2(X) = 0

11

“Guess”-ing Game: (|Y| = 2)

Suppose relational spec is ϕ(X, y1, y2)

Skolem function for y2 depends on that for y1 in general

E.g. ϕ(X, y1, y2) ≡ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (y1 ⊕ y2)

y2 must be ¬y1
For what values of X can we not set y1 to 1 (or 0)?

Γy1(X) = ¬∃y2 ϕ(X, 1, y2) = 0
∆y1(X) = ¬∃y2 ϕ(X, 0, y2) = 0

From Γy1(X) and ∆y1(X), find Skolem function F1(X) for y1
E.g. F1(X) = ¬Γy1(X) = 1

To find Skolem function for y2, consider y2 as sole output in
ϕ(X,F1(X), y2)

E.g. ϕ(X, 1, y2) = ¬y2
Γy2(X) = ¬ϕ(X, 1, 1) = 1; ∆y2(X) = ¬ϕ(X, 1, 0) = 0
F2(X) = ¬Γy2(X) = 0

11

“Guess”-ing Game: (|Y| = 2)

Suppose relational spec is ϕ(X, y1, y2)

Skolem function for y2 depends on that for y1 in general

E.g. ϕ(X, y1, y2) ≡ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (y1 ⊕ y2)

y2 must be ¬y1
For what values of X can we not set y1 to 1 (or 0)?

Γy1(X) = ¬∃y2 ϕ(X, 1, y2) = 0

∆y1(X) = ¬∃y2 ϕ(X, 0, y2) = 0

From Γy1(X) and ∆y1(X), find Skolem function F1(X) for y1
E.g. F1(X) = ¬Γy1(X) = 1

To find Skolem function for y2, consider y2 as sole output in
ϕ(X,F1(X), y2)

E.g. ϕ(X, 1, y2) = ¬y2
Γy2(X) = ¬ϕ(X, 1, 1) = 1; ∆y2(X) = ¬ϕ(X, 1, 0) = 0
F2(X) = ¬Γy2(X) = 0

11

“Guess”-ing Game: (|Y| = 2)

Suppose relational spec is ϕ(X, y1, y2)

Skolem function for y2 depends on that for y1 in general

E.g. ϕ(X, y1, y2) ≡ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (y1 ⊕ y2)

y2 must be ¬y1
For what values of X can we not set y1 to 1 (or 0)?

Γy1(X) = ¬∃y2 ϕ(X, 1, y2) = 0
∆y1(X) = ¬∃y2 ϕ(X, 0, y2) = 0

From Γy1(X) and ∆y1(X), find Skolem function F1(X) for y1
E.g. F1(X) = ¬Γy1(X) = 1

To find Skolem function for y2, consider y2 as sole output in
ϕ(X,F1(X), y2)

E.g. ϕ(X, 1, y2) = ¬y2
Γy2(X) = ¬ϕ(X, 1, 1) = 1; ∆y2(X) = ¬ϕ(X, 1, 0) = 0
F2(X) = ¬Γy2(X) = 0

11

“Guess”-ing Game: (|Y| = 2)

Suppose relational spec is ϕ(X, y1, y2)

Skolem function for y2 depends on that for y1 in general

E.g. ϕ(X, y1, y2) ≡ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (y1 ⊕ y2)

y2 must be ¬y1
For what values of X can we not set y1 to 1 (or 0)?

Γy1(X) = ¬∃y2 ϕ(X, 1, y2) = 0
∆y1(X) = ¬∃y2 ϕ(X, 0, y2) = 0

From Γy1(X) and ∆y1(X), find Skolem function F1(X) for y1
E.g. F1(X) = ¬Γy1(X) = 1

To find Skolem function for y2, consider y2 as sole output in
ϕ(X,F1(X), y2)

E.g. ϕ(X, 1, y2) = ¬y2
Γy2(X) = ¬ϕ(X, 1, 1) = 1; ∆y2(X) = ¬ϕ(X, 1, 0) = 0
F2(X) = ¬Γy2(X) = 0

11

“Guess”-ing Game: (|Y| = 2)

Suppose relational spec is ϕ(X, y1, y2)

Skolem function for y2 depends on that for y1 in general

E.g. ϕ(X, y1, y2) ≡ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (y1 ⊕ y2)

y2 must be ¬y1
For what values of X can we not set y1 to 1 (or 0)?

