
Early History of FORTRAN:

The Making of a Wonder

Uday Khedker

(www.cse.iitb.ac.in/̃ uday)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

Nov 2013

VNIT, Nagpur History of FORTRAN: Outline 1/46

Outline

• Computing Before FORTRAN

• The Creation of FORTRAN

• FORTRAN I: The Language

• FORTRAN I: The Compiler

• Conclusions

Nov 2013 Uday Khedker, IIT Bombay

Part 1

Computing Before FORTRAN

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 2/46

Pioneers of Programming Languages (Knuth-Pardo, 1976)

Zuse (Plankalkul, 1945)
Curry (Composition, 1948)
Rutishauser (1951)
Bohm (1951)
Glennie (AUTOCODE, 1952)
Laning/Zierler (1953)
Hopper et al. (A-2, 1953)
Ershov (P.P., 1955)
Blum (ADES, 1956)
Perlis et al. (IT, 1956)

Mauchly et al. (Short Code, 1950)
Burks (Intermediate PL, 1950)
Goldstine/von Neumann (Flow Diagrams, 1946)
Brooker (Mark I Autocode, 1954)
Kamynin/Liubimskii (P.P., 19654)
Grems/Porter (Bacaic, 1955)
Elsworth et al. (Kompiler 2, 1955)
Katz et al. (MATH-MATIC, 1956-1958)
Hopper et al. (FLOW-MATIC, 1956-1958)
Bauer/Samelson (1956-1958)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 2/46

Pioneers of Programming Languages (Knuth-Pardo, 1976)

Zuse (Plankalkul, 1945)
Curry (Composition, 1948)
Rutishauser (1951)
Bohm (1951)
Glennie (AUTOCODE, 1952)
Laning/Zierler (1953)
Hopper et al. (A-2, 1953)
Ershov (P.P., 1955)
Blum (ADES, 1956)
Perlis et al. (IT, 1956)

Mauchly et al. (Short Code, 1950)
Burks (Intermediate PL, 1950)
Goldstine/von Neumann (Flow Diagrams, 1946)
Brooker (Mark I Autocode, 1954)
Kamynin/Liubimskii (P.P., 19654)
Grems/Porter (Bacaic, 1955)
Elsworth et al. (Kompiler 2, 1955)
Katz et al. (MATH-MATIC, 1956-1958)
Hopper et al. (FLOW-MATIC, 1956-1958)
Bauer/Samelson (1956-1958)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 2/46

Pioneers of Programming Languages (Knuth-Pardo, 1976)

Zuse (Plankalkul, 1945)
Curry (Composition, 1948)
Rutishauser (1951)
Bohm (1951)
Glennie (AUTOCODE, 1952)
Laning/Zierler (1953)
Hopper et al. (A-2, 1953)
Ershov (P.P., 1955)
Blum (ADES, 1956)
Perlis et al. (IT, 1956)

Mauchly et al. (Short Code, 1950)
Burks (Intermediate PL, 1950)
Goldstine/von Neumann (Flow Diagrams, 1946)
Brooker (Mark I Autocode, 1954)
Kamynin/Liubimskii (P.P., 19654)
Grems/Porter (Bacaic, 1955)
Elsworth et al. (Kompiler 2, 1955)
Katz et al. (MATH-MATIC, 1956-1958)
Hopper et al. (FLOW-MATIC, 1956-1958)
Bauer/Samelson (1956-1958)

• Many efforts, and yet a breakthrough had to wait for Backus and his team

• We need to go back into the history to understand why it was so

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 3/46

Computing: Hand to Hand Combat with Machine (1)

• Computing was a black art

• Things available:

The problem, the machine, the manual, and individual creativity

• “Computers were pretty crazy things. They had very primitive instructions
and extremely bizarre input-output facilities.”

• Example: Selective Sequence Electronic Calculator (SSEC), 1948 - 1952

Store of 150 words, Vacuum tubes and electro-mechanical relays

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 4/46

Computing: Hand to Hand Combat with Machine (2)

• The story of paper tape

− Punched paper tape glued to
form a paper loop

− Problem would appear and then
disappear

− Pattern repeated many times
− Mobius strip

(Image source: Wikipedia)

• Debugging by the ear. When IBM 701 Defence Calculator arrived

“How are we going to debug this enormous silent monster”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 5/46

Beliefs of the Times

• Popular Mechanics Prediction in 1949

Computers in the future may weigh no more than 1.5 tons

(ENIAC, completed in 1947 weighed almost 30 tons)

• Editor of Prentice Hall business books, 1957

I have travelled the length and breadth of this country and
talked with the best people, and I can assure you that data
processing is a fad that wont last out the year

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 6/46

Octal Humour

• “Why cant programmers tell the difference between Christmas and New
Years Eve? Because 25 in decimal is 31 in octal.”

• “We programmed it in octal. Thinking I was still a mathematician, I
taught myself to add, subtract, and multiply, and even divide in octal. I
was really good, until the end of the month, and then my check book
didn’t balance! It stayed out of balance for three months until I got hold
of my brother who was a banker. After several evenings of work he
informed me that at intervals I had subtracted in octal. And I faced the
major problem of living in two different worlds.”

“That may have been one of the things that sent me to get rid of octal as
far as possible.”

− Grace Hopper

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 7/46

The Priesthood of Computing

• “Programming in the America of the 1950s had a vital frontier enthusiasm
virtually untainted by either the scholarship or the stuffiness of academia.”

• “Programmer inventors of the early 1950s were too impatient to hoard an
idea until it could be fully developed and a paper written. They wanted to
convince others. Action, progress, and outdoing one’s rivals were more
important than mere authorship of a paper.”

