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Broad objectives

Theoretical research supported by empirical evidence

• Exploring research issues in real compilers

• Demonstrating the relevance and effectiveness (of our explorations) in real
compilers
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Broad Areas of Interests

• Program Analysis and Optimization

• Translation Validation

• Retargetable compilation

• Parallelization and Vectorization for SIMD and MIMD Architectures

General explorations applied in the context of GCC
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Examples of Research Commitments

• Interprocedural data flow analysis

• Heap reference analysis

• Static inferencing of flow sensitive polymorphic types

• Translation validation of GCC generated code

• Increasing trustworthiness of GCC

◮ Cleaner machine descriptions for GCC
◮ Generating GCC optimizers from specifications
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Interprocedural Data Flow Analysis [CC2008]

• Objectives:

• Main Challenge:

• The State of Art:

• Our Breakthrough:

• The Consequences:
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Interprocedural Data Flow Analysis [CC2008]

• Objectives: Optimizations across procedure boundaries to incorporate

◮ the effects of procedure calls in the caller procedures, and
◮ the effects of calling contexts in the callee procedures.

• Main Challenge: Precision requires distinguishing between an impractically
large number (>> millions) of contexts at each program point.

• The State of Art: Merge information across contexts for efficiency.
⇒ Significant imprecision in recursive programs.

• Our Breakthrough:

• The Consequences:
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Defining Interprocedural Context for Static Analysis

Entry

a + b

Call p

a ∗ b

Exit

Startp a ∗ b Startp

Call q

Endp a ∗ b Endp

Startq a ∗ b Startq

n1 d =a+b n1 n2 a = 1 n2

Call p

n3 d + 1 n3

Endq a ∗ b Endq

Call p

n4 d = c n4
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Context is defined by stack snapshot ⇒ Unbounded number of contexts
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Interprocedural Data Flow Analysis [CC2008]
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Interprocedural Data Flow Analysis [CC2008]

• Objectives: Optimizations across procedure boundaries to incorporate

◮ the effects of procedure calls in the caller procedures, and
◮ the effects of calling contexts in the callee procedures.

• Main Challenge: Precision requires distinguishing between an impractically
large number (>> millions) of contexts at each program point.

• The State of Art: Merge information across contexts for efficiency.
⇒ Significant imprecision in recursive programs.

• Our Breakthrough: Clean, formally provable characterizations to

◮ discard redundant contexts at the start of every procedure, and
◮ simulate regeneration contexts at the end of every procedure.

• The Consequences: Our implementation in GCC shows time and
space savings by a factor of over a million!
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Heap Reference Analysis [TOPLAS 2007]

• The Problem:

• Our Objectives:

• Main Challenge:

• Our Key Idea:

• Current status:
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Which Heap Memory Nodes Can be Statically Marked as
Live?

If the while loop is not executed even once.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
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Which Heap Memory Nodes Can be Statically Marked as
Live?

If the while loop is executed twice.
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Heap Reference Analysis [TOPLAS 2007]

• The Problem: A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem.

• Our Objectives: To perform static analysis of heap allocated data for
making unused data unreachable in order to improve garbage collection
and plug memory leaks.

• Main Challenge: Unlike stack and static data, the mapping between object
names and their addresses keeps changing at runtime for heap data.

• Our Key Idea:

• Current status:

• Future Work:
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Heap Reference Analysis [TOPLAS 2007]

• The Problem: A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem.

• Our Objectives: To perform static analysis of heap allocated data for
making unused data unreachable in order to improve garbage collection
and plug memory leaks.

• Main Challenge: Unlike stack and static data, the mapping between object
names and their addresses keeps changing at runtime for heap data.

• Our Key Idea: Represent abstractions of heap data in terms of graphs and
perform analysis using these graphs as data flow values.

• Current status:

• Future Work:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Heap Reference Analysis 10/27

Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null
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Heap Reference Analysis: Our Solution
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New access expressions are created.
Can they cause exceptions?
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Heap Reference Analysis [TOPLAS 2007]

• The Problem: A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem.

• Our Objectives: To perform static analysis of heap allocated data for
making unused data unreachable in order to improve garbage collection
and plug memory leaks.

• Main Challenge: Unlike stack and static data, the mapping between object
names and their addresses keeps changing at runtime for heap data.

• Our Key Idea: Represent abstractions of heap data in terms of graphs and
perform analysis using these graphs as data flow values.

• Current status:

• Future Work:
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Heap Reference Analysis [TOPLAS 2007]

• The Problem: A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem.

• Our Objectives: To perform static analysis of heap allocated data for
making unused data unreachable in order to improve garbage collection
and plug memory leaks.

• Main Challenge: Unlike stack and static data, the mapping between object
names and their addresses keeps changing at runtime for heap data.

• Our Key Idea: Represent abstractions of heap data in terms of graphs and
perform analysis using these graphs as data flow values.

• Current status: Theory and prototype implementation (at the
intraprocedural level) ready for Java.

