Theoretical Abstractions in Data Flow Analysis

Uday Khedker

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

August 2010

1/109

DFA Theory: About These Slides Copyright

CS 618

These slides constitute the lecture notes for CS618 Program Analysis course at IIT Bombay and have been made available as teaching material accompanying the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis: Theory and Practice. CRC Press (Taylor and Francis Group). 2009.

Apart from the above book, some slides are based on the material from the following books

- M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland Inc. 1977.
- F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag. 1998.

These slides are being made available under GNU FDL v1.2 or later purely for academic or research use.

Outline

DFA Theory: Outline

- The need for a more general setting
- The set of data flow values
- The set of flow functions
- Solutions of data flow analyses
- Algorithms for performing data flow analysis
- Complexity of data flow analysis

About These Slides

2/109

CS 618

Part 2

The Need for a More General Setting

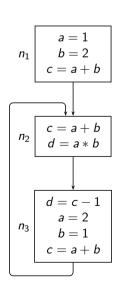
CS 618

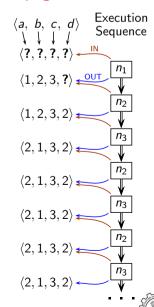
Aug 2010

DFA Theory: The Need for a More General Setting

4/109

An Introduction to Constant Propagation





What We Have Seen So Far ...

Analysis	Entity	Attribute at <i>p</i>	Paths	
Live variables	Variables	Use	Starting at <i>p</i>	Some
Available expressions	Expressions	Availability	Reaching <i>p</i>	All
Partially available expressions	Expressions	Availability	Reaching <i>p</i>	Some
Anticipable expressions	Expressions	Use	Starting at p	All
Reaching definitions	Definitions	Availability	Reaching p	Some
Partial redundancy elimination	Expressions	Profitable hoistability	Involving p	All

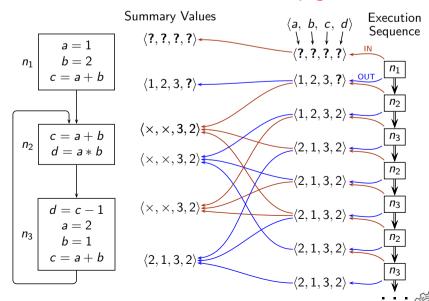
Aug 2010

IIT Bombay

DFA Theory: The Need for a More General Setting

4/109

An Introduction to Constant Propagation

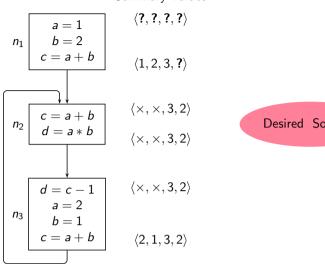


Aug 2010

CS 618

An Introduction to Constant Propagation

Summary Values



Desired Solution

Aug 2010

CS 618

DFA Theory: The Need for a More General Setting

6/109

Confluence Operation for Constant Propagation

• Confluence operation $\langle a, c_1 \rangle \sqcap \langle a, c_2 \rangle$

П	$\langle a, ? \rangle$	$\langle a, \times \rangle$	$\langle a, c_1 \rangle$			
$\langle a, ? \rangle$	$\langle a, ? \rangle$	$\langle a, \times \rangle$	$\langle a, c_1 angle$			
$\langle a, \times \rangle$	$\langle a, \times \rangle$	$\langle a, \times \rangle$	$\langle a, imes angle$			
$\langle a, c_2 \rangle$	$\langle a, c_2 \rangle$	$\langle a, \times \rangle$	$\begin{array}{ll} \text{If } c_1 = c_2 & \langle a, c_1 \rangle \\ \text{Otherwise} & \langle a, \times \rangle \end{array}$			

• This is neither \cap nor \cup .

What are its properties?

Data Flow Values for Constant Propagation

• Tuples of the form $\langle \xi_1, \xi_2, \dots, \xi_k \rangle$ where ξ_i is the data flow value for *i*th variable.

Unlike bit vector frameworks, value ξ_i is not 0 or 1 (i.e. true or false). Instead, it is one of the following:

- ? indicating that not much is known about the constantness of variable *v*;
- \triangleright x indicating that variable v_i does not have a constant value
- \blacktriangleright An integer constant c_1 if the value of v_i is known to be c_1 at compile time
- Alternatively, sets of pairs $\langle v_i, \xi_i \rangle$ for each variable v_i .

CS 618

Aug 2010

CS 618

DFA Theory: The Need for a More General Setting

7/109

Flow Functions for Constant Propagation

• Flow function for $r = a_1 * a_2$

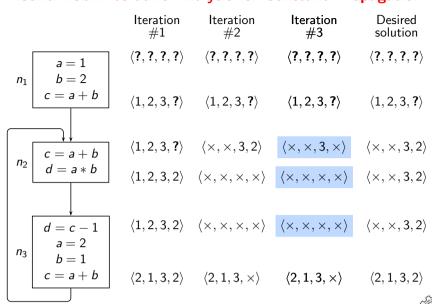
mult	$\langle a_1, ? \rangle$	$\langle a_1, imes angle$	$\langle a_1, c_1 \rangle$
$\langle a_2, ? \rangle$	$\langle r, ? \rangle$	$\langle r, \times \rangle$	$\langle r, ? \rangle$
$\langle a_2, \times \rangle$	$\langle r, \times \rangle$	$\langle r, \times \rangle$	$\langle r, \times \rangle$
$\langle a_2, c_2 \rangle$	$\langle r, ? \rangle$	$\langle r, \times \rangle$	$\langle r, (c_1 * c_2) \rangle$

• This cannot be expressed in the form

$$f_n(X) = \operatorname{\mathsf{Gen}}_n \cup (X - \operatorname{\mathsf{Kill}}_n)$$

where Gen_n and $Kill_n$ are constant effects of block n.

Round Robin Iterative Analysis for Constant Propagation

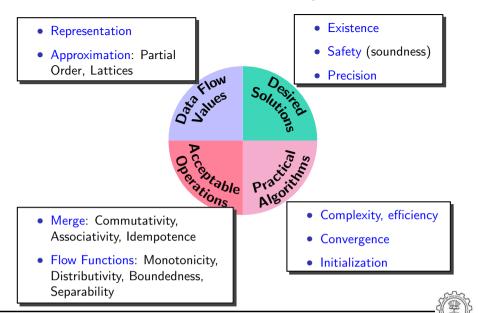


Aug 2010

Part 3

Data Flow Values: An Overview

Issues in Data Flow Analysis



Aug 2010

CS 618

CS 618

DFA Theory: Data Flow Values: An Overview

10/109

Data Flow Values: An Outline of Our Discussion

- The need to define the notion of abstraction
- Lattices, variants of lattices
- Relevance of lattices for data flow analysis
 - ▶ Partial order relation as approximation of data flow values
 - Meet operations as confluence of data flow values
- Cartesian product of lattices
- Example of lattices

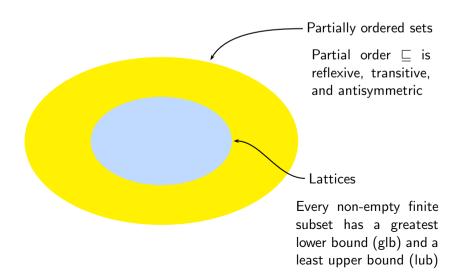
Part 4 A Digression on Lattices

CS 618

DFA Theory: A Digression on Lattices

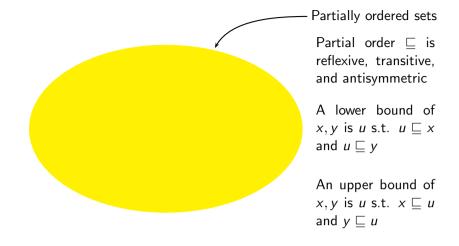
11/109

Partially Ordered Sets and Lattices



CS 618 **DFA Theory: A Digression on Lattices**

Partially Ordered Sets and Lattices



Aug 2010

CS 618

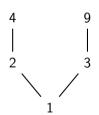
DFA Theory: A Digression on Lattices

12/109

11/109

Partially Ordered Sets

Set $\{1, 2, 3, 4, 9\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)

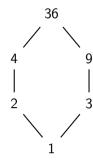


Subsets $\{4,9\}$ and $\{2,3\}$ do not have an upper bound in the set

Aug 2010

Lattice

Set $\{1, 2, 3, 4, 9, 36\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)



Aug 2010

IIT Bombay

CS 618

DFA Theory: A Digression on Lattices

15/109

$\mathbb{Z} \cup \{\infty, -\infty\}$ is a Complete Lattice

- Infinite subsets of $\mathbb{Z} \cup \{\infty, -\infty\}$ have a glb and lub.
- What about the empty set?
 - ▶ $\mathsf{glb}(\emptyset)$ is \top

Every element of $\mathbb{Z}\cup\{\infty,-\infty\}$ is vacuously a lower bound of an element in \emptyset (because there is no element in \emptyset).

The greatest among these lower bounds is \top .

▶ lub(∅) is ⊥

Complete Lattice

• Lattice: A partially ordered set such that every non-empty finite subset has a glb and a lub.

Example:

Lattice $\mathbb Z$ of integers under \leq relation. All finite subsets have a glb and a lub. Infinite subsets do not have a glb or a lub.

 Complete Lattice: A lattice in which even ∅ and infinite subsets have a glb and a lub.

Example:

Lattice $\mathbb Z$ of integers under \leq relation with ∞ and $-\infty$.

- ▶ ∞ is the top element denoted \top : $\forall i \in \mathbb{Z}, i \leq \top$.
- ▶ $-\infty$ is the bottom element denoted \bot : $\forall i \in \mathbb{Z}, \bot \leq i$.

