
Liveness Based Pointer Analysis

Uday Khedker

(Joint Work with Alan Mycroft and Prashant Singh Rawat)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

October 2012

IIT Delhi LFCPA: Outline 1/38

Outline

• Introduction

• Background

• Formulating LFCPA

(Liveness based Flow and Context Sensitive Points-to Analysis)

• Performing interprocedural analysis

• Measurements

• Conclusions

Reference:
Uday P. Khedker, Alan Mycroft, Prashant Singh Rawat. Liveness Based Pointer

Anaysis. SAS 2012.

Uday Khedker IIT Bombay

Part 1

Introduction

IIT Delhi LFCPA: Introduction 2/38

Why Pointer Analysis?

• Pointer analysis collects information about indirect accesses in programs

◮ Enables precise data analysis
◮ Enable precise interprocedural control flow analysis

• Needs to scale to large programs for practical usefulness

• Good pointer information could improve many applications of program
analysis significantly

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 3/38

Pointer Analysis Musings

• Two Position Papers

• A Keynote Address

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 3/38

Pointer Analysis Musings

• Two Position Papers

◮ Which Pointer Analysis should I Use?
Michael Hind and Anthony Pioli, ISTAA 2000

◮ Pointer Analysis: Haven’t we solved this problem yet?
Michael Hind, PASTE 2001

• A Keynote Address

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 3/38

Pointer Analysis Musings

• Two Position Papers

◮ Which Pointer Analysis should I Use?
Michael Hind and Anthony Pioli, ISTAA 2000

◮ Pointer Analysis: Haven’t we solved this problem yet?
Michael Hind, PASTE 2001

• A Keynote Address

◮ “The Worst thing that has happened to Computer Science is C
because it brought pointers with it”
Frances Allen, IITK Workshop, 2007

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 3/38

Pointer Analysis Musings

• Two Position Papers

◮ Which Pointer Analysis should I Use?
Michael Hind and Anthony Pioli, ISTAA 2000

◮ Pointer Analysis: Haven’t we solved this problem yet?
Michael Hind, PASTE 2001

• A Keynote Address

◮ “The Worst thing that has happened to Computer Science is C
because it brought pointers with it”
Frances Allen, IITK Workshop, 2007

• 2012 . . .

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 4/38

The Mathematics of Pointer Analysis

In the most general situation

• Alias analysis is undecidable.

Landi-Ryder [POPL 1991], Landi [LOPLAS 1992],
Ramalingam [TOPLAS 1994]

• Flow insensitive alias analysis is NP-hard

Horwitz [TOPLAS 1997]

• Points-to analysis is undecidable

Chakravarty [POPL 2003]

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 4/38

The Mathematics of Pointer Analysis

In the most general situation

• Alias analysis is undecidable.

Landi-Ryder [POPL 1991], Landi [LOPLAS 1992],
Ramalingam [TOPLAS 1994]

• Flow insensitive alias analysis is NP-hard

Horwitz [TOPLAS 1997]

• Points-to analysis is undecidable

Chakravarty [POPL 2003]

Adjust your expectations suitably to avoid disappointments!

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 5/38

The Engineering of Pointer Analysis

So what should we expect?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 5/38

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 5/38

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

• “Fortunately many approximations exist”

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 5/38

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

• “Fortunately many approximations exist”

• “Unfortunately too many approximations exist!”

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 5/38

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

• “Fortunately many approximations exist”

• “Unfortunately too many approximations exist!”

Engineering of pointer analysis is much more dominant than its science

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 6/38

Pointer Analysis: Engineering or Science?

• Engineering view

• Science view

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 6/38

Pointer Analysis: Engineering or Science?

• Engineering view

◮ Build quick approximations
◮ The tyranny of (exclusive) OR!

Precision OR Efficiency?

• Science view

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 6/38

Pointer Analysis: Engineering or Science?

• Engineering view

◮ Build quick approximations
◮ The tyranny of (exclusive) OR!

Precision OR Efficiency?

