
Proving Programs Correct
by

Abstract Interpretation
Supratik Chakraborty

IIT Bombay

WEPL (POPL) 2015

Program Analysis: An Example
 int x = 0, y = 0, z;
 read(z);
 while (f(x, z) > 0) {

 if (g(z, y) > 10) {

 x = x + 1; y = y + 100;

 }

 else if (h(z) > 20) {

 if (x >= 4) {

 x = x + 1; y = y + 1;

 }

 }

}

 IDEAS?
Run test cases
Get code analyzed by

many people
Convince yourself by ad-

hoc reasoning

What is the relation
between x and y on
exiting while loop?

Program Verification: An Example
 int x = 0, y = 0, z;
 read(z);
 while (f(x, z) > 0) {

 if (g(z, y) > 10) {

 x = x + 1; y = y + 100;

 }

 else if (h(z) > 20) {

 if (x >= 4) {

 x = x + 1; y = y + 1;

 }

 }

}

assert(x < 4 OR y >= 2);

INVARIANT or PROPERTY

 IDEAS?
Run test cases
Get code analyzed by

many people
Convince yourself by ad-

hoc reasoning

Verification & Analysis: Close Cousins

Both investigate relations between program variables at
different program locations

Verification: A (seemingly) special case of analysis
 Yes/No questions
 No simpler than program analysis

Both problems undecidable (in general) for languages
with loops, integer addition and subtraction
 Exact algorithm for program analysis/verification that

works for all programs & properties: an impossibility
 But why care about arbitrary programs?

Hope for Real-Life Software

Certain classes of analyses/property-checking of real-life
software feasible in practice
 Uses domain specific techniques, restrictions on program

structure…
 “Safety” properties of avionics software, device drivers, …

A practitioner’s perspective

Automation

“Complex”
Properties

“Large”
Programs

Currently,
can get any 2

 out of 3

Some Driving Factors

Compiler design and optimizations
 Since earliest days of compiler design

Performance optimization
 Renewed importance for embedded systems

Testing, verification, validation
 Increasingly important, given criticality of software

Security and privacy concerns
Distributed and concurrent applications
 Human reasoning about all scenarios difficult

Successful Approaches in Practical
Software Verification
Use of sophisticated abstraction and refinement

techniques
 Domain specific as well as generic

Use of constraint solvers
 Propositional, quantified boolean formulas, first-order

theories, …
Use of scalable symbolic reasoning techniques
 Several variants of decision diagrams, combinations of

decision diagrams & satisfiability solvers …
Incomplete techniques that scale to real programs

Focus of today’s talk

Abstract Interpretation Framework
 Elegant unifying framework for several program

 analysis & verification techniques
 Several success stories

● Checking properties of avionics code in Airbus
● Checking properties of device drivers in Windows
● Many other examples

● Medical, transportation, communication …
 But, NOT a panacea
 Often used in combination with other techniques

Sequential Program State

 Given sequential program P
 State: information necessary to determine complete

future behaviour
 (pc, store, heap, call stack)
 pc: program counter/location
 store: map from program variables to values
 heap: dynamically allocated/freed memory and

pointer relations thereof
 call stack: stack of call frames

Programs as State Transition Systems

 A simple program:

State = (pc, store)
heap, stack unchanged within func

State (pc, x, y, a, b)
void func(int a, int b)
{ int x, y;

 L1: x = 0;
 L2: y = 1;
 L3: if (a >= b + 2)
 L4: a = y;
 else
 L5: b = x;
 L6: return;
}

L1, 2, 7, 2, 0

L2, 0, 7, 2, 0

L3, 0, 1, 2, 0

L4, 0, 1, 2, 0

L6, 0, 1, 1, 0

Programs as State Transition Systems

void func(int a, int b)
{ int x, y;

