GCC Internals: A Conceptual View — Part |

Abhijat Vichare

CFDVS,
Indian Institute of Technology, Bombay

January 2008

A.Vichare GCC Internals

PArT I
@ GCC: Conceptual Structure
@ C Program through GCC
@ Building GCC

Part 11
@ Gimple
@ The MD-RTL and IR-RTL Languages in GCC
@ GCC Machine Descriptions

A.Vichare GCC Internals

Part |

GCC Architecture Concepts

A.Vichare GCC Internals

The GNU Tool Chain

Source Program

|

gcc

|

Target Program

A.Vichare GCC Internals

The GNU Tool Chain

Source Program

|

gcc

|

/

Target Program

A.Vichare

ccl

GCC Internals

The GNU Tool Chain

Source Program

|

gcc

|

/

Target Program

A.Vichare

ccl

cpp

GCC Internals

The GNU Tool Chain

Source Program

|

gcc

|

/

Target Program

A.Vichare

ccl

cpp

as

GCC Internals

The GNU Tool Chain

Source Program

|

gcc

|

/
\

Target Program

A.Vichare

ccl

cpp

as

GCC Internals

The GNU Tool Chain

Source Program

|

gcc

|

/
\

Target Program

A.Vichare

ccl > cpp
as
glibc/newlib
—
Id

GCC Internals

The GNU Tool Chain

Source Program

|

ccl D S cpp
gec —> as GCC
\ glibc/newlib
—
Id

|

Target Program

A.Vichare GCC Internals

Usual Compilation Phase Sequence vs. GCC

A Typical “Text Book” Compiler Phase Sequence

Semantic Target
Parsing ; Optimization Code
Analysis i

Generation

A.Vichare GCC Internals

Usual Compilation Phase Sequence vs. GCC

A Typical “Text Book” Compiler Phase Sequence

Semantic Target
Parsing ; Optimization Code
Analysis i

Generation

@ Retargetable: Can generate code for many back ends

@ Re-sourcable: Can accept code in many HLLs

A.Vichare GCC Internals

Usual Compilation Phase Sequence vs. GCC

A Typical “Text Book” Compiler Phase Sequence

Semantic Target
Parsing ; Optimization Code
Analysis i

Generation

4

The GCC Phase Sequence looks like

. Target
. Semantic AP
Parsing . Optimization Code
Analysis G i
eneration

GCC is:
@ Retargetable: Can generate code for many back ends

@ Re-sourcable: Can accept code in many HLLs

A.Vichare GCC Internals

Usual Compilation Phase Sequence vs. GCC

A Typical “Text Book” Compiler Phase Sequence

. Semantic R Target
Parsing ; Optimization Code
Analysis i

Generation

Add HLL
selection
ability

Add back end
Code Gen.
ability

Parametrise
wrt. front and
back end

lise Sequency

\-> Parsin Semantic Optimization —Ié"iet
& Analysis P ode

Generation

GCC is:
@ Retargetable: Can generate code for many back ends

@ Re-sourcable: Can accept code in many HLLs

A.Vichare GCC Internals

Implications of Retargetability in GCC

Retargetability

Choose target at | build time| than at | development time|

: there are THREE time durations associated with GCC

Q tdevelop: The Development time (the “gcc developer” view)
Q tpuitg: The Build time (the “"gcc builder” view)

© top: The Operation time (the “gcc user” view)

The downloaded GCC sources . ..

... correspond to the “gcc developer” view, and
... are ready for “gcc builder” view.

A.Vichare GCC Internals

The GCC Compiler Generation Framework

GCC

Language and :
HLL Specific Machine Machine Set of Machine

Code, per HLL Independent et Descriptions
Generic Code

tdev

Generator Code

ccl/gec

A.Vichare GCC Internals

The GCC Compiler Generation Framework

Choose HLL
GCC
v
Language and Machi
HLL Specific Machine achine Set of Machine

Code, per HLL

Independent
Generic Code

dependent
Generator Code

Descriptions

/

Selected

/

Y

| Parser I

ccl/gec

A.Vichare

GCC Internals

tdev

huild

The GCC Compiler Generation Framework

Choose HLL
GCC
v
Language and Machi
HLL Specific Machine achine Set of Machine

tdev

dependent

Code, per HLL Independent Descriptions

Generic Code

/ |1 U

Selected Copied

/ huild

Generator Code

A A A = Y
Parser | | Genericizer | | Gimplifier U7z S Optimizer
[Parser | | I

Optimizer

ccl/gec

A.Vichare GCC Internals

The GCC Compiler Generation Framework

Choose HLL

GCC

Choose Target MD

v

Language and
HLL Specific Machine
Code, per HLL Independent
Generic Code

Machine

dependent
Generator Code

4

v

Set of Machine
Descriptions

/ |1 U

S~

I

Selected Copied Generated \
N A A = Y
— — Tree SSA RTL —— Code
P lif - | I
| arser | I Genenazerl I Gimplifier Optimizer || Generator Optimizer Generator
ccl/gec

