
Major Research Initiatives in GCC
Resource Center

Uday Khedker

(www.cse.iitb.ac.in/̃ uday)

GCC Resource Center,
Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

Oct 2008



Part 1

Introduction



Oct’08 GRC: Introduction 1/27

Broad objectives

Theoretical research supported by empirical evidence

• Exploring research issues in real compilers

• Demonstrating the relevance and effectiveness (of our explorations) in real
compilers

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Introduction 2/27

Broad Areas of Interests

• Program Analysis and Optimization

• Translation Validation

• Retargetable compilation

• Parallelization and Vectorization for SIMD and MIMD Architectures

General explorations applied in the context of GCC

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Introduction 3/27

Examples of Research Commitments

• Interprocedural data flow analysis

• Heap reference analysis

• Static inferencing of flow sensitive polymorphic types

• Translation validation of GCC generated code

• Increasing trustworthiness of GCC

◮ Cleaner machine descriptions for GCC
◮ Generating GCC optimizers from specifications

Research in GCC Resource Center Uday Khedker, IIT Bombay



Part 2

Interprocedural Data Flow Analysis



Oct’08 GRC: Interprocedural Data Flow Analysis 4/27

Interprocedural Data Flow Analysis [CC2008]

• Objectives:

• Main Challenge:

• The State of Art:

• Our Breakthrough:

• The Consequences:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 4/27

Interprocedural Data Flow Analysis [CC2008]

• Objectives: Optimizations across procedure boundaries to incorporate

◮ the effects of procedure calls in the caller procedures, and
◮ the effects of calling contexts in the callee procedures.

• Main Challenge:

• The State of Art:

• Our Breakthrough:

• The Consequences:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 4/27

Interprocedural Data Flow Analysis [CC2008]

• Objectives: Optimizations across procedure boundaries to incorporate

◮ the effects of procedure calls in the caller procedures, and
◮ the effects of calling contexts in the callee procedures.

• Main Challenge: Precision requires distinguishing between an impractically
large number (>> millions) of contexts at each program point.

• The State of Art:

• Our Breakthrough:

• The Consequences:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 4/27

Interprocedural Data Flow Analysis [CC2008]

• Objectives: Optimizations across procedure boundaries to incorporate

◮ the effects of procedure calls in the caller procedures, and
◮ the effects of calling contexts in the callee procedures.

• Main Challenge: Precision requires distinguishing between an impractically
large number (>> millions) of contexts at each program point.

• The State of Art: Merge information across contexts for efficiency.
⇒ Significant imprecision in recursive programs.

• Our Breakthrough:

• The Consequences:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 5/27

Defining Interprocedural Context for Static Analysis

Entry

a + b

Call p

a ∗ b

Exit

Startp a ∗ b Startp

Call q

Endp a ∗ b Endp

Startq a ∗ b Startq

n1 d =a+b n1 n2 a = 1 n2

Call p

n3 d + 1 n3

Endq a ∗ b Endq

Call p

n4 d = c n4

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 5/27

Defining Interprocedural Context for Static Analysis

Entry

a + b

C1 Call p C1

R1 Call p R1

a ∗ b

Exit

Startp a ∗ b Startp

C2 Call q C2

R2 Call q R2

Endp a ∗ b Endp

Startq a ∗ b Startq

n1 d =a+b n1 n2 a = 1 n2

C3 Call p C3

R3 Call p R3

n3 d + 1 n3

Endq a ∗ b Endq

C4 Call p C4

R4 Call p R4

n4 d = c n4

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 5/27

Defining Interprocedural Context for Static Analysis

Entry

a + b

C1 Call p C1

R1 Call p R1

a ∗ b

Exit

Startp a ∗ b Startp

C2 Call q C2

R2 Call q R2

Endp a ∗ b Endp

Startq a ∗ b Startq

n1 d =a+b n1 n2 a = 1 n2

C3 Call p C3

R3 Call p R3

n3 d + 1 n3

Endq a ∗ b Endq

C4 Call p C4

R4 Call p R4

n4 d = c n4

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 5/27

Defining Interprocedural Context for Static Analysis

Entry

a + b

C1 Call p C1

R1 Call p R1

a ∗ b

Exit

Startp a ∗ b Startp

C2 Call q C2

R2 Call q R2

Endp a ∗ b Endp

Startq a ∗ b Startq

n1 d =a+b n1 n2 a = 1 n2

C3 Call p C3

R3 Call p R3

n3 d + 1 n3

Endq a ∗ b Endq

C4 Call p C4

R4 Call p R4

n4 d = c n4

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 5/27

Defining Interprocedural Context for Static Analysis

Entry

a + b

C1 Call p C1

R1 Call p R1

a ∗ b

Exit

Startp a ∗ b Startp

C2 Call q C2

R2 Call q R2

Endp a ∗ b Endp

Startq a ∗ b Startq

n1 d =a+b n1 n2 a = 1 n2

C3 Call p C3

R3 Call p R3

n3 d + 1 n3

Endq a ∗ b Endq

C4 Call p C4

R4 Call p R4

n4 d = c n4

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 5/27

Defining Interprocedural Context for Static Analysis

Entry

a + b

C1 Call p C1

R1 Call p R1

a ∗ b

Exit

Startp a ∗ b Startp

C2 Call q C2

R2 Call q R2

Endp a ∗ b Endp

Startq a ∗ b Startq

n1 d =a+b n1 n2 a = 1 n2

C3 Call p C3

R3 Call p R3

n3 d + 1 n3

Endq a ∗ b Endq

C4 Call p C4

R4 Call p R4

n4 d = c n4

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 5/27

Defining Interprocedural Context for Static Analysis

Entry

a + b

C1 Call p C1

R1 Call p R1

a ∗ b

Exit

Startp a ∗ b Startp

C2 Call q C2

R2 Call q R2

Endp a ∗ b Endp

Startq a ∗ b Startq

n1 d =a+b n1 n2 a = 1 n2

C3 Call p C3

R3 Call p R3

n3 d + 1 n3

Endq a ∗ b Endq

C4 Call p C4

R4 Call p R4

n4 d = c n4
stack q : C2

p : C1

main

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 5/27

Defining Interprocedural Context for Static Analysis

Entry

a + b

C1 Call p C1

R1 Call p R1

a ∗ b

Exit

Startp a ∗ b Startp

C2 Call q C2

R2 Call q R2

Endp a ∗ b Endp

Startq a ∗ b Startq

n1 d =a+b n1 n2 a = 1 n2

C3 Call p C3

R3 Call p R3

n3 d + 1 n3

Endq a ∗ b Endq

C4 Call p C4

R4 Call p R4

n4 d = c n4
stack q : C2

p : C1

main

stack q : C2

p : C1

main

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 5/27

Defining Interprocedural Context for Static Analysis

Entry

a + b

C1 Call p C1

R1 Call p R1

a ∗ b

Exit

Startp a ∗ b Startp

C2 Call q C2

R2 Call q R2

Endp a ∗ b Endp

Startq a ∗ b Startq

n1 d =a+b n1 n2 a = 1 n2

C3 Call p C3

R3 Call p R3

n3 d + 1 n3

Endq a ∗ b Endq

C4 Call p C4

R4 Call p R4

n4 d = c n4
stack q : C2

p : C1

main

stack q : C2

p : C1

main

stack q : C2

p : C1

main

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 5/27

Defining Interprocedural Context for Static Analysis

Entry

a + b

C1 Call p C1

R1 Call p R1

a ∗ b

Exit

Startp a ∗ b Startp

C2 Call q C2

R2 Call q R2

Endp a ∗ b Endp

Startq a ∗ b Startq

n1 d =a+b n1 n2 a = 1 n2

C3 Call p C3

R3 Call p R3

n3 d + 1 n3

Endq a ∗ b Endq

C4 Call p C4

R4 Call p R4

n4 d = c n4
stack q : C2

p : C1

main

stack q : C2

p : C1

main

stack q : C2

p : C1

main

×

stack q : C2

p : C1

main

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 5/27

Defining Interprocedural Context for Static Analysis

Entry

a + b

C1 Call p C1

R1 Call p R1

a ∗ b

Exit

Startp a ∗ b Startp

C2 Call q C2

R2 Call q R2

Endp a ∗ b Endp

Startq a ∗ b Startq

n1 d =a+b n1 n2 a = 1 n2

C3 Call p C3

R3 Call p R3

n3 d + 1 n3

Endq a ∗ b Endq

C4 Call p C4

R4 Call p R4

n4 d = c n4
stack q : C2

p : C1

main

stack q : C2

p : C1

main

stack q : C2

p : C1

main

×

stack q : C2

p : C1

main

×

×

stack q : C2

p : C1

main