 L1: x = 0;
 L2: y = 1;
 L3: if (a >= b + 2)
 L4: a = y;
 else
 L5: b = x;
 L6: return;
}

void func(int a, int b)
{ int x, y;

 L1: x = 0;
 L2: y = 1;
 L3: if (a >= b + 2)
 L4: a = y;
 else
 L5: b = x;
 L6: return;
}

L1, 2, 7, 2, 0

L1, -1, 10, 9, 1

L1, 3, 20, 8, 7

L4, 0, 1, 9, 1 L5, 0, 1, 8, 7

L6, 0, 1, 1, 0

L4, 0, 1, 2, 0

L6, 0, 1, 1, 1 L6, 0, 1, 8, 0

State (pc, x, y, a, b)

Transition
L3: if (a >= b+2)
L4: …
 else
L5:

Programs as State Transition Systems

void func(int a, int b)
{ int x, y;

 L1: x = 0;
 L2: y = 1;
 L3: if (a >= b + 2)
 L4: a = y;
 else
 L5: b = x;
 L6: return;
}

(L4, 0, 1, 5, 2)

State: pc, x, y, a, b

(L3, 0, 1, 5, 2)

Assertion Checking as Reachability

Path from an initial to an assertion violating state ?
 Absence of path: System cannot exhibit error
 Presence of path: System can exhibit error
What happens with procedure calls/returns?

Initial
States

Assertion
violating
states

State Space: How large is it?

 State = (pc, store, heap, call stack)
 pc: finite valued
 store: finite if all variables have finite types
 Every program statement effects a state transition
 enum {wait, critical, noncritical} pr_state (finite)
 int a, b, c (infinite)
 bool *p, *q (infinite)
 heap: unbounded in general
 call stack: unbounded in general

 Bad news: State space infinite in general

Concrete states

Dealing with State Space Size

 Infinite state space
 Difficult to represent using state transition diagram
 Can we still do some reasoning?

 Solution: Use of abstraction
 Naive view

● Bunch sets of states together “intelligently”
● Don't talk of individual states, talk of a representation of a set

of states
● Transitions between state set representations

 Granularity of reasoning shifted
 Extremely powerful general technique

● Allows reasoning about large/infinite state spaces

Abstract states

Simple Abstractions

void func(int a, int b)
{ int x, y;

 L1: x = 0;
 L2: y = 1;
 L3: if (a >= b + 2)
 L4: a = y;
 else
 L5: b = x;
 L6: return;
}

a < 5

a >= 5

Group states
according to values of
variables and pc

Group
states
with
same pc

State: pc, x, y, a, b

L1, 2, 7, 2, 0

L1, -1, 10, 9, 1

L1, 3, 20, 8, 7

Programs as State Set Transformers

void func(int a, int b)
{ int x, y;

 L1: x = 0;
 L2: y = 1;
 L3: if (a >= b + 2)
 L4: a = y;
 else
 L5: b = x;
 L6: return;
}

a < 5

a >= 5

Group states
according to values of
variables and pc

Group
states
with
same pc

 Recall: Set of (potentially infinite) concrete states is an
abstract state

 Think of program as abstract state transformer

Programs as Abstr State Transformers

L4: a = y

State: pc, x, y, a, b

Program statement
as concrete state
transformer

L4, 2, 7, 2, 0

L4, -1, 10, 9, 1

L4, 3, 20, 8, 7

L6, 2, 7, 7, 0

L6, -1, 10, 10, 1

L6, 3, 20, 20, 7

 Recall: Set of (potentially infinite) concrete states is an
abstract state

 Think of program as abstract state transformer

Programs as Abstr State Transformers

L4: a = y

Program statement
as abstract state
transformer

Abstract state a1

Abstract state a2

Central problem:
Compute a2 from a1 and prog stmt
(abstract state transitions)

Set of abstract statesSet of concrete states

A Generic View of Abstraction

 Every subset of concrete states mapped to
unique abstract state

 Desirable to capture containment relations
 Transitions between state sets (abstract states)