• Science view

◮ Build clean abstractions
◮ Can we harness the Genius of AND?

Precision AND Efficiency?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Introduction 7/38

The Scope of Our Points-to Analysis

Attribute Range of Options Our Scope

Categories of
data pointers

Static (Globals)
Stack (Locals, Formals)
Heap

Static (Globals)
Stack (Locals, Formals)

Level
Intraprocedural,
Interprocedural Interprocedural

Flow Sensitivity Full, Partial, None Full

Context Sensitivity Full, Partial, None Full

• Heap and address escaping locals are handled conservatively

• Data flow information is safe but may be imprecise

Uday Khedker IIT Bombay

Part 2

Background

IIT Delhi LFCPA: Background 8/38

An Example of Flow Insensitive Points-to Analysis
(Andersen’s Approach aka Inclusion Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 8/38

An Example of Flow Insensitive Points-to Analysis
(Andersen’s Approach aka Inclusion Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

x

Points-to Graph

y z u

• x “points-to” y

• y “points-to” z

• z “points-to” u

Constraints on
Points-to Sets

Px ⊇ {y}
Py ⊇ {z}
Pz ⊇ {u}

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 8/38

An Example of Flow Insensitive Points-to Analysis
(Andersen’s Approach aka Inclusion Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

x

Points-to Graph

y z u

• Pointees of z should
point to pointees of y
also

• u should point to z

Constraints on
Points-to Sets

Px ⊇ {y}
Py ⊇ {z}
Pz ⊇ {u}

∀w ∈ Pz , Pw ⊇ Py

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 8/38

An Example of Flow Insensitive Points-to Analysis
(Andersen’s Approach aka Inclusion Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

x

Points-to Graph

y z u

Constraints on
Points-to Sets

Px ⊇ {y}
Py ⊇ {z}
Pz ⊇ {u}

∀w ∈ Pz , Pw ⊇ Py

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 8/38

An Example of Flow Insensitive Points-to Analysis
(Andersen’s Approach aka Inclusion Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

x

Points-to Graph

y z u

• z should point to
pointees of y

• z should point to z

Constraints on
Points-to Sets

Px ⊇ {y}
Py ⊇ {z}
Pz ⊇ {u}

∀w ∈ Pz , Pw ⊇ Py

Pz ⊇ Py

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 8/38

An Example of Flow Insensitive Points-to Analysis
(Andersen’s Approach aka Inclusion Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

x

Points-to Graph

y z u

Constraints on
Points-to Sets

Px ⊇ {y}
Py ⊇ {z}
Pz ⊇ {u}

∀w ∈ Pz , Pw ⊇ Py

Pz ⊇ Py

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 8/38

An Example of Flow Insensitive Points-to Analysis
(Andersen’s Approach aka Inclusion Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

x

Points-to Graph

y z u

• y should point to x
also

Constraints on
Points-to Sets

Px ⊇ {y}
Py ⊇ {z}
Pz ⊇ {u}

∀w ∈ Pz , Pw ⊇ Py

Pz ⊇ Py

Py ⊇ {x}

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 8/38

An Example of Flow Insensitive Points-to Analysis
(Andersen’s Approach aka Inclusion Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

x

Points-to Graph

y z u

Constraints on
Points-to Sets

Px ⊇ {y}
Py ⊇ {z}
Pz ⊇ {u}

∀w ∈ Pz , Pw ⊇ Py

Pz ⊇ Py

Py ⊇ {x}

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 8/38

An Example of Flow Insensitive Points-to Analysis
(Andersen’s Approach aka Inclusion Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

x

Points-to Graph

y z u

• z and its pointees
should point to new
pointee of y also

• u and z should point
to x

Constraints on
Points-to Sets

Px ⊇ {y}
Py ⊇ {z}
Pz ⊇ {u}

∀w ∈ Pz , Pw ⊇ Py

Pz ⊇ Py

Py ⊇ {x}

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 8/38

An Example of Flow Insensitive Points-to Analysis
(Andersen’s Approach aka Inclusion Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