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 5/27

Defining Interprocedural Context for Static Analysis

Entry

a + b

C1 Call p C1

R1 Call p R1

a ∗ b

Exit

Startp a ∗ b Startp

C2 Call q C2

R2 Call q R2

Endp a ∗ b Endp

Startq a ∗ b Startq

n1 d =a+b n1 n2 a = 1 n2

C3 Call p C3

R3 Call p R3

n3 d + 1 n3

Endq a ∗ b Endq

C4 Call p C4

R4 Call p R4

n4 d = c n4
stack q : C2

p : C1

main

stack q : C2

p : C1

main

stack q : C2

p : C1

main

×

stack q : C2

p : C1

main

×

×

stack q : C2

p : C1

main

Context is defined by stack snapshot ⇒ Unbounded number of contexts

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 6/27

Interprocedural Data Flow Analysis [CC2008]

• Objectives: Optimizations across procedure boundaries to incorporate

◮ the effects of procedure calls in the caller procedures, and
◮ the effects of calling contexts in the callee procedures.

• Main Challenge: Precision requires distinguishing between an impractically
large number (>> millions) of contexts at each program point.

• The State of Art: Merge information across contexts for efficiency.
⇒ Significant imprecision in recursive programs.

• Our Breakthrough:

• The Consequences:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 6/27

Interprocedural Data Flow Analysis [CC2008]

• Objectives: Optimizations across procedure boundaries to incorporate

◮ the effects of procedure calls in the caller procedures, and
◮ the effects of calling contexts in the callee procedures.

• Main Challenge: Precision requires distinguishing between an impractically
large number (>> millions) of contexts at each program point.

• The State of Art: Merge information across contexts for efficiency.
⇒ Significant imprecision in recursive programs.

• Our Breakthrough: Clean, formally provable characterizations to

◮ discard redundant contexts at the start of every procedure, and
◮ simulate regeneration contexts at the end of every procedure.

• The Consequences:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 6/27

Interprocedural Data Flow Analysis [CC2008]

• Objectives: Optimizations across procedure boundaries to incorporate

◮ the effects of procedure calls in the caller procedures, and
◮ the effects of calling contexts in the callee procedures.

• Main Challenge: Precision requires distinguishing between an impractically
large number (>> millions) of contexts at each program point.

• The State of Art: Merge information across contexts for efficiency.
⇒ Significant imprecision in recursive programs.

• Our Breakthrough: Clean, formally provable characterizations to

◮ discard redundant contexts at the start of every procedure, and
◮ simulate regeneration contexts at the end of every procedure.

• The Consequences: Our implementation in GCC shows time and
space savings by

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Interprocedural Data Flow Analysis 6/27

Interprocedural Data Flow Analysis [CC2008]

• Objectives: Optimizations across procedure boundaries to incorporate

◮ the effects of procedure calls in the caller procedures, and
◮ the effects of calling contexts in the callee procedures.

• Main Challenge: Precision requires distinguishing between an impractically
large number (>> millions) of contexts at each program point.

• The State of Art: Merge information across contexts for efficiency.
⇒ Significant imprecision in recursive programs.

• Our Breakthrough: Clean, formally provable characterizations to

◮ discard redundant contexts at the start of every procedure, and
◮ simulate regeneration contexts at the end of every procedure.

• The Consequences: Our implementation in GCC shows time and
space savings by a factor of over a million!

Research in GCC Resource Center Uday Khedker, IIT Bombay



Part 3

Heap Reference Analysis



Oct’08 GRC: Heap Reference Analysis 7/27

Heap Reference Analysis [TOPLAS 2007]

• The Problem:

• Our Objectives:

• Main Challenge:

• Our Key Idea:

• Current status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 7/27

Heap Reference Analysis [TOPLAS 2007]

• The Problem: A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem.

• Our Objectives:

• Main Challenge:

• Our Key Idea:

• Current status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 7/27

Heap Reference Analysis [TOPLAS 2007]

• The Problem: A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem.

• Our Objectives: To perform static analysis of heap allocated data for
making unused data unreachable in order to improve garbage collection
and plug memory leaks.

