
Introduction to Data Flow Analysis

Uday Khedker

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

July 2010

Part 1

About These Slides

CS 618 Intro to DFA: About These Slides 1/42

Copyright

These slides constitute the lecture notes for CS618 Program Analysis
course at IIT Bombay and have been made available as teaching material
accompanying the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow
Analysis: Theory and Practice. CRC Press (Taylor and Francis
Group). 2009.

Apart from the above book, some slides are based on the material from
the following books

• A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley. 2006.

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

These slides are being made available under GNU FDL v1.2 or later
purely for academic or research use.

July 2010 IIT Bombay

CS 618 Intro to DFA: Outline 2/42

Motivating the Need of Program Analysis

• Some representative examples

◮ Classical optimizations performed by compilers
◮ Optimizing heap memory usage

• Course details, schedule, assessment policies etc.

• Program execution model and semantics

July 2010 IIT Bombay



Part 2

Classical Optimizations

CS 618 Intro to DFA: Classical Optimizations 3/42

Examples of Optimising Transformations (ALSU, 2006)

A C program and its optimizations

void quicksort(int m, int n)
{ int i, j, v, x;

if (n <= m) return;

i = m-1; j = n; v = a[n]; /⋆ v is the pivot ⋆/
while(1) /⋆ Move values smaller ⋆/
{ do i = i + 1; while (a[i] < v); /⋆ than v to the left of
⋆/

do j = j - 1; while (a[j] > v); /⋆ the split point (sp) ⋆/
if (i >= j) break; /⋆ and other values ⋆/
x = a[i]; a[i] = a[j]; a[j] = x; /⋆ to the right of sp ⋆/

} /⋆ of the split point ⋆/
x = a[i]; a[i] = a[n]; a[n] = x; /⋆ Move the pivot to sp ⋆/

quicksort(m,i); quicksort(i+1,n); /⋆ sort the partitions to ⋆/
} /⋆ the left of sp and to the right of sp independently ⋆/

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 4/42

Intermediate Code

For the boxed source code

1. i = m - 1
2. j = n

3. t1 = 4 ∗ n
4. t6 = a[t1]

5. v = t6
6. i = i + 1
7. t2 = 4 ∗ i
8. t3 = a[t2]

9. if t3 < v goto 6

10. j = j - 1

11. t4 = 4 ∗ j

12. t5 = a[t4]

13. if t5 > v goto 10

14. if i >= j goto 25

15. t2 = 4 ∗ i
16. t3 = a[t2]

17. x = t3
18. t2 = 4 ∗ i
19. t4 = 4 ∗ j

20. t5 = a[t4]

21. a[t2] = t5

22. t4 = 4 ∗ j

23. a[t4] = x

24. goto 6

25. t2 = 4 ∗ i
26. t3 = a[t2]

27. x = t3
28. t2 = 4 ∗ i
29. t1 = 4 ∗ n
30. t6 = a[t1]

31. a[t2] = t6

32. t1 = 4 ∗ n
33. a[t1] = x

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 5/42

Intermediate Code : Observations

• Multiple computations of expressions

• Simple control flow (conditional/unconditional goto)
Yet undecipherable!

• Array address calculations

July 2010 IIT Bombay



CS 618 Intro to DFA: Classical Optimizations 6/42

Understanding Control Flow

• Identify maximal sequences of linear control flow
⇒ Basic Blocks

• No transfer into or out of basic blocks except the first and last
statements
Control transfer into the block : only at the first statement.
Control transfer out of the block : only at the last statement.

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 7/42

Intermediate Code with Basic Blocks

1. i = m - 1
2. j = n

3. t1 = 4 ∗ n
4. t6 = a[t1]

5. v = t6

6. i = i + 1
7. t2 = 4 ∗ i
8. t3 = a[t2]

9. if t3 < v goto 6

10. j = j - 1

11. t4 = 4 ∗ j

12. t5 = a[t4]

13. if t5 > v goto 10

14. if i >= j goto 25

15. t2 = 4 ∗ i
16. t3 = a[t2]

17. x = t3
18. t2 = 4 ∗ i
19. t4 = 4 ∗ j

20. t5 = a[t4]

21. a[t2] = t5

22. t4 = 4 ∗ j

23. a[t4] = x

24. goto 6

25. t2 = 4 ∗ i
26. t3 = a[t2]