• “An idea was the property of anyone who could use it and the scholarly
practice of noting references to sources and related work was almost
universally unknown or unpractised.”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 8/46

Obstacles in Creation of a High Level Language

• Priesthood wanted to preserve the order

“Priesthood wanted and got simple mechanical aids for the clerical
drudgery which burdened them, but they regarded with hostility and
derision more ambitious plans to make programming accessible to a larger
population. To them, it was obviously a foolish and arrogant dream to
imagine that any mechanical process could possibly perform the
mysterious feats of invention required to write an efficient program.”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 8/46

Obstacles in Creation of a High Level Language

• Priesthood wanted to preserve the order

“Priesthood wanted and got simple mechanical aids for the clerical
drudgery which burdened them, but they regarded with hostility and
derision more ambitious plans to make programming accessible to a larger
population. To them, it was obviously a foolish and arrogant dream to
imagine that any mechanical process could possibly perform the
mysterious feats of invention required to write an efficient program.”

• There also were purveyors of snake oil

“The energetic public relations efforts of some visionaries spread the word
that their “automatic programming” systems had almost human abilities
to understand the language and needs of the user; whereas closer
inspection of these same systems would often reveal a complex,
exception-ridden performer of clerical tasks which was both difficult to use
and inefficient.”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 9/46

The A2 Compiler

• Programmers had a library of subroutine

• They needed to copy the subroutine on the coding sheets by hand and
change addresses manually

• Grace Hopper added a “call” operation whereby

◮ the machine would copy the code
◮ and update the addresses

• Inspiration for implementing a forward jump: A game of basketball!

• The name “compiler” was used because it put together a set of subroutines

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 10/46

The “Real” High Level Languages

• Conrad Zuse’s Plankalkul developed in a small village in Germany (1945)

◮ “Program Calculus”
◮ Only design, no implementation

(Computers were destroyed in world war II)

• Laning and Zierler’s language for the WHIRLWIND at MIT (1953)

◮ Fully algebraic in terms of supporting expressions
◮ Very inefficient

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 11/46

Challenges for Creation of High Level Languages

• The tyranny of OR

Expressiveness OR Efficiency

• Expressiveness:

Higher level abstraction, features not supported by hardware

• Most time was spent in floating point subroutines

◮ Not much attention was paid to address calculation, good use of
registers

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Computing Before FORTRAN 11/46

Challenges for Creation of High Level Languages

• The tyranny of OR

Expressiveness OR Efficiency

• Expressiveness:

Higher level abstraction, features not supported by hardware

• Most time was spent in floating point subroutines

◮ Not much attention was paid to address calculation, good use of
registers

• IBM 704 directly supported fast floating point operations

◮ One need of expressiveness vanished revealing inefficiencies
Clumsy treatment of loops, indexing, references to registers

◮ Led to rejection of “automatic programming”

Nov 2013 Uday Khedker, IIT Bombay

Part 2

The Creation of FORTRAN

VNIT, Nagpur History of FORTRAN: The Creation of FORTRAN 12/46

The Genius of John Backus

He made the following important observations

• The main reason of inefficiency was a clumsy treatment of loops and array
address computations

If that could be handled, things may be far different

• The possibility made a lot of economic sense

• Language implementation was far more critical than language design

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Creation of FORTRAN 12/46

The Genius of John Backus

He made the following important observations

• The main reason of inefficiency was a clumsy treatment of loops and array
address computations

If that could be handled, things may be far different

• The possibility made a lot of economic sense

• Language implementation was far more critical than language design

The “TRAN” in “FORTRAN” conveys the spirit

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Creation of FORTRAN 13/46

The Genesis of FORTRAN

• Motivation:

Programming and debugging costs already exceeded the cost of running a
program, and as computers became faster and cheaper this imbalance
would become more and more intolerable

• Goals: Can a machine translate

◮ a sufficiently rich mathematical language into
◮ a sufficiently economical program at
◮ a sufficiently low cost

to make the whole affair feasible?

The generated programs needed to be comparable to hand coded
programs in efficiency

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Creation of FORTRAN 14/46

The Design Philosophy

• About Language Design

◮ “We simply made up the language as we went along. We did not
regard language design as a difficult problem, merely a simple prelude
to the real problem: designing a compiler that could produce efficient
programs.”

◮ “We had notions of assignment statements, subscripted variables,
and the DO statement as the main features. Whatever else was
needed emerged as we tried to build a way of programming on these
basic ideas.”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Creation of FORTRAN 14/46

The Design Philosophy

• About Language Design

◮ “We simply made up the language as we went along. We did not
regard language design as a difficult problem, merely a simple prelude
to the real problem: designing a compiler that could produce efficient
programs.”

◮ “We had notions of assignment statements, subscripted variables,
and the DO statement as the main features. Whatever else was
needed emerged as we tried to build a way of programming on these
basic ideas.”

• About Compiler Design

◮ Study the inner loops to find the most efficient method of execution
◮ Find how the efficient code can be generated for sample statements
◮ Generalize the observations by removing specificities and exceptions

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Creation of FORTRAN 14/46

The Design Philosophy

• About Language Design

◮ “We simply made up the language as we went along. We did not
regard language design as a difficult problem, merely a simple prelude
to the real problem: designing a compiler that could produce efficient
programs.”

◮ “We had notions of assignment statements, subscripted variables,
and the DO statement as the main features. Whatever else was
needed emerged as we tried to build a way of programming on these
basic ideas.”

• About Compiler Design

◮ Study the inner loops to find the most efficient method of execution
◮ Find how the efficient code can be generated for sample statements
◮ Generalize the observations by removing specificities and exceptions

Effectively, they raised the level of computing from

number processing to processing text that processed numbers

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Creation of FORTRAN 15/46

The FORTRAN Project

• Approved in Jan 1954, system delivered in April 1957

• Supportive management

• Young, energetic, enthusiastic, and inexperienced team

◮ Great team spirit and synergy

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Creation of FORTRAN 15/46

The FORTRAN Project

• Approved in Jan 1954, system delivered in April 1957

• Supportive management

• Young, energetic, enthusiastic, and inexperienced team

◮ Great team spirit and synergy

“The best part was the uncertainty and excitement of
waiting to see what kinds of object code all that work was
finally going to produce.”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Creation of FORTRAN 15/46

The FORTRAN Project

• Approved in Jan 1954, system delivered in April 1957

• Supportive management

• Young, energetic, enthusiastic, and inexperienced team

◮ Great team spirit and synergy

“The best part was the uncertainty and excitement of
waiting to see what kinds of object code all that work was
finally going to produce.”