IIT Bombay

CS 618

Aug 2010

CS 618

DFA Theory: A Digression on Lattices

16/109

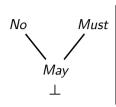
Finite Lattices are Complete

• Any given set of elements has a glb and a lub

Available Expressions	Partially Available
Analysis	Expressions Analysis
$ \begin{array}{c c} (\top) \\ \{e_1, e_2, e_3\} \\ \downarrow \\ \{e_1, e_2\} & \{e_1, e_3\} & \{e_2, e_3\} \\ \downarrow \\ \{e_1\} & \{e_2\} & \{e_3\} \\ \downarrow \\ (\bot) \end{array} $	$ \begin{array}{c c} (\top) \\ & \emptyset \\ & \downarrow \\ \{e_1\} & \{e_2\} & \{e_3\} \\ & \downarrow \\ \{e_1,e_2\} & \{e_1,e_3\} & \{e_2,e_3\} \\ & \downarrow \\ & \{e_1,e_2,e_3\} \\ & (\bot) \end{array} $

Lattice for May-Must Analysis

ullet There is no $oxed{\top}$ among the natural values



Interpreting data flow values

- No. Information does not hold along any path
 Must. Information must hold along all paths
 May. Information may hold along some path

- An artificial ⊤ can be added However, a lub may not exist for arbitrary sets

Aug 2010

CS 618

DFA Theory: A Digression on Lattices

19/109

A Bounded Lattice need not be Complete

- Let A be all finite subsets of \(\mathbb{Z} \).
- The poset $(A \cup \{\mathbb{Z}\}, \subseteq)$ is a bounded lattice with $T = \mathbb{Z}$ and $L = \emptyset$.
- Does the set of all sets that do not contains a given number (say 1) has an lub in $A \cup \{\mathbb{Z}\}$?
- The union of all finite sets that do not contain 1 is an infinite set that does not contain 1.

This set is not contained in $A \cup \{\mathbb{Z}\}$.

Some Variants of Lattices

A poset L is

- A lattice iff each non-empty finite subset of L has a glb and lub.
- A complete lattice iff each subset of L has a glb and lub.
- A meet semilattice iff each non-empty finite subset of L has a glb.
- A join semilattice iff each non-empty finite subset of L has a lub.
- A bounded lattice iff L is a lattice and has \top and \bot elements.

Aug 2010

CS 618

DFA Theory: A Digression on Lattices

20/109

Ascending and Descending Chains

- Strictly ascending chain. $x \sqsubseteq y \sqsubseteq \cdots \sqsubseteq z$
- Strictly descending chain. $x \supset y \supset \cdots \supset z$
- DCC: Descending Chain Condition All strictly descending chains are finite.
- ACC: Ascending Chain Condition All strictly ascending chains are finite.

Complete Lattice and Ascending and Descending Chains

- If L satisfies acc and dcc, then
 - L has finite height, and
 - ▶ *L* is complete.
- A complete lattice need not have finite height (i.e. strict chains may not be finite).

Example:

Lattice of integers under \leq relation with ∞ as \top and $-\infty$ as \bot .

Aug 2010

IIT Bomb

36

CS 618

DFA Theory: A Digression on Lattices

23/109

Operations on Lattices

Greatest common divisor (or highest common factor) in the lattice

- Meet (\sqcap) and Join (\sqcap)
 - ▶ $x \sqcap y$ computes the glb of x and y. $z = x \sqcap y \Rightarrow z \sqsubseteq x \land z \sqsubseteq y$
 - ▶ $x \sqcup y$ computes the lub of x and y. $z = x \sqcup y \Rightarrow z \supseteq x \land z \supseteq y$
 - ► \sqcap and \sqcup are commutative, associative, and idempotent.
- ullet Top (\top) and Bottom (\bot) elements

$$\forall x \in L, x \sqcap \top = x$$

$$\forall x \in L, x \sqcup \top = \top$$

$$\forall x \in L, x \sqcap \bot = \bot$$

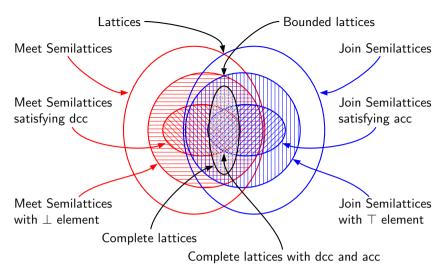
$$\forall x \in L, x \sqcup \bot = x$$

 $\begin{array}{ccc}
1 & & & & \\
2 & & & & \\
1 & & & & \\
x \sqcap y = \gcd'(x, y) \\
x \sqcup y = lcm'(x, y)
\end{array}$

Lowest common multiple in the lattice

e ()

Variants of Lattices



• dcc: descending chain condition

• acc: ascending chain condition

IIT Bombay

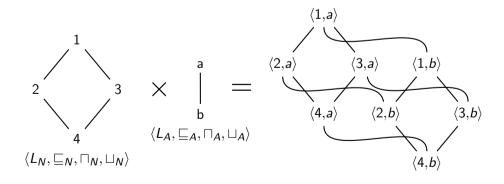
Aug 2010

CS 618

DFA Theory: A Digression on Lattices

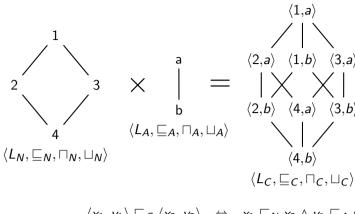
24/109

Cartesian Product of Lattice



CS 618

Cartesian Product of Lattice



$$\langle x_1, y_1 \rangle \sqsubseteq_C \langle x_2, y_2 \rangle \Leftrightarrow x_1 \sqsubseteq_N x_2 \wedge y_1 \sqsubseteq_A y_2$$
$$\langle x_1, y_1 \rangle \sqcap_C \langle x_2, y_2 \rangle = \langle x_1 \sqcap_N x_2, y_1 \sqcap_A y_2 \rangle$$
$$\langle x_1, y_1 \rangle \sqcup_C \langle x_2, y_2 \rangle = \langle x_1 \sqcup_N x_2, y_1 \sqcup_A y_2 \rangle$$

Aug 2010

CS 618 DFA Theory: Data Flow Values: Details 25/109

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- glb must exist for all non-empty finite subsets
- ■ must exist

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x_1 and x_2
- ▶ Since this is a meet semilattice, glb of $\{x_1, x_2\}$ must exist (say z).
 - \Rightarrow Neither of the chains is maximal. Both of them can be extended to include z.
- ▶ Extending this argument to all strictly descending chains, it is easy to see that \perp must exist.
- T may not exist. Can be added artificially.
 - lub of arbitrary elements may not exist

Set View of the Lattice

111 110 101 100 010 000

Bit Vector View

CS 618

Aug 2010

Part 5

Data Flow Values: Details

The Set of Data Flow Values For Available Expressions

Analysis

- The powerset of the universal set of expressions
- Partial order is the subset relation

011 001

26/109

- x approximates y iff x can be used in place of y without causing any problems.
- Validity of approximation is context specific x may be approximated by y in one context and by z in another
 - ▶ Earnings : Rs. 1050 can be safely approximated by Rs. 1000.
 - Expenses: Rs. 1050 can be safely approximated by Rs. 1100.

Aug 2010

CS 618

DFA Theory: Data Flow Values: Details

29/109

Context Determines the Validity of Approximations

May prohibit corre	ect optimization	May enable wrong optimization			
Analysis	Application	Safe	Exhaustive		
-		Approximation	Approximation		
Live variables	Dead code	A dead variable	A live variable is		
	elimination	is considered live	considered dead		
Available	Common	An available	A non-available		
expressions	subexpression	expression is	expression is		
	eliminati <mark>o</mark> n	considered	considered		
	/	non-available	available		
		1			
Spurious Inclusion Spurious Exclusion					

Two Important Objectives in Data Flow Analysis

- The discovered data flow information should be
 - **Exhaustive.** No optimization opportunity should be missed.
 - ▶ Safe. Optimizations which do not preserve semantics should not be enabled.
- Conservative approximations of these objectives are allowed
- The intended use of data flow information (≡ context) determines validity of approximations

Aug 2010

CS 618

Aug 2010

CS 618

DFA Theory: Data Flow Values: Details

30/109

Partial Order Captures Approximation

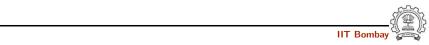
 $x \sqsubseteq y \Rightarrow x$ is weaker than y

- ▶ The data flow information represented by x can be safely used in place of the data flow information represented by y
- ▶ It may be imprecise, though.
- \square captures valid approximations for exhaustiveness

 $x \supseteq y \Rightarrow x$ is stronger than y

- ▶ The data flow information represented by x contains every value contained in the data flow information represented by y
- It may be unsafe, though.

We want most exhaustive information which is also safe.



CS 618 DFA Theory: Data Flow Values: Details

31/109

DFA Theory: Data Flow Values: Details

32/109

Most Approximate Values in a Complete Lattice

- *Top.* $\forall x \in L, x \sqsubseteq \top$. The most exhaustive value.
 - ▶ Using ⊤ in place of any data flow value will never miss out (or rule out) any possible value.
 - ▶ The consequences may be sematically *unsafe*, or *incorrect*.
- *Bottom.* $\forall x \in L, \perp \sqsubseteq x$. The safest value.
 - ► Using ⊥ in place of any data flow value will never be unsafe, or incorrect.
 - ► The consequences may be *undefined* or *useless* because this replacement might miss out valid values.

Appropriate orientation chosen by design.