Γy1(X) = ¬∃y2 ϕ(X, 1, y2) = 0
∆y1(X) = ¬∃y2 ϕ(X, 0, y2) = 0

From Γy1(X) and ∆y1(X), find Skolem function F1(X) for y1
E.g. F1(X) = ¬Γy1(X) = 1

To find Skolem function for y2, consider y2 as sole output in
ϕ(X,F1(X), y2)

E.g. ϕ(X, 1, y2) = ¬y2
Γy2(X) = ¬ϕ(X, 1, 1) = 1; ∆y2(X) = ¬ϕ(X, 1, 0) = 0
F2(X) = ¬Γy2(X) = 0

11

“Guess”-ing Game: (|Y| > 2)

Suppose relational spec is ϕ(X, y1, Y2..m)

Skolem function for Y2..m depends on that for y1 in general

For what values of X can we not set y1 to 1 (or 0)?

Γy1(X) = ¬∃ Y2..m ϕ(X, 1, Y2..m)

∆y1(X) = ¬∃ Y2..m ϕ(X, 0, Y2..m)

From Γy1(X) and ∆y1(X), find Skolem function F1(X) for y1

To find Skolem function for y2, consider y2 as sole output in
ϕ(X, F1(X) , y2, Y3..m)

Drawbacks of approach:

Existential quant elimination over long sequences of outputs
expensive

Nested compositions lead to blowup of representation

Can we work around these drawbacks?

12

“Guess”-ing Game: (|Y| > 2)

Suppose relational spec is ϕ(X, y1, Y2..m)

Skolem function for Y2..m depends on that for y1 in general

For what values of X can we not set y1 to 1 (or 0)?

Γy1(X) = ¬∃ Y2..m ϕ(X, 1, Y2..m)

∆y1(X) = ¬∃ Y2..m ϕ(X, 0, Y2..m)

From Γy1(X) and ∆y1(X), find Skolem function F1(X) for y1

To find Skolem function for y2, consider y2 as sole output in
ϕ(X, F1(X) , y2, Y3..m)

Drawbacks of approach:

Existential quant elimination over long sequences of outputs
expensive

Nested compositions lead to blowup of representation

Can we work around these drawbacks?

12

“Guess”-ing Game: (|Y| > 2)

Suppose relational spec is ϕ(X, y1, Y2..m)

Skolem function for Y2..m depends on that for y1 in general

For what values of X can we not set y1 to 1 (or 0)?

Γy1(X) = ¬∃ Y2..m ϕ(X, 1, Y2..m)

∆y1(X) = ¬∃ Y2..m ϕ(X, 0, Y2..m)

From Γy1(X) and ∆y1(X), find Skolem function F1(X) for y1

To find Skolem function for y2, consider y2 as sole output in
ϕ(X, F1(X) , y2, Y3..m)

Drawbacks of approach:

Existential quant elimination over long sequences of outputs
expensive

Nested compositions lead to blowup of representation

Can we work around these drawbacks?

12

A Useful Observation

Fix a linear ordering of outputs: y1 ≺ y2 ≺ · · · ≺ ym

Express

ym as Gm(X, y1, . . . ym−1)

ym−1 as Gm−1(X, y1, . . . ym−2)
...

y1 as G1(X)

A |X|-input, |Y|-output circuit computing the desired Skolem
function vector (F1, . . .Fm) can be constructed with

#gates ≤
∑m

i=1 #gates(Gi) +2m

#wires ≤
∑m

i=1 #wires(Gi) +m(m−1)
2

Sufficient to compute the Gi functions

13

A Useful Observation

Fix a linear ordering of outputs: y1 ≺ y2 ≺ · · · ≺ ym
Express

ym as Gm(X, y1, . . . ym−1)

ym−1 as Gm−1(X, y1, . . . ym−2)
...

y1 as G1(X)

A |X|-input, |Y|-output circuit computing the desired Skolem
function vector (F1, . . .Fm) can be constructed with