“It was great sport in those days to scan the object
program and either marvel at the translator or question its
sanity!”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Creation of FORTRAN 15/46

The FORTRAN Project

• Approved in Jan 1954, system delivered in April 1957

• Supportive management

• Young, energetic, enthusiastic, and inexperienced team

◮ Great team spirit and synergy

“The best part was the uncertainty and excitement of
waiting to see what kinds of object code all that work was
finally going to produce.”

“It was great sport in those days to scan the object
program and either marvel at the translator or question its
sanity!”

◮ Helped in ignoring the doubters and overcome discouragement and
despair

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Creation of FORTRAN 16/46

FORTRAN Claims

• “The amount of knowledge necessary to utilize the 704 effectively by
means of FORTRAN is far less than the knowledge required to make
effective use of the 704 by direct coding.

It will be possible to make the full capabilities of the 704 available to a
much wider range of people than would otherwise be possible without
expensive and time-consuming training programs.”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Creation of FORTRAN 16/46

FORTRAN Claims

• “The amount of knowledge necessary to utilize the 704 effectively by
means of FORTRAN is far less than the knowledge required to make
effective use of the 704 by direct coding.

It will be possible to make the full capabilities of the 704 available to a
much wider range of people than would otherwise be possible without
expensive and time-consuming training programs.”

• “FORTRAN may apply complex, lengthy techniques in coding a problem
which the human coder would have neither the time nor inclination to
derive or apply.”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Creation of FORTRAN 16/46

FORTRAN Claims

• “The amount of knowledge necessary to utilize the 704 effectively by
means of FORTRAN is far less than the knowledge required to make
effective use of the 704 by direct coding.

It will be possible to make the full capabilities of the 704 available to a
much wider range of people than would otherwise be possible without
expensive and time-consuming training programs.”

• “FORTRAN may apply complex, lengthy techniques in coding a problem
which the human coder would have neither the time nor inclination to
derive or apply.”

• “FORTRAN will virtually eliminate coding and debugging.”

Nov 2013 Uday Khedker, IIT Bombay

Part 3

FORTRAN I: The Language

VNIT, Nagpur History of FORTRAN: The Language 17/46

The Very First Question in FORTRAN FAQ

In the IBM Customer Engineering Manual of Instructions

Q. Why is Fortran used and what are its advantages over the SHARE
assembly program ?

A. Fortran allows a programmer to write in relatively familiar and simple
language the steps of a procedure to be carried out by the 704. The
programmer need not know 704 language, and is relieved of clerical work;
human error is minimized. The programmer writes in symbolic machine
language in SHARE. Fortran translates, compiles, and assembles, whereas
a SHARE assembly program essentially just assembles, although
subroutines can be compiled from the library tape of SHARE.

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Language 18/46

The Language FORTRAN

• Scalar and array variables

• Integer and real (floating point) values

• Expressions

• Assignment statements

• DO loops

• Functions

• Other statements: READ, PRINT, FORMAT, IF and GOTO

• Comments

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Language 19/46

FORTRAN Examples (1)

Formula root =
−B +

√
B2 − 4AC

2A

FORTRAN
Statement

ROOT = (-B + SQRTF(B**2 - 4*A*C))/(2.0*A)

Defining
Function

ROOTF(A,B,C) = (-B + SQRTF(B**2 - 4*A*C))/(2.0*A)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Language 20/46

FORTRAN Examples (2)

Problem:
Set Qmax equal to the largest quantity P(ai+bi)

P(ai−bi)
for some i between 1 and 1000

where P(x) = c0 + c1x + c2x
2 + c3x

3

FORTRAN Program

1 POLYF(X) = C0+X*(C1+X*(C2+X*C3))

2 DIMENSION A(1000), B(1000)

3 QMAX = -1.0E20

4 Do 5 I = 1, 1000

5 QMAX = MAXF(QMAX, POLYF(A(I) + B(I))/POLYF(A(I) - B(I)))

6 STOP

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Language 21/46

Limitations of FORTRAN I Language

• No reserved words

• Simplistic functions

• No subprograms, no recursion

• No spaces

• DO loops with limited nesting depth of 3

• Implicit types based on the first letter

• No declarations required

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Language 22/46

Minor Errors Could be Rather Expensive

• The first American Venus probe was lost because of a computer problem

• A programmer replaced a comma by a dot

Should have been Was

DO 3 I = 1, 3 DO 3 I = 1. 3

• What was essentially a DO loop header got treated as

an assignment statement DO3I = 1.3 by the compiler

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Language 23/46

Fun with FORTRAN

• A provision to override the default types was added later

• No reserved words

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Language 23/46

Fun with FORTRAN

• A provision to override the default types was added later

“GOD is real unless declared integer”.

• No reserved words

IF (IF .LT. THEN) THEN ELSE = THEN ELSE THEN = ELSE

Nov 2013 Uday Khedker, IIT Bombay

Part 4

FORTRAN I: The Compiler

VNIT, Nagpur History of FORTRAN: The Compiler 24/46

Contributions of FORTRAN I Compiler

• Phase-wise division of work

• Optimizations:

◮ Common subexpressions elimination,
◮ Array address optimization in loops

(a form of strength reduction and induction variable elimination)
◮ Register allocation using hierarchical regions

(optimal under number of loads for straight line code)

• Basic blocks and execution frequency analysis

• Distinction between pseudo registers and hard registers

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 25/46

Phases of FORTRAN I Compiler

Input program

Section 1

Section 2

• Input may be on tape or cards

• Transferred to tape 2

• Statements are classified and Internal
Formula Number (IFN) is assigned

• Arithmetic statements are translated

• Output is recorded on COMPAIL file
on tape 2

(Complete Arithmetic, Input-Output,
Logical)

