
Theoretical Abstractions in Data Flow Analysis

Uday Khedker

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

August 2010

Part 1

About These Slides

CS 618 DFA Theory: About These Slides 1/109

Copyright

These slides constitute the lecture notes for CS618 Program Analysis
course at IIT Bombay and have been made available as teaching material
accompanying the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow

Analysis: Theory and Practice. CRC Press (Taylor and Francis
Group). 2009.

Apart from the above book, some slides are based on the material from
the following books

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

• F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag. 1998.

These slides are being made available under GNU FDL v1.2 or later

purely for academic or research use.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Outline 2/109

Outline

• The need for a more general setting

• The set of data flow values

• The set of flow functions

• Solutions of data flow analyses

• Algorithms for performing data flow analysis

• Complexity of data flow analysis

Aug 2010 IIT Bombay

Part 2

The Need for a More General Setting

CS 618 DFA Theory: The Need for a More General Setting 3/109

What We Have Seen So Far . . .

Analysis Entity
Attribute

Paths
at p

Live variables Variables Use Starting at p Some
Available

Expressions Availability Reaching p All
expressions

Partially available
Expressions Availability Reaching p Some

expressions

Anticipable
Expressions Use Starting at p All

expressions

Reaching
Definitions Availability Reaching p Some

definitions

Partial redundancy
Expressions

Profitable
Involving p All

elimination hoistability

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Summary Values

〈?, ?, ?, ?〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉〈×,×, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Execution
Sequence

〈a, b, c , d〉

n1

〈?, ?, ?, ?〉 IN

〈1, 2, 3, ?〉 OUT

n2
〈1, 2, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉

n2
〈2, 1, 3, 2〉

n3
〈2, 1, 3, 2〉 . . .

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈2, 1, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 4/109

An Introduction to Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Summary Values

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈2, 1, 3, 2〉

Desired Solution

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 5/109

Data Flow Values for Constant Propagation

• Tuples of the form 〈ξ1, ξ2, . . . , ξk〉 where ξi is the data flow value
for i th variable.

Unlike bit vector frameworks, value ξi is not 0 or 1 (i.e. true or
false). Instead, it is one of the following:

◮ ? indicating that not much is known about the constantness of
variable vi

◮ × indicating that variable vi does not have a constant value
◮ An integer constant c1 if the value of vi is known to be c1 at compile

time

• Alternatively, sets of pairs 〈vi , ξ i〉 for each variable vi .

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 6/109

Confluence Operation for Constant Propagation

• Confluence operation 〈a, c1〉 ⊓ 〈a, c2〉

⊓ 〈a, ?〉 〈a,×〉 〈a, c1〉
〈a, ?〉 〈a, ?〉 〈a,×〉 〈a, c1〉
〈a,×〉 〈a,×〉 〈a,×〉 〈a,×〉
〈a, c2〉 〈a, c2〉 〈a,×〉 If c1 = c2 〈a, c1〉

Otherwise 〈a,×〉

• This is neither ∩ nor ∪.

What are its properties?

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 7/109

Flow Functions for Constant Propagation

• Flow function for r = a1 ∗ a2

mult 〈a1, ?〉 〈a1,×〉 〈a1, c1〉
〈a2, ?〉 〈r , ?〉 〈r ,×〉 〈r , ?〉
〈a2,×〉 〈r ,×〉 〈r ,×〉 〈r ,×〉
〈a2, c2〉 〈r , ?〉 〈r ,×〉 〈r , (c1 ∗ c2)〉

• This cannot be expressed in the form

fn(X) = Genn ∪ (X − Killn)

where Genn and Killn are constant effects of block n.

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 8/109

Round Robin Iterative Analysis for Constant Propagation

n1

a = 1
b = 2

c = a + b

n1

n2
c = a + b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a + b

n3

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 8/109

Round Robin Iterative Analysis for Constant Propagation

n1

a = 1
b = 2

c = a + b

n1

n2
c = a + b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a + b

n3

Iteration
#1

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, 2〉

〈1, 2, 3, 2〉

〈2, 1, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 8/109

Round Robin Iterative Analysis for Constant Propagation

n1

a = 1
b = 2

c = a + b

n1

n2
c = a + b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a + b

n3

Iteration
#1

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, 2〉

〈1, 2, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#2

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 8/109

Round Robin Iterative Analysis for Constant Propagation

n1

a = 1
b = 2

c = a + b

n1

n2
c = a + b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a + b

n3

Iteration
#1

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, 2〉

〈1, 2, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#2

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

Iteration
#3

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3,×〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 8/109

Round Robin Iterative Analysis for Constant Propagation

n1

a = 1
b = 2

c = a + b

n1

n2
c = a + b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a + b

n3

Desired
solution

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#1

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, 2〉

〈1, 2, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#2

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

Iteration
#3

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3,×〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 8/109

Round Robin Iterative Analysis for Constant Propagation

n1

a = 1
b = 2

c = a + b

n1

n2
c = a + b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a + b

n3

Desired
solution

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈×,×, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#1

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, ?〉

〈1, 2, 3, 2〉

〈1, 2, 3, 2〉

〈2, 1, 3, 2〉

Iteration
#2

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3, 2〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

Iteration
#3

〈?, ?, ?, ?〉

〈1, 2, 3, ?〉

〈×,×, 3,×〉

〈×,×,×,×〉

〈×,×,×,×〉

〈2, 1, 3,×〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 9/109

Issues in Data Flow Analysis

A
cceptable

O
p
erations

Desired

Solutions

Pra
ct

ic
a
l

Alg
or

it
h
m
s

D
at
a

Flo
w

V
al

ue
s

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 9/109

Issues in Data Flow Analysis

A
cceptable

O
p
erations

Desired

Solutions

Pra
ct

ic
a
l

Alg
or

it
h
m
s

D
at
a

Flo
w

V
al

ue
s

• Representation

• Approximation: Partial
Order, Lattices

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 9/109

Issues in Data Flow Analysis

A
cceptable

O
p
erations

Desired

Solutions

Pra
ct

ic
a
l

Alg
or

it
h
m
s

D
at
a

Flo
w

V
al

ue
s

• Representation

• Approximation: Partial
Order, Lattices

• Merge: Commutativity,
Associativity, Idempotence

• Flow Functions: Monotonicity,
Distributivity, Boundedness,
Separability

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 9/109

Issues in Data Flow Analysis

A
cceptable

O
p
erations

Desired

Solutions

Pra
ct

ic
a
l

Alg
or

it
h
m
s

D
at
a

Flo
w

V
al

ue
s

• Representation

• Approximation: Partial
Order, Lattices

• Merge: Commutativity,
Associativity, Idempotence

• Flow Functions: Monotonicity,
Distributivity, Boundedness,
Separability

• Existence

• Safety (soundness)

• Precision

Aug 2010 IIT Bombay

CS 618 DFA Theory: The Need for a More General Setting 9/109

Issues in Data Flow Analysis

A
cceptable

O
p
erations

Desired

Solutions

Pra
ct

ic
a
l

Alg
or

it
h
m
s

D
at
a

Flo
w

V
al

ue
s

• Representation

• Approximation: Partial
Order, Lattices

• Merge: Commutativity,
Associativity, Idempotence

• Flow Functions: Monotonicity,
Distributivity, Boundedness,
Separability

• Existence

• Safety (soundness)

• Precision

• Complexity, efficiency

• Convergence

• Initialization

Aug 2010 IIT Bombay

Part 3

Data Flow Values: An Overview

CS 618 DFA Theory: Data Flow Values: An Overview 10/109

Data Flow Values: An Outline of Our Discussion

• The need to define the notion of abstraction

• Lattices, variants of lattices

• Relevance of lattices for data flow analysis
◮ Partial order relation as approximation of data flow values
◮ Meet operations as confluence of data flow values

• Cartesian product of lattices

• Example of lattices

Aug 2010 IIT Bombay

Part 4

A Digression on Lattices

CS 618 DFA Theory: A Digression on Lattices 11/109

Partially Ordered Sets and Lattices

Partially ordered sets

Partial order ⊑ is
reflexive, transitive,
and antisymmetric

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 11/109

Partially Ordered Sets and Lattices

Partially ordered sets

Partial order ⊑ is
reflexive, transitive,
and antisymmetric

A lower bound of
x , y is u s.t. u ⊑ x

and u ⊑ y

An upper bound of
x , y is u s.t. x ⊑ u

and y ⊑ u

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 11/109

Partially Ordered Sets and Lattices

Partially ordered sets

Partial order ⊑ is
reflexive, transitive,
and antisymmetric

Lattices

Every non-empty finite
subset has a greatest
lower bound (glb) and a
least upper bound (lub)

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 12/109

Partially Ordered Sets

Set {1, 2, 3, 4, 9} with ⊑ relation as “divides” (i.e. a ⊑ b iff a divides b)

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 12/109

Partially Ordered Sets

Set {1, 2, 3, 4, 9} with ⊑ relation as “divides” (i.e. a ⊑ b iff a divides b)

4 9

2 3

1

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 12/109

Partially Ordered Sets

Set {1, 2, 3, 4, 9} with ⊑ relation as “divides” (i.e. a ⊑ b iff a divides b)

4 9

2 3

1

Subsets {4, 9} and {2, 3} do not have an upper bound in the set

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 13/109

Lattice

Set {1, 2, 3, 4, 9, 36} with ⊑ relation as “divides” (i.e. a ⊑ b iff a divides b)

36

4 9

2 3

1

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 14/109

Complete Lattice

• Lattice: A partially ordered set such that every non-empty finite
subset has a glb and a lub.

Example:
Lattice Z of integers under ≤ relation. All finite subsets have a glb
and a lub. Infinite subsets do not have a glb or a lub.

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 14/109

Complete Lattice

• Lattice: A partially ordered set such that every non-empty finite
subset has a glb and a lub.

Example:
Lattice Z of integers under ≤ relation. All finite subsets have a glb
and a lub. Infinite subsets do not have a glb or a lub.

• Complete Lattice: A lattice in which even ∅ and infinite subsets
have a glb and a lub.

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 14/109

Complete Lattice

• Lattice: A partially ordered set such that every non-empty finite
subset has a glb and a lub.

Example:
Lattice Z of integers under ≤ relation. All finite subsets have a glb
and a lub. Infinite subsets do not have a glb or a lub.

• Complete Lattice: A lattice in which even ∅ and infinite subsets
have a glb and a lub.

Example:
Lattice Z of integers under ≤ relation with ∞ and −∞.

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 14/109

Complete Lattice

• Lattice: A partially ordered set such that every non-empty finite
subset has a glb and a lub.

Example:
Lattice Z of integers under ≤ relation. All finite subsets have a glb
and a lub. Infinite subsets do not have a glb or a lub.

• Complete Lattice: A lattice in which even ∅ and infinite subsets
have a glb and a lub.

Example:
Lattice Z of integers under ≤ relation with ∞ and −∞.

◮ ∞ is the top element denoted ⊤: ∀i ∈ Z, i ≤ ⊤.
◮ −∞ is the bottom element denoted ⊥: ∀i ∈ Z, ⊥ ≤ i .

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 15/109

Z ∪ {∞,−∞} is a Complete Lattice

• Infinite subsets of Z ∪ {∞,−∞} have a glb and lub.

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 15/109

Z ∪ {∞,−∞} is a Complete Lattice

• Infinite subsets of Z ∪ {∞,−∞} have a glb and lub.

• What about the empty set?

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 15/109

Z ∪ {∞,−∞} is a Complete Lattice

• Infinite subsets of Z ∪ {∞,−∞} have a glb and lub.

• What about the empty set?

◮ glb(∅) is ⊤

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 15/109

Z ∪ {∞,−∞} is a Complete Lattice

• Infinite subsets of Z ∪ {∞,−∞} have a glb and lub.

• What about the empty set?

◮ glb(∅) is ⊤

Every element of Z ∪ {∞,−∞} is vacuously a lower bound of an
element in ∅ (because there is no element in ∅).

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 15/109

Z ∪ {∞,−∞} is a Complete Lattice

• Infinite subsets of Z ∪ {∞,−∞} have a glb and lub.

• What about the empty set?

◮ glb(∅) is ⊤

Every element of Z ∪ {∞,−∞} is vacuously a lower bound of an
element in ∅ (because there is no element in ∅).
The greatest among these lower bounds is ⊤.

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 15/109

Z ∪ {∞,−∞} is a Complete Lattice

• Infinite subsets of Z ∪ {∞,−∞} have a glb and lub.

• What about the empty set?

◮ glb(∅) is ⊤

Every element of Z ∪ {∞,−∞} is vacuously a lower bound of an
element in ∅ (because there is no element in ∅).
The greatest among these lower bounds is ⊤.

◮ lub(∅) is ⊥

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 16/109

Finite Lattices are Complete

• Any given set of elements has a glb and a lub

Available Expressions Partially Available
Analysis Expressions Analysis

{e1, e2, e3}
(⊤)

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅
(⊥)

∅
(⊤)

{e1} {e2} {e3}

{e1, e2} {e1, e3} {e2, e3}

{e1, e2, e3}
(⊥)

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 17/109

Lattice for May-Must Analysis

• There is no ⊤ among the natural values

May

MustNo

⊥

Interpreting data flow values

− No. Information does not hold along any path

− Must. Information must hold along all paths

− May. Information may hold along some path

• An artificial ⊤ can be added
However, a lub may not exist for arbitrary sets

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 18/109

Some Variants of Lattices

A poset L is

• A lattice iff each non-empty finite subset of L has a glb and lub.

• A complete lattice iff each subset of L has a glb and lub.

• A meet semilattice iff each non-empty finite subset of L has a glb.

• A join semilattice iff each non-empty finite subset of L has a lub.

• A bounded lattice iff L is a lattice and has ⊤ and ⊥ elements.

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 19/109

A Bounded Lattice need not be Complete

• Let A be all finite subsets of Z.

• The poset (A ∪ {Z},⊆) is a bounded lattice with ⊤ = Z and ⊥ = ∅.
• Does the set of all sets that do not contains a given number (say 1)
has an lub in A ∪ {Z}?

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 19/109

A Bounded Lattice need not be Complete

• Let A be all finite subsets of Z.

• The poset (A ∪ {Z},⊆) is a bounded lattice with ⊤ = Z and ⊥ = ∅.
• Does the set of all sets that do not contains a given number (say 1)
has an lub in A ∪ {Z}?

• The union of all finite sets that do not contain 1 is an infinite set
that does not contain 1.
This set is not contained in A ∪ {Z}.