Bombay

Aug 2010

CS 618

DFA Theory: Data Flow Values: Details

33/109

Partial Order Relation

Reflexive $x \sqsubseteq x$ $x \subseteq x$ $x \subseteq x$ $x \subseteq x$

Transitive $x \sqsubseteq y, y \sqsubseteq z$ If x can be safely used in place of y $\Rightarrow x \sqsubseteq z$ and y can be safely used in place of z, then x can be safely used in place of z

Antisymmetric $x \sqsubseteq y, y \sqsubseteq x$ If x can be safely used in place of y $\Leftrightarrow x = y$ and y can be safely used in place of x, then x must be same as y

Setting Up Lattices

IIT Bombay

CS 618

Aug 2010

CS 618

DFA Theory: Data Flow Values: Details

34/109

Merging Information

• $x \sqcap y$ computes the *greatest lower bound* of x and y i.e. largest z such that $z \sqsubseteq x$ and $z \sqsubseteq y$

The largest safe approximation of combining data flow information x and y

• Commutative $x \sqcap y = y \sqcap x$ The order in which the data flow information is merged,

does not matter

 \sqcap is \cup

Associative $x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$

 \sqcap is \cap

Allow n-ary merging without

any restriction on the order

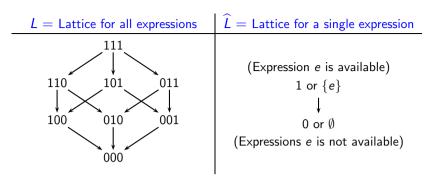
Idempotent $x \sqcap x = x$

No loss of information if *x* is merged with itself

- ullet T is the identity of \sqcap
 - ▶ Presence of loops ⇒ self dependence of data flow information
 - lacktriangle Using \top as the initial value ensure exhaustiveness

Aug 2010 IIT Bombay Aug 2010 IIT Bo

More on Lattices in Data Flow Analysis



Cartesian products if sets are used, vectors (or tuples) if bit are used.

- $L = \widehat{L} \times \widehat{L} \times \widehat{L}$ and $X = \langle \widehat{x}_1, \widehat{x}_2, \widehat{x}_3 \rangle \in L$ where $\widehat{x}_i \in \widehat{L}$
- $\bullet \ \sqsubseteq = \ \widehat{\sqsubseteq} \times \ \widehat{\sqsubseteq} \times \ \widehat{\sqsubseteq} \ \text{and} \ \sqcap = \ \widehat{\sqcap} \times \ \widehat{\sqcap} \times \ \widehat{\sqcap}$
- $\top = \widehat{\top} \times \widehat{\top} \times \widehat{\top}$ and $\bot = \widehat{\bot} \times \widehat{\bot} \times \widehat{\bot}$

Aug 2010

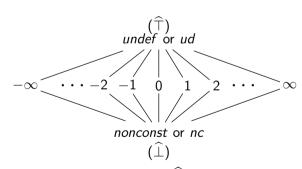
IIT Bomba

CS 618

DFA Theory: Data Flow Values: Details

37/109

Component Lattice for Integer Constant Propagation



- Overall lattice L is the product of \widehat{L} for all variables.
- \sqcap and $\widehat{\sqcap}$ get defined by \sqsubseteq and $\widehat{\sqsubseteq}$.

Π	$\langle a, ud \rangle$	$\langle a, nc \rangle$	$\langle a, c_1 angle$
$\langle a, ud \rangle$	$\langle a, ud \rangle$	$\langle a, nc \rangle$	$\langle a, c_1 angle$
$\langle a, nc \rangle$	$\langle a, nc \rangle$	$\langle a, nc \rangle$	$\langle a, nc angle$
$\langle a, c_2 \rangle$	$\langle a, c_2 \rangle$	$\langle a, nc \rangle$	If $c_1 = c_2$ then $\langle a, c_1 \rangle$ else $\langle a, nc \rangle$

pay (in the second

Component Lattice for Data Flow Information Represented By Bit Vectors



 \sqcap is \cap or Boolean AND

 \sqcap is \cup or Boolean OR

Aug 2010

IIT Bombay

CS 618

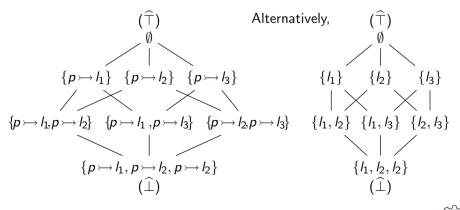
CS 618

DFA Theory: Data Flow Values: Details

38/109

Component Lattice for May Points-To Analysis

- Relation between pointer variables and locations in the memory.
- Assuming three locations l_1 , l_2 , and l_3 , the component lattice for pointer p is.



CS 618

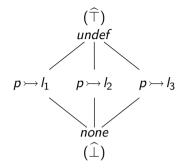
DFA Theory: Data Flow Values: Details

39/109

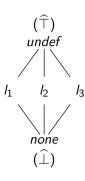
CS 618

Component Lattice for Must Points-To Analysis

• A pointer can point to at most one location.



Alternatively,



Aug 2010

...

CS 618

DFA Theory: Data Flow Values: Details

41/109

General Lattice for May-Must Analysis

Interpreting data flow values

- Unknown. Nothing is known as yet
- $-\ \mathit{No.}$ Information does not hold along any path
- Must. Information must hold along all paths
- May. Information may hold along some path

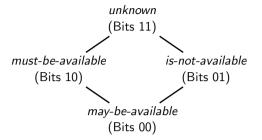
Possible Applications

- Pointer Analysis : No need of separate of *May* and *Must* analyses eg. $(p \rightarrow I, May)$, $(p \rightarrow I, Must)$, $(p \rightarrow I, No)$, or $(p \rightarrow I, Unknown)$.
- Type Inferencing for Dynamically Checked Languages

Aug 2010 IIT Bombay

Combined Total and Partial Availability Analysis

• Two bits per expression rather than one. Can be implemented using AND (as below) or using OR (reversed lattice)



Can also be implemented as a product of 1-0 and 0-1 lattice with AND for the first bit and OR for the second bit.

What approximation of safety does this lattice capture?
 Uncertain information (= no optimization) is safer than definite information.

Aug 2010 IIT Bombay

Part 6

Flow Functions

Flow Functions: An Outline of Our Discussion

- Defining flow functions
- Properties of flow functions (Some properties discussed in the context of solutions of data flow analysis)

Aug 2010

CS 618

44/109

Flow Functions in Bit Vector Data Flow Frameworks

- Bit Vector Frameworks: Available Expressions Analysis, Reaching Definitions Analysis Live variable Analysis, Anticipable Expressions Analysis, Partial Redundancy Elimination etc.
 - ▶ All functions can be defined in terms of constant Gen and Kill

$$f(x) = \mathsf{Gen} \cup (x - \mathsf{Kill})$$

- ▶ Lattices are powersets with partial orders as \subseteq or \supseteq relations
- ▶ Information is merged using \cap or \cup
- Flow functions in Faint Variables Analysis, Pointer Analyses, Constant Propagation, Possibly Uninitialized Variables cannot be expressed using constant Gen and Kill.
 - Local context alone is not sufficient to describe the effect of statements fully.

CS 618

The Set of Flow Functions

- F is the set of functions $f: L \mapsto L$ such that
 - F contains an identity function To model "empty" statements, i.e. statements which do not influence the data flow information
 - F is closed under composition Cumulative effect of statements should generate data flow information from the same set.
 - For every $x \in L$, there must be a finite set of flow functions $\{f_1, f_2, \dots f_m\} \subseteq F$ such that

$$x = \prod_{1 \le i \le m} f_i(BI)$$

- Properties of f
 - Monotonicity and Distributivity
 - ► Loop Closure Boundedness and Separability

Aug 2010

CS 618

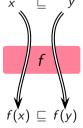
DFA Theory: Flow Functions

45/109

Monotonicity of Flow Functions

• Partial order is preserved: If x can be safely used in place of y then f(x) can be safely used in place of f(y)

$$\forall x, y \in L, x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$$



Alternative definition

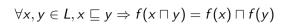
$$\forall x, y \in L, f(x \sqcap y) \sqsubseteq f(x) \sqcap f(y)$$

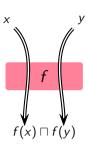
• Merging at intermediate points in shared segments of paths is safe (However, it may lead to imprecision).

Aug 2010

Distributivity of Flow Functions

Merging distributes over function application





 Merging at intermediate points in shared segments of paths does not lead to imprecision.

Aug 2010

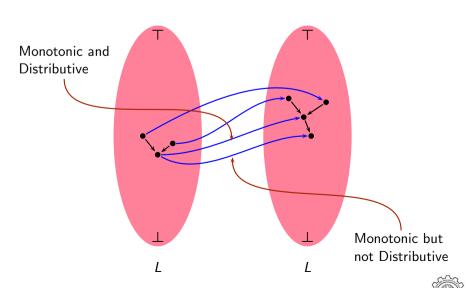
IIT Bombay

CS 618

DFA Theory: Flow Functions

47/109

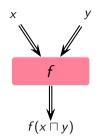
Monotonicity and Distributivity



Distributivity of Flow Functions

• Merging distributes over function application

$$\forall x, y \in L, x \sqsubseteq y \Rightarrow f(x \sqcap y) = f(x) \sqcap f(y)$$



• Merging at intermediate points in shared segments of paths does not lead to imprecision.