x

Points-to Graph

y z u

Constraints on
Points-to Sets

Px ⊇ {y}
Py ⊇ {z}
Pz ⊇ {u}

∀w ∈ Pz , Pw ⊇ Py

Pz ⊇ Py

Py ⊇ {x}

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 8/38

An Example of Flow Insensitive Points-to Analysis
(Andersen’s Approach aka Inclusion Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

x

Points-to Graph

y z u

• Pointees of z should
point to pointees of y

• x should point to
itself and z

Constraints on
Points-to Sets

Px ⊇ {y}
Py ⊇ {z}
Pz ⊇ {u}

∀w ∈ Pz , Pw ⊇ Py

Pz ⊇ Py

Py ⊇ {x}

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 8/38

An Example of Flow Insensitive Points-to Analysis
(Andersen’s Approach aka Inclusion Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

x

Points-to Graph

y z u

Constraints on
Points-to Sets

Px ⊇ {y}
Py ⊇ {z}
Pz ⊇ {u}

∀w ∈ Pz , Pw ⊇ Py

Pz ⊇ Py

Py ⊇ {x}

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 9/38

An Example of Flow Insensitive Points-to Analysis
(Steensgaard’s Approach aka Equality Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

• Treat all pointees of a
pointer as “equivalent”
locations

• Transitive closure

Pointees of all
equivalent locations
become equivalent

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 9/38

An Example of Flow Insensitive Points-to Analysis
(Steensgaard’s Approach aka Equality Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

Andersen’s Points-to Graph

x y z u

• Treat all pointees of a
pointer as “equivalent”
locations

• Transitive closure

Pointees of all
equivalent locations
become equivalent

Effective additional
constraints

Unify (x , y)
(pointees of x)

Unify (x , z)
(pointees of y)

Unify (x , u)
(pointees of z)

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 9/38

An Example of Flow Insensitive Points-to Analysis
(Steensgaard’s Approach aka Equality Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

Andersen’s Points-to Graph

x y z u

• Treat all pointees of a
pointer as “equivalent”
locations

• Transitive closure

Pointees of all
equivalent locations
become equivalent

Effective additional
constraints

Unify (x , y)
(pointees of x)

Unify (x , z)
(pointees of y)

Unify (x , u)
(pointees of z)

⇒ x , y , z , u are
equivalent

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 9/38

An Example of Flow Insensitive Points-to Analysis
(Steensgaard’s Approach aka Equality Based Approach)

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

Steensgaard’s Points-to Graph

x y

z u

• Treat all pointees of a
pointer as “equivalent”
locations

• Transitive closure

Pointees of all
equivalent locations
become equivalent

Effective additional
constraints

Unify (x , y)
(pointees of x)

Unify (x , z)
(pointees of y)

Unify (x , u)
(pointees of z)

⇒ x , y , z , u are
equivalent

⇒ Complete graph

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 10/38

An Example of Flow Sensitive Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 10/38

An Example of Flow Sensitive Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 10/38

An Example of Flow Sensitive Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 10/38

An Example of Flow Sensitive Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 10/38

An Example of Flow Sensitive Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u x y z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 10/38

An Example of Flow Sensitive Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u x y z u

x y z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 10/38

An Example of Flow Sensitive Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u x y z u

x y z u x y z

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 10/38

An Example of Flow Sensitive Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u x y z u

x y z u x y z

x y z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 10/38

An Example of Flow Sensitive Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u x y z u

x y z u x y z

x y z u

x y z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 11/38

Flow Sensitive Points-to Analysis: May and Must Variants

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 11/38

Flow Sensitive Points-to Analysis: May and Must Variants

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

• c a b e at the entry of 4

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 11/38

Flow Sensitive Points-to Analysis: May and Must Variants

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

• c a b e at the entry of 4

• Should a b be killed by assignment

∗c = &d?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 11/38

Flow Sensitive Points-to Analysis: May and Must Variants

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

• c a b e at the entry of 4

• Should a b be killed by assignment

∗c = &d?