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 20/109

Ascending and Descending Chains

• Strictly ascending chain. x ⊏ y ⊏ · · · ⊏ z

• Strictly descending chain. x ⊐ y ⊐ · · · ⊐ z

• DCC: Descending Chain Condition
All strictly descending chains are finite.

• ACC: Ascending Chain Condition
All strictly ascending chains are finite.

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 21/109

Complete Lattice and Ascending and Descending Chains

• If L satisfies acc and dcc, then
◮ L has finite height, and
◮ L is complete.

• A complete lattice need not have finite height (i.e. strict chains may
not be finite).
Example:
Lattice of integers under ≤ relation with ∞ as ⊤ and −∞ as ⊥.

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 22/109

Variants of Lattices

Meet Semilattices

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 22/109

Variants of Lattices

Meet Semilattices

Meet Semilattices
with ⊥ element

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 22/109

Variants of Lattices

Meet Semilattices

Meet Semilattices
with ⊥ element

Meet Semilattices
satisfying dcc

• dcc: descending chain condition

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 22/109

Variants of Lattices

Meet Semilattices

Meet Semilattices
with ⊥ element

Meet Semilattices
satisfying dcc

Join Semilattices

• dcc: descending chain condition

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 22/109

Variants of Lattices

Meet Semilattices

Meet Semilattices
with ⊥ element

Meet Semilattices
satisfying dcc

Join Semilattices

Lattices

• dcc: descending chain condition

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 22/109

Variants of Lattices

Meet Semilattices

Meet Semilattices
with ⊥ element

Meet Semilattices
satisfying dcc

Join Semilattices

Lattices

Join Semilattices
with ⊤ element

• dcc: descending chain condition

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 22/109

Variants of Lattices

Meet Semilattices

Meet Semilattices
with ⊥ element

Meet Semilattices
satisfying dcc

Join Semilattices

Lattices

Join Semilattices
with ⊤ element

Bounded lattices

• dcc: descending chain condition

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 22/109

Variants of Lattices

Meet Semilattices

Meet Semilattices
with ⊥ element

Meet Semilattices
satisfying dcc

Join Semilattices

Lattices

Join Semilattices
with ⊤ element

Bounded lattices

Join Semilattices
satisfying acc

• dcc: descending chain condition
• acc: ascending chain condition

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 22/109

Variants of Lattices

Meet Semilattices

Meet Semilattices
with ⊥ element

Meet Semilattices
satisfying dcc

Join Semilattices

Lattices

Join Semilattices
with ⊤ element

Bounded lattices

Join Semilattices
satisfying acc

Complete lattices

• dcc: descending chain condition
• acc: ascending chain condition

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 22/109

Variants of Lattices

Meet Semilattices

Meet Semilattices
with ⊥ element

Meet Semilattices
satisfying dcc

Join Semilattices

Lattices

Join Semilattices
with ⊤ element

Bounded lattices

Join Semilattices
satisfying acc

Complete lattices

Complete lattices with dcc and acc

• dcc: descending chain condition
• acc: ascending chain condition

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 23/109

Operations on Lattices

• Meet (⊓) and Join (⊓)
36

4 9

2 3

1

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 23/109

Operations on Lattices

• Meet (⊓) and Join (⊓)
◮ x ⊓ y computes the glb of x and y .

z = x ⊓ y ⇒ z ⊑ x ∧ z ⊑ y

36

4 9

2 3

1

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 23/109

Operations on Lattices

• Meet (⊓) and Join (⊓)
◮ x ⊓ y computes the glb of x and y .

z = x ⊓ y ⇒ z ⊑ x ∧ z ⊑ y
◮ x ⊔ y computes the lub of x and y .

z = x ⊔ y ⇒ z ⊒ x ∧ z ⊒ y

36

4 9

2 3

1

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 23/109

Operations on Lattices

• Meet (⊓) and Join (⊓)
◮ x ⊓ y computes the glb of x and y .

z = x ⊓ y ⇒ z ⊑ x ∧ z ⊑ y
◮ x ⊔ y computes the lub of x and y .

z = x ⊔ y ⇒ z ⊒ x ∧ z ⊒ y
◮ ⊓ and ⊔ are commutative, associative,

and idempotent.

36

4 9

2 3

1

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 23/109

Operations on Lattices

• Meet (⊓) and Join (⊓)
◮ x ⊓ y computes the glb of x and y .

z = x ⊓ y ⇒ z ⊑ x ∧ z ⊑ y
◮ x ⊔ y computes the lub of x and y .

z = x ⊔ y ⇒ z ⊒ x ∧ z ⊒ y
◮ ⊓ and ⊔ are commutative, associative,

and idempotent.

• Top (⊤) and Bottom (⊥) elements

∀x ∈ L, x ⊓ ⊤ = x

∀x ∈ L, x ⊔ ⊤ = ⊤
∀x ∈ L, x ⊓ ⊥ = ⊥
∀x ∈ L, x ⊔ ⊥ = x

36

4 9

2 3

1

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 23/109

Operations on Lattices

• Meet (⊓) and Join (⊓)
◮ x ⊓ y computes the glb of x and y .

z = x ⊓ y ⇒ z ⊑ x ∧ z ⊑ y
◮ x ⊔ y computes the lub of x and y .

z = x ⊔ y ⇒ z ⊒ x ∧ z ⊒ y
◮ ⊓ and ⊔ are commutative, associative,

and idempotent.

• Top (⊤) and Bottom (⊥) elements

∀x ∈ L, x ⊓ ⊤ = x

∀x ∈ L, x ⊔ ⊤ = ⊤
∀x ∈ L, x ⊓ ⊥ = ⊥
∀x ∈ L, x ⊔ ⊥ = x

36

4 9

2 3

1

x ⊓ y = gcd ′(x , y)

Greatest common divisor (or highest
common factor) in the lattice

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 23/109

Operations on Lattices

• Meet (⊓) and Join (⊓)
◮ x ⊓ y computes the glb of x and y .

z = x ⊓ y ⇒ z ⊑ x ∧ z ⊑ y
◮ x ⊔ y computes the lub of x and y .

z = x ⊔ y ⇒ z ⊒ x ∧ z ⊒ y
◮ ⊓ and ⊔ are commutative, associative,

and idempotent.

• Top (⊤) and Bottom (⊥) elements

∀x ∈ L, x ⊓ ⊤ = x

∀x ∈ L, x ⊔ ⊤ = ⊤
∀x ∈ L, x ⊓ ⊥ = ⊥
∀x ∈ L, x ⊔ ⊥ = x

36

4 9

2 3

1

x ⊓ y = gcd ′(x , y)

Greatest common divisor (or highest
common factor) in the lattice

x ⊔ y = lcm′(x , y)

Lowest common multiple in the lattice

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 24/109

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 24/109

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 24/109

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 24/109

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 24/109

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 24/109

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 24/109

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 24/109

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉
〈LC ,⊑C ,⊓C ,⊔C 〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: A Digression on Lattices 24/109

Cartesian Product of Lattice

1

2 3

4

〈LN ,⊑N ,⊓N ,⊔N〉

×
a

b

〈LA,⊑A,⊓A,⊔A〉

=

〈1,a〉

〈2,a〉 〈3,a〉

〈4,a〉

〈1,b〉

〈2,b〉 〈3,b〉

〈4,b〉
〈LC ,⊑C ,⊓C ,⊔C 〉

〈x1, y1〉 ⊑C 〈x2, y2〉 ⇔ x1 ⊑N x2 ∧ y1 ⊑A y2

〈x1, y1〉 ⊓C 〈x2, y2〉 = 〈x1 ⊓N x2, y1 ⊓A y2〉
〈x1, y1〉 ⊔C 〈x2, y2〉 = 〈x1 ⊔N x2, y1 ⊔A y2〉

Aug 2010 IIT Bombay

Part 5

Data Flow Values: Details

CS 618 DFA Theory: Data Flow Values: Details 25/109

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 25/109

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 25/109

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 25/109

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

• ⊤ may not exist. Can be added artificially.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 25/109

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

◮ Assume that two maximal descending chains terminate at
two incomparable elements x1 and x2

• ⊤ may not exist. Can be added artificially.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 25/109

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

◮ Assume that two maximal descending chains terminate at
two incomparable elements x1 and x2

◮ Since this is a meet semilattice, glb of {x1, x2} must exist (say z).

• ⊤ may not exist. Can be added artificially.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 25/109

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

◮ Assume that two maximal descending chains terminate at
two incomparable elements x1 and x2

◮ Since this is a meet semilattice, glb of {x1, x2} must exist (say z).
⇒ Neither of the chains is maximal.
⇒ Both of them can be extended to include z .

• ⊤ may not exist. Can be added artificially.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 25/109

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

◮ Assume that two maximal descending chains terminate at
two incomparable elements x1 and x2

◮ Since this is a meet semilattice, glb of {x1, x2} must exist (say z).
⇒ Neither of the chains is maximal.
⇒ Both of them can be extended to include z .

◮ Extending this argument to all strictly descending chains,
it is easy to see that ⊥ must exist.

• ⊤ may not exist. Can be added artificially.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 25/109

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

• glb must exist for all non-empty finite subsets

• ⊥ must exist
What guarantees the presence of ⊥?

◮ Assume that two maximal descending chains terminate at
two incomparable elements x1 and x2

◮ Since this is a meet semilattice, glb of {x1, x2} must exist (say z).
⇒ Neither of the chains is maximal.
⇒ Both of them can be extended to include z .

◮ Extending this argument to all strictly descending chains,
it is easy to see that ⊥ must exist.

• ⊤ may not exist. Can be added artificially.

◮ lub of arbitrary elements may not exist

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 26/109

The Set of Data Flow Values For Available Expressions
Analysis

• The powerset of the universal set of expressions

• Partial order is the subset relation

{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅
Set View of the Lattice

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 26/109

The Set of Data Flow Values For Available Expressions
Analysis

• The powerset of the universal set of expressions

• Partial order is the subset relation

{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅
Set View of the Lattice

Y

X

⊑

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 26/109

The Set of Data Flow Values For Available Expressions
Analysis

• The powerset of the universal set of expressions

• Partial order is the subset relation

{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅
Set View of the Lattice

Y

X

⊑

111

110 101 011

100 010 001

000

Bit Vector View

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 27/109

The Concept of Approximation

• x approximates y iff

x can be used in place of y without causing any problems.

• Validity of approximation is context specific

x may be approximated by y in one context and by z in another

◮ Earnings : Rs. 1050 can be safely approximated by Rs. 1000.

◮ Expenses : Rs. 1050 can be safely approximated by Rs. 1100.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 28/109

Two Important Objectives in Data Flow Analysis

• The discovered data flow information should be

◮ Exhaustive. No optimization opportunity should be missed.

◮ Safe. Optimizations which do not preserve semantics should not be
enabled.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 28/109

Two Important Objectives in Data Flow Analysis

• The discovered data flow information should be

◮ Exhaustive. No optimization opportunity should be missed.

◮ Safe. Optimizations which do not preserve semantics should not be
enabled.

• Conservative approximations of these objectives are allowed

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 28/109

Two Important Objectives in Data Flow Analysis

• The discovered data flow information should be

◮ Exhaustive. No optimization opportunity should be missed.

◮ Safe. Optimizations which do not preserve semantics should not be
enabled.

• Conservative approximations of these objectives are allowed

• The intended use of data flow information (≡ context) determines
validity of approximations

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 29/109

Context Determines the Validity of Approximations

May prohibit correct optimization May enable wrong optimization

Analysis Application Safe
Approximation

Exhaustive
Approximation

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 29/109

Context Determines the Validity of Approximations

May prohibit correct optimization May enable wrong optimization

Analysis Application Safe
Approximation

Exhaustive
Approximation

Live variables Dead code
elimination

A dead variable
is considered live

A live variable is
considered dead

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 29/109

Context Determines the Validity of Approximations

May prohibit correct optimization May enable wrong optimization

Analysis Application Safe
Approximation

Exhaustive
Approximation

Live variables Dead code
elimination

A dead variable
is considered live

A live variable is
considered dead

Available
expressions

Common
subexpression
elimination

An available
expression is
considered
non-available

A non-available
expression is
considered
available

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 29/109

Context Determines the Validity of Approximations

May prohibit correct optimization May enable wrong optimization

Analysis Application Safe
Approximation

Exhaustive
Approximation

Live variables Dead code
elimination

A dead variable
is considered live

A live variable is
considered dead

Available
expressions

Common
subexpression
elimination

An available
expression is
considered
non-available

A non-available
expression is
considered
available

Spurious Inclusion Spurious Exclusion

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 30/109

Partial Order Captures Approximation

• ⊑ captures valid approximations for safety

x ⊑ y ⇒ x is weaker than y

◮ The data flow information represented by x can be safely used in
place of the data flow information represented by y

◮ It may be imprecise, though.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 30/109

Partial Order Captures Approximation

• ⊑ captures valid approximations for safety

x ⊑ y ⇒ x is weaker than y

◮ The data flow information represented by x can be safely used in
place of the data flow information represented by y

◮ It may be imprecise, though.

• ⊒ captures valid approximations for exhaustiveness

x ⊒ y ⇒ x is stronger than y

◮ The data flow information represented by x contains every value
contained in the data flow information represented by y

◮ It may be unsafe, though.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 30/109

Partial Order Captures Approximation

• ⊑ captures valid approximations for safety

x ⊑ y ⇒ x is weaker than y

◮ The data flow information represented by x can be safely used in
place of the data flow information represented by y

◮ It may be imprecise, though.

• ⊒ captures valid approximations for exhaustiveness

x ⊒ y ⇒ x is stronger than y

◮ The data flow information represented by x contains every value
contained in the data flow information represented by y

◮ It may be unsafe, though.

We want most exhaustive information which is also safe.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 31/109

Most Approximate Values in a Complete Lattice

• Top. ∀x ∈ L, x ⊑ ⊤. The most exhaustive value.

• Bottom. ∀x ∈ L, ⊥ ⊑ x . The safest value.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 31/109

Most Approximate Values in a Complete Lattice

• Top. ∀x ∈ L, x ⊑ ⊤. The most exhaustive value.

◮ Using ⊤ in place of any data flow value will never miss out (or rule
out) any possible value.

• Bottom. ∀x ∈ L, ⊥ ⊑ x . The safest value.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 31/109

Most Approximate Values in a Complete Lattice

• Top. ∀x ∈ L, x ⊑ ⊤. The most exhaustive value.

◮ Using ⊤ in place of any data flow value will never miss out (or rule
out) any possible value.

◮ The consequences may be sematically unsafe, or incorrect.