Aug 2010

CS 618

IIT Bombay

48/109

DFA Theory: Flow Functions Distributivity of Bit Vector Frameworks

$$f(x) = Gen \cup (x - Kill)$$

$$f(y) = \operatorname{Gen} \cup (y - \operatorname{Kill})$$

$$f(x \cup y) = \operatorname{Gen} \cup ((x \cup y) - \operatorname{Kill})$$

$$= \operatorname{Gen} \cup ((x - \operatorname{Kill}) \cup (y - \operatorname{Kill}))$$

$$= (\operatorname{Gen} \cup (x - \operatorname{Kill}) \cup \operatorname{Gen} \cup (y - \operatorname{Kill}))$$

$$= f(x) \cup f(y)$$

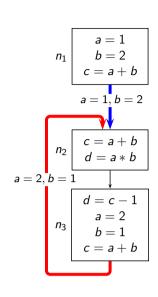
$$f(x \cap y) = \operatorname{Gen} \cup ((x \cap y) - \operatorname{Kill})$$

$$= \operatorname{Gen} \cup ((x - \operatorname{Kill}) \cap (y - \operatorname{Kill}))$$

$$= (\operatorname{Gen} \cup (x - \operatorname{Kill}) \cap \operatorname{Gen} \cup (y - \operatorname{Kill}))$$

$$= f(x) \cap f(y)$$

Non-Distributivity of Constant Propagation



- $x = \langle 1, 2, 3, ud \rangle$ (Along $Out_{n_1} \rightarrow In_{n_2}$)
- $y = \langle 2, 1, 3, 2 \rangle$ (Along $Out_{n_3} \rightarrow In_{n_2}$)
- Function application before merging

$$f(x) \sqcap f(y) = f(\langle 1, 2, 3, ud \rangle) \sqcap f(\langle 2, 1, 3, 2 \rangle)$$

= $\langle 1, 2, 3, 2 \rangle \sqcap \langle 2, 1, 3, 2 \rangle$
= $\langle \widehat{\perp}, \widehat{\perp}, 3, 2 \rangle$

• Function application after merging

$$f(x \sqcap y) = f(\langle 1, 2, 3, ud \rangle \sqcap \langle 2, 1, 3, 2 \rangle)$$

= $f(\langle \widehat{\perp}, \widehat{\perp}, 3, 2 \rangle)$
= $\langle \widehat{\perp}, \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$

• $f(x \sqcap y) \sqsubset f(x) \sqcap f(y)$

Aug 2010

CS 618

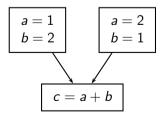
DFA Theory: Flow Functions

50/109

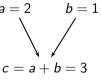
b=2

Why is Constant Propagation Non-Distribitive?

Possible combinations due to merging



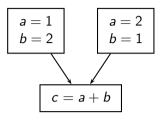
a = 1

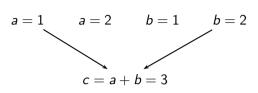


Correct combination.

Why is Constant Propagation Non-Distribitive?

Possible combinations due to merging





Correct combination.

Aug 2010

CS 618

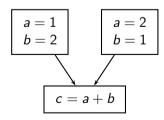
IIT Bombay

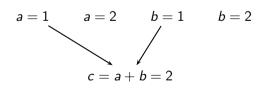
50/109

CS 618 DFA Theory: Flow Functions

Why is Constant Propagation Non-Distribitive?

Possible combinations due to merging



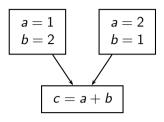


- Wrong combination.
- Mutually exclusive information.
- No execution path along which this information holds.

CS 618 DFA Theory: Flow Functions

Why is Constant Propagation Non-Distribitive?

Possible combinations due to merging



a = 1 a = 2 b = 1 b = 2 c = a + b = 4

- Wrong combination.
- Mutually exclusive information.
- No execution path along which this information holds.

Aug 2010

IT Bombay ⁽

50/109

CS 618

DFA Theory: Solutions of Data Flow Analysis

51/109

Solutions of Data Flow Analysis: An Outline of Our Discussion

- MoP and MFP assignments and their relationship
- Existence of MoP assignment
 - Boundedness of flow functions
- \bullet Existence and Computability of MFP assignment
 - ▶ Flow functions Vs. function computed by data flow equations
- Safety of MFP solution

Part 7

Solutions of Data Flow Analysis

CS 618

DFA Theory: Solutions of Data Flow Analysis

52/109

Solutions of Data Flow Analysis

- An assignment A associates data flow values with program points. $A \sqsubseteq B$ if for all program points p, $A(p) \sqsubseteq B(p)$
- Performing data flow analysis

Given

- ▶ A set of flow functions, a lattice, and merge operation
- ► A program flow graph with a mapping from nodes to flow functions

Find out

► An assignment A which is as exhaustive as possible and is safe

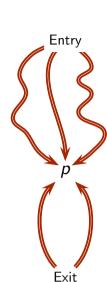
CS 618

Aug 2010

CS 618

Aug 2010

Meet Over Paths (MoP) Assignment



 The largest safe approximation of the information reaching a program point along all information flow paths.

$$MoP(p) = \prod_{\rho \in Paths(p)} f_{\rho}(BI)$$

- f_{ρ} represents the compositions of flow functions along ρ .
- ► *BI* refers to the relevant information from the calling context.
- ► All execution paths are considered potentially executable by ignoring the results of conditionals.
- Any $Info(p) \sqsubseteq MoP(p)$ is safe.

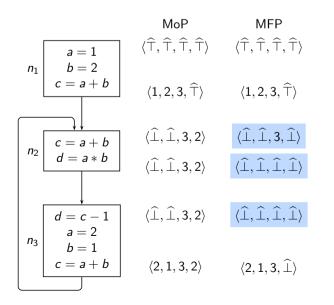
Aug 2010

CS 618

DFA Theory: Solutions of Data Flow Analysis

55/109

Assignments for Constant Propagation Example



Maximum Fixed Point (MFP) Assignment

• Difficulties in computing MoP assignment

Path based specification

- ► In the presence of cycles there are infinite paths

 If all paths need to be traversed ⇒ Undecidability
- ► Even if a program is acyclic, every conditional multiplies the number of paths by two
 If all paths need to be traversed ⇒ Intractability

• Why not merge information at intermediate points?

► Merging is safe but may lead to imprecision.

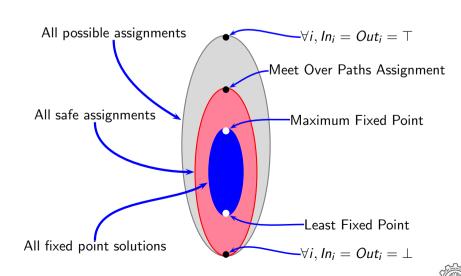
Edge based specifications

Computes fixed point solutions of data flow equations.

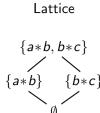
IIT Bombay

56/109

DFA Theory: Solutions of Data Flow Analysis Possible Assignments as Solutions of Data Flow Analyses



DFA Theory: Solutions of Data Flow Analysis Available Expr. Analysis Framework with Two Expressions



Consta	ant Functions	Dependent Functions		
f	f $f(x)$		f(x)	
$f_{ op}$	$\{a*b,b*c\}$	f_{id}	X	
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$	
f _a	$\{a*b\}$	f_d	$x \cup \{b*c\}$	
f_b	{b*c}	f_e	$x - \{a*b\}$	
		f_f	$x - \{b*c\}$	

Program

Flow Functions				
Node Flow Function				
1	$f_{ op}$			
2	f _{id}			

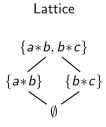
Some Possible Assignments									
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
In_1	00	00	00	00	00	00			
Out_1	11	00	11	11	11	11			
In ₂	11	00	00	10	01	01			
Out ₂	11	00	00	10	01	10			

Aug 2010

CS 618

DFA Theory: Solutions of Data Flow Analysis

Available Expr. Analysis Framework with Two Expressions



	Consta	ant Functions	Dependent Functions			
	f $f(x)$		f	f(x)		
	$f_{\top} \{a*b, b*c\}$		f_{id}	X		
	f_{\perp}	Ø	f_c	$x \cup \{a*b\}$		
 Not a fixed point assignment 		f_d	$x \cup \{b*c\}$			
		f_e	$x - \{a*b\}$			
			f_f	$x - \{b*c\}$		

Flow Functions					
Node	Flow Function				
1	$f_{ op}$				
2	f _{id}				

Some Possible Assignments								
A_1 A_2 A_3 A_4 A_5 A_6								
In ₁	00	00	00	00	00	00		
Out ₁	11	00	11	11	11	11		
In ₂	11	00	00	10	01	01		
Out_2	11	00	00	10	01	10		

DFA Theory: Solutions of Data Flow Analysis Available Expr. Analysis Framework with Two Expressions

robin iterative method: 11 f

Lattice $\{a*b,b*c\}$

		Consta	nt Functions	Depen	Dependent Functions				
		$f \qquad f(x)$		f	f(x)				
		$f_{ op}$	$\{a*b,b*c\}$	f _{id}	X				
•	M	laximun	n fixed point	c	$x \cup \{a*b\}$				
		ssignme	•	d	$x \cup \{b*c\}$				
		Ŭ	ion for round	- e	$x - \{a*b\}$				
•		ntianzat	lon for found	-	(1)				

Program

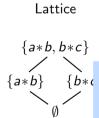
Flow F	unctions				
Node	Flow Function				
1	$f_{ op}$				
2	f _{id}				

Some Possible Assignments						
7	$-A_1$	A_2	A_3	A_4	A_5	A_6
In ₁	00	00	00	00	00	00
Out ₁	11	00	11	11	11	11
In ₂	11	00	00	10	01	01
Out ₂	11	00	00	10	01	10

Aug 2010

DFA Theory: Solutions of Data Flow Analysis

Available Expr. Analysis Framework with Two Expressions



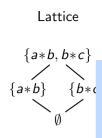
	Consta	ant Functions	Deper	ndent Functions		
	f $f(x)$		f	f(x)		
	$f_{ op}$	$\{a*b,b*c\}$	f _{id}	X		
N	1inimum	n fixed point	C	$x \cup \{a*b\}$		
		gnment	d	$x \cup \{b*c\}$		
lr	nitializat	ion for round	; e	$x - \{a*b\}$		
		ative method:	00 f	$x - \{b*c\}$		

Program

Flow Functions				
Node	Flow Function			
1	$f_{ op}$			
2	f _{id}			

Some Possible Assignments						
	/ 1	<u> </u>	-A ₃	A_4	A_5	A_6
In ₁	00	00	00	00	00	00
Out ₁	11	00	11	11	11	11
In ₂	11	00	00	10	01	01
Out ₂	11	00	00	10	01	10

Available Expr. Analysis Framework with Two Expressions



Consta	ant Functions	Dependent Functions		
f $f(x)$		f	f(x)	
$f_{\top} \{a*b,b*c\}$		fid	Х	

- Fixed point assignment $x \cup \{a*b\}$ which is neither maximum ; $x \cup \{b*c\}$ nor minimum $\{a*b\}$
- Initialization for round $x - \{b*c\}$ robin iterative method: 10