• Other statements are stored in buffer
areas

(if it is full, the information is
transferred to tape 4)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 25/46

Phases of FORTRAN I Compiler

Input program

Section 1

Section 2

Section 3

• DO loops are translated

• Arithmetic statements involving
subscripts and induction variables are
translated

• Unlimited index registers are assumed

(in place of actual 3 index registers)

• Output is recorded on COMPDO file
on tape 2

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 25/46

Phases of FORTRAN I Compiler

Input program

Section 1

Section 2

Section 3

Section 4

• COMPAIL and COMPDO files are
merged into a single file

• Rest of the statements are translated

• Translation is complete except that
actual index registers are not used

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 25/46

Phases of FORTRAN I Compiler

Input program

Section 1

Section 2

Section 3

Section 4

Section 5

• Basic blocks are created and flow
analysis is performed

• Execution frequencies are computed
using simulated execution

• The program may be executed several
hundred times

• Outcome of conditional control
transfers is determined by

◮ a random number generator
suitably weighted according to

◮ the branch frequency
specification in the program

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 25/46

Phases of FORTRAN I Compiler

Input program

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

• Pseudo registers are replaced by hard
index register

• Results of flow analysis of section 5
are used

• Hierarchical regions are formed and
inner most regions are assigned the
registers first

• “Distance-to-next-use” policy is used
to evict registers if required

• Now the translation to assembly is
complete

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 25/46

Phases of FORTRAN I Compiler

Input program

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Output program

• The program is assembled to produce
the executable

• It may be created on the tape or on
cards

• A listing of the program can also be
generated

Source statements and corresponding
executable statements

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 26/46

Expressions in the Programs

• Other “algebraic” compilers needed parenthesis for expressions

• No concept for parsing using grammars

Expression Expression Tree Required Syntax

a+ b ∗ ∗c ∗ (d + e)

+

a ∗

∗∗

b c

+

d e

(a) + (b ∗ ∗(c ∗ (d + e)))

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 27/46

FORTRAN Rules for Expressions

1. Any fixed point (floating point) constant, variable, or subscripted variable
is an expression of the same mode. Thus 3 and I are fixed point
expressions, and ALPHA and A(I , J,K) are floating point expressions.

2. If SOMEF is some function of n variables, and if E ,F , . . . ,H are a set of
n expressions of the correct modes for SOMEF , then
SOMEF (E ,F , . . . ,H) is an expression of the same mode as SOMEF.

3. If E is an expression, and if its first character is not “+” or “−”, then +E
and −E are expressions of the same mode as E . Thus −A is an
expression, but −− A is not.

4. If E is an expression, then (E) is an expression of the same mode as E .
Thus (A), ((A)), (((A))), etc. are expressions.

5. If E and F are expressions of the same mode, and if the first character of
F is not + or −, then E + F , E − F , E ∗ F , E/F are expressions of the
same mode.

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 28/46

FORTRAN Expression Handling

• Conventional precedences were used and parenthesis were not required.

• Simple rule of reconstructing parenthesized expressions:

Assuming three levels of precedences of “+”, “∗”, and “∗∗”
◮ Add “(((” in the beginning of the expression

(and hence before every “(” in the expression)
◮ Add “)))” at the end of the expression

(and hence after every “)” in the expression)
◮ Replace every “+” by “))) + (((”
◮ Replace every “∗” by “)) ∗ ((”
◮ Replace every “∗∗” by “) ∗ ∗(”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 28/46

FORTRAN Expression Handling

• Conventional precedences were used and parenthesis were not required.

• Simple rule of reconstructing parenthesized expressions:

Assuming three levels of precedences of “+”, “∗”, and “∗∗”
◮ Add “(((” in the beginning of the expression

(and hence before every “(” in the expression)
◮ Add “)))” at the end of the expression

(and hence after every “)” in the expression)
◮ Replace every “+” by “))) + (((”
◮ Replace every “∗” by “)) ∗ ((”
◮ Replace every “∗∗” by “) ∗ ∗(”

• Our expression becomes fully parenthesized by application of this rule.

(((A))) + (((B) ∗ ∗(C)) ∗ ((((((D))) + (((E)))))))

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 28/46

FORTRAN Expression Handling

• Conventional precedences were used and parenthesis were not required.

• Simple rule of reconstructing parenthesized expressions:

Assuming three levels of precedences of “+”, “∗”, and “∗∗”
◮ Add “(((” in the beginning of the expression

(and hence before every “(” in the expression)
◮ Add “)))” at the end of the expression

(and hence after every “)” in the expression)
◮ Replace every “+” by “))) + (((”
◮ Replace every “∗” by “)) ∗ ((”
◮ Replace every “∗∗” by “) ∗ ∗(”

• Our expression becomes fully parenthesized by application of this rule.

(((A))) + (((B) ∗ ∗(C)) ∗ ((((((D))) + (((E)))))))

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 28/46

FORTRAN Expression Handling

• Conventional precedences were used and parenthesis were not required.

• Simple rule of reconstructing parenthesized expressions:

Assuming three levels of precedences of “+”, “∗”, and “∗∗”
◮ Add “(((” in the beginning of the expression

(and hence before every “(” in the expression)
◮ Add “)))” at the end of the expression

(and hence after every “)” in the expression)
◮ Replace every “+” by “))) + (((”
◮ Replace every “∗” by “)) ∗ ((”
◮ Replace every “∗∗” by “) ∗ ∗(”

• Our expression becomes fully parenthesized by application of this rule.

(((A))) + (((B) ∗ ∗(C)) ∗ ((((((D))) + (((E)))))))

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 28/46

FORTRAN Expression Handling

• Conventional precedences were used and parenthesis were not required.