No because c points to a along path
1, 2, 4 but not along path 1, 3, 4

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 11/38

Flow Sensitive Points-to Analysis: May and Must Variants

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

• c a b eMAY
at the entry of 4

• Should a b be killed by assignment

∗c = &d?

No because c points to a along path
1, 2, 4 but not along path 1, 3, 4

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 11/38

Flow Sensitive Points-to Analysis: May and Must Variants

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

• c a b eMAY
at the entry of 4

• Should a b be killed by assignment

∗c = &d?

No because c points to a along path
1, 2, 4 but not along path 1, 3, 4

• Should b e be killed by assignment

∗a = &e?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 11/38

Flow Sensitive Points-to Analysis: May and Must Variants

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

• c a b eMAY MUST
at the entry of 4

• Should a b be killed by assignment

∗c = &d?

No because c points to a along path
1, 2, 4 but not along path 1, 3, 4

• Should b e be killed by assignment

∗a = &e?

Yes because a points to b along both the
paths

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 11/38

Flow Sensitive Points-to Analysis: May and Must Variants

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

• c a b eMAY MUST
at the entry of 4

• Should a b be killed by assignment

∗c = &d?

No because c points to a along path
1, 2, 4 but not along path 1, 3, 4

• Should b e be killed by assignment

∗a = &e?

Yes because a points to b along both the
paths

• Must points-to information is required for
killing May points-to information

(and vice-versa)

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 12/38

Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 12/38

Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 12/38

Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 12/38

Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 12/38

Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 12/38

Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 12/38

Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

a b××

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 12/38

Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 12/38

Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

c d× ×

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 12/38

Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

fr

a b

a b

c d

c d

a b c d

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 13/38

Context Sensitivity in the Presence of Recursion

Starts

Ci

Ri

Ends

call (c)

return (r)

stop
calling (s)

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 13/38

Context Sensitivity in the Presence of Recursion

Starts

Ci

Ri

Ends

call (c)

return (r)

stop
calling (s)

• Paths from Starts to Ends should
constitute a context free language cnsrn

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 13/38

Context Sensitivity in the Presence of Recursion

Starts

Ci

Ri

Ends

call (c)

return (r)

stop
calling (s)

• Paths from Starts to Ends should
constitute a context free language cnsrn

• Many interprocedural analyses treat
cycle of recursion as an SCC and
approximate paths by a regular language
c∗sr∗

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 13/38

Context Sensitivity in the Presence of Recursion

Starts

Ci

Ri

Ends

call (c)

return (r)

stop
calling (s)

• Paths from Starts to Ends should
constitute a context free language cnsrn

• Many interprocedural analyses treat
cycle of recursion as an SCC and
approximate paths by a regular language
c∗sr∗

• We do not know any practical points-to
analysis that is fully context sensitive

Most context sensitive approaches

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 13/38

Context Sensitivity in the Presence of Recursion

Starts

Ci

Ri

Ends

call (c)

return (r)

stop
calling (s)

• Paths from Starts to Ends should
constitute a context free language cnsrn

• Many interprocedural analyses treat
cycle of recursion as an SCC and
approximate paths by a regular language
c∗sr∗

• We do not know any practical points-to
analysis that is fully context sensitive

Most context sensitive approaches

◮ either do not consider recursion, or

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 13/38

Context Sensitivity in the Presence of Recursion

Starts

Ci

Ri

Ends

call (c)

return (r)

stop
calling (s)

• Paths from Starts to Ends should
constitute a context free language cnsrn

• Many interprocedural analyses treat
cycle of recursion as an SCC and
approximate paths by a regular language
c∗sr∗

• We do not know any practical points-to
analysis that is fully context sensitive

Most context sensitive approaches

◮ either do not consider recursion, or
◮ do not consider recursive pointer

manipulation (e.g. “p = ∗p”), or

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 13/38

Context Sensitivity in the Presence of Recursion

Starts

Ci

Ri

Ends

call (c)

return (r)

stop
calling (s)