• Future Work:

◮ Analysis for functional languages
◮ Interprocedural implementation and Performance tuning
◮ Implementation for C++
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GCC : The GNU Compiler Collection
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Improving Retargetability and Instruction Selection in GCC

• The Problem:

• The Consequences:
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Improving Retargetability and Instruction Selection in GCC

• The Problem: Instruction selection algorithms in GCC are very primitive
(employ full tree matching instead of tree tiling).

• The Consequences:

◮ A compiler developer needs to visualize and specify meaningful
combinations of instructions for generating good quality code.

◮ The machine descriptions are difficult to construct, understand,
maintain, and enhance.

◮ GCC has become a hacker’s paradise instead of a clean, production
quality compiler generation framework.
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Improving Retargetability and Instruction Selection in GCC

• Our Goals:

◮ Discover the abstractions required in machine descriptions and
develop a systematic methodology of constructing them.

◮ Use tree tiling based instruction selection algorithms to allow for
cleaner and simpler machine descriptions.

• Current Status:

◮ A methodology of incremental construction has been devised.
◮ Preliminary investigations in using iburg seem very promising.

(Only 200 rules required for i386 instead of over a 1000!)
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Improving Machine Independent Optimizations in GCC

• The Problems:

◮ Primitive algorithms and adhoc designs (too many passes, repetitive
work in passes, inappropriateness of IR).

◮ Whole program analysis does not exist.

• Our Goals:

◮ Implement scalable context and flow sensitive pointer analysis.
◮ Facilitate generation of optimizers from specifications.

− Clean specifications
− Systematic local, global, and interprocedural analysis
− Simple, efficient, generic, and precise algorithms
− Incremental analyses for aggressive optimizations

• Current Status:

◮ gdfa: Generic intraprocedural bit vector data flow analysis
(patch released for GCC 4.3.0)

◮ Algorithms and formal theory required further is in place.
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Systematic Development of Machine Descriptions
[GREPS 2007]

Other data types

Conditional control transfers

Function Calls

Arithmetic Expressions

Sequence of
Simple Assignments
involving integers

MD Level 1

MD Level 2

MD Level 3

MD Level 4

MD Level 5
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Translation Validation of GCC

• Problem:

◮ Establishing correctness of compilers is important.
◮ Verifying a real compiler is very difficult.

• Our Objectives: To build a system to verify the correctness of the
translation of given program.

• Our approach:

◮ Define suitable observation points and observables
◮ Establish the conditions under which the observables correspond at

the end of the program.
◮ Derive the conditions under which the observables correspond at the

start of the program.

• Current Status: Formal theory and prototype implementation to show the
correctness of translation of a few programs exist.

• Future work:

◮ Cleaning up the theory to systematize the termination criteria.
◮ Extending the approach to include more optimizations.

Research in GCC Resource Center Uday Khedker, IIT Bombay



Part 9

Linear Types in GCC



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.

• Our Goals:

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.

• Our Goals:

◮ Use linear types to prohibit aliasing.

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.

• Our Goals:

◮ Use linear types to prohibit aliasing.
◮ Allow reasonable limited relaxations of linearity constraints.

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.

• Our Goals:

◮ Use linear types to prohibit aliasing.
◮ Allow reasonable limited relaxations of linearity constraints.
◮ Define appropriate type system and enforce it.

• Current Status:

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.

• Our Goals:

◮ Use linear types to prohibit aliasing.
◮ Allow reasonable limited relaxations of linearity constraints.
◮ Define appropriate type system and enforce it.

• Current Status:

◮ Linearity aspects in C have been studied in details.

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
◮ The scope of optimizations is significantly reduced.
◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.

• Our Goals:

◮ Use linear types to prohibit aliasing.
◮ Allow reasonable limited relaxations of linearity constraints.
◮ Define appropriate type system and enforce it.

• Current Status:

◮ Linearity aspects in C have been studied in details.
◮ Variants of linearity have been identified.

Research in GCC Resource Center Uday Khedker, IIT Bombay



Oct’08 GRC: Linear Types in GCC 25/27

Linear Types in GCC

• The Problems:

◮ Aliases created by pointers is a major problem in C.
◮ Significant imprecision in analysis
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◮ Parallelization and Vectorization becomes difficult.
◮ Synchronization and correctness problems in threads.
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◮ Use linear types to prohibit aliasing.
◮ Allow reasonable limited relaxations of linearity constraints.
◮ Define appropriate type system and enforce it.

• Current Status:

◮ Linearity aspects in C have been studied in details.
◮ Variants of linearity have been identified.
◮ An initial draft of the type system is in place.
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Conclusions

• GCC Resource Center at IIT Bombay

◮ Synergy from group activities
◮ Long term commitment to challenging research problems
◮ A desire to explore real issues in real compilers

A dream to improve GCC
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Conclusions

• GCC Resource Center at IIT Bombay

◮ Synergy from group activities
◮ Long term commitment to challenging research problems
◮ A desire to explore real issues in real compilers

A dream to improve GCC

• Would you like to be a part of this dream?
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Last but not the least . . .

Thank You!
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