Flow Functions					
Node	Flow Function				
1	$f_{ op}$				
2	f _{id}				

Some Possible Assignments						
	A_1	Δ_2	A	$-A_4$	A_5	A_6
In ₁	00	00	00	00	00	00
Out_1	11	00	11	11	11	11
In ₂	11	00	00	10	01	01
Out_2	11	00	00	10	01	10

Aug 2010

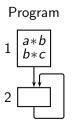
CS 618

DFA Theory: Solutions of Data Flow Analysis

Available Expr. Analysis Framework with Two Expressions

Lattice
$ \begin{cases} a*b, b*c \\ \\ \{a*b\} \qquad \{b*c\} \end{cases} $

	Consta	ant Functions	Dependent Functions		
	$\begin{array}{c c} f & f(x) \\ \hline f_{\top} & \{a*b, b*c\} \end{array}$		f	f(x)	
			f _{id}	X	
	f_{\perp}	Ø	f_c	$x \cup \{a*b\}$	
 Not a fixed point assignment 			f_d	$x \cup \{b*c\}$	
			f _e	$x - \{a*b\}$	
		l II	f_f	$x - \{b*c\}$	



Flow Functions				
Node Flow				
1	$f_{ op}$			
2	f_{id}			

Some Possible Assignments							
	$\Lambda_{\rm I}$	Λ	Λ,	<u>/\</u>	A	$-A_6$	
In ₁	00	00	00	00	00	00	
Out_1	11	00	11	11	11	11	
In ₂	11	00	00	10	01	01	
Out ₂	11	00	00	10	01	10	

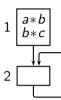
Available Expr. Analysis Framework with Two Expressions

Lattice $\{a*b,b*c\}$

Consta	ant Functions	Dependent Functions		
f	f(x)	f	f(x)	
	$\{a*b,b*c\}$		X	
ixed poi	int assignment	7	v \(\) 2 \(\) h \(\)	

- which is neither maximum $x \cup \{b*c\}$ nor minimum $\{a*b\}$
- Initialization for round robin iterative method: 01

Program	
---------	--



Flow Functions Node Flow Function $f = f = f = f = f$						
$\frac{Node}{1} \frac{Function}{f_\top}$	Flow Functions					
$1 \qquad f_{\top}$	Node					
•	1	$f_{ op}$				
$2 \qquad t_{id}$	2	f _{id}				

Some Possible Assignments						
	A_1	A_2	A_3	<u> </u>	-A ₅	A_6
In ₁	00	00	00	00	00	00
Out_1	11	00	11	11	11	11
In ₂	11	00	00	10	01	01
Out ₂	11	00	00	10	01	10

 $x - \{b*c\}$

Aug 2010

CS 618

DFA Theory: Solutions of Data Flow Analysis

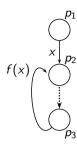
58/109

Existence of an MoP Assignment

$$\mathit{MoP}(p) = \prod_{
ho \in \mathit{Paths}(p)} f_{
ho}(\mathit{BI})$$

- If all paths reaching p are acyclic, then existence of solution trivially follows from the definition of the function space.
- If cyclic paths also reach p, then there are an infinite number of unbounded paths.
 - ⇒ Need to define loop closures.

Loop Closures of Flow Functions



Paths Terminating at p ₂	Data Flow Value
p_1, p_2	X
p_1, p_2, p_3, p_2	f(x)
$p_1, p_2, p_3, p_2, p_3, p_2$	$f(f(x)) = f^2(x)$
$p_1, p_2, p_3, p_2, p_3, p_2, p_3, p_2$	$f(f(f(x))) = f^3(x)$
	•••

• For static analysis we need to summarize the value at p_2 by a value which is safe after any iteration.

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap f^4(x) \sqcap \dots$$

• f^* is called the loop closure of f.

Aug 2010

CS 618

DFA Theory: Solutions of Data Flow Analysis

61/109

Bounded Loop Closures May not be Computable

• If f is not monotonic, the computation may not converge

X	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$	
1	0	1	0	1	

$$\Rightarrow f^*(x) = x \sqcap f(x) = 0$$
 Solution exists

 Iteratively computing the solution The values in the loop keep changing

DFA Theory: Solutions of Data Flow Analysis **Loop Closures in Bit Vector Frameworks**

• Flow functions in bit vector frameworks have constant Gen and Kill

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \dots$$

$$f^2(x) = f (Gen \cup (x - Kill))$$

$$= Gen \cup ((Gen \cup (x - Kill)) - Kill)$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup (Gen - Kill) \cup (x - Kill)$$

$$= Gen \cup (x - Kill) = f(x)$$

$$f^*(x) = x \sqcap f(x)$$

- Loop Closures of Bit Vector Frameworks are 2-bounded.
- Intuition: Since Gen and Kill are constant, same things are generated or killed in every application of f.

Multiple applications of f are not required unless the input value changes.

Aug 2010

CS 618

DFA Theory: Solutions of Data Flow Analysis

62/109

More on Loop Closure Boundedness

Boundedness of f requires the existence of some k such that

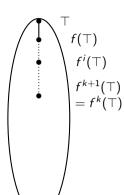
$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap \ldots \sqcap f^{k-1}(x)$$

Given, monotonic f, loop closures are bounded because of any of the following:

- $x \sqsubseteq f(x)$. All applications of f can be ignored
- $x \supseteq f(x)$. In this case, $x, f(x), f^2(x), \ldots$ follow a descending chain. If descending chains are bounded, loop closures are bounded.
- x and f(x) are incomparable. In this case $\prod_{j=0}^{n} f^{j}(x)$ follows a strictly descending chain. If descending chains are bounded, loop closures are bounded.

Existence and Computation of the Maximum Fixed Point

For monotonic $f: L \mapsto L$, if all descending chains are finite, then $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top)$, j < k.



- $\top \supset f(\top) \supset f^2(\top) \supset f^3(\top) \supset f^4(\top) \supset \dots$
- Since descending chains are finite, there must exist $f^k(\top)$ such that $f^{k+1}(\top) = f^k(\top)$ and $f^{j+1}(\top) \neq f^j(\top), j < k$.
- If p is a fixed point of f then $p \sqsubseteq f^k(\top)$ Proof strategy: Induction on i for $f^i(\top)$
 - ▶ Basis (i = 0): $p \sqsubseteq f^0(\top) = \top$.
 - ▶ Inductive Hypothesis: Assume that $f^i(\top) \supseteq p$.
 - $f(p) \subseteq f(f^i(\top))$ (f is monotonic) $\begin{array}{ccc}
 p & \sqsubseteq & f(f^i(\top)) & (f(p) = p) \\
 p & \sqsubseteq & f^{i+1}(\top)
 \end{array}$
- $\Rightarrow f^{k+1}(\top)$ is the MFP.

Aug 2010

CS 618

DFA Theory: Solutions of Data Flow Analysis

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

$$\begin{array}{rcl} \textit{In}_1 & = & \textit{f}_{\textit{In}_1}\big(\langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N\rangle\big) \\ \textit{Out}_1 & = & \textit{f}_{\textit{Out}_1}\big(\langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N\rangle\big) \\ \textit{In}_2 & = & \textit{f}_{\textit{In}_2}\big(\langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N\rangle\big) \\ \textit{Out}_2 & = & \textit{f}_{\textit{Out}_2}\big(\langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N\rangle\big) \\ & \cdots \\ \textit{In}_N & = & \textit{f}_{\textit{In}_N}\big(\langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N\rangle\big) \\ \textit{Out}_N & = & \textit{f}_{\textit{Out}_N}\big(\langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N\rangle\big) \end{array}$$

where each flow function is of the form $L \times L \times ... \times L \mapsto L$

Fixed Points Computation: Flow Functions Vs. Equations

Recall that

$$MFP(f) = f^{k+1}(\top) = f^k(\top)$$
 such that $f^{j+1}(\top) \neq f^j(\top)$, $j < k$.

- ▶ What is f in the above?
- ► Flow function of a block? Which block?
- Our method computes the maximum fixed point of data flow equations!
- What is the relation between the maximum fixed point of data flow equations and the MFP defined above?

Aug 2010

DFA Theory: Solutions of Data Flow Analysis

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

$$\langle In_1, Out_1, \dots, In_N, Out_N \rangle = \langle f_{In_1}(\langle In_1, Out_1, \dots, In_N, Out_N \rangle), f_{Out_1}(\langle In_1, Out_1, \dots, In_N, Out_N \rangle), \dots f_{In_N}(\langle In_1, Out_1, \dots, In_N, Out_N \rangle), f_{Out_N}(\langle In_1, Out_1, \dots,$$

where each flow function is of the form $L \times L \times ... \times L \mapsto L$

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

$$\mathcal{X} = \langle f_{In_1}(\mathcal{X}), f_{Out_1}(\mathcal{X}), \dots \\ f_{In_N}(\mathcal{X}), \dots \\ f_{In_N}(\mathcal{X}), f_{Out_N}(\mathcal{X}), \dots \rangle$$

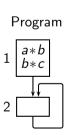
where $\mathcal{X} = \langle In_1, Out_1, \dots, In_N, Out_N \rangle$

Aug 2010

CS 618

DFA Theory: Solutions of Data Flow Analysis

Available Expr. Analysis Framework with Two Expressions



- Data Flow Equation $\mathcal{X} = \mathcal{F}(\mathcal{X})$ is $\mathcal{F}(\langle In_1, Out_1, In_2, Out_2 \rangle) = \langle 00, 11, Out_2, Out_2 \rangle$
- The maximum fixed point assignment is

$$\mathcal{F}(\langle 11,11,11,11\rangle)=\langle 00,11,11,11\rangle$$

• The minimum fixed point assignment is

$$\mathcal{F}(\langle 00,00,00,00 \rangle) = \langle 00,11,00,00 \rangle$$

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

$$\mathcal{X} = \mathcal{F}(\mathcal{X})$$

where
$$\mathcal{X} = \langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N \rangle$$

 $\mathcal{F}(\mathcal{X}) = \langle f_{\textit{In}_1}(\mathcal{X}), f_{\textit{Out}_1}(\mathcal{X}), \dots, f_{\textit{In}_N}(\mathcal{X}), f_{\textit{Out}_N}(\mathcal{X}) \rangle$

We compute the fixed points of function \mathcal{F} defined above

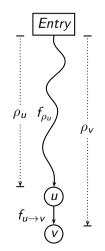
CS 618

Aug 2010

DFA Theory: Solutions of Data Flow Analysis

67/109

Safety of MFP Assignment: MFP ■ MoP



- $MoP(v) = \prod_{\rho \in Paths(v)} f_{\rho}(BI)$
- Proof Obligation: $\forall \rho_v \ MFP(v) \sqsubseteq f_{\rho_v}(BI)$
- Claim 1: $\forall u \rightarrow v, MFP(v) \sqsubseteq f_{u \rightarrow v} (MFP(u))$
- Proof Outline: Induction on path length Base case: Path of length 0.