• Simple rule of reconstructing parenthesized expressions:

Assuming three levels of precedences of “+”, “∗”, and “∗∗”
◮ Add “(((” in the beginning of the expression

(and hence before every “(” in the expression)
◮ Add “)))” at the end of the expression

(and hence after every “)” in the expression)
◮ Replace every “+” by “))) + (((”
◮ Replace every “∗” by “)) ∗ ((”
◮ Replace every “∗∗” by “) ∗ ∗(”

• Our expression becomes fully parenthesized by application of this rule.

(((A))) + (((B) ∗ ∗(C)) ∗ ((((((D))) + (((E)))))))

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 28/46

FORTRAN Expression Handling

• Conventional precedences were used and parenthesis were not required.

• Simple rule of reconstructing parenthesized expressions:

Assuming three levels of precedences of “+”, “∗”, and “∗∗”
◮ Add “(((” in the beginning of the expression

(and hence before every “(” in the expression)
◮ Add “)))” at the end of the expression

(and hence after every “)” in the expression)
◮ Replace every “+” by “))) + (((”
◮ Replace every “∗” by “)) ∗ ((”
◮ Replace every “∗∗” by “) ∗ ∗(”

• Our expression becomes fully parenthesized by application of this rule.

(((A))) + (((B) ∗ ∗(C)) ∗ ((((((D))) + (((E)))))))

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 28/46

FORTRAN Expression Handling

• Conventional precedences were used and parenthesis were not required.

• Simple rule of reconstructing parenthesized expressions:

Assuming three levels of precedences of “+”, “∗”, and “∗∗”
◮ Add “(((” in the beginning of the expression

(and hence before every “(” in the expression)
◮ Add “)))” at the end of the expression

(and hence after every “)” in the expression)
◮ Replace every “+” by “))) + (((”
◮ Replace every “∗” by “)) ∗ ((”
◮ Replace every “∗∗” by “) ∗ ∗(”

• Our expression becomes fully parenthesized by application of this rule.

(((A))) + (((B) ∗ ∗(C)) ∗ ((((((D))) + (((E)))))))

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 28/46

FORTRAN Expression Handling

• Conventional precedences were used and parenthesis were not required.

• Simple rule of reconstructing parenthesized expressions:

Assuming three levels of precedences of “+”, “∗”, and “∗∗”
◮ Add “(((” in the beginning of the expression

(and hence before every “(” in the expression)
◮ Add “)))” at the end of the expression

(and hence after every “)” in the expression)
◮ Replace every “+” by “))) + (((”
◮ Replace every “∗” by “)) ∗ ((”
◮ Replace every “∗∗” by “) ∗ ∗(”

• Our expression becomes fully parenthesized by application of this rule.

(((A))) + (((B) ∗ ∗(C)) ∗ ((((((D))) + (((E)))))))

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 28/46

FORTRAN Expression Handling

• Conventional precedences were used and parenthesis were not required.

• Simple rule of reconstructing parenthesized expressions:

Assuming three levels of precedences of “+”, “∗”, and “∗∗”
◮ Add “(((” in the beginning of the expression

(and hence before every “(” in the expression)
◮ Add “)))” at the end of the expression

(and hence after every “)” in the expression)
◮ Replace every “+” by “))) + (((”
◮ Replace every “∗” by “)) ∗ ((”
◮ Replace every “∗∗” by “) ∗ ∗(”

• Our expression becomes fully parenthesized by application of this rule.

(((A))) + (((B) ∗ ∗(C)) ∗ ((((((D))) + (((E)))))))

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 28/46

FORTRAN Expression Handling

• Conventional precedences were used and parenthesis were not required.

• Simple rule of reconstructing parenthesized expressions:

Assuming three levels of precedences of “+”, “∗”, and “∗∗”
◮ Add “(((” in the beginning of the expression

(and hence before every “(” in the expression)
◮ Add “)))” at the end of the expression

(and hence after every “)” in the expression)
◮ Replace every “+” by “))) + (((”
◮ Replace every “∗” by “)) ∗ ((”
◮ Replace every “∗∗” by “) ∗ ∗(”

• Our expression becomes fully parenthesized by application of this rule.

(((A))) + (((B) ∗ ∗(C)) ∗ ((((((D))) + (((E)))))))

(The rules can be applied in a single left-to-right scan of the expression)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 29/46

FORTRAN Compiler Anecdotes (1)

• Expression computation problem observed by Bernard A. Galler

◮ For n = 10, the expression n ∗ (n − 1)/2 computed 40 instead of 45!

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 29/46

FORTRAN Compiler Anecdotes (1)

• Expression computation problem observed by Bernard A. Galler

◮ For n = 10, the expression n ∗ (n − 1)/2 computed 40 instead of 45!
◮ “/” had a higher precedence and 9/2 is 4 in integer arithmetic

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 29/46

FORTRAN Compiler Anecdotes (1)

• Expression computation problem observed by Bernard A. Galler

◮ For n = 10, the expression n ∗ (n − 1)/2 computed 40 instead of 45!
◮ “/” had a higher precedence and 9/2 is 4 in integer arithmetic

• Response from IBM

“It is too complicated to change the compiler so we will fix the manual”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 29/46

FORTRAN Compiler Anecdotes (1)

• Expression computation problem observed by Bernard A. Galler

◮ For n = 10, the expression n ∗ (n − 1)/2 computed 40 instead of 45!
◮ “/” had a higher precedence and 9/2 is 4 in integer arithmetic

• Response from IBM

“It is too complicated to change the compiler so we will fix the manual”

• New manual had the following statement:

“Please be warned that mathematical equivalence is not the same as
computational equivalence”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 29/46

FORTRAN Compiler Anecdotes (1)

• Expression computation problem observed by Bernard A. Galler

◮ For n = 10, the expression n ∗ (n − 1)/2 computed 40 instead of 45!
◮ “/” had a higher precedence and 9/2 is 4 in integer arithmetic

• Response from IBM

“It is too complicated to change the compiler so we will fix the manual”

• New manual had the following statement:

“Please be warned that mathematical equivalence is not the same as
computational equivalence”

• How about the same precedence for “/” and “∗” and left associativity?

