Proving Programs Correct by Abstract Interpretation Supratik Chakraborty IT Bombay

WEPL (POPL) 2015

Program Analysis: An Example

```
int x = 0, y = 0, z;
read(z);
while (f(x, z) > 0) {
 if (g(z, y) > 10) {
   x = x + 1; y = y + 100;
 else if ( h(z) > 20) {
    if (x >= 4) {
       x = x + 1; y = y + 1;
```

IDEAS?
➢ Run test cases
➢ Get code analyzed by many people
➢ Convince yourself by adhoc reasoning

What is the relation between x and y on exiting while loop?

Program Verification: An Example

```
int x = 0, y = 0, z;
read(z);
while (f(x, z) > 0) {
 if (g(z, y) > 10) {
   x = x + 1; y = y + 100;
  else if ( h(z) > 20) {
    if (x >= 4) {
       x = x + 1; y = y + 1;
```

assert(x < 4 OR y >= 2);

IDEAS?
➢Run test cases
➢Get code analyzed by many people
➢Convince yourself by adhoc reasoning

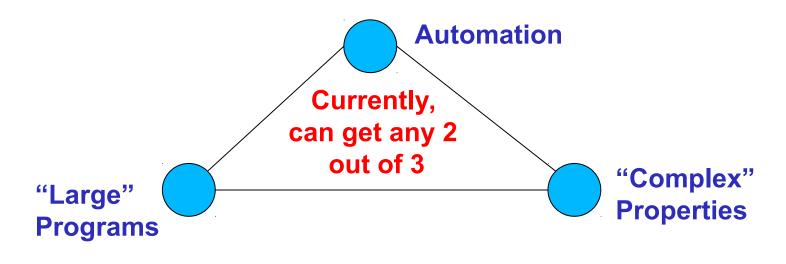
INVARIANT or PROPERTY

Verification & Analysis: Close Cousins

- Both investigate relations between program variables at different program locations
- Verification: A (seemingly) special case of analysis
 - Yes/No questions
 - No simpler than program analysis
- Both problems undecidable (in general) for languages with loops, integer addition and subtraction
 - Exact algorithm for program analysis/verification that works for all programs & properties: an impossibility
 - But why care about arbitrary programs?

Hope for Real-Life Software

- Certain classes of analyses/property-checking of real-life software feasible in practice
 - Uses domain specific techniques, restrictions on program structure...
 - "Safety" properties of avionics software, device drivers, ...
- ➢A practitioner's perspective



Some Driving Factors

Compiler design and optimizations

- Since earliest days of compiler design
- ➢Performance optimization
 - Renewed importance for embedded systems
- Testing, verification, validation
 - Increasingly important, given criticality of software
- Security and privacy concerns

Distributed and concurrent applications

Human reasoning about all scenarios difficult

Successful Approaches in Practical Software Verification

- Use of sophisticated abstraction and refinement techniques
 - Domain specific as well as generic
- ➤Use of constraint solvers
 - Propositional, quantified boolean formulas, first-order theories, ...
- ➢Use of scalable symbolic reasoning techniques
 - Several variants of decision diagrams, combinations of decision diagrams & satisfiability solvers ...
- Incomplete techniques that scale to real programs

Focus of today's talk

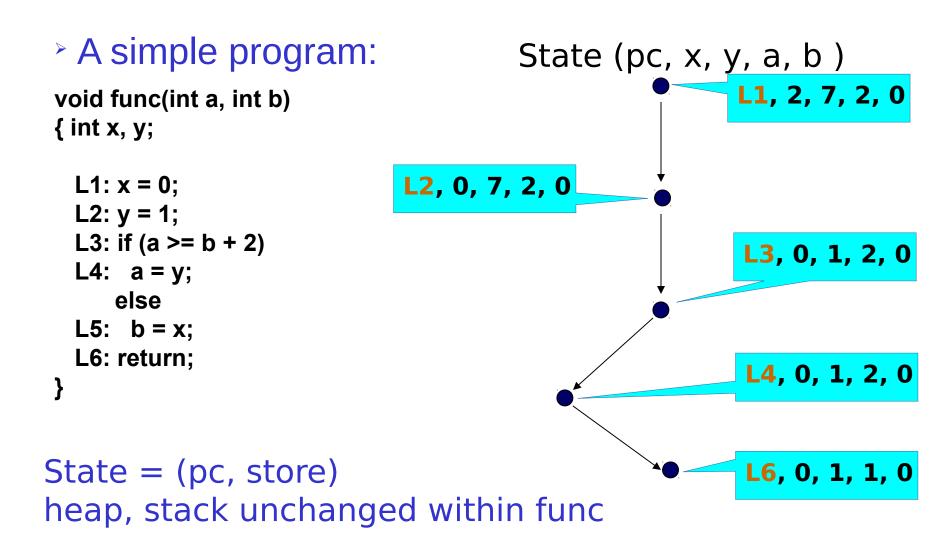
Abstract Interpretation Framework

- Elegant unifying framework for several program analysis & verification techniques
- Several success stories
 - Checking properties of avionics code in Airbus
 - Checking properties of device drivers in Windows
 - Many other examples
 - Medical, transportation, communication ...
- But, NOT a panacea
- Often used in combination with other techniques