• Main Challenge:

• Our Key Idea:

• Current status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 7/27

Heap Reference Analysis [TOPLAS 2007]

• The Problem: A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem.

• Our Objectives: To perform static analysis of heap allocated data for
making unused data unreachable in order to improve garbage collection
and plug memory leaks.

• Main Challenge: Unlike stack and static data, the mapping between object
names and their addresses keeps changing at runtime for heap data.

• Our Key Idea:

• Current status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 8/27

Which Heap Memory Nodes Can be Statically Marked as
Live?

If the while loop is not executed even once.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 8/27

Which Heap Memory Nodes Can be Statically Marked as
Live?

If the while loop is executed once.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

b

f
h

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 8/27

Which Heap Memory Nodes Can be Statically Marked as
Live?

If the while loop is executed twice.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

c
e

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 9/27

Heap Reference Analysis [TOPLAS 2007]

• The Problem: A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem.

• Our Objectives: To perform static analysis of heap allocated data for
making unused data unreachable in order to improve garbage collection
and plug memory leaks.

• Main Challenge: Unlike stack and static data, the mapping between object
names and their addresses keeps changing at runtime for heap data.

• Our Key Idea:

• Current status:

• Future Work:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 9/27

Heap Reference Analysis [TOPLAS 2007]

• The Problem: A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem.

• Our Objectives: To perform static analysis of heap allocated data for
making unused data unreachable in order to improve garbage collection
and plug memory leaks.

• Main Challenge: Unlike stack and static data, the mapping between object
names and their addresses keeps changing at runtime for heap data.

• Our Key Idea: Represent abstractions of heap data in terms of graphs and
perform analysis using these graphs as data flow values.

• Current status:

• Future Work:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 10/27

Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 11/27

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 11/27

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 11/27

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 11/27

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 11/27

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 11/27

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 11/27

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 11/27

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is executed once

a

i

m

b

f
hlptr

rp
tr

rpt
r

lptr rptr

lptr

rptr

lptr

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 11/27

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is executed twice

a

i

m

b

f
h

c
e

lptr

rp
tr

rpt
r

lptr rptr

lptr

rpt
r

rptr

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 12/27

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

Node i is live but link a → i is nullified

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 12/27

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

New access expressions are created.
Can they cause exceptions?

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 13/27

Heap Reference Analysis [TOPLAS 2007]

• The Problem: A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem.

• Our Objectives: To perform static analysis of heap allocated data for
making unused data unreachable in order to improve garbage collection
and plug memory leaks.

• Main Challenge: Unlike stack and static data, the mapping between object
names and their addresses keeps changing at runtime for heap data.

• Our Key Idea: Represent abstractions of heap data in terms of graphs and
perform analysis using these graphs as data flow values.

• Current status:

• Future Work:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 13/27

Heap Reference Analysis [TOPLAS 2007]

• The Problem: A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem.

• Our Objectives: To perform static analysis of heap allocated data for
making unused data unreachable in order to improve garbage collection
and plug memory leaks.

• Main Challenge: Unlike stack and static data, the mapping between object
names and their addresses keeps changing at runtime for heap data.

• Our Key Idea: Represent abstractions of heap data in terms of graphs and
perform analysis using these graphs as data flow values.

• Current status: Theory and prototype implementation (at the
intraprocedural level) ready for Java.

• Future Work:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 13/27

Heap Reference Analysis [TOPLAS 2007]

• The Problem: A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem.

• Our Objectives: To perform static analysis of heap allocated data for
making unused data unreachable in order to improve garbage collection
and plug memory leaks.

• Main Challenge: Unlike stack and static data, the mapping between object
names and their addresses keeps changing at runtime for heap data.

• Our Key Idea: Represent abstractions of heap data in terms of graphs and
perform analysis using these graphs as data flow values.

• Current status: Theory and prototype implementation (at the
intraprocedural level) ready for Java.

• Future Work:

◮ Analysis for functional languages
◮ Interprocedural implementation and Performance tuning
◮ Implementation for C++

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 14/27

BTW, What is Static Analysis of Heap?

Static Dynamic

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 14/27

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 14/27

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 14/27

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary
Heap Data

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

?

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 14/27

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary
Heap Data

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

?

Profiling

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 14/27

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary
Heap Data

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

?