MFP(Entry) = MoP(Entry) = BI

Inductive hypothesis: Assume it holds for paths consisting of k edges (say at u)

 $MFP(u) \sqsubseteq f_{\rho_u}(BI)$ (Inductive hypothesis) $MFP(v) \sqsubseteq f_{u \to v} (MFP(u))$ (Claim 1) \Rightarrow MFP(v) $\sqsubseteq f_{u \to v} (f_{\rho_u}(BI))$

 $\Rightarrow MFP(v) \sqsubseteq f_{\rho_v}(BI)$

Part 8

Performing Data Flow Analysis

CS 618

DFA Theory: Performing Data Flow Analysis

69/109

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (\top)

 Round Robin. Repeated traversals over nodes in a fixed order Termination: After values stabilise

+ Simplest to understand and implement

Our examples use this method.

- May perform unnecessary computations
- Work List. Dynamic list of nodes which need recomputation
 Termination: When the list becomes empty
 - + Demand driven. Avoid unnecessary computations.
 - Overheads of maintaining work list.

CS 618

DFA Theory: Performing Data Flow Analysis

68/109

Performing Data Flow Analysis

Algorithms for computing MFP solution

- Complexity of data flow analysis
- Factor affecting the complexity of data flow analysis

Aug 2010 IIT Bombay

CS 618

Aug 2010

DFA Theory: Performing Data Flow Analysis

70/100

Elimination Methods of Performing Data Flow Analysis

Delayed computations of dependent data flow values of dependent nodes. Find suitable single-entry regions.

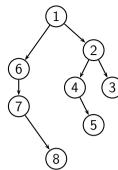
- Interval Based Analysis. Uses graph partitioning.
- T₁, T₂ Based Analysis. Uses graph parsing.

Aug 2010 IIT Bombay

Classification of Edges in a Graph

Graph G

A depth first spanning tree of G



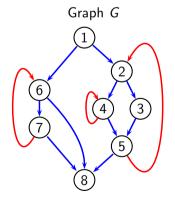
Aug 2010

CS 618

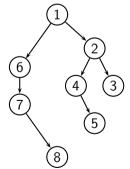
71/109

DFA Theory: Performing Data Flow Analysis

Classification of Edges in a Graph



Back edges Forward edges --> A depth first spanning tree of G

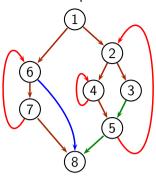


For data flow analysis, we club tree, forward, and cross edges into forward edges. Thus we have just forward or back edges in a control flow graph

Classification of Edges in a Graph

Graph G

A depth first spanning tree of G



Back edges Forward edges Tree edges Cross edges

Aug 2010

Aug 2010

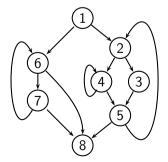
CS 618 **DFA Theory: Performing Data Flow Analysis** 72/109

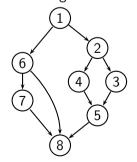
Reverse Post Order Traversal

• A reverse post order (rpo) is a topological sort of the graph obtained after removing back edges

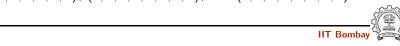
Graph G

G' obtained after removing back edges of G





• Some possible RPOs for G are: (1, 2, 3, 4, 5, 6, 7, 8), (1,6,7,2,3,4,5), (1,6,2,7,4,3,5,8), and (1,2,6,7,3,4,5,8)



Round Robin Iterative Algorithm

```
In_0 = BI
      for all j \neq 0 do
         In_i = \top
      change = true
      while change do
 6
      { change = false
         for j = 1 to N - 1 do
             temp = \prod_{p \in pred(j)} f_p(In_p)
 8
 9
            if temp \neq In_i then
             \{ In_i = temp \}
10
11
                change = true
12
13
14
```

- Computation of Out_j has been left implicit
 Works fine for unidirectional frameworks
- ⊤ is the identity of □ (line 3)
- Reverse postorder (rpo) traversal for efficiency (line 7)
- rpo traversal AND no loops
 ⇒ no need of initialization

Aug 2010

CS 618

DFA Theory: Performing Data Flow Analysis

75/109

Example C Program with d(G,T) = 2

```
c = a + b
    void fun(int m, int n)
                                                      n_1
                                        i = 0
 2
 3
        int i,j,a,b,c;
        c=a+b;
                                         if (i < m) | n_2 |
        i=0;
 6
        while(i<m)
                                                  = 0 | n_3
 8
              i=0;
 9
              while(j<n)
                                               if (j < n) \mid n_4
10
11
                 a=i+j;
12
                 j=j+1;
                                                     a = i + i
13
                                                     i = i + 1
14
              i=i+1;
15
                                         i = i + 1 | n_6
16
```

3+1 iterations for available expressions analysis

js js

Complexity of Round Robin Iterative Algorithm

- Unidirectional bit vector frameworks
 - ightharpoonup Construct a spaning tree T of G to identify postorder traversal
 - ► Traverse *G* in reverse postorder for forward problems and Traverse *G* in postorder for backward problems
 - ▶ Depth d(G, T): Maximum number of back edges in any acyclic path

Task	Number of iterations
First computation of In and Out	1
Convergence (until <i>change</i> remains true)	d(G,T)
Verifying convergence (change becomes false)	1

- What about bidirectional bit vector frameworks?
- What about other frameworks?

IIT Bombay

CS 618

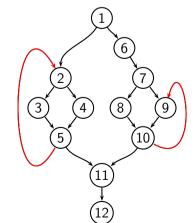
Aug 2010

DFA Theory: Performing Data Flow Analysis

76/109

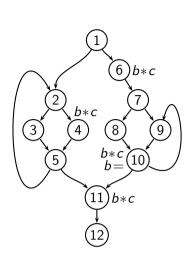
Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE



- Node numbers are in reverse post order
- Back edges in the graph are $n_5 \rightarrow n_2$ and $n_{10} \rightarrow n_9$.
- d(G, T) = 1
- Actual iterations : 5

Complexity of Bidirectional Bit Vector Frameworks



	Pairs of Out,In Values							
	Initia- lization		Changes in Iterations		Final values transformation			
	lization	#1	#2	#3	#4	#5	па	isioimation
	O,I	O,I	O,I	O,I	O,I	O,I	O,I	
12	0,1	0,0					0,0	
11	1,1	0,1			0,0		0,0	
10	1,1				0,1		0,1	Delete
9	1,1				1,0		1,0	Insert
8	1,1					1,0	1,0	Insert
7	1,1				0,0		0,0	
6	1,1	1,0			0,0		0,0	
5	1,1			0,0			0,0	
4	1,1			0,1	0,0		0,0	
3	1,1			0,0			0,0	
2	1,1		1,0	0,0			0,0	
1	1,1	0,0					0,0	

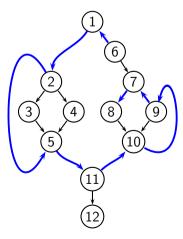
Aug 2010

CS 618

DFA Theory: Performing Data Flow Analysis

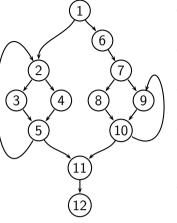
78/109

An Example of Information Flow in Our PRE Analysis



- PavIn₆ becomes 0 in the first itereation
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

An Example of Information Flow in Our PRE Analysis



- PavIn₆ becomes 0 in the first itereation
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

Aug 2010

CS 618

DFA Theory: Performing Data Flow Analysis

79/109

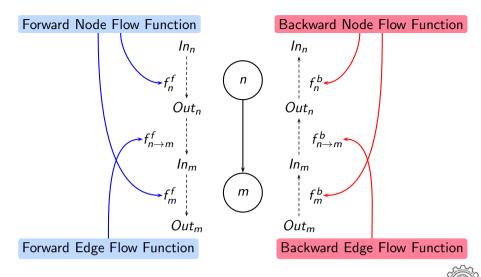
Information Flow and Information Flow Paths

- Default value at each program point: ⊤
- Information flow path

Sequence of adjacent program points along which data flow values change

- A change in the data flow at a program point could be
 - ► Generation of information Change from \top to a non- \top due to local effect (i.e. $f(\top) \neq \top$)
 - ▶ Propagation of information Change from x to y such that $y \sqsubseteq x$ due to global effect
- Information flow path (ifp) need not be a graph theoretic path

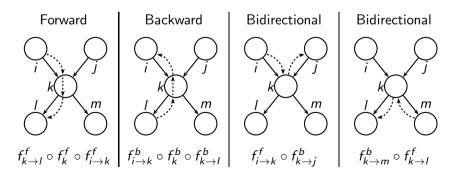
Edge and Node Flow Functions



Aug 2010

CS 618 **DFA Theory: Performing Data Flow Analysis**

Modelling Information Flows Using Edge and Node Flow **Functions**



General Data Flow Equations

$$In_{n} = \begin{cases} BI_{Start} & \sqcap f_{n}^{b}(Out_{n}) & n = Start \\ \left(\prod_{m \in pred(n)} f_{m \to n}^{f}(Out_{m})\right) & \sqcap f_{n}^{b}(Out_{n}) & \text{otherwise} \end{cases}$$

$$Out_{n} = \begin{cases} BI_{End} & \sqcap f_{n}^{f}(In_{n}) & n = End \\ \left(\prod_{m \in succ(n)} f_{m \to n}^{b}(In_{m})\right) & \sqcap f_{n}^{f}(In_{n}) & \text{otherwise} \end{cases}$$