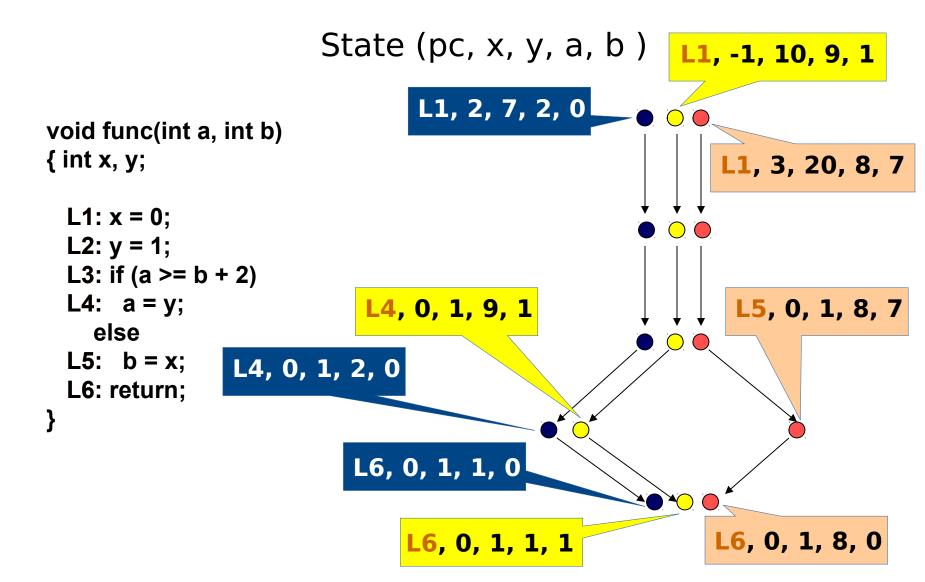
Sequential Program State

- Given sequential program P
 - State: information necessary to determine complete future behaviour
 - (pc, store, heap, call stack)
 - pc: program counter/location
 - store: map from program variables to values
 - heap: dynamically allocated/freed memory and pointer relations thereof
 - call stack: stack of call frames

Programs as State Transition Systems

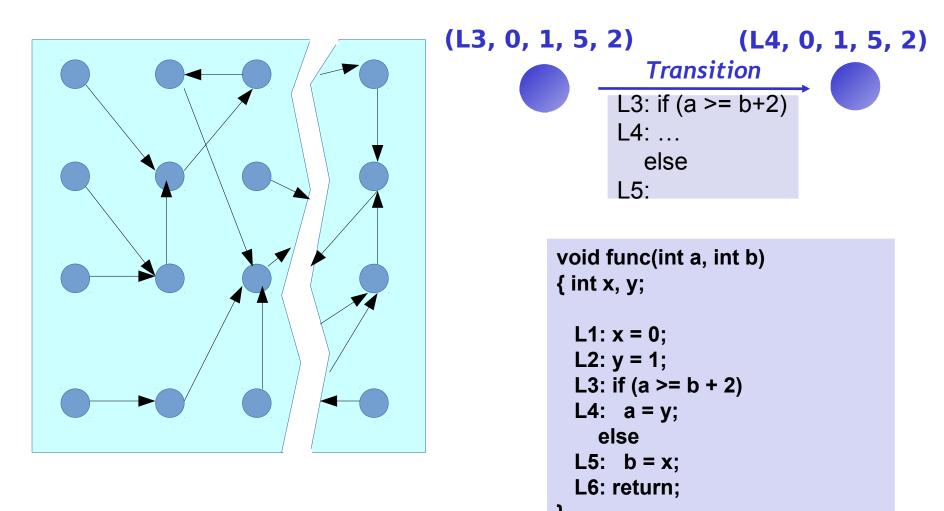


Programs as State Transition Systems

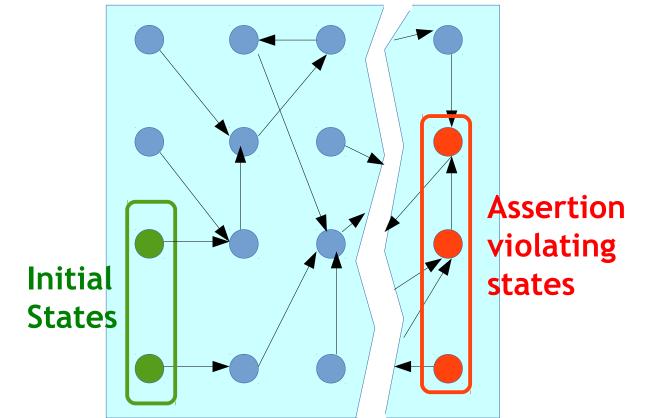


Programs as State Transition Systems

State: pc, x, y, a, b



Assertion Checking as Reachability



Path from an initial to an assertion violating state ? Absence of path: System cannot exhibit error Presence of path: System can exhibit error What happens with procedure calls/returns?