A.Vichare

GCC Internals

tdev

huild

The GCC Compiler Generation Framework

GCC

Language and :
HLL Specific Machine Machine Set of Machine

Code, per HLL Independent et Descriptions
. Generator Code
Generic Code

tdev

— — Tree SSA RTL — Code
Parser | | Genericizer | | Gimplifier e Optimizer t,
l II == ” e Optimizer || Generator Generator op

I ccl/gec
Source Program Assembly Program

A.Vichare GCC Internals

Is GCC complex?

As a Compiler ...

@ ... Architecture? — Not quite!

® ... Implementation? — Very much!

ARCHITECTURE WISE:
@ Superficially: GCC is similar to “typical” compilers!

© Deeper down: Differences are due to: Retargetability

= GCC can be (and is) used as a Cross Compiler !

IMPLEMENTATION WISE: ... ? (Next slides)

A.Vichare GCC Internals

Some Interesting Facts about GCC 4.0.2

Pristine compiler sources (downloaded tarball)

Lines of C code 1098306
Lines of MD code 217888
Lines of total code 1316194
Total Authors (approx) 63
Backend directories 34

A\

For the targetted (= pristine + generated) C compiler

Total lines of code 810827
Total lines of pure code 606980
Total pure code WITHOUT #include 602351
Total number of #include directives 4629
Total #include files 336

'

A.Vichare GCC Internals

Some Interesting i386 MD Facts

General information

Number of .md files 8
Number of C files 72

Realistic code size information (excludes comments)

Total lines of code 47290
Total lines of .md code 23566
Total lines of header code 9986
Total lines of C code 16961

A.Vichare GCC Internals

Part 1l

C Program through GCC

C Program: Journey through GCC

Practically ...

The Source
int f(ch *
Conceptually zn (char +a)
Input int n = 10; int i, g;
i=0;

while (i < n) {
alfi] = g x i + 3;
i=1i+1;

) }
return i;

}

A.Vichare GCC Internals

C Program: Journey through GCC

Practically ...

Simplified AST

Conceptually @
Input BOdy

Parse (AST) } @ ? t
|

@ modify_expr

’
NCEC

l
I
v v

ot

A.Vichare GCC Internals

C Program: Journey through GCC

Practically ...

Gimple IR
f ()
Conceptually {
| t unsigned int i.0; char * i.1;
npu char * D.1140; int D.1141;
Parse (AST) e
IR, (Ginuﬂe) goto <D1136>;
<D1135>:
D.1140 = a + i.1;
D.1141 = g * i;
> <D1136>:

if (i < n) goto <D1135>;

ot

A.Vichare GCC Internals

C Program: Journey through GCC

Practically ...

Tree SSA form
f (a)
Conceptually {
| ... int D.1144;
nput <bb 0>: n_2 = 10; i_3 = 0;
Parse (AST) goto <bb 2> (<L1>);
IRy (Gimple <LO>:
! _(s) D.1140 9 = a_8 + i.1_7;
Optimization D.1141_11 = g_10 * i_1;
<L1>:;
D if (i_1 < n_2) goto <LO>;
else ...;
}

ot

A.Vichare GCC Internals

C Program: Journey through GCC

Conceptually

Input

Parse (AST)
IR; (Gimple)
Optimization
IR (RTL)

A.Vichare GCC Internals

Practically ...
RTL IR (fragment)

(insn 21 20 22 2 (parallel [
(set (reg:SI 61 [D.1141 1)
(mult:SI (reg:SI 66)
(mem/i:SI
(plus:SI
(reg/f:SI 54 ...)
(const_int -8 ...)))))
(clobber (reg:CC 17 flags))
1D -1 (@il
(nil))

C Program: Journey through GCC

Practically ...

Final ASM (partial)

Conceptually .file "sample.c"

Input "
Parse (AST) pushl %ebp
IR; (Gimple) o
Obtimizati movl -4(%ebp), heax
ptimization imull -8(%ebp), %eax

IR, (RTL) addb $3, %al
ASM Code T

leave

ret

ot

A.Vichare GCC Internals

Front End Processing Sequence in ccl and GCC (2:1:5)

toplev_main () toplev.c
general_init () toplev.c
decode_options () toplev.c
do_compile () toplev.c
compile_file() toplev.c
lang_hooks.parse_file () toplev.c
c_parse_file () c-parser.c
c_parser_translation_unit () c-parser.c
c_parser_external _declaration () c-parser.c
c_parser_declaration_or_fndef () c-parser.c
finish_function () c-decl.c

/* TO: Gimplification */

'

Use the functions above as breakpoints in gdb on cc1.