• Edge flow functions are typically identity

$$\forall x \in L, f(x) = x$$

• If particular flows are absent, the correponding flow functions are

$$\forall x \in L, \ f(x) = \top$$

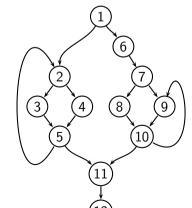
Aug 2010

CS 618

DFA Theory: Performing Data Flow Analysis CS 618

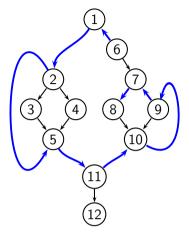
83/109

Information Flow Paths in PRE



- Information could flow along arbitrary paths
- Theoretically predicted number: 144
- Actual iterations : 5
- Not related to depth (1)

Information Flow Paths in PRE



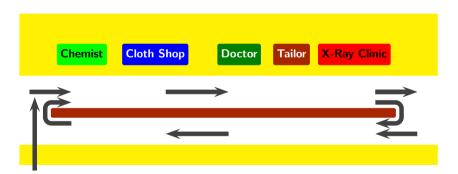
CS 618

- Information could flow along arbitrary paths
- Theoretically predicted number: 144
- Actual iterations : 5
- Not related to depth (1)

Aug 2010

CS 618 DFA Theory: Performing Data Flow Analysis 85/109

Complexity of Round Robin Iterative Method



Buy OTC (Over-The-Counter) medicine. No U-Turn 1 Trip

Buy cloth. Give it to the tailor for stitching. No U-Turn 1 Trip

Buy medicine with doctor's prescription. 2 Trips 1 U-Turn

• Buy medicine with doctor's prescription. 2 U-Turns 3 Trips The diagnosis requires X-Ray.

Lacuna with PRE Complexity

• Lacuna with PRE : Complexity $O(n^2)$ traversals.

Practical graphs may have upto 50 nodes.

▶ Predicted number of traversals : 2.500.

▶ Practical number of traversals : < 5.

- No explanation for about 14 years despite dozens of efforts.
- Not much experimentation with performing advanced optimizations involving bidirectional dependency.

Aug 2010

CS 618

CS 618

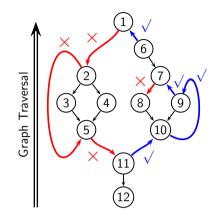
DFA Theory: Performing Data Flow Analysis

86/109

Information Flow Paths and Width of a Graph

- A traversal $u \rightarrow v$ in an ifp is
 - Compatible if u is visited before v in the chosen graph traversal
 - ▶ *Incompatible* if *u* is visited *after v* in the chosen graph traversal
- Every incompatible edge traversal requires one additional iteration
- Width of a program flow graph with respect to a data flow framework
 - Maximum number of incompatible traversals in any ifp, no part of which is bypassed
- \bullet Width + 1 iterations are sufficient to converge on MFP solution (1 additional iteration may be required for verifying convergence)

Complexity of Bidirectional Bit Vector Frameworks



- Every "incompatible" edge traversal ⇒ One additional graph traversal
- Max. Incompatible edge traversals = Width of the graph = 4
- Maximum number of traversals = 1 + Max. incompatible edge traversals4 = 5

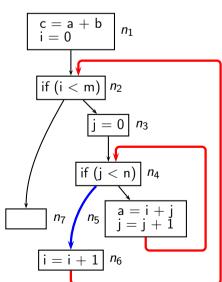
Aug 2010

CS 618

DFA Theory: Performing Data Flow Analysis

89/109

Width and Depth



Assuming reverse postorder traversal for available expressions analysis

- Depth = 2
- Information generation point n_5 kills expression "a + b"
- Information propagation path $n_5 \rightarrow n_4 \rightarrow n_5 \rightarrow n_2$ No Gen or Kill for "a + b" along this path
- Width = 2
- What about "i + 1"?
- Not available on entry to the loop

Width Subsumes Depth

- Depth is applicable only to unidirectional data flow frameworks
- Width is applicable to both unidirectional and bidirectional frameworks
- For a given graph, Width < Depth Width provides a tighter bound

CS 618

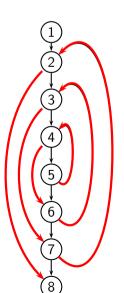
Aug 2010

CS 618

DFA Theory: Performing Data Flow Analysis

90/109

Width and Depth



Structures resulting from repeat-until loops with premature exits

- Depth = 3
- However, any unidirectional bit vector is guaranteed to converge in 2 + 1 iterations
- ifp $5 \rightarrow 4 \rightarrow 6$ is bypassed by the edge $5 \rightarrow 6$
- ifp $6 \rightarrow 3 \rightarrow 6$ is bypassed by the edge $6 \rightarrow 7$
- ifp $7 \rightarrow 2 \rightarrow 8$ is bypassed by the edge $7 \rightarrow 8$
- For forward unidirectional frameworks, width is 1
- Splitting the bypassing edges and inserting nodes along those edges increases the width

Work List Based Iterative Algorithm

Directly traverses information flow paths

Aug 2010

```
In_0 = BI
       for all j \neq 0 do
       \{ In_i = \top
          Add i to LIST
 5
 6
       while LIST is not empty do
          Let j be the first node in LIST. Remove it from LIST
                    \prod_{p \in pred(j)} f_p(In_p)
 8
          if temp \neq In_i then
          \{ In_i = temp \}
10
              Add all successors of j to LIST
11
12
13
```

Part 9

Precise Modelling of General Flows

Tutorial Problem

Perform work list based iterative analysis for earlier examples. Assume that the work list follows FIFO (First in First Out) policy.

Show the trace of the analysis in the folloing format:

CS 618

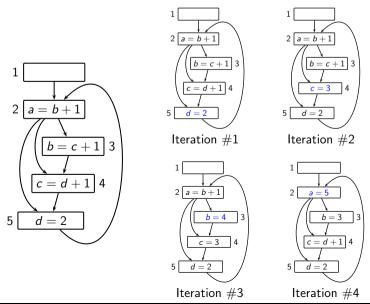
Aug 2010

CS 618

DFA Theory: Precise Modelling of General Flows

93/109

Complexity of Constant Propagation?



Larger Values of Loop Closure Bounds

• Fast Frameworks ≡ 2-bounded frameworks (eg. bit vector frameworks)

Both these conditions must be satisfied

- Separability Data flow values of different entities are independent
- Constant or Identity Flow Functions Flow functions for an entity are either constant or identity
- Non-fast frameworks At least one of the above conditions is violated

Aug 2010

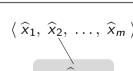
CS 618

DFA Theory: Precise Modelling of General Flows

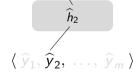
95/109

Separability

 $f: L \mapsto L$ is $\langle \widehat{h}_1, \widehat{h}_2, \dots, \widehat{h}_m \rangle$ where \widehat{h}_i computes the value of \widehat{x}_i



Separable



 $\widehat{h}: L \mapsto \widehat{L}$

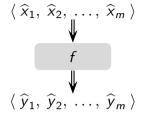
Non-Separable

Example: All bit vector frameworks

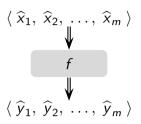
Example: Constant Propagation

Separability

 $f: L \mapsto L$ is $\langle \widehat{h}_1, \widehat{h}_2, \dots, \widehat{h}_m \rangle$ where \widehat{h}_i computes the value of \widehat{x}_i



Non-Separable



Example: All bit vector frameworks

Example: Constant Propagation

CS 618

Aug 2010

CS 618

DFA Theory: Precise Modelling of General Flows

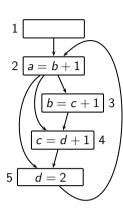
96/109

Separability of Bit Vector Frameworks

- \widehat{L} is $\{0,1\}$, L is $\{0,1\}^m$
- $\widehat{\top}$ and $\widehat{\bot}$ are 0 or 1 depending on $\widehat{\sqcap}$.
- \hat{h} is a bit function and could be one of the following:

Raise	Lower	Propagate	Negate					
Î Î	Î Î	$ \begin{array}{c} \widehat{\uparrow} & \widehat{\uparrow} \\ \widehat{\downarrow} & \widehat{\downarrow} \end{array} $	Î					
Non-monotonicity								

Larger Values of Loop Closure Bounds



Composite flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

f is not 2-bounded because:

$$f(\langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle) = \langle \widehat{T}, \widehat{T}, \widehat{T}, 2 \rangle$$

$$f^{2}(\langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle) = \langle \widehat{T}, \widehat{T}, 3, 2 \rangle$$

$$f^{3}(\langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle) = \langle \widehat{T}, 4, 3, 2 \rangle$$

$$f^{4}(\langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle) = \langle 5, 4, 3, 2 \rangle$$

$$f^{5}(\langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle) = \langle 5, 4, 3, 2 \rangle$$

Aug 2010

IT Bombay

Part 10

Extra Topics

Modelling Flow Functions for General Flows

General flow functions can be written as

$$f_n(X) = (X - Kill_n(X)) \cup Gen_n(X)$$

where Gen and Kill have constant and dependent parts

$$Gen_n(X) = ConstGen_n \cup DepGen_n(X)$$

 $Kill_n(X) = ConstKill_n \cup DepKill_n(X)$

- The dependent parts take care of
 - dependence across different entities as well as
 - ightharpoonup dependence on the value of the same entity in the argument X
- Bit vector frameworks are a special case

$$DepGen_n(X) = DepKill_n(X) = \emptyset$$

Aug 2010

CS 618

CS 618

DFA Theory: Extra Topics

99/109

Undecidability of Data Flow Analysis

- Reducing MPCP (Modified Post's Correspondence Problem) to constant propagation
- MPCP is known to be undecidable
- If an algorithm exists for detecting all constants
 - ⇒ MPCP would be decidable
- Since MPCP is undecidable
 - ⇒ There does not exist an algorithm for detecting all constants
 - ⇒ Static analysis is undecidable

Aug 2010

IIT Bombay

Post's Correspondence Problem (PCP)

• Given strings $u_i, v_i \in \Sigma^+$ for some alphabet Σ , and two k-tuples,

$$U = (u_1, u_2, \dots, u_k)$$

$$V = (v_1, v_2, \dots, v_k)$$

Is there a sequence i_1, i_2, \dots, i_m of one or more integers such that

$$u_{i_1}u_{i_2}\ldots u_{i_m}=v_{i_1}v_{i_2}\ldots v_{i_m}$$

• For U = (101, 11, 100) and V = (01, 1, 11001) the solution is 2, 3, 2.

$$u_2u_3u_2 = 1110011$$

 $v_2v_3v_2 = 1110011$

• For U = (1, 10111, 10), V = (111, 10, 0), the solution is 2, 1, 1, 3.