State Space: How large is it?

- > State = (pc, store, heap, call stack)
 - pc: finite valued
 - store: finite if all variables have finite types
 - Every program statement effects a state transition
 - enum {wait, critical, noncritical} pr_state (finite)
 - int a, b, c (infinite)
 - bool *p, *q (infinite)
 - heap: unbounded in general
 - call stack: unbounded in general

Bad news: State space infinite in general

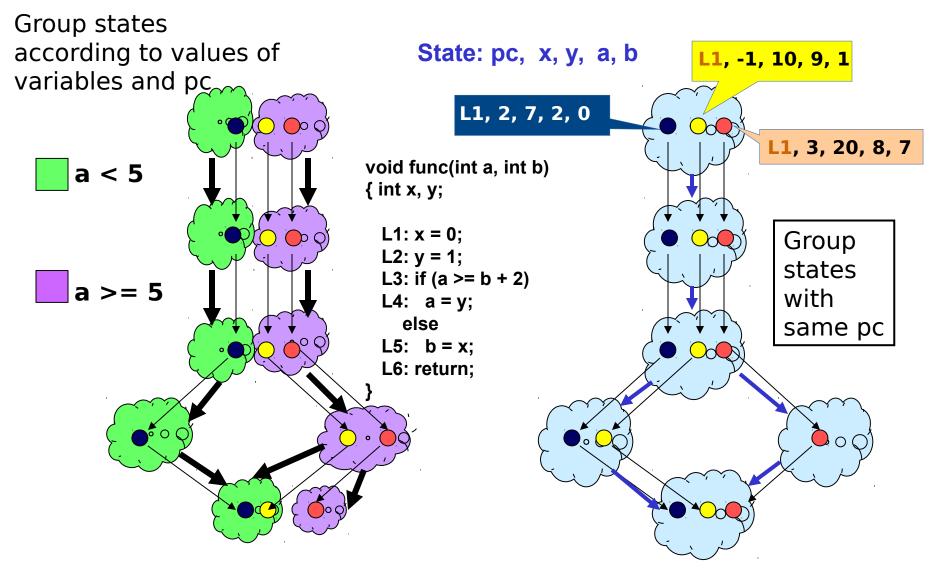
Dealing with State Space Size

- Infinite state space
 - Difficult to represent using state transition diagram
 - · Can we still do some reasoning?
- Solution: Use of abstraction
 - Naive view
 - Bunch sets of states together "intelligently"
 - Don't talk of individual states, talk of a representation of a set of states
 - Transitions between state set representations/
 - Granularity of reasoning shifted
 - Extremely powerful general technique
 - Allows reasoning about large/infinite state spaces