#gates ≤
∑m

i=1 #gates(Gi) +2m

#wires ≤
∑m

i=1 #wires(Gi) +m(m−1)
2

Sufficient to compute the Gi functions

13

A Useful Observation

Fix a linear ordering of outputs: y1 ≺ y2 ≺ · · · ≺ ym
Express

ym as Gm(X, y1, . . . ym−1)

ym−1 as Gm−1(X, y1, . . . ym−2)
...

y1 as G1(X)

A |X|-input, |Y|-output circuit computing the desired Skolem
function vector (F1, . . .Fm) can be constructed with

#gates ≤
∑m

i=1 #gates(Gi) +2m

#wires ≤
∑m

i=1 #wires(Gi) +m(m−1)
2

Sufficient to compute the Gi functions

13

A Useful Observation

Fix a linear ordering of outputs: y1 ≺ y2 ≺ · · · ≺ ym
Express

ym as Gm(X, y1, . . . ym−1)

ym−1 as Gm−1(X, y1, . . . ym−2)
...

y1 as G1(X)

A |X|-input, |Y|-output circuit computing the desired Skolem
function vector (F1, . . .Fm) can be constructed with

#gates ≤
∑m

i=1 #gates(Gi) +2m

#wires ≤
∑m

i=1 #wires(Gi) +m(m−1)
2

Sufficient to compute the Gi functions

13

A Useful Observation

Fix a linear ordering of outputs: y1 ≺ y2 ≺ · · · ≺ ym
Express

ym as Gm(X, y1, . . . ym−1)

ym−1 as Gm−1(X, y1, . . . ym−2)
...

y1 as G1(X)

A |X|-input, |Y|-output circuit computing the desired Skolem
function vector (F1, . . .Fm) can be constructed with

#gates ≤
∑m

i=1 #gates(Gi) +2m

#wires ≤
∑m

i=1 #wires(Gi) +m(m−1)
2

Sufficient to compute the Gi functions

13

“Guess”-ing Compositionally: A High-level View

Suppose ϕ(X,Y) ≡ ϕ1(X,Y) ∧ ϕ2(X,Y), where Y = y1, . . . ym

Γy1
1 , ¬∃y2 . . . ym ϕ1(X, 1, y2 . . . ym) ∆y1

1 , ¬∃y2 . . . ym ϕ1(X, 0, . . .)
Γy1
2 , ¬∃y2 . . . ym ϕ2(X, 1, . . .) ∆y1

2 , ¬∃y2 . . . ymϕ2(X, 0, . . .)

14

“Guess”-ing Compositionally: A High-level View

Suppose ϕ(X,Y) ≡ ϕ1(X,Y) ∧ ϕ2(X,Y), where Y = y1, . . . ym

Γy1
1 , ¬∃y2 . . . ym ϕ1(X, 1, y2 . . . ym)

∆y1
1 , ¬∃y2 . . . ym ϕ1(X, 0, . . .)

Γy1
2 , ¬∃y2 . . . ym ϕ2(X, 1, . . .) ∆y1

2 , ¬∃y2 . . . ymϕ2(X, 0, . . .)

14

“Guess”-ing Compositionally: A High-level View

Suppose ϕ(X,Y) ≡ ϕ1(X,Y) ∧ ϕ2(X,Y), where Y = y1, . . . ym

Γy1
1 , ¬∃y2 . . . ym ϕ1(X, 1, y2 . . . ym) ∆y1

1 , ¬∃y2 . . . ym ϕ1(X, 0, . . .)

Γy1
2 , ¬∃y2 . . . ym ϕ2(X, 1, . . .) ∆y1

2 , ¬∃y2 . . . ymϕ2(X, 0, . . .)

14

“Guess”-ing Compositionally: A High-level View

Suppose ϕ(X,Y) ≡ ϕ1(X,Y) ∧ ϕ2(X,Y), where Y = y1, . . . ym

Γy1
1 , ¬∃y2 . . . ym ϕ1(X, 1, y2 . . . ym) ∆y1

1 , ¬∃y2 . . . ym ϕ1(X, 0, . . .)
Γy1
2 , ¬∃y2 . . . ym ϕ2(X, 1, . . .) ∆y1

2 , ¬∃y2 . . . ymϕ2(X, 0, . . .)