27. x = t3
28. t2 = 4 ∗ i
29. t1 = 4 ∗ n
30. t6 = a[t1]

31. a[t2] = t6

32. t1 = 4 ∗ n
33. a[t1] = x

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 8/42

Program Flow Graph

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 9/42

Program Flow Graph : Observations

Nesting Level Basic Blocks No. of Statements

0 B1, B6 14

1 B4, B5 11

2 B2, B3 8

July 2010 IIT Bombay



CS 618 Intro to DFA: Classical Optimizations 10/42

Local Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 11/42

Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

x = t3
t2 = 4 ∗ i

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

x = t3
t2 = 4 ∗ i

t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 12/42

Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B3

B4

B5 t2 = 4 ∗ i

B2
i = i + 1
t2 = 4 ∗ i

B3

B4

B5 t2 = 4 ∗ i

. . .

. . .

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 13/42

Global Common Subexpression Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = x

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = x

B6

July 2010 IIT Bombay



CS 618 Intro to DFA: Classical Optimizations 14/42

Other Classical Optimizations

• Copy propagation

• Strength Reduction

• Elimination of Induction Variables

• Dead Code Elimination

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 15/42

Copy Propagation and Dead Code Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6

B1

B2

i = i + 1
t2 = 4 ∗ i
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = 4 ∗ j

t5 = a[t4]

if t5 > v goto B3

B3

B4 if i >= j goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = t3

B6

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 16/42

Strength Reduction and Induction Variable Elimination

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6
t2 = 4 ∗ i
t4 = 4 ∗ j

B1

B2

i = i + 1
t2 = t2 + 4
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = t4 − 4
t5 = a[t4]

if t5 > v goto B3

B3

B4 if t2>=t4 goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]
x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6
t1 = 4 ∗ n
a[t1] = t3

B6

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 17/42

Final Intermediate Code

B1

i = m - 1
j = n
t1 = 4 ∗ n
t6 = a[t1]
v = t6
t2 = 4 ∗ i
t4 = 4 ∗ j

B1

B2

i = i + 1
t2 = t2 + 4
t3 = a[t2]

if t3 < v goto B2

B2

B3

j = j - 1
t4 = t4 − 4
t5 = a[t4]

if t5 > v goto B3

B3

B4 if t2 >= t4 goto B6 B4

B5

t2 = 4 ∗ i
t3 = a[t2]

x = t3
t2 = 4 ∗ i
t4 = 4 ∗ j

t5 = a[t4]

a[t2] = t5

t4 = 4 ∗ j

a[t4] = t3

goto B2

B5

B6

t2 = 4 ∗ i
t3 = a[t2]

x = t3
t2 = 4 ∗ i
t1 = 4 ∗ n
t6 = a[t1]

a[t2] = t6

t1 = 4 ∗ n
a[t1] = t3

B6

July 2010 IIT Bombay



CS 618 Intro to DFA: Classical Optimizations 18/42

Optimized Program Flow Graph

Nesting Level No. of Statements
Original Optimized

0 14 10

1 11 4

2 8 6

If we assume that a loop is executed 10 times, then the number of
computations saved at run time

= (14 − 10) + (11 − 4) × 10 + (8 − 6) × 102 = 4 + 70 + 200 = 274

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 19/42

Observations

• Optimizations are transformations based on some information.

• Systematic analysis required for deriving the information.

• We have looked at data flow optimizations.
Many control flow optimizations can also be performed.

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 20/42

Categories of Optimizing Transformations and Analyses

Code Motion
Redundancy Elimination

Control flow Optimization
Machine Independent

Flow Analysis
(Data + Control)

Loop Transformations Machine Dependent
Dependence Analysis

(Data + Control)

Instruction Scheduling
Register Allocation

Peephole Optimization
Machine Dependent

Several
Independent
Techniques

Vectorization
Parallelization Machine Dependent

Dependence Analysis
(Data + Control)

July 2010 IIT Bombay

CS 618 Intro to DFA: Classical Optimizations 21/42

Conclusions

• Static analysis discovers useful information that represents all
execution instances of the program being analysed

• This information can be used for a variety of applications such as
◮ code optimization
◮ verification and validation
◮ reverse engineering
◮ software engineering

July 2010 IIT Bombay



Part 3

Optimizing Heap Memory Usage

CS 618 Intro to DFA: Optimizing Heap Memory Usage 22/42

Standard Memory Architecture of Programs

Code

Static Data

Stack

Heap

Heap allocation provides the flexibility of

• Variable Sizes. Data structures can grow
or shrink as desired at runtime.