Concrete states

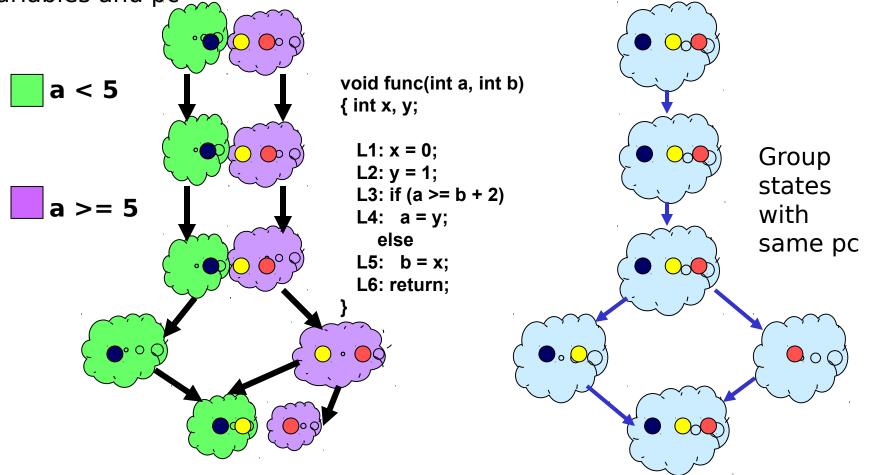
Abstract states

Simple Abstractions



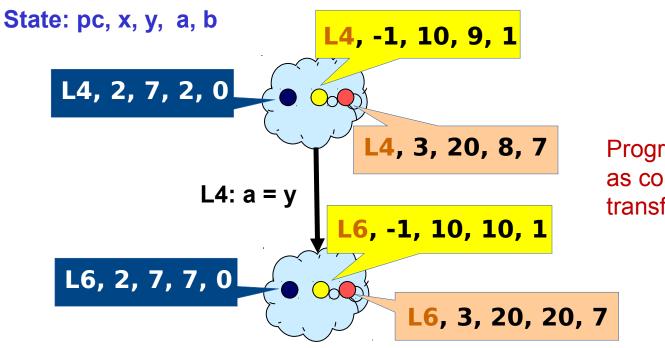
Programs as State Set Transformers

Group states according to values of variables and pc



Programs as Abstr State Transformers

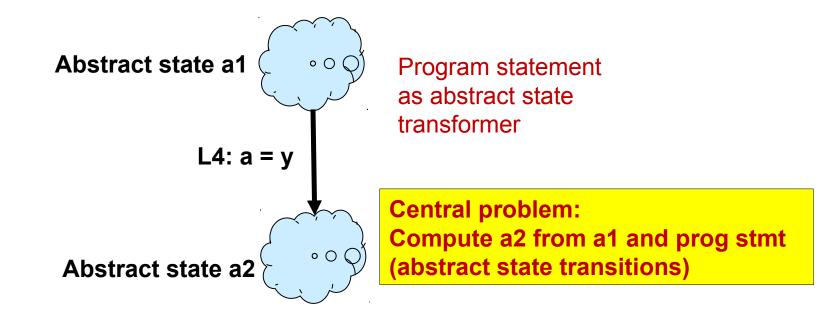
- Recall: Set of (potentially infinite) concrete states is an abstract state
- > Think of program as abstract state transformer



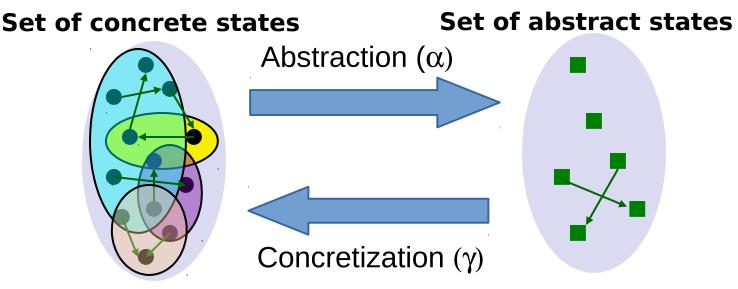
Program statement as concrete state transformer

Programs as Abstr State Transformers

- Recall: Set of (potentially infinite) concrete states is an abstract state
- > Think of program as abstract state transformer

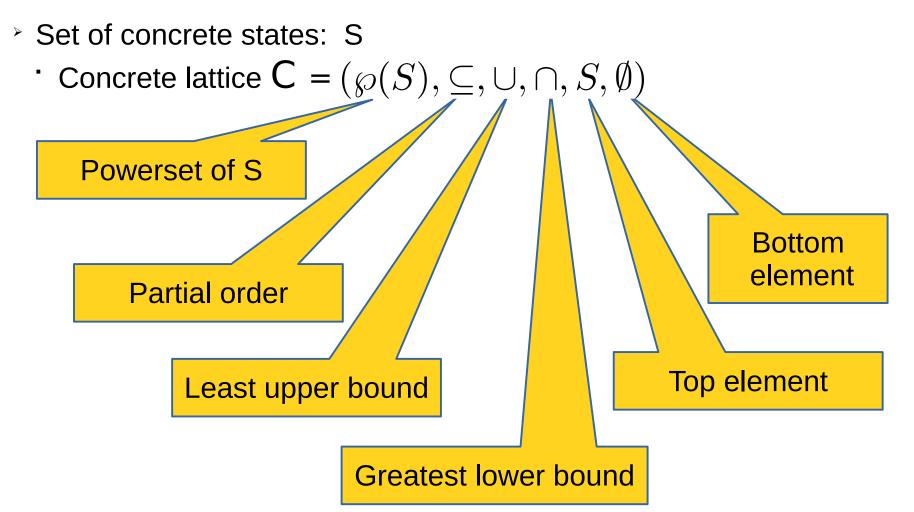


A Generic View of Abstraction



- > Every subset of concrete states mapped to unique abstract state
- Desirable to capture containment relations
- > Transitions between state sets (abstract states)