14

“Guess”-ing Compositionally: A High-level View

Suppose ϕ(X,Y) ≡ ϕ1(X,Y) ∧ ϕ2(X,Y), where Y = y1, . . . ym

Γy1
1 , ¬∃y2 . . . ym ϕ1(X, 1, y2 . . . ym) ∆y1

1 , ¬∃y2 . . . ym ϕ1(X, 0, . . .)
Γy1
2 , ¬∃y2 . . . ym ϕ2(X, 1, . . .) ∆y1

2 , ¬∃y2 . . . ymϕ2(X, 0, . . .)

∆1 ∆2

Γ1

Γ2

14

“Guess”-ing Compositionally: A High-level View

Suppose ϕ(X,Y) ≡ ϕ1(X,Y) ∧ ϕ2(X,Y), where Y = y1, . . . ym

Γy1
1 , ¬∃y2 . . . ym ϕ1(X, 1, y2 . . . ym) ∆y1

1 , ¬∃y2 . . . ym ϕ1(X, 0, . . .)
Γy1
2 , ¬∃y2 . . . ym ϕ2(X, 1, . . .) ∆y1

2 , ¬∃y2 . . . ymϕ2(X, 0, . . .)

Γ

∆∆1 ∆2

Γ1

Γ2

Lemma

If Γy1 , ¬∃y2 . . . ym (ϕ1 ∧ ϕ2)(X, 1, . . .), then Γy1
1 ∨ Γy1

2 ⇒ Γy1

If ∆y1 , ¬∃y2 . . . ym (ϕ1 ∧ ϕ2)(X, 0, . . .), then ∆y1
1 ∨∆y1

2 ⇒ ∆y1

14

“Guess”-ing Compositionally: A High-level View

Suppose ϕ(X,Y) ≡ ϕ1(X,Y) ∨ ϕ2(X,Y), where Y = y1, . . . ym

Γy1
1 , ¬∃y2 . . . ym ϕ1(X, 1, y2 . . . ym) ∆y1

1 , ¬∃y2 . . . ym ϕ1(X, 0, . . .)
Γy1
2 , ¬∃y2 . . . ym ϕ2(X, 1, . . .) ∆y1

2 , ¬∃y2 . . . ymϕ2(X, 0, . . .)

Lemma

If Γy1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 1, . . .), then Γy1
1 ∧ Γy1

2 ⇔ Γy1

If ∆y1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 0, . . .), then ∆y1
1 ∧∆y1

2 ⇔ ∆y1

What if calculating Γyi
1 or ∆yi

1 hard?

Long sequences of quantification are of concern!

Using under-approximations of Γyi
1 and ∆yi

1 yields
under-approximations of Γyi and ∆yi

Not so for over-approximations!

Γ1
yi ∨ (∧) Γ2

yi ⇒ (⇔)Γyi

∆1
yi ∨ (∧) ∆2

yi ⇒ (⇔)∆yi

Fortunately, non-trivial under-approx of Γyi and ∆yi not hard to
obtain

15

“Guess”-ing Compositionally: A High-level View

Suppose ϕ(X,Y) ≡ ϕ1(X,Y) ∨ ϕ2(X,Y), where Y = y1, . . . ym
Γy1
1 , ¬∃y2 . . . ym ϕ1(X, 1, y2 . . . ym) ∆y1

1 , ¬∃y2 . . . ym ϕ1(X, 0, . . .)
Γy1
2 , ¬∃y2 . . . ym ϕ2(X, 1, . . .) ∆y1

2 , ¬∃y2 . . . ymϕ2(X, 0, . . .)

Lemma

If Γy1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 1, . . .), then Γy1
1 ∧ Γy1

2 ⇔ Γy1

If ∆y1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 0, . . .), then ∆y1
1 ∧∆y1

2 ⇔ ∆y1

What if calculating Γyi
1 or ∆yi

1 hard?

Long sequences of quantification are of concern!

Using under-approximations of Γyi
1 and ∆yi

1 yields
under-approximations of Γyi and ∆yi

Not so for over-approximations!