• Bottom. ∀x ∈ L, ⊥ ⊑ x . The safest value.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 31/109

Most Approximate Values in a Complete Lattice

• Top. ∀x ∈ L, x ⊑ ⊤. The most exhaustive value.

◮ Using ⊤ in place of any data flow value will never miss out (or rule
out) any possible value.

◮ The consequences may be sematically unsafe, or incorrect.

• Bottom. ∀x ∈ L, ⊥ ⊑ x . The safest value.

◮ Using ⊥ in place of any data flow value will never be unsafe, or
incorrect.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 31/109

Most Approximate Values in a Complete Lattice

• Top. ∀x ∈ L, x ⊑ ⊤. The most exhaustive value.

◮ Using ⊤ in place of any data flow value will never miss out (or rule
out) any possible value.

◮ The consequences may be sematically unsafe, or incorrect.

• Bottom. ∀x ∈ L, ⊥ ⊑ x . The safest value.

◮ Using ⊥ in place of any data flow value will never be unsafe, or
incorrect.

◮ The consequences may be undefined or useless because this
replacement might miss out valid values.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 31/109

Most Approximate Values in a Complete Lattice

• Top. ∀x ∈ L, x ⊑ ⊤. The most exhaustive value.

◮ Using ⊤ in place of any data flow value will never miss out (or rule
out) any possible value.

◮ The consequences may be sematically unsafe, or incorrect.

• Bottom. ∀x ∈ L, ⊥ ⊑ x . The safest value.

◮ Using ⊥ in place of any data flow value will never be unsafe, or
incorrect.

◮ The consequences may be undefined or useless because this
replacement might miss out valid values.

Appropriate orientation chosen by design.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 32/109

Setting Up Lattices

Available Expressions Analysis Live Variables Analysis

{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅

∅

{v1} {v2} {v3}

{v1, v2} {v1, v3} {v2, v3}

{v1, v2, v3}

⊑ is ⊆ ⊑ is ⊇

⊓ is ∩ ⊓ is ∪

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 33/109

Partial Order Relation

Reflexive x ⊑ x

Transitive x ⊑ y , y ⊑ z

⇒ x ⊑ z

Antisymmetric x ⊑ y , y ⊑ x

⇔ x = y

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 33/109

Partial Order Relation

Reflexive x ⊑ x x can be safely used in place of x

Transitive x ⊑ y , y ⊑ z

⇒ x ⊑ z

If x can be safely used in place of y

and y can be safely used in place of z ,

then x can be safely used in place of z

Antisymmetric x ⊑ y , y ⊑ x

⇔ x = y

If x can be safely used in place of y

and y can be safely used in place of x ,

then x must be same as y

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 34/109

Merging Information

• x ⊓ y computes the greatest lower bound of x and y i.e.
largest z such that z ⊑ x and z ⊑ y

The largest safe approximation of combining data flow information x and y

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 34/109

Merging Information

• x ⊓ y computes the greatest lower bound of x and y i.e.
largest z such that z ⊑ x and z ⊑ y

The largest safe approximation of combining data flow information x and y

• Commutative x ⊓ y = y ⊓ x

Associative x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z

Idempotent x ⊓ x = x

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 34/109

Merging Information

• x ⊓ y computes the greatest lower bound of x and y i.e.
largest z such that z ⊑ x and z ⊑ y

The largest safe approximation of combining data flow information x and y

• Commutative x ⊓ y = y ⊓ x The order in which the data

flow information is merged,

does not matter

Associative x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z Allow n-ary merging without

any restriction on the order

Idempotent x ⊓ x = x No loss of information if x is

merged with itself

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 34/109

Merging Information

• x ⊓ y computes the greatest lower bound of x and y i.e.
largest z such that z ⊑ x and z ⊑ y

The largest safe approximation of combining data flow information x and y

• Commutative x ⊓ y = y ⊓ x The order in which the data

flow information is merged,

does not matter

Associative x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z Allow n-ary merging without

any restriction on the order

Idempotent x ⊓ x = x No loss of information if x is

merged with itself

• ⊤ is the identity of ⊓
◮ Presence of loops ⇒ self dependence of data flow information
◮ Using ⊤ as the initial value ensure exhaustiveness

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 35/109

More on Lattices in Data Flow Analysis

L = Lattice for all expressions L̂ = Lattice for a single expression

111

110 101 011

100 010 001

000

(Expression e is available)

1 or {e}

0 or ∅
(Expressions e is not available)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 35/109

More on Lattices in Data Flow Analysis

L = Lattice for all expressions L̂ = Lattice for a single expression

111

110 101 011

100 010 001

000

(Expression e is available)

1 or {e}

0 or ∅
(Expressions e is not available)

Cartesian products if sets are used, vectors (or tuples) if bit are used.

• L = L̂× L̂× L̂ and x = 〈x̂1, x̂2, x̂3〉 ∈ L where x̂ i ∈ L̂

• ⊑= ⊑̂ × ⊑̂ × ⊑̂ and ⊓ = ⊓̂ × ⊓̂ × ⊓̂
• ⊤ = ⊤̂ × ⊤̂ × ⊤̂ and ⊥ = ⊥̂ × ⊥̂ × ⊥̂

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 36/109

Component Lattice for Data Flow Information Represented
By Bit Vectors

(⊤̂)

1

0

(⊥̂)

⊓ is ∩ or Boolean AND

(⊤̂)

0

1

(⊥̂)

⊓ is ∪ or Boolean OR

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 37/109

Component Lattice for Integer Constant Propagation

(⊤̂)
undef or ud

−∞ . . . −1−2 0 1 2 . . . ∞

(⊥̂)

nonconst or nc

• Overall lattice L is the product of L̂ for all variables.

• ⊓ and ⊓̂ get defined by ⊑ and ⊑̂.

⊓̂ 〈a, ud〉 〈a, nc〉 〈a, c1〉
〈a, ud〉 〈a, ud〉 〈a, nc〉 〈a, c1〉
〈a, nc〉 〈a, nc〉 〈a, nc〉 〈a, nc〉
〈a, c2〉 〈a, c2〉 〈a, nc〉 If c1 = c2 then 〈a, c1〉 else 〈a, nc〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 38/109

Component Lattice for May Points-To Analysis

• Relation between pointer variables and locations in the memory.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 38/109

Component Lattice for May Points-To Analysis

• Relation between pointer variables and locations in the memory.

• Assuming three locations l1, l2, and l3, the component lattice for
pointer p is.

(⊤̂)
∅

{p l1} {p l2} {p l3}

{p l1,p l2} {p l1 ,p l3} {p l2,p l3}

{p l1, p l2, p l2}
(⊥̂)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 38/109

Component Lattice for May Points-To Analysis

• Relation between pointer variables and locations in the memory.

• Assuming three locations l1, l2, and l3, the component lattice for
pointer p is.

(⊤̂)
∅

{p l1} {p l2} {p l3}

{p l1,p l2} {p l1 ,p l3} {p l2,p l3}

{p l1, p l2, p l2}
(⊥̂)

(⊤̂)Alternatively,

∅

{l1} {l2} {l3}

{l1, l2} {l1, l3} {l2, l3}

{l1, l2, l2}
(⊥̂)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 39/109

Component Lattice for Must Points-To Analysis

• A pointer can point to at most one location.

(⊤̂)
undef

p l1 p l2 p l3

none

(⊥̂)

Alternatively, (⊤̂)
undef

l1 l2 l3

none

(⊥̂)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 40/109

Combined Total and Partial Availability Analysis

• Two bits per expression rather than one. Can be implemented using
AND (as below) or using OR (reversed lattice)

unknown

(Bits 11)

must-be-available

(Bits 10)
is-not-available

(Bits 01)

may-be-available

(Bits 00)

Can also be implemented as a product of 1-0 and 0-1 lattice with
AND for the first bit and OR for the second bit.

• What approximation of safety does this lattice capture?
Uncertain information (= no optimization) is safer than definite
information.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Data Flow Values: Details 41/109

General Lattice for May-Must Analysis

Unknown

May

MustNo

⊤

⊥

Interpreting data flow values

− Unknown. Nothing is known as yet

− No. Information does not hold along any path

− Must. Information must hold along all paths

− May. Information may hold along some path

Possible Applications

• Pointer Analysis : No need of separate of May and Must analyses
eg. (p l ,May), (p l ,Must), (p l ,No), or (p l ,Unknown).

• Type Inferencing for Dynamically Checked Languages

Aug 2010 IIT Bombay

Part 6

Flow Functions

CS 618 DFA Theory: Flow Functions 42/109

Flow Functions: An Outline of Our Discussion

• Defining flow functions

• Properties of flow functions
(Some properties discussed in the context of solutions of data flow
analysis)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 43/109

The Set of Flow Functions

• F is the set of functions f : L 7→ L such that

◮ F contains an identity function

To model “empty” statements, i.e. statements which do not
influence the data flow information

◮ F is closed under composition

Cumulative effect of statements should generate data flow
information from the same set.

◮ For every x ∈ L, there must be a finite set of flow functions
{f1, f2, . . . fm} ⊆ F such that

x =
1≤i≤m

fi (BI)

• Properties of f

◮ Monotonicity and Distributivity

◮ Loop Closure Boundedness and Separability

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 44/109

Flow Functions in Bit Vector Data Flow Frameworks

• Bit Vector Frameworks: Available Expressions Analysis, Reaching
Definitions Analysis Live variable Analysis, Anticipable Expressions
Analysis, Partial Redundancy Elimination etc.

◮ All functions can be defined in terms of constant Gen and Kill

f (x) = Gen ∪ (x − Kill)

◮ Lattices are powersets with partial orders as ⊆ or ⊇ relations
◮ Information is merged using ∩ or ∪

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 44/109

Flow Functions in Bit Vector Data Flow Frameworks

• Bit Vector Frameworks: Available Expressions Analysis, Reaching
Definitions Analysis Live variable Analysis, Anticipable Expressions
Analysis, Partial Redundancy Elimination etc.

◮ All functions can be defined in terms of constant Gen and Kill

f (x) = Gen ∪ (x − Kill)

◮ Lattices are powersets with partial orders as ⊆ or ⊇ relations
◮ Information is merged using ∩ or ∪

• Flow functions in Faint Variables Analysis, Pointer Analyses, Constant
Propagation, Possibly Uninitialized Variables cannot be expressed using
constant Gen and Kill.

Local context alone is not sufficient to describe the effect of statements
fully.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 45/109

Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

x y

f

f (x) f (y)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 45/109

Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

x y

f

f (x) f (y)⊑

⊑

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 45/109

Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

∀x , y ∈ L, x ⊑ y ⇒ f (x) ⊑ f (y)

x y

f

f (x) f (y)⊑

⊑

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 45/109

Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

∀x , y ∈ L, x ⊑ y ⇒ f (x) ⊑ f (y)

x y

f

f (x) f (y)⊑

⊑

• Alternative definition

∀x , y ∈ L, f (x ⊓ y) ⊑ f (x) ⊓ f (y)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 45/109

Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then
f (x) can be safely used in place of f (y)

∀x , y ∈ L, x ⊑ y ⇒ f (x) ⊑ f (y)

x y

f

f (x) f (y)⊑

⊑

• Alternative definition

∀x , y ∈ L, f (x ⊓ y) ⊑ f (x) ⊓ f (y)

• Merging at intermediate points in shared segments of paths is safe
(However, it may lead to imprecision).

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 46/109

Distributivity of Flow Functions

• Merging distributes over function application

x y

f

f (x) ⊓ f (y)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 46/109

Distributivity of Flow Functions

• Merging distributes over function application

x y

f

f (x ⊓ y)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 46/109

Distributivity of Flow Functions

• Merging distributes over function application

∀x , y ∈ L, x ⊑ y ⇒ f (x ⊓ y) = f (x) ⊓ f (y)

x y

f

f (x ⊓ y)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 46/109

Distributivity of Flow Functions

• Merging distributes over function application

∀x , y ∈ L, x ⊑ y ⇒ f (x ⊓ y) = f (x) ⊓ f (y)

x y

f

f (x ⊓ y)

• Merging at intermediate points in shared segments of paths does
not lead to imprecision.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 47/109

Monotonicity and Distributivity

⊤

⊥

L

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 47/109

Monotonicity and Distributivity

⊤

⊥

L

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 47/109

Monotonicity and Distributivity

⊤

⊥

L

⊤

⊥

L

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 47/109

Monotonicity and Distributivity

⊤

⊥

L

⊤

⊥

L

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 47/109

Monotonicity and Distributivity

⊤

⊥

L

⊤

⊥

L

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 47/109

Monotonicity and Distributivity

⊤

⊥

L

⊤

⊥

L

Monotonic and
Distributive

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 47/109

Monotonicity and Distributivity

⊤

⊥

L

⊤

⊥

L

Monotonic but
not Distributive

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 48/109

Distributivity of Bit Vector Frameworks

f (x) = Gen ∪ (x − Kill)

f (y) = Gen ∪ (y − Kill)

f (x ∪ y) = Gen ∪ ((x ∪ y)− Kill)

= Gen ∪ ((x − Kill) ∪ (y − Kill))

= (Gen ∪ (x − Kill) ∪ Gen ∪ (y − Kill))

= f (x) ∪ f (y)

f (x ∩ y) = Gen ∪ ((x ∩ y)− Kill)

= Gen ∪ ((x − Kill) ∩ (y − Kill))

= (Gen ∪ (x − Kill) ∩ Gen ∪ (y − Kill))

= f (x) ∩ f (y)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 49/109

Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 49/109

Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

• x = 〈1, 2, 3, ud〉 (Along Outn1 → Inn2)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 49/109

Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ud〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 49/109

Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ud〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)

• Function application before merging

f (x) ⊓ f (y) = f (〈1, 2, 3, ud〉) ⊓ f (〈2, 1, 3, 2〉)
= 〈1, 2, 3, 2〉 ⊓ 〈2, 1, 3, 2〉
= 〈⊥̂, ⊥̂, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 49/109

Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ud〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)

• Function application before merging

f (x) ⊓ f (y) = f (〈1, 2, 3, ud〉) ⊓ f (〈2, 1, 3, 2〉)
= 〈1, 2, 3, 2〉 ⊓ 〈2, 1, 3, 2〉
= 〈⊥̂, ⊥̂, 3, 2〉

• Function application after merging

f (x ⊓ y) = f (〈1, 2, 3, ud〉 ⊓ 〈2, 1, 3, 2〉)
= f (〈⊥̂, ⊥̂, 3, 2〉)
= 〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 49/109

Non-Distributivity of Constant Propagation

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

a = 1, b = 2

a = 2, b = 1

• x = 〈1, 2, 3, ud〉 (Along Outn1 → Inn2)

• y = 〈2, 1, 3, 2〉 (Along Outn3 → Inn2)

• Function application before merging

f (x) ⊓ f (y) = f (〈1, 2, 3, ud〉) ⊓ f (〈2, 1, 3, 2〉)
= 〈1, 2, 3, 2〉 ⊓ 〈2, 1, 3, 2〉
= 〈⊥̂, ⊥̂, 3, 2〉

• Function application after merging

f (x ⊓ y) = f (〈1, 2, 3, ud〉 ⊓ 〈2, 1, 3, 2〉)
= f (〈⊥̂, ⊥̂, 3, 2〉)
= 〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

• f (x ⊓ y) ⊏ f (x) ⊓ f (y)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 50/109

Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 50/109

Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 50/109

Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a + b = 3

• Correct combination.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 50/109

Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a + b = 3

• Correct combination.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 50/109

Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a + b = 2

• Wrong combination.