Mathematical Foundations of Abstract Interpretation

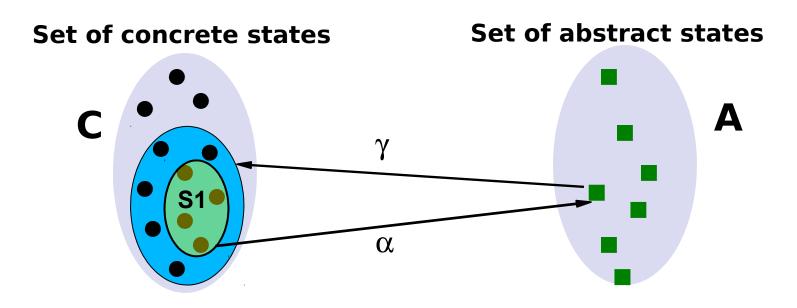


Mathematical Foundations of Abstract Interpretation

- [≻] Abstract lattice $A = (A, \sqsubseteq, \sqcup, \sqcap, \top, \bot)$
- - Monotone: $S_1 \subseteq S_2 \Rightarrow \alpha(S_1) \sqsubseteq \alpha(S_2)$ for all $S_1, S_2 \subseteq S$
 - $\alpha(S) = \top, \quad \alpha(\emptyset) = \bot$
- - Monotone: $a_1 \sqsubseteq a_2 \Rightarrow \gamma(a_1) \subseteq \gamma(a_2)$ for all $a_1, a_1 \in \mathcal{A}$
 - $\gamma(\top) = S$, $\gamma(\bot) = \emptyset$

Mathematical Foundations of Abstract Interpretation

- $\succ \alpha$ and γ form a **Galois connection**
 - First view: $S_1 \subseteq \gamma(\alpha(S_1))$ for all $S_1 \subseteq S$



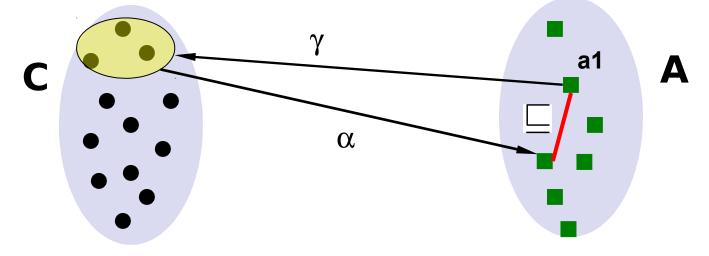
Mathematical Foundations of Abstract Interpretation

- $\succ \alpha$ and γ form a **Galois connection**
 - First view: $S_1 \subseteq \gamma(\alpha(S_1))$ for all $S_1 \subseteq S$

 $\alpha(\gamma(a_1)) \sqsubseteq a_1$ for all $a_1 \in \mathcal{A}$

Set of concrete states

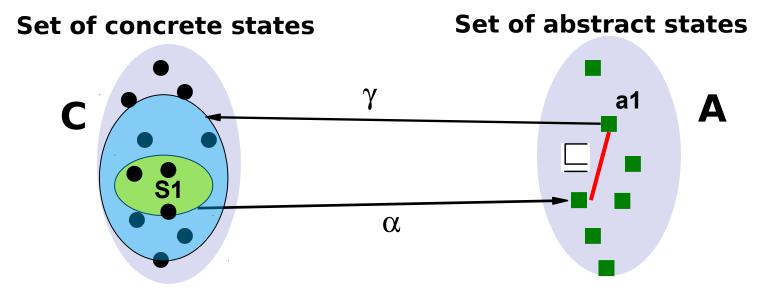
Set of abstract states



Mathematical Foundations of Abstract Interpretation

- $\succ \alpha$ and γ form a **Galois connection**
 - · Second (equivalent) view:

 $\alpha(S_1) \sqsubseteq a_1 \Leftrightarrow S_1 \subseteq \gamma(a_1) \text{ for all } S_1 \subseteq S, a_1 \in \mathcal{A}$

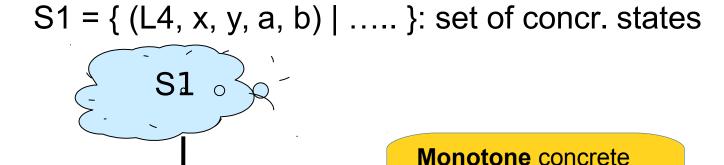


Computing Abstract State Transformers

Concrete state set transformer function

L4: a = y

• Example:



state set transformer

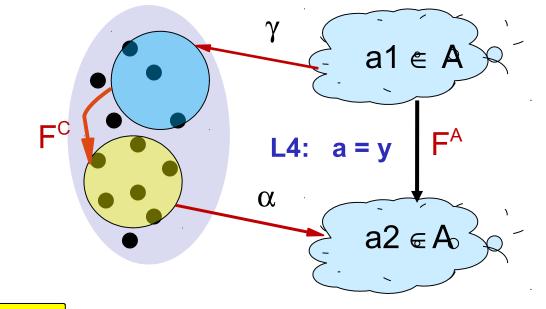
function for stmt at L4

S2 = { (L6, x, y, a', b) | \exists (L4, x, y, a, b) \in S1 \land a' = y} = F^c (S1) : set of concrete states

Computing Abstract State Transformers

- > Abstract state transformer function
 - Example:

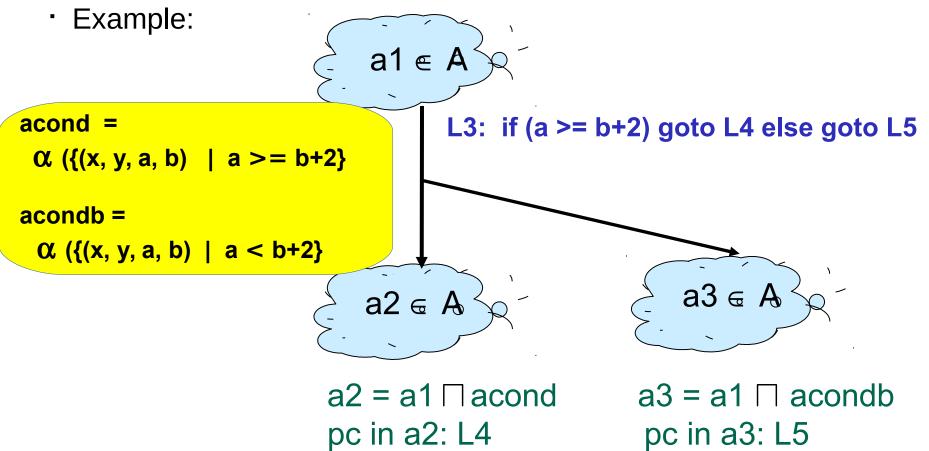
Set of concrete states

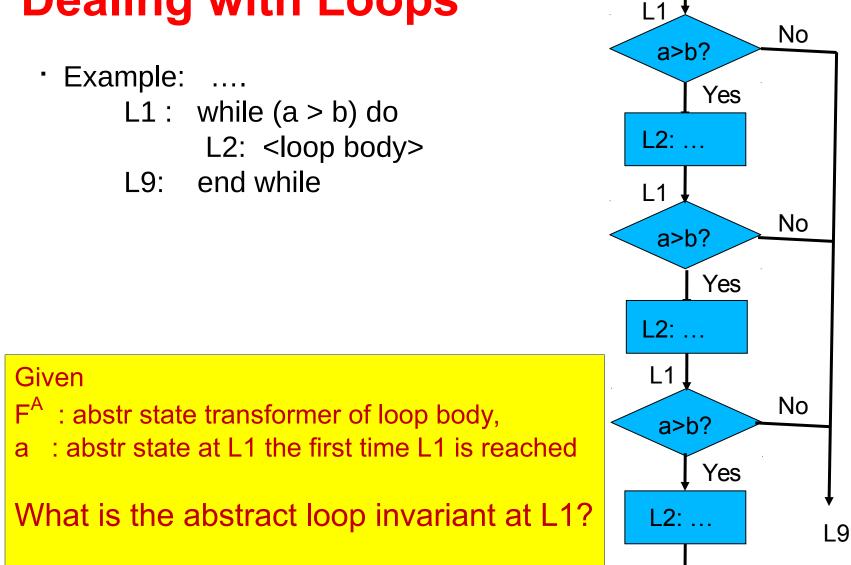


 $a^{2} = \alpha(F^{c}(\gamma(a1)))$ ideally, but $F^{A}(a1) \supseteq \alpha(F^{c}(\gamma(a1)))$ often used

Computing Abstract State Transformers

> Abstract state transformer for if-then-else





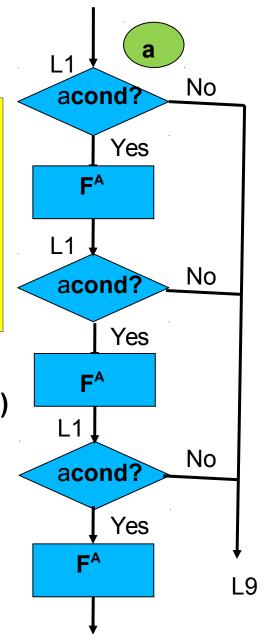
Given

- F^A : abstr state transformer of loop body,
- a : abstr state at L1 the first time L1 is reached

What is the abstract loop invariant at L1?

acond = α ({s | s is a concrete state with a > b})