Γ1
yi ∨ (∧) Γ2

yi ⇒ (⇔)Γyi

∆1
yi ∨ (∧) ∆2

yi ⇒ (⇔)∆yi

Fortunately, non-trivial under-approx of Γyi and ∆yi not hard to
obtain

15

“Guess”-ing Compositionally: A High-level View

Suppose ϕ(X,Y) ≡ ϕ1(X,Y) ∨ ϕ2(X,Y), where Y = y1, . . . ym
Γy1
1 , ¬∃y2 . . . ym ϕ1(X, 1, y2 . . . ym) ∆y1

1 , ¬∃y2 . . . ym ϕ1(X, 0, . . .)
Γy1
2 , ¬∃y2 . . . ym ϕ2(X, 1, . . .) ∆y1

2 , ¬∃y2 . . . ymϕ2(X, 0, . . .)

Lemma

If Γy1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 1, . . .), then Γy1
1 ∧ Γy1

2 ⇔ Γy1

If ∆y1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 0, . . .), then ∆y1
1 ∧∆y1

2 ⇔ ∆y1

What if calculating Γyi
1 or ∆yi

1 hard?

Long sequences of quantification are of concern!

Using under-approximations of Γyi
1 and ∆yi

1 yields
under-approximations of Γyi and ∆yi

Not so for over-approximations!

Γ1
yi ∨ (∧) Γ2

yi ⇒ (⇔)Γyi

∆1
yi ∨ (∧) ∆2

yi ⇒ (⇔)∆yi

Fortunately, non-trivial under-approx of Γyi and ∆yi not hard to
obtain

15

“Guess”-ing Compositionally: A High-level View

Suppose ϕ(X,Y) ≡ ϕ1(X,Y) ∨ ϕ2(X,Y), where Y = y1, . . . ym
Γy1
1 , ¬∃y2 . . . ym ϕ1(X, 1, y2 . . . ym) ∆y1

1 , ¬∃y2 . . . ym ϕ1(X, 0, . . .)
Γy1
2 , ¬∃y2 . . . ym ϕ2(X, 1, . . .) ∆y1

2 , ¬∃y2 . . . ymϕ2(X, 0, . . .)

Lemma

If Γy1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 1, . . .), then Γy1
1 ∧ Γy1

2 ⇔ Γy1

If ∆y1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 0, . . .), then ∆y1
1 ∧∆y1

2 ⇔ ∆y1

What if calculating Γyi
1 or ∆yi

1 hard?

Long sequences of quantification are of concern!

Using under-approximations of Γyi
1 and ∆yi

1 yields
under-approximations of Γyi and ∆yi

Not so for over-approximations!

Γ1
yi ∨ (∧) Γ2

yi ⇒ (⇔)Γyi

∆1
yi ∨ (∧) ∆2

yi ⇒ (⇔)∆yi

Fortunately, non-trivial under-approx of Γyi and ∆yi not hard to
obtain

15

“Guess”-ing Compositionally: A High-level View

Suppose ϕ(X,Y) ≡ ϕ1(X,Y) ∨ ϕ2(X,Y), where Y = y1, . . . ym
Γy1
1 , ¬∃y2 . . . ym ϕ1(X, 1, y2 . . . ym) ∆y1

1 , ¬∃y2 . . . ym ϕ1(X, 0, . . .)
Γy1
2 , ¬∃y2 . . . ym ϕ2(X, 1, . . .) ∆y1

2 , ¬∃y2 . . . ymϕ2(X, 0, . . .)

Lemma

If Γy1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 1, . . .), then Γy1
1 ∧ Γy1

2 ⇔ Γy1

If ∆y1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 0, . . .), then ∆y1
1 ∧∆y1

2 ⇔ ∆y1

What if calculating Γyi
1 or ∆yi

1 hard?

Long sequences of quantification are of concern!

Using under-approximations of Γyi
1 and ∆yi

1 yields
under-approximations of Γyi and ∆yi

Not so for over-approximations!