(Not bound to the declarations in program.)

• Variable Lifetimes. Data structures can
be created and destroyed as desired at
runtime.

(Not bound to the activations of procedures.)

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 23/42

Managing Heap Memory

Decision 1: When to Allocate?

• Explicit. Specified in the programs. (eg. Imperative/OO languages)

• Implicit. Decided by the language processors. (eg. Declarative

Languages)

Decision 2: When to Deallocate?

• Explicit. Manual Memory Management (eg. C/C++)

• Implicit. Automatic Memory Management aka Garbage Collection
(eg. Java/Declarative languages)

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 24/42

Predictability of Lifetimes

Memory
Run Time Change

Lifetime
Allocation Deallocation

Code None None Predictable

Static Data None None Predictable

Stack Predictable Predictable Predictable

Heap Predictable Unpredictable Unpredictable

Predictability ⇒ Can be easily discovered by analysing the program text

July 2010 IIT Bombay



CS 618 Intro to DFA: Optimizing Heap Memory Usage 25/42

The Importance of Predictability

• Stack and static data offer a reasonable predictability.

◮ Good (static) analysis techniques.
◮ Allocation/deallocation/optimization handled very well by production

quality language processors.

• Heap memory does not offer the same predictability.

◮ Few or no (static) production quality analysis techniques.
◮ Optimization ?

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 26/42

State of Art in Manual Deallocation

• Memory leaks
10% to 20% of last development effort goes in plugging leaks

• Tool assisted manual plugging
Purify, Electric Fence, RootCause, GlowCode, yakTest, Leak Tracer, BDW

Garbage Collector, mtrace, memwatch, dmalloc etc.

• All leak detectors
◮ are dynamic (and hence specific to execution instances)
◮ generate massive reports to be perused by programmers
◮ usually do not locate last use but only allocation escaping a call

⇒ At which program point should a leak be “plugged”?

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 27/42

Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.
Deallocate inactive data structure.

• What is an Active Data Structure?

If an object does not have an access path, (i.e. it is unreachable)
then its memory can be reclaimed.

What if an object has an access path, but is not accessed after the
given program point?

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 28/42

What is Garbage?

1 w = x // x points to ma

2 if (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
Garbage

Garbage

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

b

f
hx

y

All white nodes are unused and should be considered garbage

July 2010 IIT Bombay



CS 618 Intro to DFA: Optimizing Heap Memory Usage 29/42

Is Reachable Same as Live?

From www.memorymanagement.org/glossary

live (also known as alive, active) : Memory(2) or an object is live if the
program will read from it in future. The term is often used more broadly
to mean reachable.

It is not possible, in general, for garbage collectors to determine exactly
which objects are still live. Instead, they use some approximation to
detect objects that are provably dead, such as those that are not
reachable.

Similar terms: reachable. Opposites: dead. See also: undead.

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 30/42

Is Reachable Same as Live?

• Not really. Most of us know that.

Even with the state of art of garbage collection, 24% to 76%
unused memory remains unclaimed

• Yet we have no way of distinguishing.

Over a dozen reported approaches (since 1996), no real success.

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 31/42

Reachability and Liveness

Comparison between different sets of objects:

Live ? Reachable ? Allocated

The objects that are not live must be reclaimed.

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 31/42

Reachability and Liveness

Comparison between different sets of objects:

Live ⊆ Reachable ⊆ Allocated

The objects that are not live must be reclaimed.

July 2010 IIT Bombay



CS 618 Intro to DFA: Optimizing Heap Memory Usage 31/42

Reachability and Liveness

Comparison between different sets of objects:

Live ⊆ Reachable ⊆ Allocated

The objects that are not live must be reclaimed.

¬ Live ? ¬ Reachable ? ¬ Allocated

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 31/42

Reachability and Liveness

Comparison between different sets of objects:

Live ⊆ Reachable ⊆ Allocated

The objects that are not live must be reclaimed.