Current view of abstract loop invariant



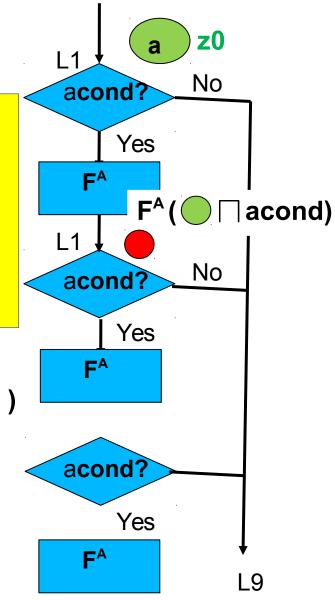
Given

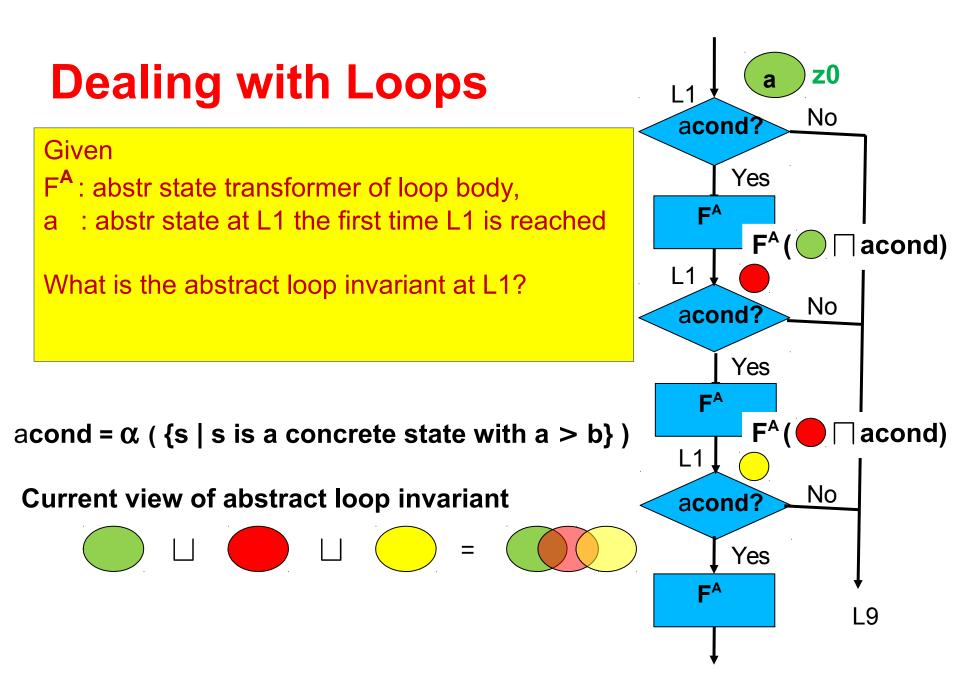
- F^A : abstr state transformer of loop body,
- a : abstr state at L1 the first time L1 is reached

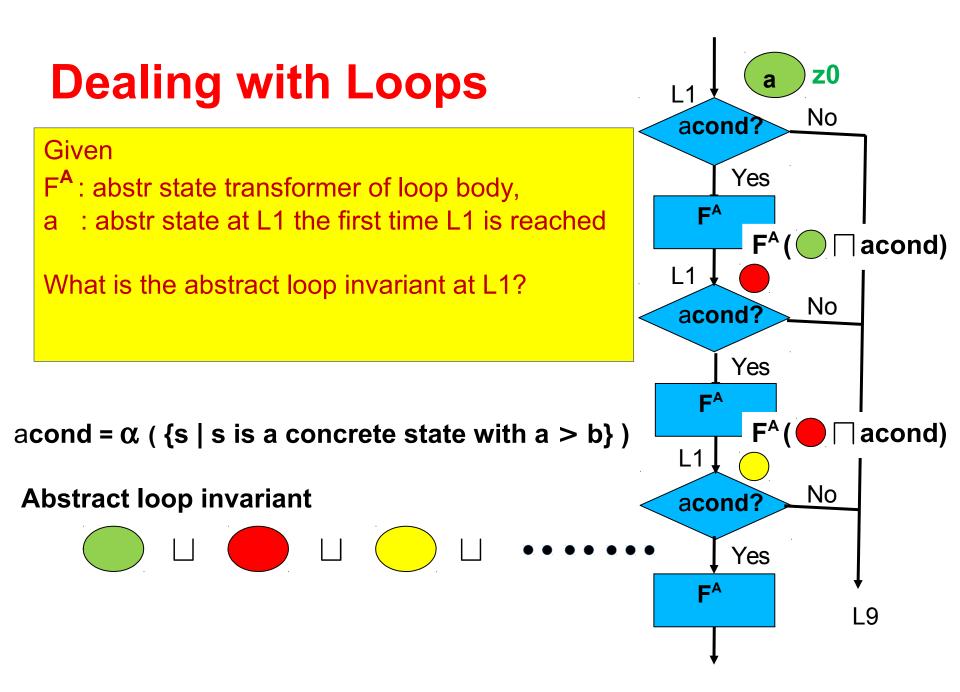
What is the abstract loop invariant at L1?

acond = α ({s | s is a concrete state with a > b})