Γ1
yi ∨ (∧) Γ2

yi ⇒ (⇔)Γyi

∆1
yi ∨ (∧) ∆2

yi ⇒ (⇔)∆yi

Fortunately, non-trivial under-approx of Γyi and ∆yi not hard to
obtain

15

“Guess”-ing Compositionally: A High-level View

Suppose ϕ(X,Y) ≡ ϕ1(X,Y) ∨ ϕ2(X,Y), where Y = y1, . . . ym
Γy1
1 , ¬∃y2 . . . ym ϕ1(X, 1, y2 . . . ym) ∆y1

1 , ¬∃y2 . . . ym ϕ1(X, 0, . . .)
Γy1
2 , ¬∃y2 . . . ym ϕ2(X, 1, . . .) ∆y1

2 , ¬∃y2 . . . ymϕ2(X, 0, . . .)

Lemma

If Γy1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 1, . . .), then Γy1
1 ∧ Γy1

2 ⇔ Γy1

If ∆y1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 0, . . .), then ∆y1
1 ∧∆y1

2 ⇔ ∆y1

What if calculating Γyi
1 or ∆yi

1 hard?

Long sequences of quantification are of concern!

Using under-approximations of Γyi
1 and ∆yi

1 yields
under-approximations of Γyi and ∆yi

Not so for over-approximations!

Γ1
yi ∨ (∧) Γ2

yi ⇒ (⇔)Γyi

∆1
yi ∨ (∧) ∆2

yi ⇒ (⇔)∆yi

Fortunately, non-trivial under-approx of Γyi and ∆yi not hard to
obtain

15

“Guess”-ing Compositionally: A High-level View

Suppose ϕ(X,Y) ≡ ϕ1(X,Y) ∨ ϕ2(X,Y), where Y = y1, . . . ym
Γy1
1 , ¬∃y2 . . . ym ϕ1(X, 1, y2 . . . ym) ∆y1

1 , ¬∃y2 . . . ym ϕ1(X, 0, . . .)
Γy1
2 , ¬∃y2 . . . ym ϕ2(X, 1, . . .) ∆y1

2 , ¬∃y2 . . . ymϕ2(X, 0, . . .)

Lemma

If Γy1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 1, . . .), then Γy1
1 ∧ Γy1

2 ⇔ Γy1

If ∆y1 , ¬∃y2 . . . ym (ϕ1 ∨ ϕ2)(X, 0, . . .), then ∆y1
1 ∧∆y1

2 ⇔ ∆y1

What if calculating Γyi
1 or ∆yi

1 hard?

Long sequences of quantification are of concern!

Using under-approximations of Γyi
1 and ∆yi

1 yields
under-approximations of Γyi and ∆yi

Not so for over-approximations!

Γ1
yi ∨ (∧) Γ2

yi ⇒ (⇔)Γyi

∆1
yi ∨ (∧) ∆2

yi ⇒ (⇔)∆yi

Fortunately, non-trivial under-approx of Γyi and ∆yi not hard to
obtain

15

“Guess”-ing with under-approximations of Γ, ∆

Suppose γyi1 ⇒ Γyi
1 ; δyi1 ⇒ ∆yi

1

ϕ ≡ ϕ1 ∧ ϕ2

γyi1 ∨ γ
yi
1 ⇒ Γyi

1 ∨ Γyi
1 ⇒ Γyi

ϕ ≡ ϕ1 ∨ ϕ2

γyi1 ∧ γ
yi
1 ⇒ Γyi

1 ∧ Γyi
1 ⇔ Γyi

Similarly for ∆yi

16

“Guess”-ing with under-approximations of Γ, ∆

Suppose γyi1 ⇒ Γyi
1 ; δyi1 ⇒ ∆yi

1

ϕ ≡ ϕ1 ∧ ϕ2

γyi1 ∨ γ
yi
1 ⇒ Γyi

1 ∨ Γyi
1 ⇒ Γyi

ϕ ≡ ϕ1 ∨ ϕ2

γyi1 ∧ γ
yi
1 ⇒ Γyi

1 ∧ Γyi
1 ⇔ Γyi

Similarly for ∆yi

16

“Guess”-ing with under-approximations of Γ, ∆

Suppose γyi1 ⇒ Γyi
1 ; δyi1 ⇒ ∆yi

1

ϕ ≡ ϕ1 ∧ ϕ2

γyi1 ∨ γ
yi
1 ⇒ Γyi

1 ∨ Γyi
1 ⇒ Γyi

ϕ ≡ ϕ1 ∨ ϕ2

γyi1 ∧ γ
yi
1 ⇒ Γyi

1 ∧ Γyi
1 ⇔ Γyi

Similarly for ∆yi

16

“Check”-ing correctness of candidate Skolem func. vector

Given candidate Skolem functions F1, . . .Fm,

Is ∀X
(
∃Yϕ(X,Y) ⇔ ϕ(X,F(X)

)
?