Modified Post's Correspondence Problem (MPCP)

• The first string in the correspondence relation should be the first string from the *k*-tuple.

$$u_1u_{i_1}u_{i_2}\ldots u_m=v_1v_{i_1}v_{i_2}\ldots v_{i_m}$$

• For U = (11, 1, 0111, 10), V = (1, 111, 10, 0), the solution is 3, 2, 2, 4.

$$u_1 u_3 u_2 u_2 u_4 = 11011111110$$

 $v_1 v_3 v_2 v_2 v_4 = 11011111110$

Aug 2010 IIT Bombay

CS 618 DFA Theory: Extra Topics

102/109

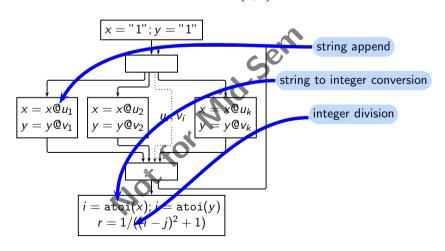
Aug 2010

CS 618

Aug 2010

Hecht's MPCP to Constant Propagation Reduction

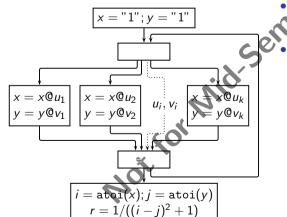
Given: An instance of MPCP with $\Sigma = \{0, 1\}$.



102/109

DFA Theory: Extra Topics Hecht's MPCP to Constant Propagation Reduction

Given: An instance of MPCP with $\Sigma = \{0, 1\}$.



- $i == j \Rightarrow r = 1$ • $i == j \Rightarrow r = 0$
- If there exists an algorithm which can determine that
 - ► r = 1 along some path $\Rightarrow x == y$
 - ⇒ MPCP instance has a solution
 - ightharpoonup r = 0 along every path
 - $\Rightarrow x != y$
 - ⇒ MPCP instance does not have a solution
 - ⇒ MPCP is decidable

MPCP is not decidable ⇒ Constant Propagation is not decidable

Aug 2010 IIT Bombay

IIT Romb

CS 618

DFA Theory: Extra Topics Tarski's Fixed Point Theorem

Given monotonic $f: L \mapsto L$ where L is a complete lattice

Define

$$p$$
 is a fixed point of f : $Fix(f) = \{p \mid f(p) = p\}$
 f is reductive at p : $Red(f) = \{p \mid f(p) \sqsubseteq p\}$
 f is extensive at p : $Ext(f) = \{p \mid f(p) \supseteq p\}$

Then

$$\mathit{LFP}(f) = \bigcap \mathit{Red}(f) \in \mathit{Fix}(f)$$

 $\mathit{MFP}(f) = \bigcup \mathit{Ext}(f) \in \mathit{Fix}(f)$

Guarantees only existence, not computability of fixed points.

Aug 2010

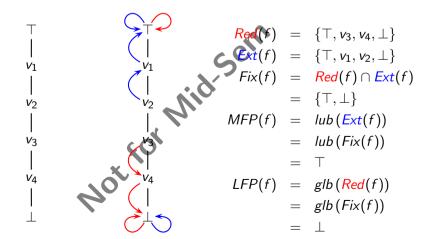
CS 618

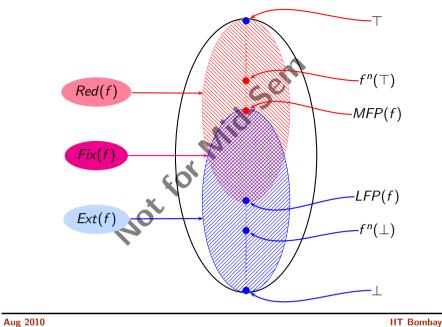
DFA Theory: Extra Topics

105/109

Examples of Reductive and Extensive Sets

Finite *L* Monotonic $f: L \mapsto L$



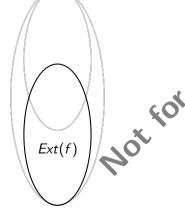


CS 618 DFA Theory: Extra Topics

106/109

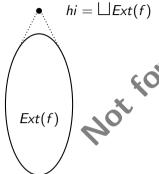
Existence of MFP: Proof of Tarski's Fixed Point Theorem

- 1. Claim 1: Let $X \subseteq L$. $\forall x \in X, \ p \supseteq x \Rightarrow p \supseteq \bigsqcup(X)$.
- 2. In the following we use Ext(f) as X.



DFA Theory: Extra Topics Existence of MFP: Proof of Tarski's Fixed Point Theorem

- 1. Claim 1: Let $X \subseteq L$. $\forall x \in X, \ p \supset x \Rightarrow p \supset \bigsqcup(X).$
- 2. In the following we use Ext(f) as X.
- 3. $\forall p \in Ext(f)$, $hi \supset p$



Aug 2010

CS 618

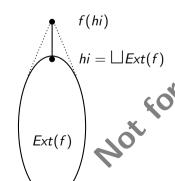
DFA Theory: Extra Topics

Existence of MFP: Proof of Tarski's Fixed Point Theorem

- 1. Claim 1: Let $X \subseteq L$. $\forall x \in X, \ p \supseteq x \Rightarrow p \supseteq \bigsqcup(X).$
- 2. In the following we use Ext(f) as X.
- 3. $\forall p \in Ext(f)$, $hi \supseteq p$

 $f(hi) \supseteq f(p) \supseteq p \text{ (monotonicity)}$

f is extensive at hi also: $hi \in Ext(f)$



Existence of MFP: Proof of Tarski's Fixed Point Theorem

- 1. Claim 1: Let $X \subseteq L$. $\forall x \in X, \ p \supseteq x \Rightarrow p \supseteq \bigsqcup(X).$
- 2. In the following we use Ext(f) as X.
- 3. $\forall p \in Ext(f)$, $hi \supseteq p$

 $f(hi) \supseteq f(p) \supseteq p \text{ (monotonicity)}$ (claim 1)

Aug 2010

Ext(f)

CS 618

f(hi)

 $hi = \bigsqcup Ext(f)$

hi = f(hi)

CS 618 **DFA Theory: Extra Topics**

Existence of MFP: Proof of Tarski's Fixed Point Theorem

- 1. Claim 1: Let $X \subseteq L$. $\forall x \in X, \ p \supseteq x \Rightarrow p \supseteq \bigsqcup(X).$
- 2. In the following we use Ext(f) as X.
- 3. $\forall p \in Ext(f)$, $hi \supset p$
- 4. hi ⊒ p

 $f(hi) \supseteq f(p) \supseteq p$ (monotonicity) (claim 1)

- f is extensive at hi also: $hi \in Ext(f)$
- $f(hi) \supseteq hi \Rightarrow f^2(hi) \supseteq f(hi)$ (from 3) $\Rightarrow hi = f(hi) \Rightarrow hi \in Fix(f)$
- (by definition) 7. $Fix(f) \subseteq Ext(f)$ \Rightarrow hi $\supseteq p$, $\forall p \in Fix(f)$

Aug 2010

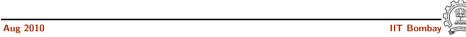
Aug 2010

Ext(f)

CS 618 DFA Theory: Extra Topics 107/109

Existence and Computation of the Maximum Fixed Point

- For monotonic $f: L \mapsto L$
 - Existence: $MFP(f) = \bigsqcup Ext(f) \in Fx(f)$ Requires L to be complete.
 - ▶ Computation: $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top)$, j < k. Requires all *strictly descending* chains to be finite.
- Finite strictly descending and ascending chains
 - ⇒ Completeness of lattice
- ⇒ Even if MFP exists, it may not be reachable unless all strictly descending chains are finite.

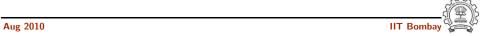


CS 618 DFA Theory: Extra Topics 109/109

Complexity of Round Robin Iterative Algorithm

• Unidirectional rapid frameworks

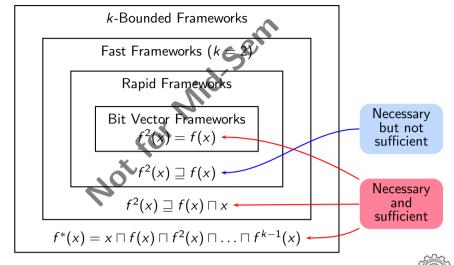
Task	Number of iterations	
	Irreducible <i>G</i>	Reducible <i>G</i>
Initialisation	1	1
Convergence (until <i>change</i> remains true)	d(G,T)+1	d(G,T)
Verifying convergence (change becomes false)	1	1



CS 618 DFA Theory: Extra Topics 108/109

Framework Properties Influencing Complexity

Depends on the loop closure properties of the framework



Aug 2010 IIT Bombay