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 29/46

FORTRAN Compiler Anecdotes (1)

• Expression computation problem observed by Bernard A. Galler

◮ For n = 10, the expression n ∗ (n − 1)/2 computed 40 instead of 45!
◮ “/” had a higher precedence and 9/2 is 4 in integer arithmetic

• Response from IBM

“It is too complicated to change the compiler so we will fix the manual”

• New manual had the following statement:

“Please be warned that mathematical equivalence is not the same as
computational equivalence”

• How about the same precedence for “/” and “∗” and left associativity?

◮ n/2 ∗ (n − 1)
◮ n ∗ (n − 1) ∗ (1/2)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 30/46

FORTRAN Compiler Anecdotes (2)

On compiler reliability

• Tables stored on the magnetic drum based memory

• Slow searches and more load on drums

• The compiler worked far better at GM than at Westinghouse

• GM people had ensured a much better servicing of magnetic drums!

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 31/46

FORTRAN Compiler Anecdotes (3)

On compiler efficiency

• Frank Engel at Westinghouse observed that tapes moved independently
but sequentially

• Compiler could become faster if tape movement is made to overlap

• Frank asked for the source and got a reply: (source meant assembly)

“IBM does not supply source code”

• Frank patched up the octal object code of the compiler and the
throughput increased by a factor of 3!

• IBM was surprised and wanted a copy, so Frank said:

“Westinghouse does not supply object code”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program A simplified view for 4x3 fragments

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

A(4,1) A(4,2) A(4,3)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program A simplified view for 4x3 fragments

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

A(4,1) A(4,2) A(4,3)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program A simplified view for 4x3 fragments

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

A(4,1) A(4,2) A(4,3)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program A simplified view for 4x3 fragments

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

A(4,1) A(4,2) A(4,3)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program A simplified view for 4x3 fragments

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

A(4,1) A(4,2) A(4,3)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program A simplified view for 4x3 fragments

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

A(4,1) A(4,2) A(4,3)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program A simplified view for 4x3 fragments

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

A(4,1) A(4,2) A(4,3)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program A simplified view for 4x3 fragments

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

A(4,1) A(4,2) A(4,3)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program A simplified view for 4x3 fragments

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

A(4,1) A(4,2) A(4,3)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program A simplified view for 4x3 fragments

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

A(4,1) A(4,2) A(4,3)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program A simplified view for 4x3 fragments

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

A(4,1) A(4,2) A(4,3)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program A simplified view for 4x3 fragments

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

A(4,1) A(4,2) A(4,3)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 32/46

A FORTRAN Program for Array Copy

Program A simplified view for 4x3 fragments

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

B(1,1) B(1,2) B(1,3)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2) B(3,3)

B(4,1) B(4,2) B(4,3)

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)

A(4,1) A(4,2) A(4,3)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 33/46

Array Address Calculation

Cell (i , j) Its address

x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x

j

i

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 33/46

Array Address Calculation

Cell (i , j) Its address

x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x

j

i

10 Base + (j − 1) ∗ 10 + i − 1

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 33/46

Array Address Calculation

Cell (i , j) Its address

x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x

j

i

10 Base + (j − 1) ∗ 10 + i − 1

An additional complication: In FORTRAN, arrays are stored backwards and
index registers are subtracted from the base

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 34/46

Output of FORTRAN I Compiler

Source
Program

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

Object
Program

Statement Explanation

LXD ONE, 1 Ixr1 = 1
LOOP CLA B+1, 1 Acc = ∗(B + 1− Ixr1)

ST0 A+1, 1 ∗(A+ 1− Ixr1) = Acc
TXI * +1, 1, 1 Ixr1 = Ixr1 + 1, jump ahead by 1
TXL LOOP,l ,100 if (Ixr1 ≤ 100), goto LOOP

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 34/46

Output of FORTRAN I Compiler

Source
Program

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

• Address calculation?

• Nested loops?

Object
Program

Statement Explanation

LXD ONE, 1 Ixr1 = 1
LOOP CLA B+1, 1 Acc = ∗(B + 1− Ixr1)

ST0 A+1, 1 ∗(A+ 1− Ixr1) = Acc
TXI * +1, 1, 1 Ixr1 = Ixr1 + 1, jump ahead by 1
TXL LOOP,l ,100 if (Ixr1 ≤ 100), goto LOOP

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 35/46

Compiling Array Copy Program: Control Flow Graph

DIMENSION A (10,lO)

DIMENSION B (10,lO)

DO 1 J = 1, 10

DO 1 I = 1, 10

1 A(I,J) = B(I,J)

i = j = 1

j = 0

t1 = (j − 1) ∗ 10 + i − 1
t2 = ∗(B − t1)
∗(A− t1) = t2
i = i + 1

j = j + 1

(i > 10)

(j > 10)

(i ≤ 10)

(j ≤ 10)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 36/46

Compiling Array Copy Program: Strength Reduction (1)

i = j = 1

j = 0

t1 = (j − 1) ∗ 10 + i − 1
t2 = ∗(B − t1)
∗(A− t1) = t2
i = i + 1

j = j + 1

(i > 10)

(j > 10)

(i ≤ 10)

(j ≤ 10)

Observations about the inner loop

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 36/46

Compiling Array Copy Program: Strength Reduction (1)

i = j = 1

j = 0

t1 = (j − 1) ∗ 10 + i − 1
t2 = ∗(B − t1)
∗(A− t1) = t2
i = i + 1

j = j + 1

(i > 10)

(j > 10)

(i ≤ 10)

(j ≤ 10)

Observations about the inner loop

• Whenever i increments by 1, t1
also increments by 1

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 36/46

Compiling Array Copy Program: Strength Reduction (1)

i = j = 1

j = 0

t1 = (j − 1) ∗ 10 + i − 1
t2 = ∗(B − t1)
∗(A− t1) = t2
i = i + 1

j = j + 1

(i > 10)

(j > 10)

(i ≤ 10)

(j ≤ 10)