• Paths from Starts to Ends should
constitute a context free language cnsrn

• Many interprocedural analyses treat
cycle of recursion as an SCC and
approximate paths by a regular language
c∗sr∗

• We do not know any practical points-to
analysis that is fully context sensitive

Most context sensitive approaches

◮ either do not consider recursion, or
◮ do not consider recursive pointer

manipulation (e.g. “p = ∗p”), or
◮ are context insensitive in recursion

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 14/38

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FFS

CI FCS

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 14/38

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

CI FCS
FI=

FI⊆

FISSA

FSNoKill

FFS

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 14/38

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FFS

CI CIOS CSK-lim CSRI FCS

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 14/38

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FFS

CI CIOS CSK-lim CSRI FCS

Data Structures: BDDs, probabilistic

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 14/38

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FFS

CI CIOS CSK-lim CSRI FCS

Data Structures: BDDs, probabilistic
Methods: parallel, on demand, randomized

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 14/38

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FFS

CI CIOS CSK-lim CSRI FCS

Data Structures: BDDs, probabilistic
Methods: parallel, on demand, randomized

Refinement: Levelwise, bootstrapping

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 14/38

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FFS

CI CIOS CSK-lim CSRI FCS

Over Crowed Area

Data Structures: BDDs, probabilistic
Methods: parallel, on demand, randomized

Refinement: Levelwise, bootstrapping

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 14/38

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FFS

CI CIOS CSK-lim CSRI FCS

Over Crowed Area

Still
Vacant

Data Structures: BDDs, probabilistic
Methods: parallel, on demand, randomized

Refinement: Levelwise, bootstrapping

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Background 14/38

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FFS

CI CIOS CSK-lim CSRI FCS

Over Crowed Area

Still
Vacant

Data Structures: BDDs, probabilistic
Methods: parallel, on demand, randomized

Refinement: Levelwise, bootstrapping

That’s the
corner we are trying to

occupy :-)

Uday Khedker IIT Bombay

Part 3

Formulating LFCPA

IIT Delhi LFCPA: Formulating LFCPA 15/38

Our Motivating Example for Intraprocedural Formulation

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u x y z u

x y z u x y z

x y z u

x y z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 16/38

yIs All This Information Useful?y

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y zx y z u

x y z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 16/38

yIs All This Information Useful?y

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y zx y z u

x y z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 16/38

yIs All This Information Useful?y

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y zx y z u

x y z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 16/38

yIs All This Information Useful?y

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y zx y z u

x y z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 16/38

yIs All This Information Useful?y

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y zx y z u

x y z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 16/38

yIs All This Information Useful?y

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y zx y z u

x y z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 17/38

The L and P of LFCPA

Mutual dependence of liveness and points-to information

• Define points-to information only for live pointers

• For pointer indirections, define liveness information using points-to
information

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 18/38

The F and C of LFCPA

• Use call strings method for full flow and context sensitivity

• Use value based termination of call strings construction for efficiency
[Khedker, Karkare. CC 2008]

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 19/38

Use of Strong Liveness

• Simple liveness considers every use of a variable as useful

• Strong liveness checks the liveness of the result before declaring the
operands to be live

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 19/38

Use of Strong Liveness

• Simple liveness considers every use of a variable as useful

• Strong liveness checks the liveness of the result before declaring the
operands to be live

• Strong liveness is more precise than simple liveness

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 20/38

Data Flow Equations

Loutn =







∅ n is Endp
⋃

s∈succ(n)

Lins otherwise

Linn =
(

Loutn − Killn

)

∪ Refn

Ainn =



















Linn×{?} n is Startp




⋃

p∈pred(n)

Aoutp





∣

∣

∣

∣

∣

∣

Linn

otherwise

Aoutn =

(

(

Ainn −
(

Killn ×V
))

∪
(

Defn × Pointeen

)

)∣

∣

∣

∣

Loutn

• Lin/Lout : set of Live pointers, Ain/Aout: sets of mAy points-to pairs

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 20/38

Data Flow Equations

Loutn =







∅ n is Endp
⋃

s∈succ(n)