Abstraction (

Concretization

 Set of concrete states: S
 Concrete lattice C =

Mathematical Foundations of
Abstract Interpretation

Powerset of S

Partial order

Least upper bound

Greatest lower bound

Top element

Bottom
 element

 Abstract lattice A =

 Abstraction function

● Monotone: for all
●

 Concretization function

● Monotone: for all
●

Mathematical Foundations of
Abstract Interpretation

 and form a Galois connection
 First view: for all

Mathematical Foundations of Abstract
Interpretation

Set of abstract statesSet of concrete states

C A

S1

 and form a Galois connection
 First view: for all

Mathematical Foundations of Abstract
Interpretation

Set of abstract statesSet of concrete states

C Aa1

for all

 and form a Galois connection
 Second (equivalent) view:

Mathematical Foundations of Abstract
Interpretation

Set of abstract statesSet of concrete states

C A

S1

a1

for all

 Concrete state set transformer function
 Example:

Computing Abstract State Transformers

L4: a = y

S1

S2

S1 = { (L4, x, y, a, b) | ….. }: set of concr. states

S2 = { (L6, x, y, a’, b) | (L4, x, y, a, b) S1 a’ = y}
 = FC (S1) : set of concrete states

Monotone concrete
state set transformer
function for stmt at L4

 Abstract state transformer function
 Example:

Computing Abstract State Transformers

L4: a = y

a2 A

a1 A

 a2 = (FC ((a1))) ideally, but FA(a1) (FC ((a1))) often
used

Set of concrete states

FC

FA

 Abstract state transformer for if-then-else
 Example:

Computing Abstract State Transformers

L3: if (a >= b+2) goto L4 else goto L5

a2 A

a1 A

 a2 = a1 acond a3 = a1 acondb
 pc in a2: L4 pc in a3: L5

a3 A

acond =

 ({(x, y, a, b) | a >= b+2}

acondb =

({(x, y, a, b) | a < b+2}

 Example: ….
 L1 : while (a > b) do
 L2: <loop body>
 L9: end while

Dealing with Loops
a>b?

a>b?

a>b?

L1

L1

L1

L2: …

L2: …

L2: …
L9

No

No

No

Yes

Yes

Yes

Given

FA : abstr state transformer of loop body,
a : abstr state at L1 the first time L1 is reached

What is the abstract loop invariant at L1?

FA

Dealing with Loops

FA

L1

L1

L1

L9

No

No

No

Yes

Yes

Yes

Given

FA : abstr state transformer of loop body,
a : abstr state at L1 the first time L1 is reached

What is the abstract loop invariant at L1?

acond?

acond?

acond?

a

FA

acond = ({s | s is a concrete state with a > b})

 Current view of abstract loop invariant

Dealing with Loops
Given

FA : abstr state transformer of loop body,
a : abstr state at L1 the first time L1 is reached

What is the abstract loop invariant at L1?

FA

FA

FA

L1

L1

L9

No

No

Yes

Yes

Yes

acond?

acond?

acond?

a z0

FA (acond)

acond = ({s | s is a concrete state with a > b})

 Current view of abstract loop invariant

=

Dealing with Loops
Given

FA : abstr state transformer of loop body,
a : abstr state at L1 the first time L1 is reached

What is the abstract loop invariant at L1?

FA

FA

FA

L1

L1

L1

L9

No

No

Yes

Yes

Yes

acond?

acond?

acond?

a z0

FA (acond)

No

FA (acond)acond = ({s | s is a concrete state with a > b})

 Current view of abstract loop invariant

=

Dealing with Loops
Given

FA : abstr state transformer of loop body,
a : abstr state at L1 the first time L1 is reached

What is the abstract loop invariant at L1?