A.Vichare GCC Internals

GIMPLE Phase sequence in ccl and GCC (2:1:10)

Creating GIMPLE representation in cc1 and GCC

c_genericize() c-gimplify.c
gimplify_function_tree() gimplify.c
gimplify_body () gimplify.c
gimplify_stmt () gimplify.c
gimplify_expr() gimplify.c

lang_hooks.callgraph.expand_function()
tree_rest_of_compilation() tree-optimize.c
tree_register_cfg_hooks() cfghooks.c
execute_pass_list () passes.c

/* TO: Gimple Optimisations passes */

A.Vichare GCC Internals

The Tree passes list

(Partial) Passes list (tree-optimize.c) (~ 70 passes)

pass_remove_useless_stmts // Pass
pass_lower_cf // Pass
pass_all_optimizations // Optimiser
pass_build_ssa // Optimiser
pass_dce // Optimiser
pass_loop // Optimiser
pass_complete_unroll // Optimiser
pass_loop_done // Optimiser
pass_del_ssa // Optimiser
pass_warn_function_return // Optimiser
pass_expand // RTL Expander
pass_rest_of_compilation // RTL passes

A.Vichare GCC Internals

GCC Tree Passes: Code organisation

Tree Pass Organisation

@ Data structure records pass info: name, function to execute
etc. (struct tree_opt_pass in tree-pass.h)

@ Instantiate a struct tree_opt_pass variable in each pass
file.

@ List the pass variables (in passes.c).

Dead Code Elimination (tree-ssa-dce.c)

struct tree_opt_pass pass_dce = {

"dce", // pass name
tree_ssa_dce, // fn to execute
NULL, // sub passes

// and much more

};

A.Vichare GCC Internals

A\

'

RTL Pass Structure in cc1 and GCC

@ Gimple — non-strict RTL translation

@ non-strict RTL passes — information extraction &
optimisations

@ non-strict — strict RTL passes

/* non strict RTL expander pass */

pass_expand_cfg cfgexpand.c
expand_gimple_basic_block () cfgexpand.c
expand_expr_stmt () stmt.c
expand_expr () stmt.c

/* TO: non strict RTL passes:
* pass_rest_of_compilation

*/

A.Vichare GCC Internals

RTL Passes

(]

Driver: passes.c:rest_of_compilation ()

(]

Basic Structure: Sequence of calls to
rest_of _handle_* () + bookkeeping calls. (over 40 calls!)

(]

Bulk of generated code used herel!
(generated code in: $GCCBUILDDIR/gcc/*. [chl)
Goals:

o Optimise RTL
o Complete the non strict RTL

(]

(7]

Manipulate
@ either the list of RTL representation of input,
o or contents of an RTL expression,
o or both.

(]

Finally: call rest of handle final ()

A.Vichare GCC Internals

RTL — Target ASM

passes.c:rest_of handle final() calls

assemble_start_function (); varasm.c
final_start_function (); final.c
final (); final.c
final_end_function (); final.c
assemble_end_function (); varasm.c

A.Vichare GCC Internals

Part Il

Building GCC

A.Vichare GCC Internals

Building a Compiler: General issues |

Some Terminology

@ The sources of a compiler are compiled (i.e. built) on machine
X
X is called as the Build system

@ The built compiler runs on machine Y
Y is called as the Host system

@ The compiler compiles code for target Z
Z is called as the Target system

@ Note: The built compiler itself runs on the Host machine and
generates executables that run on Target machine!!!

A.Vichare GCC Internals

Building a Compiler: General issues Il

Some Definitions

Note: The built compiler itself runs on the Host machine and
generates executables that run on Target machine!!!

A few interesting permutations of X, Y and Z are:
X=Y=Z Native build

X=Y+#1Z Cross compiler

X#£EY #£Z Canadian Cross compiler

Example

Native i386: built on i386, hosted on i386, produces i386 code.
Sparc cross on i386: built on i386, hosted on 1386, produces Sparc
code.

A.Vichare GCC Internals

Building a Compiler:

Bootstrapping

A compiler is just another program
It is improved, bugs are fixed and newer versions are released

To build a new version given a built old version:

© Stage 1: Build the new compiler using the old compiler
@ Stage 2: Build another new compiler using compiler from

stage 1
© Stage 3: Build another new compiler using compiler from

stage 2
Stage 2 and stage 3 builds must result in identical compilers

= Building cross compilers stops after Stage 1!