Can we avoid using a QBF solver?

Yes, we can! [FMCAD15]

Propositional error formula ε(X,Y,Y′):(
ϕ(X,Y′) ∧

∧m
j=1(Yj ⇔ Fj) ∧ ¬ϕ(X,Y)

)
ε unsatisfiable iff F1, . . .Fm is correct Skolem function vector

Say, σ = satisfying assignment of ε
On input σ(X), F evaluates to σ(Y), where

ϕ(σ(X), σ(Y)) = 0
ϕ(σ(X), σ(Y′)) = 1

σ is counterexample to the claim that F1, . . .Fm is a correct
Skolem function vector

17

“Check”-ing correctness of candidate Skolem func. vector

Given candidate Skolem functions F1, . . .Fm,

Is ∀X
(
∃Yϕ(X,Y) ⇔ ϕ(X,F(X)

)
?

Can we avoid using a QBF solver?

Yes, we can! [FMCAD15]

Propositional error formula ε(X,Y,Y′):(
ϕ(X,Y′) ∧

∧m
j=1(Yj ⇔ Fj) ∧ ¬ϕ(X,Y)

)
ε unsatisfiable iff F1, . . .Fm is correct Skolem function vector

Say, σ = satisfying assignment of ε
On input σ(X), F evaluates to σ(Y), where

ϕ(σ(X), σ(Y)) = 0
ϕ(σ(X), σ(Y′)) = 1

σ is counterexample to the claim that F1, . . .Fm is a correct
Skolem function vector

17

“Check”-ing correctness of candidate Skolem func. vector

Given candidate Skolem functions F1, . . .Fm,

Is ∀X
(
∃Yϕ(X,Y) ⇔ ϕ(X,F(X)

)
?

Can we avoid using a QBF solver?

Yes, we can! [FMCAD15]

Propositional error formula ε(X,Y,Y′):(
ϕ(X,Y′) ∧

∧m
j=1(Yj ⇔ Fj) ∧ ¬ϕ(X,Y)

)

ε unsatisfiable iff F1, . . .Fm is correct Skolem function vector

Say, σ = satisfying assignment of ε
On input σ(X), F evaluates to σ(Y), where

ϕ(σ(X), σ(Y)) = 0
ϕ(σ(X), σ(Y′)) = 1

σ is counterexample to the claim that F1, . . .Fm is a correct
Skolem function vector

17

“Check”-ing correctness of candidate Skolem func. vector

Given candidate Skolem functions F1, . . .Fm,

Is ∀X
(
∃Yϕ(X,Y) ⇔ ϕ(X,F(X)

)
?

Can we avoid using a QBF solver?

Yes, we can! [FMCAD15]

Propositional error formula ε(X,Y,Y′):(
ϕ(X,Y′) ∧

∧m
j=1(Yj ⇔ Fj) ∧ ¬ϕ(X,Y)

)
ε unsatisfiable iff F1, . . .Fm is correct Skolem function vector

Say, σ = satisfying assignment of ε
On input σ(X), F evaluates to σ(Y), where

ϕ(σ(X), σ(Y)) = 0
ϕ(σ(X), σ(Y′)) = 1

σ is counterexample to the claim that F1, . . .Fm is a correct
Skolem function vector

17

“Check”-ing correctness of candidate Skolem func. vector

Given candidate Skolem functions F1, . . .Fm,

Is ∀X
(
∃Yϕ(X,Y) ⇔ ϕ(X,F(X)

)
?

Can we avoid using a QBF solver?