Observations about the inner loop

• Whenever i increments by 1, t1
also increments by 1

• We can initialize t1 outside of
the inner loop

t1 = (j − 1) ∗ 10 + i − 1
= (j − 1) ∗ 10

(because i is 1)

and increment it within the loop

t1 = t1 + 1

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 37/46

Compiling Array Copy Program: Strength Reduction (2)

i = j = 1

t1 = (j − 1) ∗ 10

t2 = ∗(B − t1)
∗(A− t1) = t2
i = i + 1
t1 = t1 + 1

j = j + 1

(i > 10)

(j > 10)

(i ≤ 10)

(j ≤ 10)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 37/46

Compiling Array Copy Program: Strength Reduction (2)

i = j = 1

t1 = (j − 1) ∗ 10

t2 = ∗(B − t1)
∗(A− t1) = t2
i = i + 1
t1 = t1 + 1

j = j + 1

(i > 10)

(j > 10)

(i ≤ 10)

(j ≤ 10)

Observations about the inner loop

• Whenever j increments by 1, t1
increments by 10

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 37/46

Compiling Array Copy Program: Strength Reduction (2)

i = j = 1

t1 = (j − 1) ∗ 10

t2 = ∗(B − t1)
∗(A− t1) = t2
i = i + 1
t1 = t1 + 1

j = j + 1

(i > 10)

(j > 10)

(i ≤ 10)

(j ≤ 10)

Observations about the inner loop

• Whenever j increments by 1, t1
increments by 10

• We can initialize t1 outside of
the outer loop

t1 = (j − 1) ∗ 10
= 0

(because j is 1)

and increment it within the loop

t1 = t1 + 10

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 37/46

Compiling Array Copy Program: Strength Reduction (2)

i = j = 1

t1 = (j − 1) ∗ 10

t2 = ∗(B − t1)
∗(A− t1) = t2
i = i + 1
t1 = t1 + 1

j = j + 1

(i > 10)

(j > 10)

(i ≤ 10)

(j ≤ 10)

Observations about the inner loop

• Whenever j increments by 1, t1
increments by 10

• We can initialize t1 outside of
the outer loop

t1 = (j − 1) ∗ 10
= 0

(because j is 1)

and increment it within the loop

t1 = t1 + 10

• However, the inner loop already
increments t1 by 10.

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 38/46

Compiling Array Copy Program: Flattening the Loops

i = j = 1
t1 = 0

i = i = 0

t2 = ∗(B − t1)
∗(A− t1) = t2
i = i + 1
t1 = t1 + 1

j = j + 1

(i > 10)

(j > 10)

(i ≤ 10)

(j ≤ 10)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 38/46

Compiling Array Copy Program: Flattening the Loops

i = j = 1
t1 = 0

i = i = 0

t2 = ∗(B − t1)
∗(A− t1) = t2
i = i + 1
t1 = t1 + 1

j = j + 1

(i > 10)

(j > 10)

(i ≤ 10)

(j ≤ 10)

• The only activity in the outer
loop now is to control the loop
iterations

No other computation

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 38/46

Compiling Array Copy Program: Flattening the Loops

i = j = 1
t1 = 0

i = i = 0

t2 = ∗(B − t1)
∗(A− t1) = t2
i = i + 1
t1 = t1 + 1

j = j + 1

(i > 10)

(j > 10)

(i ≤ 10)

(j ≤ 10)

• The only activity in the outer
loop now is to control the loop
iterations

No other computation

• We can combine the loops into
a single loop by taking a
product of the two loop bounds

• Variables i and j would not be
required

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 39/46

Compiling Array Copy Program: The Final Program

Control flow graph (CFG) Original Assembly

t1 = 0

t2 = ∗(B − t1)
∗(A− t1) = t2
t1 = t1 + 1

j = j + 1

(t1 > 100) (t1 ≤ 100)

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 39/46

Compiling Array Copy Program: The Final Program

Control flow graph (CFG) Original Assembly

t1 = 0

t2 = ∗(B − t1)
∗(A− t1) = t2
t1 = t1 + 1

j = j + 1

(t1 > 100) (t1 ≤ 100)

LXD ONE, 1

LOOP CLA B+1, 1

ST0 A+1, 1

TXI * +1, 1, 1

TXL LOOP,l ,100

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 39/46

Compiling Array Copy Program: The Final Program

Control flow graph (CFG) Original Assembly

t1 = 0

t2 = ∗(B − t1)
∗(A− t1) = t2
t1 = t1 + 1

j = j + 1

(t1 > 100) (t1 ≤ 100)

LXD ONE, 1

LOOP CLA B+1, 1

ST0 A+1, 1

TXI * +1, 1, 1

TXL LOOP,l ,100

Minor differences

CFG Assembly
Base address B B + 1
Initial value of t1 0 1

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 40/46

Compiling Array Copy Program Using GCC 4.7.2 (gfortran)

.L5:

leal 408(%esp), %ebx

movl $1, %eax

leal 808(%esp), %ecx

addl %esi, %ebx

addl %esi, %ecx

.p2align 4,,7

.p2align 3

.L4:

movl -44(%ecx,%eax,4), %edx

movl %edx, -44(%ebx,%eax,4)

addl $1, %eax

cmpl $11, %eax

jne .L4

addl $40, %esi

cmpl $400, %esi

jne .L5

• Integer is now 4 bytes

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 40/46

Compiling Array Copy Program Using GCC 4.7.2 (gfortran)

.L5:

leal 408(%esp), %ebx

movl $1, %eax

leal 808(%esp), %ecx

addl %esi, %ebx

addl %esi, %ecx

.p2align 4,,7

.p2align 3

.L4:

movl -44(%ecx,%eax,4), %edx

movl %edx, -44(%ebx,%eax,4)

addl $1, %eax

cmpl $11, %eax

jne .L4

addl $40, %esi

cmpl $400, %esi

jne .L5

• Integer is now 4 bytes

• Efficient address
calculation with
strength reduction

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: The Compiler 40/46

Compiling Array Copy Program Using GCC 4.7.2 (gfortran)

.L5:

leal 408(%esp), %ebx

movl $1, %eax

leal 808(%esp), %ecx

addl %esi, %ebx

addl %esi, %ecx

.p2align 4,,7

.p2align 3

.L4:

movl -44(%ecx,%eax,4), %edx

movl %edx, -44(%ebx,%eax,4)

addl $1, %eax

cmpl $11, %eax

jne .L4

addl $40, %esi

cmpl $400, %esi

jne .L5

• Integer is now 4 bytes

• Efficient address
calculation with
strength reduction

• Nested loops not
flattened

Nov 2013 Uday Khedker, IIT Bombay

Part 5

Conclusions

VNIT, Nagpur History of FORTRAN: Conclusions 41/46

So is There Nothing New in Compilers?