A.Vichare GCC Internals

GCC Code Organization Overview (1:1:11)

GCC Components are:

@ Build configuration files

@ Compiler sources
@ Emulation libraries

@ Language Libraries (except C)

@ Support software (e.g. garbage collector)

Our conventions

GCC source directory : $(GCCHOME)
GCC build directory : $(GCCBUILDDIR)
GCC install directory : $(GCCINSTALLDIR)
$ (GCCHOME) # $(GCCBUILDDIR) # $(GCCINSTALLDIR)

A.Vichare GCC Internals

The GCC Build System | (1:1:16)

Some Information

@ Build-Host-Target systems inferred for native builds

@ Specify Target system for cross builds
Build = Host systems: inferred

@ Build-Host-Target systems can be explicitly specified too
@ For GCC: A "system” = three entities

o “cpu”
e “vendor”
o “os"

e.g. sparc-sun-sunos, i386-unknown-linux,
i386-gcc-linux

A.Vichare GCC Internals

The GCC Build System |l (1:1:17,19)

Basic GCC Building How To
o prompt$ cd $GCCBUILDDIR
@ prompt$ configure <options>

@ Specify target: optional for native builds, necessary for others
(option ——target=<host-cpu-vendor string>)
o Choose source languages
(option ——enable-languages=<CSV lang list (c,java))
o Specify the installation directory
(option —-prefix=<absolute path of $(GCCBUILDDIR)>)
= configure output: customized Makefile

@ prompt$ make 2> make.err > make.log
@ prompt$ make install 2> install.err > install.log
ot
e Run configure in $(GCCBUILDDIR).
e See $(GCCHOME) /INSTALL/.

>

A.Vichare GCC Internals

Adding a New MD (1:1:18)

To add a new backend to GCC

@ Define a new system name, typically a triple.

e.g. spim-gnu-linux
@ Edit $GCCHOME/config.sub to recognize the triple
o Edit $GCCHOME/gcc/config.gece to define

¢ any backend specific variables

o any backend specific files

o $GCCHOME/gcc/config/<cpu> is used as the backend
directory

for recognized system names.

Read comments in $GCCHOME/config.sub &
$GCCHOME/gcc/config/<cpu>.

A.Vichare GCC Internals

The GCC Build Process | (1:1:20)

GCC builds in two main phases:

@ Adapt the compiler source for the specified build/host/target
systems
Consider a cross compiler:
o Find the target MD in the source tree
@ “Include” MD info into the sources
(details follow)

@ Compile the adapted sources
o NOTE:

@ Incomplete MD specifications = Unsuccessful build
@ Incorrect MD specification = Run time failures/crashes
(either ICE or SIGSEGV)

A.Vichare GCC Internals

The GCC Build Process (1:1:21)

Adapting the Compiler Sources

@ make first compiles and runs a series of programs that process
the target MD
@ Typically, the program source file names are prefixed with gen
@ The $GCCHOME/gcc/gen*. c programs
@ read the target MD files, and
@ extract info to create & populate the main GCC data
structures

Consider genconstants. c:

o <target>.md may define UNSPEC_* constants.
o genconstants.c — reads UNSPEC_* constants
¢ genconstants.c — generates corresponding #defines

@ Collect then into the insn-constants.h

o #include "insn-constants.h" in the main GCC sources

A.Vichare GCC Internals

The GCC Build Process

Adapting the Compiler Sources — Pictorial view

GCC Sources

Target Compiler
Source Generation

Target Compiler
Data Structures

‘
|

\ print-rtll.c
| errors.c
i bitmap.c

=

I
h

A.Vicha GCC Internals

genconditions——=1

] |
|
:

1
genconstants ——

genflags jb‘—ﬂ‘ ‘
L |

genconfig

gencodes fv—h‘
genattr %’1
genemit F&—J

i
genextract i—l—w‘

genopinit [

genpeep —

struct c_test insn_conditions[],
size_t n_insn_conditions

GCC_INSN_CONSTANTS_H

,

|

d

insn—conditions.¢]
)

insn—constants./

HAVE_(md instructions)

enum insn_code {
CODE_FOR_(md inst)= ..

s

HAVE_ATTR_(md_inst_attribs)

RTX exmission functions
for every insn in MD file

Extract operands of RTL
instructions in MD file

|
j
insn—flags.h : 3
insn—config.h 3 3
insn—codes.h : i
insn—attr.h ;/V‘
|
insn—emit.c 144
insn—extract.c \
insn—opinit.c :
insn-peep.c

Writes a function that initialises
an array with the code for
each insn/expand in MD file

Extract peephole optimisation
information in MD files

Building GCC — Summary

@ Choose the source language: C
(--enable-languages=c)

@ Choose installation directory:
(--prefix=<absolute path>)

Choose the target for non native builds:
(--target=sparc-sunos-sun)

Run: configure with above choices

Run: make to

o generate target specific part of the compiler
o build the entire compiler

(]

Run: make install to install the compiler

(]

Redirect all the outputs:
$ make > make.log 2> make.err

A.Vichare GCC Internals

	GCC Architecture Concepts
	C Program through GCC
	Building GCC