• Mutually exclusive information.

• No execution path along which
this information holds.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Flow Functions 50/109

Why is Constant Propagation Non-Distribitive?

a = 1
b = 2

a = 2
b = 1

c = a + b

a = 1 a = 2 b = 1 b = 2

Possible combinations due to merging

c = a + b = 4

• Wrong combination.

• Mutually exclusive information.

• No execution path along which
this information holds.

Aug 2010 IIT Bombay

Part 7

Solutions of Data Flow Analysis

CS 618 DFA Theory: Solutions of Data Flow Analysis 51/109

Solutions of Data Flow Analysis: An Outline of Our
Discussion

• MoP and MFP assignments and their relationship

• Existence of MoP assignment

◮ Boundedness of flow functions

• Existence and Computability of MFP assignment

◮ Flow functions Vs. function computed by data flow equations

• Safety of MFP solution

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 52/109

Solutions of Data Flow Analysis

• An assignment A associates data flow values with program points.
A ⊑ B if for all program points p, A(p) ⊑ B(p)

• Performing data flow analysis

Given

◮ A set of flow functions, a lattice, and merge operation

◮ A program flow graph with a mapping from nodes to flow functions

Find out

◮ An assignment A which is as exhaustive as possible and is safe

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 53/109

Meet Over Paths (MoP) Assignment

Entry

p

Exit

Entry
• The largest safe approximation of the information
reaching a program point along all information
flow paths.

MoP(p) =
ρ∈Paths(p)

fρ(BI)

◮ fρ represents the compositions of flow functions
along ρ.

◮ BI refers to the relevant information from the
calling context.

◮ All execution paths are considered potentially
executable by ignoring the results of conditionals.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 53/109

Meet Over Paths (MoP) Assignment

Entry

p

Exit

Entry
• The largest safe approximation of the information
reaching a program point along all information
flow paths.

MoP(p) =
ρ∈Paths(p)

fρ(BI)

◮ fρ represents the compositions of flow functions
along ρ.

◮ BI refers to the relevant information from the
calling context.

◮ All execution paths are considered potentially
executable by ignoring the results of conditionals.

• Any Info(p) ⊑ MoP(p) is safe.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 54/109

Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 54/109

Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

◮ In the presence of cycles there are infinite paths

If all paths need to be traversed ⇒ Undecidability

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 54/109

Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

◮ In the presence of cycles there are infinite paths

If all paths need to be traversed ⇒ Undecidability

◮ Even if a program is acyclic, every conditional
multiplies the number of paths by two

If all paths need to be traversed ⇒ Intractability

n

n n

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 54/109

Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

◮ In the presence of cycles there are infinite paths

If all paths need to be traversed ⇒ Undecidability

◮ Even if a program is acyclic, every conditional
multiplies the number of paths by two

If all paths need to be traversed ⇒ Intractability

• Why not merge information at intermediate points?

◮ Merging is safe but may lead to imprecision.

◮ Computes fixed point solutions of data flow equations.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 54/109

Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

◮ In the presence of cycles there are infinite paths

If all paths need to be traversed ⇒ Undecidability

◮ Even if a program is acyclic, every conditional
multiplies the number of paths by two

If all paths need to be traversed ⇒ Intractability

• Why not merge information at intermediate points?

◮ Merging is safe but may lead to imprecision.

◮ Computes fixed point solutions of data flow equations.

Path based
specification

Edge based
specifications

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 55/109

Assignments for Constant Propagation Example

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 55/109

Assignments for Constant Propagation Example

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

MoP

〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉

〈1, 2, 3, ⊤̂〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈2, 1, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 55/109

Assignments for Constant Propagation Example

n1

a = 1
b = 2

c = a+ b

n1

n2
c = a+ b

d = a ∗ b n2

n3

d = c − 1
a = 2
b = 1

c = a+ b

n3

MoP

〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉

〈1, 2, 3, ⊤̂〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈⊥̂, ⊥̂, 3, 2〉

〈2, 1, 3, 2〉

MFP

〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉

〈1, 2, 3, ⊤̂〉

〈⊥̂, ⊥̂, 3, ⊥̂〉

〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉

〈2, 1, 3, ⊥̂〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 56/109

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 56/109

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 56/109

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 56/109

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 56/109

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

∀i , Ini = Outi = ⊥

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 56/109

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

∀i , Ini = Outi = ⊥

Meet Over Paths Assignment

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 56/109

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

∀i , Ini = Outi = ⊥

Meet Over Paths Assignment

Maximum Fixed Point

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 56/109

Possible Assignments as Solutions of Data Flow Analyses

All possible assignments

All safe assignments

All fixed point solutions

∀i , Ini = Outi = ⊤

∀i , Ini = Outi = ⊥

Meet Over Paths Assignment

Maximum Fixed Point

Least Fixed Point

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 57/109

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 57/109

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 57/109

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 57/109

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 57/109

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

• Maximum fixed point
assignment

• Initialization for round
robin iterative method: 11

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 57/109

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

• Not a fixed point
assignment

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 57/109

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

• Minimum fixed point
assignment

• Initialization for round
robin iterative method: 00

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 57/109

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

• Fixed point assignment
which is neither maximum
nor minimum

• Initialization for round
robin iterative method: 10

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 57/109

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

• Fixed point assignment
which is neither maximum
nor minimum

• Initialization for round
robin iterative method: 01

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 57/109

Available Expr. Analysis Framework with Two Expressions

Lattice

{a∗b, b∗c}

{a∗b} {b∗c}

∅

Constant Functions Dependent Functions

f f (x) f f (x)

f⊤ {a∗b, b∗c} fid x

f⊥ ∅ fc x ∪ {a∗b}
fa {a∗b} fd x ∪ {b∗c}
fb {b∗c} fe x − {a∗b}

ff x − {b∗c}

Program

a∗b
b∗c1

a∗b2

Flow Functions

Node
Flow

Function

1 f⊤
2 fid

Some Possible Assignments

A1 A2 A3 A4 A5 A6

In1 00 00 00 00 00 00

Out1 11 00 11 11 11 11

In2 11 00 00 10 01 01

Out2 11 00 00 10 01 10

• Not a fixed point
assignment

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 58/109

Existence of an MoP Assignment

MoP(p) =
ρ∈Paths(p)

fρ(BI)

• If all paths reaching p are acyclic, then existence of solution trivially
follows from the definition of the function space.

• If cyclic paths also reach p, then there are an infinite number of
unbounded paths.
⇒ Need to define loop closures.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 59/109

Loop Closures of Flow Functions

X

p1

X

p2

X
p3

x

f (x)

Paths Terminating at p2 Data Flow Value

p1, p2 x

p1, p2, p3, p2 f (x)
p1, p2, p3, p2, p3, p2 f (f (x)) = f 2(x)
p1, p2, p3, p2, p3, p2, p3, p2 f (f (f (x))) = f 3(x)
.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 59/109

Loop Closures of Flow Functions

X

p1

X

p2

X
p3

x

f (x)

Paths Terminating at p2 Data Flow Value

p1, p2 x

p1, p2, p3, p2 f (x)
p1, p2, p3, p2, p3, p2 f (f (x)) = f 2(x)
p1, p2, p3, p2, p3, p2, p3, p2 f (f (f (x))) = f 3(x)
.

• For static analysis we need to summarize the value at p2 by a value
which is safe after any iteration.

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ f 4(x) ⊓ . . .

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 59/109

Loop Closures of Flow Functions

X

p1

X

p2

X
p3

x

f (x)

Paths Terminating at p2 Data Flow Value

p1, p2 x

p1, p2, p3, p2 f (x)
p1, p2, p3, p2, p3, p2 f (f (x)) = f 2(x)
p1, p2, p3, p2, p3, p2, p3, p2 f (f (f (x))) = f 3(x)
.

• For static analysis we need to summarize the value at p2 by a value
which is safe after any iteration.

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ f 4(x) ⊓ . . .

• f ∗ is called the loop closure of f .

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 60/109

Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ . . .

f 2(x) = f (Gen ∪ (x − Kill))

= Gen ∪ ((Gen ∪ (x − Kill))− Kill)

= Gen ∪ ((Gen − Kill) ∪ (x − Kill))

= Gen ∪ (Gen − Kill) ∪ (x − Kill)

= Gen ∪ (x − Kill) = f (x)

f ∗(x) = x ⊓ f (x)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 60/109

Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ . . .

f 2(x) = f (Gen ∪ (x − Kill))

= Gen ∪ ((Gen ∪ (x − Kill))− Kill)

= Gen ∪ ((Gen − Kill) ∪ (x − Kill))

= Gen ∪ (Gen − Kill) ∪ (x − Kill)

= Gen ∪ (x − Kill) = f (x)

f ∗(x) = x ⊓ f (x)

• Loop Closures of Bit Vector Frameworks are 2-bounded.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 60/109

Loop Closures in Bit Vector Frameworks

• Flow functions in bit vector frameworks have constant Gen and Kill

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ f 3(x) ⊓ . . .

f 2(x) = f (Gen ∪ (x − Kill))

= Gen ∪ ((Gen ∪ (x − Kill))− Kill)

= Gen ∪ ((Gen − Kill) ∪ (x − Kill))

= Gen ∪ (Gen − Kill) ∪ (x − Kill)

= Gen ∪ (x − Kill) = f (x)

f ∗(x) = x ⊓ f (x)

• Loop Closures of Bit Vector Frameworks are 2-bounded.

• Intuition: Since Gen and Kill are constant, same things are generated or
killed in every application of f .

Multiple applications of f are not required unless the input value changes.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

1
0

1
0

f

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

1
0

1
0

f
x f (x) f 2(x) f 3(x) f 4(x) . . .

1 0 1 0 1 . . .

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

1
0

1
0

f
x f (x) f 2(x) f 3(x) f 4(x) . . .

1 0 1 0 1 . . .

⇒ f ∗(x) = x ⊓ f (x) = 0 Solution exists

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

1
0

1
0

f
x f (x) f 2(x) f 3(x) f 4(x) . . .

1 0 1 0 1 . . .

⇒ f ∗(x) = x ⊓ f (x) = 0 Solution exists

• Iteratively computing the solution

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

1
0

1
0

f
x f (x) f 2(x) f 3(x) f 4(x) . . .

1 0 1 0 1 . . .

⇒ f ∗(x) = x ⊓ f (x) = 0 Solution exists

• Iteratively computing the solution

f

f

1

1

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

1
0

1
0

f
x f (x) f 2(x) f 3(x) f 4(x) . . .

1 0 1 0 1 . . .

⇒ f ∗(x) = x ⊓ f (x) = 0 Solution exists

• Iteratively computing the solution

f

f

1

1
0

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

1
0

1
0

f
x f (x) f 2(x) f 3(x) f 4(x) . . .

1 0 1 0 1 . . .

⇒ f ∗(x) = x ⊓ f (x) = 0 Solution exists

• Iteratively computing the solution

f

f

1

0

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

1
0

1
0

f
x f (x) f 2(x) f 3(x) f 4(x) . . .

1 0 1 0 1 . . .

⇒ f ∗(x) = x ⊓ f (x) = 0 Solution exists

• Iteratively computing the solution

f

f

1

0
1

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

1
0

1
0

f
x f (x) f 2(x) f 3(x) f 4(x) . . .

1 0 1 0 1 . . .

⇒ f ∗(x) = x ⊓ f (x) = 0 Solution exists

• Iteratively computing the solution

f

f

1

1

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

1
0

1
0

f
x f (x) f 2(x) f 3(x) f 4(x) . . .

1 0 1 0 1 . . .

⇒ f ∗(x) = x ⊓ f (x) = 0 Solution exists

• Iteratively computing the solution

f

f

1

1
0

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

1
0

1
0

f
x f (x) f 2(x) f 3(x) f 4(x) . . .

1 0 1 0 1 . . .

⇒ f ∗(x) = x ⊓ f (x) = 0 Solution exists

• Iteratively computing the solution

f

f

1

0

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

1
0

1
0

f
x f (x) f 2(x) f 3(x) f 4(x) . . .

1 0 1 0 1 . . .

⇒ f ∗(x) = x ⊓ f (x) = 0 Solution exists

• Iteratively computing the solution

f

f

1

0
1The values in the loop keep changing

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 62/109

More on Loop Closure Boundedness

Boundedness of f requires the existence of some k such that

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ . . . ⊓ f k−1(x)

Given, monotonic f , loop closures are bounded because of any of the
following:

• x ⊑ f (x). All applications of f can be ignored

• x ⊒ f (x). In this case, x , f (x), f 2(x), . . . follow a descending chain.
If descending chains are bounded, loop closures are bounded.

• x and f (x) are incomparable. In this case

j

i=0
f j(x) follows a strictly

descending chain. If descending chains are bounded, loop closures
are bounded.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 63/109

Existence and Computation of the Maximum Fixed Point

For monotonic f : L 7→ L, if all descending chains are finite, then
MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 63/109

Existence and Computation of the Maximum Fixed Point

For monotonic f : L 7→ L, if all descending chains are finite, then
MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

⊥

⊤

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 63/109

Existence and Computation of the Maximum Fixed Point

For monotonic f : L 7→ L, if all descending chains are finite, then
MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

⊥

⊤
f (⊤)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 63/109

Existence and Computation of the Maximum Fixed Point

For monotonic f : L 7→ L, if all descending chains are finite, then
MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

⊥

⊤
f (⊤)

f i(⊤)

• ⊤ ⊒ f (⊤) ⊒ f 2(⊤) ⊒ f 3(⊤) ⊒ f 4(⊤) ⊒ . . .