• Languages have changed significantly

• Processors have changed significantly

• Problem sizes have changed significantly

• Expectations have changed significantly

• Analysis techniques have changed significantly

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 41/46

So is There Nothing New in Compilers?

• Languages have changed significantly

◮ “The worst thing that has happened to Computer Science is C
because it brought pointers with it.” (Frances Allen, IITK, 2007)

• Processors have changed significantly

• Problem sizes have changed significantly

• Expectations have changed significantly

• Analysis techniques have changed significantly

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 41/46

So is There Nothing New in Compilers?

• Languages have changed significantly

◮ “The worst thing that has happened to Computer Science is C
because it brought pointers with it.” (Frances Allen, IITK, 2007)

• Processors have changed significantly

◮ GPUs, Many core processors, Embedded processors

• Problem sizes have changed significantly

• Expectations have changed significantly

• Analysis techniques have changed significantly

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 41/46

So is There Nothing New in Compilers?

• Languages have changed significantly

◮ “The worst thing that has happened to Computer Science is C
because it brought pointers with it.” (Frances Allen, IITK, 2007)

• Processors have changed significantly

◮ GPUs, Many core processors, Embedded processors

• Problem sizes have changed significantly

◮ Programs running in millions of lines of code

• Expectations have changed significantly

• Analysis techniques have changed significantly

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 41/46

So is There Nothing New in Compilers?

• Languages have changed significantly

◮ “The worst thing that has happened to Computer Science is C
because it brought pointers with it.” (Frances Allen, IITK, 2007)

• Processors have changed significantly

◮ GPUs, Many core processors, Embedded processors

• Problem sizes have changed significantly

◮ Programs running in millions of lines of code

• Expectations have changed significantly

◮ Interprocedural analysis and optimization, validation, reverse
engineering, parallelization

• Analysis techniques have changed significantly

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 41/46

So is There Nothing New in Compilers?

• Languages have changed significantly

◮ “The worst thing that has happened to Computer Science is C
because it brought pointers with it.” (Frances Allen, IITK, 2007)

• Processors have changed significantly

◮ GPUs, Many core processors, Embedded processors

• Problem sizes have changed significantly

◮ Programs running in millions of lines of code

• Expectations have changed significantly

◮ Interprocedural analysis and optimization, validation, reverse
engineering, parallelization

• Analysis techniques have changed significantly

◮ Parsing, Data flow analysis, Parallism Discovery, Heap Analysis

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 42/46

The Wonder Element of FORTRAN

• Expressiveness Vs. Efficiency conflict

◮ Efficiency of programming and reach of programming, OR
◮ Efficiency of program execution and resource utilization

• FORTRAN: The triumph of the genius of AND over the tyranny of OR

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 42/46

The Wonder Element of FORTRAN

• Expressiveness Vs. Efficiency conflict

◮ Efficiency of programming and reach of programming, OR
◮ Efficiency of program execution and resource utilization

• FORTRAN: The triumph of the genius of AND over the tyranny of OR

• The software equivalent of a transistor

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 43/46

Why Things Happen the Way They Happen?

• John Backus was the right person at the right time at the right place

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 43/46

Why Things Happen the Way They Happen?

• John Backus was the right person at the right time at the right place

◮ He had the foresight to recognize the adjacent possible
◮ He was Bernard Shaw’s proverbial “unreasonable person”

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 43/46

Why Things Happen the Way They Happen?

• John Backus was the right person at the right time at the right place

◮ He had the foresight to recognize the adjacent possible
◮ He was Bernard Shaw’s proverbial “unreasonable person”

• The ideas of Charles Babbage were far beyond the adjacent possible

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 44/46

The Challenge Ahead

• Expressiveness Vs. Efficiency conflict due to the problem of scale

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 44/46

The Challenge Ahead

• Expressiveness Vs. Efficiency conflict due to the problem of scale

• Have we reached the Von Neumann bottleneck?

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 44/46

The Challenge Ahead

• Expressiveness Vs. Efficiency conflict due to the problem of scale

• Have we reached the Von Neumann bottleneck?

Backus argued so over three decades ago!

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 44/46

The Challenge Ahead

• Expressiveness Vs. Efficiency conflict due to the problem of scale

• Have we reached the Von Neumann bottleneck?

Backus argued so over three decades ago!

• The world awaits another John Backus to give us the next break-through!

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 45/46

Acknowledgements

• Mostly based on the online documents of the Computer History Museum
(www.computerhistory.org)

◮ FORTRAN examples by John Backus
◮ Array copy example by Frances Allen
◮ FORTRAN expression handling explanation by David Padua

• Interesting discussions with Supratim Biswas

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 46/46

Last But Not the Least

Thank You!

Nov 2013 Uday Khedker, IIT Bombay

VNIT, Nagpur History of FORTRAN: Conclusions 46/46

Last But Not the Least

Thank You!

Contacting me :

• uday@cse.iitb.ac.in

• http://www.cse.iitb.ac.in/~uday

Nov 2013 Uday Khedker, IIT Bombay

	Outline
	Computing Before FORTRAN
	The Creation of FORTRAN
	FORTRAN I: The Language
	The Language
	FORTRAN I: The Compiler
	The Compiler
	Conclusions