Current view of abstract loop invariant







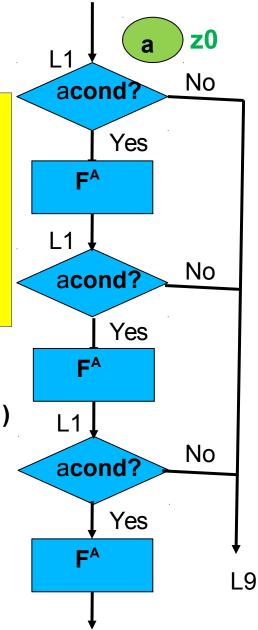
Given

- F^A: abstr state transformer of loop body,
- a : abstr state at L1 the first time L1 is reached

What is the abstract loop invariant at L1?

acond = α ({s | s is a concrete state with a > b})

Loop invariant at L1 is limit of the sequence: z0 = a



Given

- F^A: abstr state transformer of loop body,
- a : abstr state at L1 the first time L1 is reached

What is the abstract loop invariant at L1?

acond = α ({s | s is a concrete state with a > b})

Loop invariant at L1 is limit of the sequence: z0 = a $z1 = a \sqcup F^{A}$ ($z0 \sqcap$ acond)



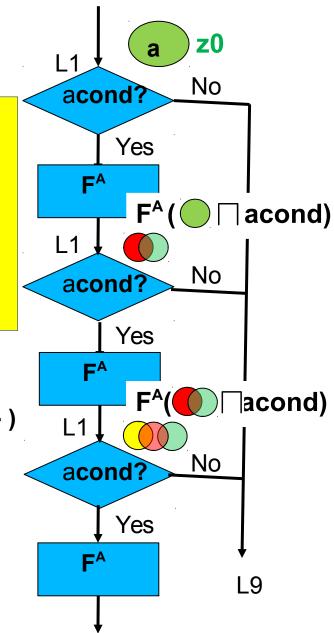
Given

- F^A: abstr state transformer of loop body,
- a : abstr state at L1 the first time L1 is reached

What is the abstract loop invariant at L1?

acond = α ({s | s is a concrete state with a > b})

Loop invariant at L1 is limit of the sequence: z0 = a $z1 = a \sqcup F^{A}$ ($z0 \sqcap acond$) $z_{i+1} = a \sqcup F^{A}$ ($z_{i} \sqcap acond$)



Loop invariant at L1 is limit of the sequence:

- $z_0 = a, ..., z_{i+1} = a \sqcup F^A (z_i \sqcap acond)$
- The limit exists and is the least fixpoint of g: $\mathcal{A} \to \mathcal{A}$ where g(z) = a $\sqcup F^{A}(z \sqcap acond)$
- Difficult to compute if A has infinite ascending chains
- > Use an extrapolation (widen) operator r
 - $w_0 = z_0$, and $w_{i+1} = w_i \nabla z_{i+1}$ for all $i \ge 0$
 - By definition of ∇ ,
 - Sequence of w, 's stationary after finitely many i's
 - Stationary value w* overapproximates limit of sequence of z,'s
 - Theory of abstract interpretation guarantees that $\gamma(w^*)$ overapproximates loop invariant at L1

Putting It All Together

 \succ Given a program P and an assertion ϕ at location L

- Compute abstract invariant at each location of P
- If abstract invariant at L is a, check if $\gamma(a)$ satisfies φ
- The theory of abstract interpretation guarantees that $\gamma(a_1) \supseteq$ concrete invariant at I

Bird's eye-view of program verification by abstract interpretation

A Simple Abstract Domain

Interval Abstract Domain

- Simplest domain for analyzing numerical programs
- Represent values of each variable separately using intervals
- Example:
- L0: x = 0; y = 0;
- L1: while (x < 100) do
 - L2: x = x+1;

L3:
$$y = y+1;$$

L4: end while

If the program terminates, does x have the value 100 on termination?

Interval Abstract Domain

- > Abstract states: pairs of intervals (one for each of x, y)
 - · [-10, 7], (-1, 20]
 - _ relation: Inclusion of intervals
 - · [-10, 7], (-1, 20] \sqsubseteq [-20, 9], (-1, + ∞)
 - · \sqcup and \sqcap : union and intersection of intervals
 - [a, b] ∇x [c, d] = [e, f], where
 - e = a if $c \ge a$, and $e = -\infty$ otherwise
 - f = b if $d \le b$, and $f = +\infty$ otherwise
 - ∇y similarly defined, and ∇ is simply (∇x , ∇y)
 - $\cdot \perp$ is empty interval of x and y
 - \top is (- ∞ , + ∞), (- ∞ , + ∞)

Analyzing our Program

- L0: x = 0; y = 0;
- L1: while (x < 100) do
 - L2: x = x+1;
 - L3: y = y+1;
- L4: end while

Some Concluding Remarks

- > Abstract interpretation: a fundamental technique for analysis of programs
- Choice of right abstraction crucial
- Often getting the right abstraction to begin with is very hard
 - Need automatic refinement techniques
- > Very active area of research

 \geq