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 63/109

Existence and Computation of the Maximum Fixed Point

For monotonic f : L 7→ L, if all descending chains are finite, then
MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

⊥

⊤
f (⊤)

f i(⊤)

f k+1(⊤)
= f k(⊤)

• ⊤ ⊒ f (⊤) ⊒ f 2(⊤) ⊒ f 3(⊤) ⊒ f 4(⊤) ⊒ . . .

• Since descending chains are finite, there must exist
f k(⊤) such that f k+1(⊤) = f k(⊤) and
f j+1(⊤) 6= f j(⊤), j < k .

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 63/109

Existence and Computation of the Maximum Fixed Point

For monotonic f : L 7→ L, if all descending chains are finite, then
MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

⊥

⊤
f (⊤)

f i(⊤)

f k+1(⊤)
= f k(⊤)

• ⊤ ⊒ f (⊤) ⊒ f 2(⊤) ⊒ f 3(⊤) ⊒ f 4(⊤) ⊒ . . .

• Since descending chains are finite, there must exist
f k(⊤) such that f k+1(⊤) = f k(⊤) and
f j+1(⊤) 6= f j(⊤), j < k .

• If p is a fixed point of f then p ⊑ f k(⊤).

Proof strategy: Induction on i for f i (⊤)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 63/109

Existence and Computation of the Maximum Fixed Point

For monotonic f : L 7→ L, if all descending chains are finite, then
MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

⊥

⊤
f (⊤)

f i(⊤)

f k+1(⊤)
= f k(⊤)

• ⊤ ⊒ f (⊤) ⊒ f 2(⊤) ⊒ f 3(⊤) ⊒ f 4(⊤) ⊒ . . .

• Since descending chains are finite, there must exist
f k(⊤) such that f k+1(⊤) = f k(⊤) and
f j+1(⊤) 6= f j(⊤), j < k .

• If p is a fixed point of f then p ⊑ f k(⊤).

Proof strategy: Induction on i for f i (⊤)

◮ Basis (i = 0): p ⊑ f 0(⊤) = ⊤.
◮ Inductive Hypothesis: Assume that f i (⊤) ⊒ p.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 63/109

Existence and Computation of the Maximum Fixed Point

For monotonic f : L 7→ L, if all descending chains are finite, then
MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

⊥

⊤
f (⊤)

f i(⊤)

f k+1(⊤)
= f k(⊤)

• ⊤ ⊒ f (⊤) ⊒ f 2(⊤) ⊒ f 3(⊤) ⊒ f 4(⊤) ⊒ . . .

• Since descending chains are finite, there must exist
f k(⊤) such that f k+1(⊤) = f k(⊤) and
f j+1(⊤) 6= f j(⊤), j < k .

• If p is a fixed point of f then p ⊑ f k(⊤).

Proof strategy: Induction on i for f i (⊤)

◮ Basis (i = 0): p ⊑ f 0(⊤) = ⊤.
◮ Inductive Hypothesis: Assume that f i (⊤) ⊒ p.
◮ Proof:

f (p) ⊑ f (f i(⊤)) (f is monotonic)
⇒ p ⊑ f (f i(⊤)) (f (p) = p)
⇒ p ⊑ f i+1(⊤)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 63/109

Existence and Computation of the Maximum Fixed Point

For monotonic f : L 7→ L, if all descending chains are finite, then
MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

⊥

⊤
f (⊤)

f i(⊤)

f k+1(⊤)
= f k(⊤)

• ⊤ ⊒ f (⊤) ⊒ f 2(⊤) ⊒ f 3(⊤) ⊒ f 4(⊤) ⊒ . . .

• Since descending chains are finite, there must exist
f k(⊤) such that f k+1(⊤) = f k(⊤) and
f j+1(⊤) 6= f j(⊤), j < k .

• If p is a fixed point of f then p ⊑ f k(⊤).

Proof strategy: Induction on i for f i (⊤)

◮ Basis (i = 0): p ⊑ f 0(⊤) = ⊤.
◮ Inductive Hypothesis: Assume that f i (⊤) ⊒ p.
◮ Proof:

f (p) ⊑ f (f i(⊤)) (f is monotonic)
⇒ p ⊑ f (f i(⊤)) (f (p) = p)
⇒ p ⊑ f i+1(⊤)

• ⇒ f k+1(⊤) is the MFP.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 64/109

Fixed Points Computation: Flow Functions Vs. Equations

• Recall that

MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 64/109

Fixed Points Computation: Flow Functions Vs. Equations

• Recall that

MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

◮ What is f in the above?

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 64/109

Fixed Points Computation: Flow Functions Vs. Equations

• Recall that

MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

◮ What is f in the above?
◮ Flow function of a block? Which block?

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 64/109

Fixed Points Computation: Flow Functions Vs. Equations

• Recall that

MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

◮ What is f in the above?
◮ Flow function of a block? Which block?

• Our method computes the maximum fixed point of data flow
equations!

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 64/109

Fixed Points Computation: Flow Functions Vs. Equations

• Recall that

MFP(f) = f k+1(⊤) = f k(⊤) such that f j+1(⊤) 6= f j(⊤), j < k .

◮ What is f in the above?
◮ Flow function of a block? Which block?

• Our method computes the maximum fixed point of data flow
equations!

• What is the relation between the maximum fixed point of data flow
equations and the MFP defined above?

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 65/109

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

In1 = fIn1(〈In1,Out1, . . . , InN ,OutN〉)
Out1 = fOut1

(〈In1,Out1, . . . , InN ,OutN〉)
In2 = fIn2(〈In1,Out1, . . . , InN ,OutN〉)

Out2 = fOut2
(〈In1,Out1, . . . , InN ,OutN〉)

. . .
InN = fInN (〈In1,Out1, . . . , InN ,OutN〉)

OutN = fOutN
(〈In1,Out1, . . . , InN ,OutN〉)

where each flow function is of the form L× L× . . .× L 7→ L

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 65/109

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

〈In1,Out1, . . . , InN ,OutN〉 = 〈 fIn1(〈In1,Out1, . . . , InN ,OutN〉),
fOut1

(〈In1,Out1, . . . , InN ,OutN〉),
. . .
fInN (〈In1,Out1, . . . , InN ,OutN〉),
fOutN

(〈In1,Out1, . . . , InN ,OutN〉),
〉

where each flow function is of the form L× L× . . .× L 7→ L

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 65/109

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

X = 〈 fIn1(X),
fOut1

(X),
. . .
fInN (X),
fOutN

(X),
〉

where X = 〈In1,Out1, . . . , InN ,OutN〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 65/109

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

X = F(X)

where X = 〈In1,Out1, . . . , InN ,OutN〉
F(X) = 〈fIn1(X), fOut1

(X), . . . , fInN (X), fOutN
(X)〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 65/109

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

X = F(X)

where X = 〈In1,Out1, . . . , InN ,OutN〉
F(X) = 〈fIn1(X), fOut1

(X), . . . , fInN (X), fOutN
(X)〉

We compute the fixed points of function F defined above

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 66/109

Available Expr. Analysis Framework with Two Expressions

Program

a∗b
b∗c1

a∗b2

• Data Flow Equation X = F(X) is

F(〈In1,Out1, In2,Out2〉) = 〈00, 11,Out2,Out2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 66/109

Available Expr. Analysis Framework with Two Expressions

Program

a∗b
b∗c1

a∗b2

• Data Flow Equation X = F(X) is

F(〈In1,Out1, In2,Out2〉) = 〈00, 11,Out2,Out2〉

• The maximum fixed point assignment is

F(〈11, 11, 11, 11〉) = 〈00, 11, 11, 11〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 66/109

Available Expr. Analysis Framework with Two Expressions

Program

a∗b
b∗c1

a∗b2

• Data Flow Equation X = F(X) is

F(〈In1,Out1, In2,Out2〉) = 〈00, 11,Out2,Out2〉

• The maximum fixed point assignment is

F(〈11, 11, 11, 11〉) = 〈00, 11, 11, 11〉

• The minimum fixed point assignment is

F(〈00, 00, 00, 00〉) = 〈00, 11, 00, 00〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 67/109

Safety of MFP Assignment: MFP ⊑ MoP

Entry

u

v

fu→v

ρu fρu
ρv

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 67/109

Safety of MFP Assignment: MFP ⊑ MoP

Entry

u

v

fu→v

ρu fρu
ρv

• MoP(v) =
ρ∈Paths(v)

fρ(BI)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 67/109

Safety of MFP Assignment: MFP ⊑ MoP

Entry

u

v

fu→v

ρu fρu
ρv

• MoP(v) =
ρ∈Paths(v)

fρ(BI)

• Proof Obligation: ∀ρv MFP(v) ⊑ fρv
(BI)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 67/109

Safety of MFP Assignment: MFP ⊑ MoP

Entry

u

v

fu→v

ρu fρu
ρv

• MoP(v) =
ρ∈Paths(v)

fρ(BI)

• Proof Obligation: ∀ρv MFP(v) ⊑ fρv
(BI)

• Claim 1: ∀u → v ,MFP(v) ⊑ fu→v (MFP(u))

Aug 2010 IIT Bombay

CS 618 DFA Theory: Solutions of Data Flow Analysis 67/109

Safety of MFP Assignment: MFP ⊑ MoP

Entry

u

v

fu→v

ρu fρu
ρv

• MoP(v) =
ρ∈Paths(v)

fρ(BI)

• Proof Obligation: ∀ρv MFP(v) ⊑ fρv
(BI)

• Claim 1: ∀u → v ,MFP(v) ⊑ fu→v (MFP(u))

• Proof Outline: Induction on path length

Base case: Path of length 0.

MFP(Entry) = MoP(Entry) = BI

Inductive hypothesis: Assume it holds for paths
consisting of k edges (say at u)

MFP(u) ⊑ fρu
(BI) (Inductive hypothesis)

MFP(v) ⊑ fu→v (MFP(u)) (Claim 1)
⇒ MFP(v) ⊑ fu→v (fρu

(BI))
⇒ MFP(v) ⊑ fρv

(BI)

Aug 2010 IIT Bombay

Part 8

Performing Data Flow Analysis

CS 618 DFA Theory: Performing Data Flow Analysis 68/109

Performing Data Flow Analysis

• Algorithms for computing MFP solution

• Complexity of data flow analysis

• Factor affecting the complexity of data flow analysis

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 69/109

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 69/109

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations

Our examples use
this method.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 69/109

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations

Our examples use
this method.

• Work List. Dynamic list of nodes which need recomputation

Termination : When the list becomes empty

+ Demand driven. Avoid unnecessary computations.

− Overheads of maintaining work list.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 70/109

Elimination Methods of Performing Data Flow Analysis

Delayed computations of dependent data flow values of dependent nodes.

Find suitable single-entry regions.

• Interval Based Analysis. Uses graph partitioning.

• T1,T2 Based Analysis. Uses graph parsing.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 71/109

Classification of Edges in a Graph

Graph G

1

2

6

34

5

7

8

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 71/109

Classification of Edges in a Graph

Graph G A depth first spanning tree of G

1

2

6

34

5

7

8

1

2

6

34

5

7

8

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 71/109

Classification of Edges in a Graph

Graph G A depth first spanning tree of G

1

2

6

34

5

7

8

1

2

6

34

5

7

8

Back edges
Forward edges
Tree edges
Cross edges

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 71/109

Classification of Edges in a Graph

Graph G A depth first spanning tree of G

1

2

6

34

5

7

8

1

2

6

34

5

7

8

Back edges
Forward edges

For data flow analysis, we club tree,
forward, and cross edges into forward

edges. Thus we have just forward or
back edges in a control flow graph

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 72/109

Reverse Post Order Traversal

• A reverse post order (rpo) is a topological sort of the graph
obtained after removing back edges

Graph G
G ′ obtained after removing

back edges of G

1

2
6

34

5
7

8

1

2
6

34

5
7

8

• Some possible RPOs for G are: (1, 2, 3, 4, 5, 6, 7, 8),
(1, 6, 7, 2, 3, 4, 5), (1, 6, 2, 7, 4, 3, 5, 8), and (1, 2, 6, 7, 3, 4, 5, 8)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 73/109

Round Robin Iterative Algorithm

1 In0 = BI

2 for all j 6= 0 do
3 Inj = ⊤
4 change = true

5 while change do
6 { change = false

7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 change = true

12 }
13 }
14 }

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 73/109

Round Robin Iterative Algorithm

1 In0 = BI

2 for all j 6= 0 do
3 Inj = ⊤
4 change = true

5 while change do
6 { change = false

7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 change = true

12 }
13 }
14 }

• Computation of Outj has
been left implicit
Works fine for unidirectional
frameworks

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 73/109

Round Robin Iterative Algorithm

1 In0 = BI

2 for all j 6= 0 do
3 Inj = ⊤
4 change = true

5 while change do
6 { change = false

7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 change = true

12 }
13 }
14 }

• Computation of Outj has
been left implicit
Works fine for unidirectional
frameworks

• ⊤ is the identity of ⊓
(line 3)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 73/109

Round Robin Iterative Algorithm

1 In0 = BI

2 for all j 6= 0 do
3 Inj = ⊤
4 change = true

5 while change do
6 { change = false

7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 change = true

12 }
13 }
14 }

• Computation of Outj has
been left implicit
Works fine for unidirectional
frameworks

• ⊤ is the identity of ⊓
(line 3)

• Reverse postorder (rpo)
traversal for efficiency
(line 7)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 73/109

Round Robin Iterative Algorithm

1 In0 = BI

2 for all j 6= 0 do
3 Inj = ⊤
4 change = true

5 while change do
6 { change = false

7 for j = 1 to N − 1 do

8 { temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 change = true

12 }
13 }
14 }

• Computation of Outj has
been left implicit
Works fine for unidirectional
frameworks

• ⊤ is the identity of ⊓
(line 3)

• Reverse postorder (rpo)
traversal for efficiency
(line 7)

• rpo traversal AND no loops
⇒ no need of initialization

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 74/109

Complexity of Round Robin Iterative Algorithm

• Unidirectional bit vector frameworks

◮ Construct a spaning tree T of G to identify postorder traversal
◮ Traverse G in reverse postorder for forward problems and

Traverse G in postorder for backward problems
◮ Depth d(G ,T): Maximum number of back edges in any acyclic path

Task Number of iterations

First computation of In and Out 1
Convergence

d(G ,T)
(until change remains true)
Verifying convergence

1
(change becomes false)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 74/109

Complexity of Round Robin Iterative Algorithm

• Unidirectional bit vector frameworks

◮ Construct a spaning tree T of G to identify postorder traversal
◮ Traverse G in reverse postorder for forward problems and

Traverse G in postorder for backward problems
◮ Depth d(G ,T): Maximum number of back edges in any acyclic path

Task Number of iterations

First computation of In and Out 1
Convergence

d(G ,T)
(until change remains true)
Verifying convergence

1
(change becomes false)

• What about bidirectional bit vector frameworks?