Static
Analysis

Research in GCC Resource Center Uday Khedker, IIT Bombay



Part 4

Improving Instruction Selection in GCC



Oct’08 GRC: Improving Instruction Selection in GCC 15/27

GCC : The GNU Compiler Collection

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator

Code

Machine
Descriptions

Compiler Generation Framework

Input Language Target Name

Parser Genericizer Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer Code
Generator

Selected
Copied

Copied
Generated

Generated

Generated Compiler

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Instruction Selection in GCC 16/27

Improving Retargetability and Instruction Selection in GCC

• The Problem:

• The Consequences:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Instruction Selection in GCC 16/27

Improving Retargetability and Instruction Selection in GCC

• The Problem: Instruction selection algorithms in GCC are very primitive
(employ full tree matching instead of tree tiling).

• The Consequences:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Instruction Selection in GCC 16/27

Improving Retargetability and Instruction Selection in GCC

• The Problem: Instruction selection algorithms in GCC are very primitive
(employ full tree matching instead of tree tiling).

• The Consequences:

◮ A compiler developer needs to visualize and specify meaningful
combinations of instructions for generating good quality code.

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Instruction Selection in GCC 16/27

Improving Retargetability and Instruction Selection in GCC

• The Problem: Instruction selection algorithms in GCC are very primitive
(employ full tree matching instead of tree tiling).

• The Consequences:

◮ A compiler developer needs to visualize and specify meaningful
combinations of instructions for generating good quality code.

◮ The machine descriptions are difficult to construct, understand,
maintain, and enhance.

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Instruction Selection in GCC 16/27

Improving Retargetability and Instruction Selection in GCC

• The Problem: Instruction selection algorithms in GCC are very primitive
(employ full tree matching instead of tree tiling).

• The Consequences:

◮ A compiler developer needs to visualize and specify meaningful
combinations of instructions for generating good quality code.

◮ The machine descriptions are difficult to construct, understand,
maintain, and enhance.

◮ GCC has become a hacker’s paradise instead of a clean, production
quality compiler generation framework.

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Instruction Selection in GCC 17/27

Improving Retargetability and Instruction Selection in GCC

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Instruction Selection in GCC 17/27

Improving Retargetability and Instruction Selection in GCC

• Our Goals:

◮ Discover the abstractions required in machine descriptions and
develop a systematic methodology of constructing them.

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Instruction Selection in GCC 17/27

Improving Retargetability and Instruction Selection in GCC

• Our Goals:

◮ Discover the abstractions required in machine descriptions and
develop a systematic methodology of constructing them.

◮ Use tree tiling based instruction selection algorithms to allow for
cleaner and simpler machine descriptions.

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Instruction Selection in GCC 17/27

Improving Retargetability and Instruction Selection in GCC

• Our Goals:

◮ Discover the abstractions required in machine descriptions and
develop a systematic methodology of constructing them.

◮ Use tree tiling based instruction selection algorithms to allow for
cleaner and simpler machine descriptions.

• Current Status:

◮ A methodology of incremental construction has been devised.

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Instruction Selection in GCC 17/27

Improving Retargetability and Instruction Selection in GCC

• Our Goals:

◮ Discover the abstractions required in machine descriptions and
develop a systematic methodology of constructing them.

◮ Use tree tiling based instruction selection algorithms to allow for
cleaner and simpler machine descriptions.

• Current Status:

◮ A methodology of incremental construction has been devised.
◮ Preliminary investigations in using iburg seem very promising.

(Only 200 rules required for i386 instead of over a 1000!)

Research in GCC Resource Center Uday Khedker, IIT Bombay



Part 5

Improving Optimizations in GCC



Oct’08 GRC: Improving Optimizations in GCC 18/27

Improving Machine Independent Optimizations in GCC

• The Problems:

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Optimizations in GCC 18/27

Improving Machine Independent Optimizations in GCC

• The Problems:

◮ Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Optimizations in GCC 18/27

Improving Machine Independent Optimizations in GCC

• The Problems:

◮ Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

◮ Whole program analysis does not exist.

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Optimizations in GCC 18/27

Improving Machine Independent Optimizations in GCC

• The Problems:

◮ Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

◮ Whole program analysis does not exist.

• Our Goals:

◮ Implement scalable context and flow sensitive pointer analysis.

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Optimizations in GCC 18/27

Improving Machine Independent Optimizations in GCC

• The Problems:

◮ Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

◮ Whole program analysis does not exist.