Yes, we can! [FMCAD15]

Propositional error formula ε(X,Y,Y′):(
ϕ(X,Y′) ∧

∧m
j=1(Yj ⇔ Fj) ∧ ¬ϕ(X,Y)

)
ε unsatisfiable iff F1, . . .Fm is correct Skolem function vector

Say, σ = satisfying assignment of ε

On input σ(X), F evaluates to σ(Y), where

ϕ(σ(X), σ(Y)) = 0
ϕ(σ(X), σ(Y′)) = 1

σ is counterexample to the claim that F1, . . .Fm is a correct
Skolem function vector

17

“Check”-ing correctness of candidate Skolem func. vector

Given candidate Skolem functions F1, . . .Fm,

Is ∀X
(
∃Yϕ(X,Y) ⇔ ϕ(X,F(X)

)
?

Can we avoid using a QBF solver?

Yes, we can! [FMCAD15]

Propositional error formula ε(X,Y,Y′):(
ϕ(X,Y′) ∧

∧m
j=1(Yj ⇔ Fj) ∧ ¬ϕ(X,Y)

)
ε unsatisfiable iff F1, . . .Fm is correct Skolem function vector

Say, σ = satisfying assignment of ε
On input σ(X), F evaluates to σ(Y), where

ϕ(σ(X), σ(Y)) = 0
ϕ(σ(X), σ(Y′)) = 1

σ is counterexample to the claim that F1, . . .Fm is a correct
Skolem function vector

17

“Check”-ing correctness of candidate Skolem func. vector

Given candidate Skolem functions F1, . . .Fm,

Is ∀X
(
∃Yϕ(X,Y) ⇔ ϕ(X,F(X)

)
?

Can we avoid using a QBF solver?

Yes, we can! [FMCAD15]

Propositional error formula ε(X,Y,Y′):(
ϕ(X,Y′) ∧

∧m
j=1(Yj ⇔ Fj) ∧ ¬ϕ(X,Y)

)
ε unsatisfiable iff F1, . . .Fm is correct Skolem function vector

Say, σ = satisfying assignment of ε
On input σ(X), F evaluates to σ(Y), where

ϕ(σ(X), σ(Y)) = 0
ϕ(σ(X), σ(Y′)) = 1

σ is counterexample to the claim that F1, . . .Fm is a correct
Skolem function vector

17

Repairing candidate Skolem functions: A High-level View

ϕ(X,Y) ≡ ϕ1(X,Y) ∧ ϕ2(X,Y)

Γ

∆∆1 ∆2

Γ1

Γ2

18

Repairing candidate Skolem functions: A High-level View

ϕ(X,Y) ≡ ϕ1(X,Y) ∧ ϕ2(X,Y)

Γ

∆∆1 ∆2

Γ1

Γ2

Counterexample

18

Repairing candidate Skolem functions: A High-level View

ϕ(X,Y) ≡ ϕ1(X,Y) ∧ ϕ2(X,Y)

Γ

∆∆1 ∆2

Γ1

Γ2

Expansion around CEX

Always work with under-approximations of Γ and ∆

Since “proposed” Skolem function is ¬Γ, intermediate
approximations of Skolem functions are over-approximations
(abstractions)

18

Comparison with other tools

BFSS vis-a-vis CADET [Rabe & Seshia’16]
[Comparisons with other tools in paper]

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 i
n

 C
A

D
E

T
 (

s
e

c
)

Time in BFSS (sec) TO

 TO

Q

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 i
n

 C
A

D
E

T
 (

s
e

c
)

Time in BFSS (sec) TO

 TO

A D F

Q: QBFEval, A: Arithmetic, F: Factorization, D: Disjunctive
Decomposition. TO: Timeout (3600 sec)

Mixed results: tools have orthogonal strengths

Using CADET and BFSS as a portfolio solver sounds
promising

19

Comparison with other tools

BFSS vis-a-vis CADET [Rabe & Seshia’16]
[Comparisons with other tools in paper]

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 i
n

 C
A

D
E

T
 (

s
e

c
)

Time in BFSS (sec) TO

 TO

Q

10
-1

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 i
n

 C
A

D
E

T
 (

s
e

c
)

Time in BFSS (sec) TO

 TO

A D F

Q: QBFEval, A: Arithmetic, F: Factorization, D: Disjunctive
Decomposition. TO: Timeout (3600 sec)

Mixed results: tools have orthogonal strengths

Using CADET and BFSS as a portfolio solver sounds
promising

19