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 74/109

Complexity of Round Robin Iterative Algorithm

• Unidirectional bit vector frameworks

◮ Construct a spaning tree T of G to identify postorder traversal
◮ Traverse G in reverse postorder for forward problems and

Traverse G in postorder for backward problems
◮ Depth d(G ,T): Maximum number of back edges in any acyclic path

Task Number of iterations

First computation of In and Out 1
Convergence

d(G ,T)
(until change remains true)
Verifying convergence

1
(change becomes false)

• What about bidirectional bit vector frameworks?

• What about other frameworks?

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 75/109

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 75/109

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 75/109

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 75/109

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 75/109

Example C Program with d(G,T) = 2

1 void fun(int m, int n)
2 {
3 int i,j,a,b,c;
4 c=a+b;
5 i=0;
6 while(i<m)
7 {
8 j=0;
9 while(j<n)
10 {
11 a=i+j;
12 j=j+1;
13 }
14 i=i+1;
15 }
16 }

3 + 1 iterations for available expressions analysis

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i = i + 1

n1

n2

n3

n4

n5

n6

n7

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 76/109

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

1

6

7

8 9

10

11

12

2

3 4

5

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 76/109

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Node numbers are in reverse post
order

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 76/109

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Node numbers are in reverse post
order

• Back edges in the graph are
n5 → n2 and n10 → n9.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 76/109

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Node numbers are in reverse post
order

• Back edges in the graph are
n5 → n2 and n10 → n9.

• d(G ,T) = 1

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 76/109

Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Node numbers are in reverse post
order

• Back edges in the graph are
n5 → n2 and n10 → n9.

• d(G ,T) = 1

• Actual iterations : 5

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 77/109

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1
11 1,1
10 1,1
9 1,1
8 1,1
7 1,1
6 1,1
5 1,1
4 1,1
3 1,1
2 1,1
1 1,1

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 77/109

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0
11 1,1 0,1
10 1,1
9 1,1
8 1,1
7 1,1
6 1,1 1,0
5 1,1
4 1,1
3 1,1
2 1,1
1 1,1 0,0

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 77/109

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0
11 1,1 0,1
10 1,1
9 1,1
8 1,1
7 1,1
6 1,1 1,0
5 1,1
4 1,1
3 1,1
2 1,1 1,0
1 1,1 0,0

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 77/109

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0
11 1,1 0,1
10 1,1
9 1,1
8 1,1
7 1,1
6 1,1 1,0
5 1,1 0,0
4 1,1 0,1
3 1,1 0,0
2 1,1 1,0 0,0
1 1,1 0,0

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 77/109

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0
11 1,1 0,1 0,0
10 1,1 0,1
9 1,1 1,0
8 1,1
7 1,1 0,0
6 1,1 1,0 0,0
5 1,1 0,0
4 1,1 0,1 0,0
3 1,1 0,0
2 1,1 1,0 0,0
1 1,1 0,0

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 77/109

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0
11 1,1 0,1 0,0
10 1,1 0,1
9 1,1 1,0
8 1,1 1,0
7 1,1 0,0
6 1,1 1,0 0,0
5 1,1 0,0
4 1,1 0,1 0,0
3 1,1 0,0
2 1,1 1,0 0,0
1 1,1 0,0

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 77/109

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0 0,0
11 1,1 0,1 0,0 0,0
10 1,1 0,1 0,1
9 1,1 1,0 1,0
8 1,1 1,0 1,0
7 1,1 0,0 0,0
6 1,1 1,0 0,0 0,0
5 1,1 0,0 0,0
4 1,1 0,1 0,0 0,0
3 1,1 0,0 0,0
2 1,1 1,0 0,0 0,0
1 1,1 0,0 0,0

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 77/109

Complexity of Bidirectional Bit Vector Frameworks

1

6 b∗c

7

8 9

10
b∗c
b=

11 b∗c

12

2

3 4

b∗c

5

Pairs of Out,In Values

Initia-
lization

Changes in
Iterations Final values &

transformation
#1 #2 #3 #4 #5

O,I O,I O,I O,I O,I O,I O,I
12 0,1 0,0 0,0
11 1,1 0,1 0,0 0,0
10 1,1 0,1 0,1 Delete
9 1,1 1,0 1,0 Insert
8 1,1 1,0 1,0 Insert
7 1,1 0,0 0,0
6 1,1 1,0 0,0 0,0
5 1,1 0,0 0,0
4 1,1 0,1 0,0 0,0
3 1,1 0,0 0,0
2 1,1 1,0 0,0 0,0
1 1,1 0,0 0,0

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 78/109

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 78/109

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 78/109

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 78/109

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 78/109

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 78/109

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 78/109

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 78/109

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 78/109

An Example of Information Flow in Our PRE Analysis

1

6

7

8 9

10

11

12

2

3 4

5

• PavIn6 becomes 0 in the first
itereation

• This cause many all other values to
become 0

• Here we see a particular sequence of
changes

• Incorporating the effect of this
sequence of changes requires 5
iterations

• Number of iterations is not related to
depth (which is 1 for this graph)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 79/109

Information Flow and Information Flow Paths

• Default value at each program point: ⊤
• Information flow path

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 79/109

Information Flow and Information Flow Paths

• Default value at each program point: ⊤
• Information flow path

Sequence of adjacent program points

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 79/109

Information Flow and Information Flow Paths

• Default value at each program point: ⊤
• Information flow path

Sequence of adjacent program points
along which data flow values change

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 79/109

Information Flow and Information Flow Paths

• Default value at each program point: ⊤
• Information flow path

Sequence of adjacent program points
along which data flow values change

• A change in the data flow at a program point could be

◮ Generation of information

Change from ⊤ to a non-⊤ due to local effect (i.e. f (⊤) 6= ⊤)

◮ Propagation of information

Change from x to y such that y ⊑ x due to global effect

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 79/109

Information Flow and Information Flow Paths

• Default value at each program point: ⊤
• Information flow path

Sequence of adjacent program points
along which data flow values change

• A change in the data flow at a program point could be

◮ Generation of information

Change from ⊤ to a non-⊤ due to local effect (i.e. f (⊤) 6= ⊤)

◮ Propagation of information

Change from x to y such that y ⊑ x due to global effect

• Information flow path (ifp) need not be a graph theoretic path

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 80/109

Edge and Node Flow Functions

n

m

Inn

Outn

Inm

Outm

f fn

f fn→m

f fm

Inn

Outn

Inm

Outm

f bn

f bn→m

f bm

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 80/109

Edge and Node Flow Functions

n

m

Inn

Outn

Inm

Outm

f fn

f fn→m

f fm

Inn

Outn

Inm

Outm

f bn

f bn→m

f bm

Forward Node Flow Function

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 80/109

Edge and Node Flow Functions

n

m

Inn

Outn

Inm

Outm

f fn

f fn→m

f fm

Inn

Outn

Inm

Outm

f bn

f bn→m

f bm

Forward Node Flow Function

Forward Edge Flow Function

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 80/109

Edge and Node Flow Functions

n

m

Inn

Outn

Inm

Outm

f fn

f fn→m

f fm

Inn

Outn

Inm

Outm

f bn

f bn→m

f bm

Forward Node Flow Function

Forward Edge Flow Function

Backward Node Flow Function

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 80/109

Edge and Node Flow Functions

n

m

Inn

Outn

Inm

Outm

f fn

f fn→m

f fm

Inn

Outn

Inm

Outm

f bn

f bn→m

f bm

Forward Node Flow Function

Forward Edge Flow Function

Backward Node Flow Function

Backward Edge Flow Function

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 81/109

General Data Flow Equations

Inn =

BIStart ⊓ f bn (Outn) n = Start(

m∈pred(n)
f fm→n(Outm)

)
⊓ f bn (Outn) otherwise

Outn =

BIEnd ⊓ f fn (Inn) n = End(

m∈succ(n)
f bm→n(Inm)

)
⊓ f fn (Inn) otherwise

• Edge flow functions are typically identity

∀x ∈ L, f (x) = x

• If particular flows are absent, the correponding flow functions are

∀x ∈ L, f (x) = ⊤

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 82/109

Modelling Information Flows Using Edge and Node Flow
Functions

Forward Backward Bidirectional Bidirectional

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

f fk→l ◦ f fk ◦ f fi→k f bi→k ◦ f bk ◦ f bk→l f fi→k ◦ f bk→j f bk→m ◦ f fk→l

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 83/109

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 83/109

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 83/109

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 83/109

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 83/109

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 83/109

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 83/109

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 83/109

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 83/109

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

• Theoretically predicted number : 144

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 83/109

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

• Theoretically predicted number : 144

• Actual iterations : 5

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 83/109

Information Flow Paths in PRE

1

6

7

8 9

10

11

12

2

3 4

5

• Information could flow along arbitrary
paths

• Theoretically predicted number : 144

• Actual iterations : 5

• Not related to depth (1)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 84/109

Lacuna with PRE Complexity

• Lacuna with PRE : Complexity O(n2) traversals.

Practical graphs may have upto 50 nodes.

◮ Predicted number of traversals : 2,500.

◮ Practical number of traversals : ≤ 5.

• No explanation for about 14 years despite dozens of efforts.

• Not much experimentation with performing advanced optimizations
involving bidirectional dependency.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 85/109

Complexity of Round Robin Iterative Method

Chemist Cloth Shop Doctor Tailor X-Ray Clinic

• Buy OTC (Over-The-Counter) medicine. No U-Turn 1 Trip

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 85/109

Complexity of Round Robin Iterative Method

Chemist Cloth Shop Doctor Tailor X-Ray Clinic

• Buy OTC (Over-The-Counter) medicine. No U-Turn 1 Trip

• Buy cloth. Give it to the tailor for stitching. No U-Turn 1 Trip

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 85/109

Complexity of Round Robin Iterative Method

Chemist Cloth Shop Doctor Tailor X-Ray Clinic

• Buy OTC (Over-The-Counter) medicine. No U-Turn 1 Trip

• Buy cloth. Give it to the tailor for stitching. No U-Turn 1 Trip

• Buy medicine with doctor’s prescription. 1 U-Turn 2 Trips

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 85/109

Complexity of Round Robin Iterative Method

Chemist Cloth Shop Doctor Tailor X-Ray Clinic

• Buy OTC (Over-The-Counter) medicine. No U-Turn 1 Trip

• Buy cloth. Give it to the tailor for stitching. No U-Turn 1 Trip

• Buy medicine with doctor’s prescription. 1 U-Turn 2 Trips

• Buy medicine with doctor’s prescription. 2 U-Turns 3 Trips

The diagnosis requires X-Ray.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 86/109

Information Flow Paths and Width of a Graph

• A traversal u → v in an ifp is

◮ Compatible if u is visited before v in the chosen graph traversal
◮ Incompatible if u is visited after v in the chosen graph traversal

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 86/109

Information Flow Paths and Width of a Graph

• A traversal u → v in an ifp is

◮ Compatible if u is visited before v in the chosen graph traversal
◮ Incompatible if u is visited after v in the chosen graph traversal

• Every incompatible edge traversal requires one additional iteration

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 86/109

Information Flow Paths and Width of a Graph

• A traversal u → v in an ifp is

◮ Compatible if u is visited before v in the chosen graph traversal
◮ Incompatible if u is visited after v in the chosen graph traversal

• Every incompatible edge traversal requires one additional iteration

• Width of a program flow graph with respect to a data flow
framework
Maximum number of incompatible traversals in any ifp, no part of
which is bypassed

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 86/109

Information Flow Paths and Width of a Graph

• A traversal u → v in an ifp is

◮ Compatible if u is visited before v in the chosen graph traversal
◮ Incompatible if u is visited after v in the chosen graph traversal

• Every incompatible edge traversal requires one additional iteration

• Width of a program flow graph with respect to a data flow
framework
Maximum number of incompatible traversals in any ifp, no part of
which is bypassed

• Width + 1 iterations are sufficient to converge on MFP solution
(1 additional iteration may be required for verifying convergence)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 87/109

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

• Every “incompatible” edge traversal
⇒ One additional graph traversal

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 87/109

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
• Every “incompatible” edge traversal

⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 0?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 87/109

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
× • Every “incompatible” edge traversal

⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 1?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 87/109

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
×× • Every “incompatible” edge traversal

⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 2?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 87/109

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
××

×

• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 3?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 87/109

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
××

× √

• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 3?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 87/109

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
××

× √

√

• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 3?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 87/109

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
××

× √

√√

• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 3?

• Maximum number of traversals =
1 + Max. incompatible edge traversals

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 87/109

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
××

× √

√√×

• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 4

• Maximum number of traversals =
1 + Max. incompatible edge traversals

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 87/109

Complexity of Bidirectional Bit Vector Frameworks
G
ra
p
h
T
ra
ve
rs
al

1

6

7

8 9

10

11

12

2

3 4

5

√
××

× √

√√×

• Every “incompatible” edge traversal
⇒ One additional graph traversal

• Max. Incompatible edge traversals
= Width of the graph = 4

• Maximum number of traversals =
1 + 4 = 5

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 88/109

Width Subsumes Depth

• Depth is applicable only to unidirectional data flow frameworks

• Width is applicable to both unidirectional and bidirectional
frameworks

• For a given graph, Width ≤ Depth
Width provides a tighter bound

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 89/109

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 89/109

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2

• Information generation point
n5 kills expression “a + b”

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 89/109

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2

• Information generation point
n5 kills expression “a + b”

• Information propagation path
n5 → n4 → n5 → n2
No Gen or Kill for “a + b”
along this path

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 89/109

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2

• Information generation point
n5 kills expression “a + b”

• Information propagation path
n5 → n4 → n5 → n2
No Gen or Kill for “a + b”
along this path

• Width = 2

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 89/109

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2

• Information generation point
n5 kills expression “a + b”

• Information propagation path
n5 → n4 → n5 → n2
No Gen or Kill for “a + b”
along this path

• Width = 2

• What about “j + 1”?