• Our Goals:

◮ Implement scalable context and flow sensitive pointer analysis.
◮ Facilitate generation of optimizers from specifications.

− Clean specifications
− Systematic local, global, and interprocedural analysis
− Simple, efficient, generic, and precise algorithms
− Incremental analyses for aggressive optimizations

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Optimizations in GCC 18/27

Improving Machine Independent Optimizations in GCC

• The Problems:

◮ Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

◮ Whole program analysis does not exist.

• Our Goals:

◮ Implement scalable context and flow sensitive pointer analysis.
◮ Facilitate generation of optimizers from specifications.

− Clean specifications
− Systematic local, global, and interprocedural analysis
− Simple, efficient, generic, and precise algorithms
− Incremental analyses for aggressive optimizations

• Current Status:

◮ gdfa: Generic intraprocedural bit vector data flow analysis
(patch released for GCC 4.3.0)

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Improving Optimizations in GCC 18/27

Improving Machine Independent Optimizations in GCC

• The Problems:

◮ Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

◮ Whole program analysis does not exist.

• Our Goals:

◮ Implement scalable context and flow sensitive pointer analysis.
◮ Facilitate generation of optimizers from specifications.

− Clean specifications
− Systematic local, global, and interprocedural analysis
− Simple, efficient, generic, and precise algorithms
− Incremental analyses for aggressive optimizations

• Current Status:

◮ gdfa: Generic intraprocedural bit vector data flow analysis
(patch released for GCC 4.3.0)

◮ Algorithms and formal theory required further is in place.

Research in GCC Resource Center Uday Khedker, IIT Bombay



Part 6

Systematic Construction of Machine Descriptions



Oct’08 GRC: Systematic Construction of Machine Descriptions 19/27

In Search of Modularity in Retargetable Compilation

Ta
rg
et

Fe
at
ur
es

So
ur
ce

Fe
at
ur
es

Phases of Compilation

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Systematic Construction of Machine Descriptions 19/27

In Search of Modularity in Retargetable Compilation

Phase 1 Phase n

Ta
rg
et

Fe
at
ur
es

So
ur
ce

Fe
at
ur
es

Phases of Compilation

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Systematic Construction of Machine Descriptions 20/27

In Search of Modularity in Retargetable Compilation

Ta
rg
et

Fe
at
ur
es

So
ur
ce

Fe
at
ur
es

Phases of CompilationPhase 1 Phase n
Feature 1

Feature n

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Systematic Construction of Machine Descriptions 21/27

In Search of Modularity in Retargetable Compilation

Ta
rg
et

Fe
at
ur
es

So
ur
ce

Fe
at
ur
es

Phases of CompilationPhase 1 Phase n
Feature 1

Feature n

Feature 1

Feature n

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Systematic Construction of Machine Descriptions 22/27

In Search of Modularity in Retargetable Compilation

M
in
im

al

Ta
rg
et

Fe
at
ur
es

(C
um

ul
at
ive

)
So

ur
ce

Fe
at
ur
es

(C
um

ul
at
ive

)

Phases of Compilation

Level 1

Level n

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Systematic Construction of Machine Descriptions 23/27

Systematic Development of Machine Descriptions
[GREPS 2007]

Other data types

Conditional control transfers

Function Calls

Arithmetic Expressions

Sequence of
Simple Assignments
involving integers

MD Level 1

MD Level 2

MD Level 3

MD Level 4

MD Level 5

Research in GCC Resource Center Uday Khedker, IIT Bombay



Part 8

Translation Validation of GCC



Oct’08 GRC: Translation Validation of GCC 24/27

Translation Validation of GCC

• Problem:

• Our Objectives:

• Our approach:

• Current Status:

• Future work:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Translation Validation of GCC 24/27

Translation Validation of GCC

• Problem:

◮ Establishing correctness of compilers is important.
◮ Verifying a real compiler is very difficult.

• Our Objectives:

• Our approach:

• Current Status:

• Future work:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Translation Validation of GCC 24/27

Translation Validation of GCC

• Problem:

◮ Establishing correctness of compilers is important.
◮ Verifying a real compiler is very difficult.

• Our Objectives: To build a system to verify the correctness of the
translation of given program.