¬ Live ⊇ ¬ Reachable ⊇ ¬ Allocated

Garbage collectors
collect these

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 32/42

Cedar Mesa Folk Wisdom

Make the unused memory unreachable by setting references to NULL.
(GC FAQ: http://www.iecc.com/gclist/GC-harder.html)

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

lptr

rptr

lptr

rptr

lptr

lptr

rptr

lptr

rptr

lptr

a

i

m

b

f
h

X

X

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 33/42

Cedar Mesa Folk Wisdom

• Most promising, simplest to understand, yet the hardest to
implement.

• Which references should be set to NULL?

◮ Most approaches rely on feedback from profiling.
◮ No systematic and clean solution.

July 2010 IIT Bombay



CS 618 Intro to DFA: Optimizing Heap Memory Usage 34/42

Distinguishing Between Reachable and Live

The state of art

• Eliminating objects reachable from root variables which are not live.

• Implemented in current Sun JVMs.

• Uses liveness data flow analysis of root variables (stack data).

• What about liveness of heap data?

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 35/42

Liveness of Stack Data

1 w = x // x points to ma

2 while (x.data < max)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data

if changed to while

Stack

Heap

w x y z

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 35/42

Liveness of Stack Data

1 w = x // x points to ma

2 while (x.data < max)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data
Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

What is the meaning of use of data?

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 35/42

Liveness of Stack Data

1 w = x // x points to ma

2 while (x.data < max)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data
Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

Reading x (Stack data)

July 2010 IIT Bombay



CS 618 Intro to DFA: Optimizing Heap Memory Usage 35/42

Liveness of Stack Data

1 w = x // x points to ma

2 while (x.data < max)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data
Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

Reading x.data (Heap data)

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 35/42

Liveness of Stack Data

1 w = x // x points to ma

2 while (x.data < max)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data
Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

Reading x.rptr (Heap data)

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 35/42

Liveness of Stack Data

1 w = x // x points to ma

2 while (x.data < max)

3 x = x.rptr

4 y = x.lptr

5 z = New class of z

6 y = y.lptr

7 z.sum = x.data + y.data
Stack

Heap

w x y z

lptr

rptr
data

rptr

rptr

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 36/42

Liveness of Stack Data

w = x

while (x.data < max)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

w x y z

w x y z

Live

Dead

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

End of iteration #1

July 2010 IIT Bombay



CS 618 Intro to DFA: Optimizing Heap Memory Usage 36/42

Liveness of Stack Data

w = x

while (x.data < max)

x = x.rptr

y = x.lptr

z = New class of z

y = y.lptr

z.sum = x.data + y.data

w x y z

w x y z

Live

Dead

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

w x y z

End of iteration #2

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 37/42

Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is not executed even once.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a

p

q

b

i

c

f
g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 37/42

Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is executed once.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a

p

q

b

i

c

f
g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

b

f
h

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 37/42

Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is executed twice.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a

p

q

b

i

c

f
g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

c
e

July 2010 IIT Bombay



CS 618 Intro to DFA: Optimizing Heap Memory Usage 38/42

The Moral of the Story

• Mappings between access expressions and l-values keep changing

• This is a rule for heap data
For stack and static data, it is an exception!

• Static analysis of programs has made significant progress for stack
and static data.

What about heap data?

◮ Given two access expressions at a program point, do they have the
same l-value?

◮ Given the same access expression at two program points, does it have
the same l-value?

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 39/42

Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 40/42

Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

yy

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 40/42

Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

yy

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is executed once

a

i

m

b

f
hlptr

rp
tr

rpt
r

lptr rptr

lptr

rptr

lptr

July 2010 IIT Bombay



CS 618 Intro to DFA: Optimizing Heap Memory Usage 40/42

Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

yy

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is executed twice

a

i

m

b

f
h

c
e

lptr

rp
tr

rpt
r

lptr rptr

lptr

rpt
r

rptr

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 41/42

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

Node i is live but link a → i is nullified

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 41/42

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

New access expressions are created.
Can they cause exceptions?

July 2010 IIT Bombay

CS 618 Intro to DFA: Optimizing Heap Memory Usage 42/42

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary
Heap Data

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

?

Profiling
Static

Analysis

July 2010 IIT Bombay


	About These Slides
	Outline
	Classical Optimizations
	Optimizing Heap Memory Usage