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 89/109

Width and Depth

c = a + b
i = 0

if (i < m)

j = 0

if (j < n)

a = i + j
j = j + 1

i = i + 1

i + 1

n1

n2

n3

n4

n5

n6

n7

Assuming reverse postorder traversal
for available expressions analysis

• Depth = 2

• Information generation point
n5 kills expression “a + b”

• Information propagation path
n5 → n4 → n5 → n2
No Gen or Kill for “a + b”
along this path

• Width = 2

• What about “j + 1”?

• Not available on entry to the
loop

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 90/109

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 90/109

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 90/109

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 90/109

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

• ifp 6 → 3 → 6 is bypassed by the edge 6 → 7

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 90/109

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

• ifp 6 → 3 → 6 is bypassed by the edge 6 → 7

• ifp 7 → 2 → 8 is bypassed by the edge 7 → 8

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 90/109

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

• ifp 6 → 3 → 6 is bypassed by the edge 6 → 7

• ifp 7 → 2 → 8 is bypassed by the edge 7 → 8

• For forward unidirectional frameworks, width
is 1

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 90/109

Width and Depth

1

2

3

4

5

6

7

8

Structures resulting from repeat-until loops with
premature exits

• Depth = 3

• However, any unidirectional bit vector is
guaranteed to converge in 2 + 1 iterations

• ifp 5 → 4 → 6 is bypassed by the edge 5 → 6

• ifp 6 → 3 → 6 is bypassed by the edge 6 → 7

• ifp 7 → 2 → 8 is bypassed by the edge 7 → 8

• For forward unidirectional frameworks, width
is 1

• Splitting the bypassing edges and inserting
nodes along those edges increases the width

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 91/109

Work List Based Iterative Algorithm

Directly traverses information flow paths

1 In0 = BI

2 for all j 6= 0 do
3 { Inj = ⊤
4 Add j to LIST
5 }
6 while LIST is not empty do
7 { Let j be the first node in LIST. Remove it from LIST

8 temp =
p∈pred(j)

fp(Inp)

9 if temp 6= Inj then
10 { Inj = temp

11 Add all successors of j to LIST
12 }
13 }

Aug 2010 IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis 92/109

Tutorial Problem

Perform work list based iterative analysis for earlier examples. Assume
that the work list follows FIFO (First in First Out) policy.

Show the trace of the analysis in the folloing format:

Step Program Remaining Data Program Resulting
No. Point Work list Flow Point(s) Work list

Selected Value Added

Aug 2010 IIT Bombay

Part 9

Precise Modelling of General Flows

CS 618 DFA Theory: Precise Modelling of General Flows 93/109

Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 93/109

Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 93/109

Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = 3 4

5 d = 2 5

Iteration #2

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 93/109

Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = 3 4

5 d = 2 5

Iteration #2

1 a = b + 1 1

2 a = b + 1 2

3 b = 4 3

4 c = 3 4

5 d = 2 5

Iteration #3

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 93/109

Complexity of Constant Propagation?

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Iteration #1

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = 3 4

5 d = 2 5

Iteration #2

1 a = b + 1 1

2 a = b + 1 2

3 b = 4 3

4 c = 3 4

5 d = 2 5

Iteration #3

1 a = 5 1

2 a = 5 2

3 b = 3 3

4 c = d + 1 4

5 d = 2 5

Iteration #4

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 94/109

Larger Values of Loop Closure Bounds

• Fast Frameworks ≡ 2-bounded frameworks (eg. bit vector
frameworks)
Both these conditions must be satisfied

◮ Separability

Data flow values of different entities are independent
◮ Constant or Identity Flow Functions

Flow functions for an entity are either constant or identity

• Non-fast frameworks
At least one of the above conditions is violated

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 95/109

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 95/109

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable Non-Separable

Example: All bit vector frameworks Example: Constant Propagation

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 95/109

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable

〈 x̂1, x̂2, . . . , x̂m 〉

f

〈 ŷ1, ŷ2, . . . , ŷm 〉

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

f

〈 ŷ1, ŷ2, . . . , ŷm 〉

Example: All bit vector frameworks Example: Constant Propagation

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 95/109

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

f

〈 ŷ1, ŷ2, . . . , ŷm 〉

Example: All bit vector frameworks Example: Constant Propagation

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 95/109

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

ĥ : L̂ 7→ L̂

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

f

〈 ŷ1, ŷ2, . . . , ŷm 〉

Example: All bit vector frameworks Example: Constant Propagation

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 95/109

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

ĥ : L̂ 7→ L̂

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

Example: All bit vector frameworks Example: Constant Propagation

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 95/109

Separability

f : L 7→ L is 〈ĥ1, ĥ2, . . . , ĥm〉 where ĥi computes the value of x̂ i

Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

ĥ : L̂ 7→ L̂

Non-Separable

〈 x̂1, x̂2, . . . , x̂m 〉

ĥ2

〈 ŷ1, ŷ 2, . . . , ŷm 〉

ĥ : L 7→ L̂

Example: All bit vector frameworks Example: Constant Propagation

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 96/109

Separability of Bit Vector Frameworks

• L̂ is {0, 1}, L is {0, 1}m
• ⊓̂ is either boolean AND or boolean OR

• ⊤̂ and ⊥̂ are 0 or 1 depending on ⊓̂.
• ĥ is a bit function and could be one of the following:

Raise Lower Propagate Negate

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 96/109

Separability of Bit Vector Frameworks

• L̂ is {0, 1}, L is {0, 1}m
• ⊓̂ is either boolean AND or boolean OR

• ⊤̂ and ⊥̂ are 0 or 1 depending on ⊓̂.
• ĥ is a bit function and could be one of the following:

Raise Lower Propagate Negate

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

⊤̂
⊥̂

Non-monotonicity

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 97/109

Larger Values of Loop Closure Bounds

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Composite flow function for the loop is

f (〈va, vb, vc , vd 〉) = 〈vb + 1, vc + 1, vd + 1, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 97/109

Larger Values of Loop Closure Bounds

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Composite flow function for the loop is

f (〈va, vb, vc , vd 〉) = 〈vb + 1, vc + 1, vd + 1, 2〉

f is not 2-bounded because:

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 97/109

Larger Values of Loop Closure Bounds

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Composite flow function for the loop is

f (〈va, vb, vc , vd 〉) = 〈vb + 1, vc + 1, vd + 1, 2〉

f is not 2-bounded because:

f (〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, ⊤̂, ⊤̂, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 97/109

Larger Values of Loop Closure Bounds

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Composite flow function for the loop is

f (〈va, vb, vc , vd 〉) = 〈vb + 1, vc + 1, vd + 1, 2〉

f is not 2-bounded because:

f (〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, ⊤̂, ⊤̂, 2〉
f 2(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, ⊤̂, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 97/109

Larger Values of Loop Closure Bounds

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Composite flow function for the loop is

f (〈va, vb, vc , vd 〉) = 〈vb + 1, vc + 1, vd + 1, 2〉

f is not 2-bounded because:

f (〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, ⊤̂, ⊤̂, 2〉
f 2(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, ⊤̂, 3, 2〉
f 3(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, 4, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 97/109

Larger Values of Loop Closure Bounds

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Composite flow function for the loop is

f (〈va, vb, vc , vd 〉) = 〈vb + 1, vc + 1, vd + 1, 2〉

f is not 2-bounded because:

f (〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, ⊤̂, ⊤̂, 2〉
f 2(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, ⊤̂, 3, 2〉
f 3(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, 4, 3, 2〉
f 4(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈5, 4, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 97/109

Larger Values of Loop Closure Bounds

1 a = b + 1 1

2 a = b + 1 2

3 b = c + 1 3

4 c = d + 1 4

5 d = 2 5

Composite flow function for the loop is

f (〈va, vb, vc , vd 〉) = 〈vb + 1, vc + 1, vd + 1, 2〉

f is not 2-bounded because:

f (〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, ⊤̂, ⊤̂, 2〉
f 2(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, ⊤̂, 3, 2〉
f 3(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈⊤̂, 4, 3, 2〉
f 4(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈5, 4, 3, 2〉
f 5(〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉) = 〈5, 4, 3, 2〉

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 98/109

Modelling Flow Functions for General Flows

• General flow functions can be written as

fn(X) = (X − Killn(X)) ∪ Genn(X)

where Gen and Kill have constant and dependent parts

Genn(X) = ConstGenn ∪ DepGenn(X)

Killn(X) = ConstKilln ∪DepKilln(X)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 98/109

Modelling Flow Functions for General Flows

• General flow functions can be written as

fn(X) = (X − Killn(X)) ∪ Genn(X)

where Gen and Kill have constant and dependent parts

Genn(X) = ConstGenn ∪ DepGenn(X)

Killn(X) = ConstKilln ∪DepKilln(X)

• The dependent parts take care of
◮ dependence across different entities as well as
◮ dependence on the value of the same entity in the argument X

Aug 2010 IIT Bombay

CS 618 DFA Theory: Precise Modelling of General Flows 98/109

Modelling Flow Functions for General Flows

• General flow functions can be written as

fn(X) = (X − Killn(X)) ∪ Genn(X)

where Gen and Kill have constant and dependent parts

Genn(X) = ConstGenn ∪ DepGenn(X)

Killn(X) = ConstKilln ∪DepKilln(X)

• The dependent parts take care of
◮ dependence across different entities as well as
◮ dependence on the value of the same entity in the argument X

• Bit vector frameworks are a special case

DepGenn(X) = DepKilln(X) = ∅

Aug 2010 IIT Bombay

Part 10

Extra Topics

CS 618 DFA Theory: Extra Topics 99/109

N
ot
fo
r
M
id
-S
em

Undecidability of Data Flow Analysis

• Reducing MPCP (Modified Post’s Correspondence Problem) to
constant propagation

• MPCP is known to be undecidable

• If an algorithm exists for detecting all constants
⇒ MPCP would be decidable

• Since MPCP is undecidable
⇒ There does not exist an algorithm for detecting all constants
⇒ Static analysis is undecidable

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 100/109

N
ot
fo
r
M
id
-S
em

Post’s Correspondence Problem (PCP)

• Given strings ui , vi ∈ Σ+ for some alphabet Σ, and two k-tuples,

U = (u1, u2, . . . , uk)

V = (v1, v2, . . . , vk)

Is there a sequence i1, i2, . . . , im of one or more integers such that

ui1ui2 . . . uim = vi1vi2 . . . vim

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 100/109

N
ot
fo
r
M
id
-S
em

Post’s Correspondence Problem (PCP)

• Given strings ui , vi ∈ Σ+ for some alphabet Σ, and two k-tuples,

U = (u1, u2, . . . , uk)

V = (v1, v2, . . . , vk)

Is there a sequence i1, i2, . . . , im of one or more integers such that

ui1ui2 . . . uim = vi1vi2 . . . vim

• For U = (101, 11, 100) and V = (01, 1, 11001) the solution is 2, 3, 2.

u2u3u2 = 1110011

v2v3v2 = 1110011

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 100/109

N
ot
fo
r
M
id
-S
em

Post’s Correspondence Problem (PCP)

• Given strings ui , vi ∈ Σ+ for some alphabet Σ, and two k-tuples,

U = (u1, u2, . . . , uk)

V = (v1, v2, . . . , vk)

Is there a sequence i1, i2, . . . , im of one or more integers such that

ui1ui2 . . . uim = vi1vi2 . . . vim

• For U = (101, 11, 100) and V = (01, 1, 11001) the solution is 2, 3, 2.

u2u3u2 = 1110011

v2v3v2 = 1110011

• For U = (1, 10111, 10), V = (111, 10, 0), the solution is 2, 1, 1, 3.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 101/109

N
ot
fo
r
M
id
-S
em

Modified Post’s Correspondence Problem (MPCP)

• The first string in the correspondence relation should be the first
string from the k-tuple.

u1ui1ui2 . . . uim = v1vi1vi2 . . . vim

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 101/109

N
ot
fo
r
M
id
-S
em

Modified Post’s Correspondence Problem (MPCP)

• The first string in the correspondence relation should be the first
string from the k-tuple.

u1ui1ui2 . . . uim = v1vi1vi2 . . . vim

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 101/109

N
ot
fo
r
M
id
-S
em

Modified Post’s Correspondence Problem (MPCP)

• The first string in the correspondence relation should be the first
string from the k-tuple.

u1ui1ui2 . . . uim = v1vi1vi2 . . . vim

• For U = (11, 1, 0111, 10), V = (1, 111, 10, 0), the solution is
3, 2, 2, 4.

u1u3u2u2u4 = 1101111110

v1v3v2v2v4 = 1101111110

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 102/109

N
ot
fo
r
M
id
-S
em

Hecht’s MPCP to Constant Propagation Reduction

Given: An instance of MPCP with Σ = {0, 1}.

x = ”1”; y = ”1”

x = ”1”

x = x@u1
y = y@v1

x = x@u2
y = y@v2

x = x@uk
y = y@vk

x = ”1”

i = atoi(x); j = atoi(y)
r = 1/((i − j)2 + 1)

ui , vi

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 102/109

N
ot
fo
r
M
id
-S
em

Hecht’s MPCP to Constant Propagation Reduction

Given: An instance of MPCP with Σ = {0, 1}.

x = ”1”; y = ”1”

x = ”1”

x = x@u1
y = y@v1

x = x@u2
y = y@v2

x = x@uk
y = y@vk

x = ”1”

i = atoi(x); j = atoi(y)
r = 1/((i − j)2 + 1)

ui , vi

string append

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 102/109

N
ot
fo
r
M
id
-S
em

Hecht’s MPCP to Constant Propagation Reduction

Given: An instance of MPCP with Σ = {0, 1}.

x = ”1”; y = ”1”

x = ”1”

x = x@u1
y = y@v1

x = x@u2
y = y@v2

x = x@uk
y = y@vk

x = ”1”

i = atoi(x); j = atoi(y)
r = 1/((i − j)2 + 1)

ui , vi

string append

string to integer conversion

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 102/109

N
ot
fo
r
M
id
-S
em

Hecht’s MPCP to Constant Propagation Reduction

Given: An instance of MPCP with Σ = {0, 1}.

x = ”1”; y = ”1”

x = ”1”

x = x@u1
y = y@v1

x = x@u2
y = y@v2

x = x@uk
y = y@vk

x = ”1”

i = atoi(x); j = atoi(y)
r = 1/((i − j)2 + 1)

ui , vi

string append

string to integer conversion

integer division

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 102/109

N
ot
fo
r
M
id
-S
em

Hecht’s MPCP to Constant Propagation Reduction

Given: An instance of MPCP with Σ = {0, 1}.