FA

FA

FA

L1

L1

L1

L9

No

No

Yes

Yes

Yes

acond?

acond?

acond?

a z0

FA (acond)

No

FA (acond)acond = ({s | s is a concrete state with a > b})

 Abstract loop invariant

Dealing with Loops
Given

FA : abstr state transformer of loop body,
a : abstr state at L1 the first time L1 is reached

What is the abstract loop invariant at L1?

acond = ({s | s is a concrete state with a > b })

Loop invariant at L1 is limit of the sequence:
 z0 = a

FA

FA

FA

L1

L1

L1

L9

No

No

No

Yes

Yes

Yes

acond?

acond?

acond?

a z0

Dealing with Loops
Given

FA : abstr state transformer of loop body,
a : abstr state at L1 the first time L1 is reached

What is the abstract loop invariant at L1?

acond = ({s | s is a concrete state with a > b })

Loop invariant at L1 is limit of the sequence:
 z0 = a
 z1 = a FA (z0 acond)
 FA

FA

FA

L1

L1

L1

L9

No

No

Yes

Yes

Yes

acond?

acond?

acond?

a z0

FA (acond)

Dealing with Loops
Given

FA : abstr state transformer of loop body,
a : abstr state at L1 the first time L1 is reached

What is the abstract loop invariant at L1?

acond = ({s | s is a concrete state with a > b })

Loop invariant at L1 is limit of the sequence:
 z0 = a
 z1 = a FA (z0 acond)
 ……

 z
i+1

 = a FA (z
i
 acond)

FA

FA

FA

L1

L1

L1

L9

No

No

Yes

Yes

Yes

acond?

acond?

acond?

a z0

FA (acond)

No

FA(acond)

 Loop invariant at L1 is limit of the sequence:
 z

0
 = a, …, z

i+1
 = a FA (z

i
 acond)

 The limit exists and is the least fixpoint of g:
where g(z) = a FA (z acond)

 Difficult to compute if A has infinite ascending chains
 Use an extrapolation (widen) operator r

 w
0
 = z

0
, and w

i+1
 = w

i
 z

i+1
for all i >= 0

 By definition of ,
● Sequence of w

i
 ’s stationary after finitely many i’s

● Stationary value w* overapproximates limit of sequence of z
i
’s

 Theory of abstract interpretation guarantees that
w*) overapproximates loop invariant at L1

Dealing with loops

 Given a program P and an assertion at location L
 Choose an abstract lattice (domain) A with a operator
 Compute abstract invariant at each location of P
 If abstract invariant at L is a

L
, check if (a

L
) satisfies

 The theory of abstract interpretation guarantees that
(a

L
)concrete invariant at l

Putting It All Together

Bird’s eye-view of program verification by
abstract interpretation

A Simple Abstract Domain

 Simplest domain for analyzing numerical programs
 Represent values of each variable separately using intervals
 Example:
L0: x = 0; y = 0;
L1: while (x < 100) do
 L2: x = x+1;
 L3: y = y+1;
L4: end while
If the program terminates, does x have the value 100 on
termination?

Interval Abstract Domain

 Abstract states: pairs of intervals (one for each of x, y)
 [-10, 7] , (-1, 20]
 relation: Inclusion of intervals
 [-10, 7] , (-1, 20] [-20, 9], (-1, +)
 and : union and intersection of intervals
 [a, b] x [c, d] = [e, f], where

● e = a if c >= a, and e = - otherwise
● f = b if d <= b, and f = + otherwise

 y similarly defined, and is simply (x, y)
 is empty interval of x and y
 is (-, +), (-, +)

Interval Abstract Domain

Analyzing our Program

L0: x = 0; y = 0;

L1: while (x < 100) do

 L2: x = x+1;

 L3: y = y+1;

L4: end while

 Abstract interpretation: a fundamental technique for
analysis of programs

 Choice of right abstraction crucial
 Often getting the right abstraction to begin with is very

hard
 Need automatic refinement techniques

 Very active area of research

Some Concluding Remarks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