• Our approach:

• Current Status:

• Future work:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Translation Validation of GCC 24/27

Translation Validation of GCC

• Problem:

◮ Establishing correctness of compilers is important.
◮ Verifying a real compiler is very difficult.

• Our Objectives: To build a system to verify the correctness of the
translation of given program.

• Our approach:

◮ Define suitable observation points and observables
◮ Establish the conditions under which the observables correspond at

the end of the program.
◮ Derive the conditions under which the observables correspond at the

start of the program.

• Current Status:

• Future work:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Translation Validation of GCC 24/27

Translation Validation of GCC

• Problem:

◮ Establishing correctness of compilers is important.
◮ Verifying a real compiler is very difficult.

• Our Objectives: To build a system to verify the correctness of the
translation of given program.

• Our approach:

◮ Define suitable observation points and observables
◮ Establish the conditions under which the observables correspond at

the end of the program.
◮ Derive the conditions under which the observables correspond at the

start of the program.

• Current Status: Formal theory and prototype implementation to show the
correctness of translation of a few programs exist.

• Future work:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Translation Validation of GCC 24/27

Translation Validation of GCC

• Problem:

◮ Establishing correctness of compilers is important.
◮ Verifying a real compiler is very difficult.

• Our Objectives: To build a system to verify the correctness of the
translation of given program.

• Our approach:

◮ Define suitable observation points and observables
◮ Establish the conditions under which the observables correspond at

the end of the program.
◮ Derive the conditions under which the observables correspond at the

start of the program.

• Current Status: Formal theory and prototype implementation to show the
correctness of translation of a few programs exist.

• Future work:

◮ Cleaning up the theory to systematize the termination criteria.
◮ Extending the approach to include more optimizations.

Research in GCC Resource Center Uday Khedker, IIT Bombay



Part 9

Linear Types in GCC



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.

• Our Goals:

◮ Use linear types to prohibit aliasing.

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.

• Our Goals:

◮ Use linear types to prohibit aliasing.
◮ Allow reasonable limited relaxations of linearity constraints.

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.

• Our Goals:

◮ Use linear types to prohibit aliasing.
◮ Allow reasonable limited relaxations of linearity constraints.
◮ Define appropriate type system and enforce it.

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.

• Our Goals:

◮ Use linear types to prohibit aliasing.
◮ Allow reasonable limited relaxations of linearity constraints.
◮ Define appropriate type system and enforce it.

• Current Status:

◮ Linearity aspects in C have been studied in details.

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.

• Our Goals:

◮ Use linear types to prohibit aliasing.
◮ Allow reasonable limited relaxations of linearity constraints.
◮ Define appropriate type system and enforce it.

• Current Status:

◮ Linearity aspects in C have been studied in details.
◮ Variants of linearity have been identified.

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.

• Our Goals:

◮ Use linear types to prohibit aliasing.
◮ Allow reasonable limited relaxations of linearity constraints.
◮ Define appropriate type system and enforce it.

• Current Status:

◮ Linearity aspects in C have been studied in details.
◮ Variants of linearity have been identified.
◮ An initial draft of the type system is in place.

Research in GCC Resource Center Uday Khedker, IIT Bombay



Part 10

Conclusions



Oct’08 GRC: Conclusions 26/27

Conclusions

• GCC Resource Center at IIT Bombay

◮ Synergy from group activities
◮ Long term commitment to challenging research problems
◮ A desire to explore real issues in real compilers

A dream to improve GCC

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Conclusions 26/27

Conclusions

• GCC Resource Center at IIT Bombay

◮ Synergy from group activities
◮ Long term commitment to challenging research problems
◮ A desire to explore real issues in real compilers

A dream to improve GCC

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Conclusions 26/27

Conclusions

• GCC Resource Center at IIT Bombay

◮ Synergy from group activities
◮ Long term commitment to challenging research problems
◮ A desire to explore real issues in real compilers

A dream to improve GCC

• Would you like to be a part of this dream?

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Conclusions 27/27

Last but not the least . . .

Thank You!

Research in GCC Resource Center Uday Khedker, IIT Bombay


	Introduction
	Interprocedural Data Flow Analysis
	Heap Reference Analysis
	Improving Instruction Selection in GCC
	Improving Optimizations in GCC
	Systematic Construction of Machine Descriptions
	Systematic Construction of Machine Descriptions
	Translation Validation of GCC
	Linear Types in GCC
	Conclusions