x = ”1”; y = ”1”

x = ”1”

x = x@u1
y = y@v1

x = x@u2
y = y@v2

x = x@uk
y = y@vk

x = ”1”

i = atoi(x); j = atoi(y)
r = 1/((i − j)2 + 1)

ui , vi

• i == j ⇒ r = 1

i != j ⇒ r = 0

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 102/109

N
ot
fo
r
M
id
-S
em

Hecht’s MPCP to Constant Propagation Reduction

Given: An instance of MPCP with Σ = {0, 1}.

x = ”1”; y = ”1”

x = ”1”

x = x@u1
y = y@v1

x = x@u2
y = y@v2

x = x@uk
y = y@vk

x = ”1”

i = atoi(x); j = atoi(y)
r = 1/((i − j)2 + 1)

ui , vi

• i == j ⇒ r = 1

i != j ⇒ r = 0

• If there exists an algorithm
which can determine that

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 102/109

N
ot
fo
r
M
id
-S
em

Hecht’s MPCP to Constant Propagation Reduction

Given: An instance of MPCP with Σ = {0, 1}.

x = ”1”; y = ”1”

x = ”1”

x = x@u1
y = y@v1

x = x@u2
y = y@v2

x = x@uk
y = y@vk

x = ”1”

i = atoi(x); j = atoi(y)
r = 1/((i − j)2 + 1)

ui , vi

• i == j ⇒ r = 1

i != j ⇒ r = 0

• If there exists an algorithm
which can determine that

◮ r = 1 along some path
⇒ x == y

⇒ MPCP instance has
a solution

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 102/109

N
ot
fo
r
M
id
-S
em

Hecht’s MPCP to Constant Propagation Reduction

Given: An instance of MPCP with Σ = {0, 1}.

x = ”1”; y = ”1”

x = ”1”

x = x@u1
y = y@v1

x = x@u2
y = y@v2

x = x@uk
y = y@vk

x = ”1”

i = atoi(x); j = atoi(y)
r = 1/((i − j)2 + 1)

ui , vi

• i == j ⇒ r = 1

i != j ⇒ r = 0

• If there exists an algorithm
which can determine that

◮ r = 1 along some path
⇒ x == y

⇒ MPCP instance has
a solution

◮ r = 0 along every path
⇒ x != y

⇒ MPCP instance does
not have a solution

⇒ MPCP is decidable

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 102/109

N
ot
fo
r
M
id
-S
em

Hecht’s MPCP to Constant Propagation Reduction

Given: An instance of MPCP with Σ = {0, 1}.

x = ”1”; y = ”1”

x = ”1”

x = x@u1
y = y@v1

x = x@u2
y = y@v2

x = x@uk
y = y@vk

x = ”1”

i = atoi(x); j = atoi(y)
r = 1/((i − j)2 + 1)

ui , vi

• i == j ⇒ r = 1

i != j ⇒ r = 0

• If there exists an algorithm
which can determine that

◮ r = 1 along some path
⇒ x == y

⇒ MPCP instance has
a solution

◮ r = 0 along every path
⇒ x != y

⇒ MPCP instance does
not have a solution

⇒ MPCP is decidable

MPCP is not decidable ⇒ Constant Propagation is not decidable

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 103/109

N
ot
fo
r
M
id
-S
em

Tarski’s Fixed Point Theorem

Given monotonic f : L 7→ L where L is a complete lattice

Define

p is a fixed point of f : Fix(f) = {p | f (p) = p}
f is reductive at p : Red(f) = {p | f (p) ⊑ p}
f is extensive at p : Ext(f) = {p | f (p) ⊒ p}

Then

LFP(f) = ⊓Red(f) ∈ Fix(f)
MFP(f) = ⊔Ext(f) ∈ Fix(f)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 103/109

N
ot
fo
r
M
id
-S
em

Tarski’s Fixed Point Theorem

Given monotonic f : L 7→ L where L is a complete lattice

Define

p is a fixed point of f : Fix(f) = {p | f (p) = p}
f is reductive at p : Red(f) = {p | f (p) ⊑ p}
f is extensive at p : Ext(f) = {p | f (p) ⊒ p}

Then

LFP(f) = ⊓Red(f) ∈ Fix(f)
MFP(f) = ⊔Ext(f) ∈ Fix(f)

Guarantees only existence, not computability of fixed points.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 104/109

N
ot
fo
r
M
id
-S
em

Fixed Points of a Function

⊤

⊥

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 104/109

N
ot
fo
r
M
id
-S
em

Fixed Points of a Function

⊤

⊥

Red(f)
f n(⊤)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 104/109

N
ot
fo
r
M
id
-S
em

Fixed Points of a Function

⊤

⊥

Red(f)
f n(⊤)

Ext(f)
f n(⊥)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 104/109

N
ot
fo
r
M
id
-S
em

Fixed Points of a Function

⊤

⊥

Red(f)
f n(⊤)

Ext(f)
f n(⊥)

Fix(f)

MFP(f)

LFP(f)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 105/109

N
ot
fo
r
M
id
-S
em

Examples of Reductive and Extensive Sets

Finite L Monotonic f : L 7→ L

⊤

v1

v2

v3

v4

⊥

⊤

v1

v2

v3

v4

⊥

Red(f) = {⊤, v3, v4,⊥}
Ext(f) = {⊤, v1, v2,⊥}
Fix(f) = Red(f) ∩ Ext(f)

= {⊤,⊥}
MFP(f) = lub (Ext(f))

= lub (Fix(f))

= ⊤
LFP(f) = glb (Red(f))

= glb (Fix(f))

= ⊥

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 106/109

N
ot
fo
r
M
id
-S
em

Existence of MFP: Proof of Tarski’s Fixed Point Theorem

Ext(f)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 106/109

N
ot
fo
r
M
id
-S
em

Existence of MFP: Proof of Tarski’s Fixed Point Theorem

Ext(f)

1. Claim 1: Let X ⊆ L.
∀x ∈ X , p ⊒ x ⇒ p ⊒⊔(X).

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 106/109

N
ot
fo
r
M
id
-S
em

Existence of MFP: Proof of Tarski’s Fixed Point Theorem

Ext(f)

1. Claim 1: Let X ⊆ L.
∀x ∈ X , p ⊒ x ⇒ p ⊒⊔(X).

2. In the following we use Ext(f) as X .

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 106/109

N
ot
fo
r
M
id
-S
em

Existence of MFP: Proof of Tarski’s Fixed Point Theorem

Ext(f)

hi =⊔Ext(f)

1. Claim 1: Let X ⊆ L.
∀x ∈ X , p ⊒ x ⇒ p ⊒⊔(X).

2. In the following we use Ext(f) as X .

3. ∀p ∈ Ext(f), hi ⊒ p

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 106/109

N
ot
fo
r
M
id
-S
em

Existence of MFP: Proof of Tarski’s Fixed Point Theorem

Ext(f)

hi =⊔Ext(f)hi =⊔Ext(f)

f (hi)

1. Claim 1: Let X ⊆ L.
∀x ∈ X , p ⊒ x ⇒ p ⊒⊔(X).

2. In the following we use Ext(f) as X .

3. ∀p ∈ Ext(f), hi ⊒ p

4. hi ⊒ p

⇒ f (hi) ⊒ f (p) ⊒ p (monotonicity)
⇒ f (hi) ⊒ hi (claim 1)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 106/109

N
ot
fo
r
M
id
-S
em

Existence of MFP: Proof of Tarski’s Fixed Point Theorem

Ext(f)

hi =⊔Ext(f)

f (hi)

1. Claim 1: Let X ⊆ L.
∀x ∈ X , p ⊒ x ⇒ p ⊒⊔(X).

2. In the following we use Ext(f) as X .

3. ∀p ∈ Ext(f), hi ⊒ p

4. hi ⊒ p

⇒ f (hi) ⊒ f (p) ⊒ p (monotonicity)
⇒ f (hi) ⊒ hi (claim 1)

5. f is extensive at hi also: hi ∈ Ext(f)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 106/109

N
ot
fo
r
M
id
-S
em

Existence of MFP: Proof of Tarski’s Fixed Point Theorem

Ext(f)

hi = f (hi)

1. Claim 1: Let X ⊆ L.
∀x ∈ X , p ⊒ x ⇒ p ⊒⊔(X).

2. In the following we use Ext(f) as X .

3. ∀p ∈ Ext(f), hi ⊒ p

4. hi ⊒ p

⇒ f (hi) ⊒ f (p) ⊒ p (monotonicity)
⇒ f (hi) ⊒ hi (claim 1)

5. f is extensive at hi also: hi ∈ Ext(f)

6. f (hi) ⊒ hi ⇒ f 2(hi) ⊒ f (hi)
⇒ f (hi) ∈ Ext(f)
⇒ hi ⊒ f (hi) (from 3)
⇒ hi = f (hi) ⇒ hi ∈ Fix(f)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 106/109

N
ot
fo
r
M
id
-S
em

Existence of MFP: Proof of Tarski’s Fixed Point Theorem

Ext(f)

hi = f (hi)

1. Claim 1: Let X ⊆ L.
∀x ∈ X , p ⊒ x ⇒ p ⊒⊔(X).

2. In the following we use Ext(f) as X .

3. ∀p ∈ Ext(f), hi ⊒ p

4. hi ⊒ p

⇒ f (hi) ⊒ f (p) ⊒ p (monotonicity)
⇒ f (hi) ⊒ hi (claim 1)

5. f is extensive at hi also: hi ∈ Ext(f)

6. f (hi) ⊒ hi ⇒ f 2(hi) ⊒ f (hi)
⇒ f (hi) ∈ Ext(f)
⇒ hi ⊒ f (hi) (from 3)
⇒ hi = f (hi) ⇒ hi ∈ Fix(f)

7. Fix(f) ⊆ Ext(f) (by definition)
⇒ hi ⊒ p, ∀p ∈ Fix(f)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 107/109

N
ot
fo
r
M
id
-S
em

Existence and Computation of the Maximum Fixed Point

• For monotonic f : L 7→ L

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 107/109

N
ot
fo
r
M
id
-S
em

Existence and Computation of the Maximum Fixed Point

• For monotonic f : L 7→ L

◮ Existence: MFP(f) =⊔Ext(f) ∈ Fix(f)
Requires L to be complete.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 107/109

N
ot
fo
r
M
id
-S
em

Existence and Computation of the Maximum Fixed Point

• For monotonic f : L 7→ L

◮ Existence: MFP(f) =⊔Ext(f) ∈ Fix(f)
Requires L to be complete.

◮ Computation: MFP(f) = f k+1(⊤) = f k(⊤) such that
f j+1(⊤) 6= f j(⊤), j < k .
Requires all strictly descending chains to be finite.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 107/109

N
ot
fo
r
M
id
-S
em

Existence and Computation of the Maximum Fixed Point

• For monotonic f : L 7→ L

◮ Existence: MFP(f) =⊔Ext(f) ∈ Fix(f)
Requires L to be complete.

◮ Computation: MFP(f) = f k+1(⊤) = f k(⊤) such that
f j+1(⊤) 6= f j(⊤), j < k .
Requires all strictly descending chains to be finite.

• Finite strictly descending and ascending chains
⇒ Completeness of lattice

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 107/109

N
ot
fo
r
M
id
-S
em

Existence and Computation of the Maximum Fixed Point

• For monotonic f : L 7→ L

◮ Existence: MFP(f) =⊔Ext(f) ∈ Fix(f)
Requires L to be complete.

◮ Computation: MFP(f) = f k+1(⊤) = f k(⊤) such that
f j+1(⊤) 6= f j(⊤), j < k .
Requires all strictly descending chains to be finite.

• Finite strictly descending and ascending chains
⇒ Completeness of lattice

• Completeness of lattice 6⇒ Finite strictly descending chains

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 107/109

N
ot
fo
r
M
id
-S
em

Existence and Computation of the Maximum Fixed Point

• For monotonic f : L 7→ L

◮ Existence: MFP(f) =⊔Ext(f) ∈ Fix(f)
Requires L to be complete.

◮ Computation: MFP(f) = f k+1(⊤) = f k(⊤) such that
f j+1(⊤) 6= f j(⊤), j < k .
Requires all strictly descending chains to be finite.

• Finite strictly descending and ascending chains
⇒ Completeness of lattice

• Completeness of lattice 6⇒ Finite strictly descending chains

• ⇒ Even if MFP exists, it may not be reachable unless all strictly
descending chains are finite.

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 108/109

N
ot
fo
r
M
id
-S
em

Framework Properties Influencing Complexity

Depends on the loop closure properties of the framework

k-Bounded Frameworks

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ . . . ⊓ f k−1(x)

Necessary
and

sufficient

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 108/109

N
ot
fo
r
M
id
-S
em

Framework Properties Influencing Complexity

Depends on the loop closure properties of the framework

k-Bounded Frameworks

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ . . . ⊓ f k−1(x)

Necessary
and

sufficient

Fast Frameworks (k = 2)

f 2(x) ⊒ f (x) ⊓ x

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 108/109

N
ot
fo
r
M
id
-S
em

Framework Properties Influencing Complexity

Depends on the loop closure properties of the framework

k-Bounded Frameworks

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ . . . ⊓ f k−1(x)

Necessary
and

sufficient

Fast Frameworks (k = 2)

f 2(x) ⊒ f (x) ⊓ x

Rapid Frameworks

f 2(x) ⊒ f (x)

Necessary
but not
sufficient

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 108/109

N
ot
fo
r
M
id
-S
em

Framework Properties Influencing Complexity

Depends on the loop closure properties of the framework

k-Bounded Frameworks

f ∗(x) = x ⊓ f (x) ⊓ f 2(x) ⊓ . . . ⊓ f k−1(x)

Necessary
and

sufficient

Fast Frameworks (k = 2)

f 2(x) ⊒ f (x) ⊓ x

Rapid Frameworks

f 2(x) ⊒ f (x)

Necessary
but not
sufficient

Bit Vector Frameworks
f 2(x) = f (x)

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics 109/109

N
ot
fo
r
M
id
-S
em

Complexity of Round Robin Iterative Algorithm

• Unidirectional rapid frameworks

Task
Number of iterations

Irreducible G Reducible G

Initialisation 1 1
Convergence

d(G ,T) + 1 d(G ,T)
(until change remains true)
Verifying convergence 1 1
(change becomes false)

Aug 2010 IIT Bombay

	About These Slides
	Outline
	The Need for a More General Setting
	Data Flow Values: An Overview
	A Digression on Lattices
	Data Flow Values: Details
	Flow Functions
	Solutions of Data Flow Analysis
	Performing Data Flow Analysis
	Precise Modelling of General Flows
	Extra Topics