Lins otherwise

Linn =
(

Loutn − Killn

)

∪ Refn

Ainn =



















Linn×{?} n is Startp




⋃

p∈pred(n)

Aoutp





∣

∣

∣

∣

∣

∣

Linn

otherwise

Aoutn =

(

(

Ainn −
(

Killn ×V
))

∪
(

Defn × Pointeen

)

)∣

∣

∣

∣

Loutn

• Lin/Lout : set of Live pointers, Ain/Aout: sets of mAy points-to pairs

• Refn, Killn, Defn, and Pointeen are defined in terms of Ainn

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 20/38

Data Flow Equations

Loutn =







∅ n is Endp
⋃

s∈succ(n)

Lins otherwise

Linn =
(

Loutn − Killn

)

∪ Refn

Ainn =



















Linn×{?} n is Startp




⋃

p∈pred(n)

Aoutp





∣

∣

∣

∣

∣

∣

Linn

otherwise

Aoutn =

(

(

Ainn −
(

Killn ×V
))

∪
(

Defn × Pointeen

)

)∣

∣

∣

∣

Loutn

• Lin/Lout : set of Live pointers, Ain/Aout: sets of mAy points-to pairs

• Refn, Killn, Defn, and Pointeen are defined in terms of Ainn

Refn is
defined in terms

of Loutn

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 20/38

Data Flow Equations

Loutn =







∅ n is Endp
⋃

s∈succ(n)

Lins otherwise

Linn =
(

Loutn − Killn

)

∪ Refn

Ainn =



















Linn×{?} n is Startp




⋃

p∈pred(n)

Aoutp





∣

∣

∣

∣

∣

∣

Linn

otherwise

Aoutn =

(

(

Ainn −
(

Killn ×V
))

∪
(

Defn × Pointeen

)

)∣

∣

∣

∣

Loutn

• Lin/Lout : set of Live pointers, Ain/Aout: sets of mAy points-to pairs

• Refn, Killn, Defn, and Pointeen are defined in terms of Ainn

Ainn and Aoutn
are restricted to
Linn and Loutn

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 20/38

Data Flow Equations

Loutn =







∅ n is Endp
⋃

s∈succ(n)

Lins otherwise

Linn =
(

Loutn − Killn

)

∪ Refn

Ainn =



















Linn×{?} n is Startp




⋃

p∈pred(n)

Aoutp





∣

∣

∣

∣

∣

∣

Linn

otherwise

Aoutn =

(

(

Ainn −
(

Killn ×V
))

∪
(

Defn × Pointeen

)

)∣

∣

∣

∣

Loutn

• Lin/Lout : set of Live pointers, Ain/Aout: sets of mAy points-to pairs

• Refn, Killn, Defn, and Pointeen are defined in terms of Ainn

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 21/38

Motivating Example Revisited

• For convenience, we show complete sweeps of liveness and points-to
analysis repeatedly

• This is not required by the computation

• The data flow equations define a single fixed point computation

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

L
iv
en
es
s
A
n
al
ys
is

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

L
iv
en
es
s
A
n
al
ys
is

{u, x}

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

L
iv
en
es
s
A
n
al
ys
is

{u, x}

{u, x}{u, x}

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

L
iv
en
es
s
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

L
iv
en
es
s
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

Strong liveness:
y is not made
live because z
is not live

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

L
iv
en
es
s
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

{u, x , z}

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

L
iv
en
es
s
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

{u, x , z}

{u}

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

{u, x , z}

{u}

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

{u, x , z}

{u} u ?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

{u, x , z}

{u} u ?

x y z u ?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

{u, x , z}

{u} u ?

x y z u ?

x y u ?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

{u, x , z}

{u} u ?

x y z u ?

x y u ?

x y u ?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

{u, x , z}

{u} u ?

x y z u ?

x y u ?

x y u ?

z u

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

{u, x , z}

{u} u ?

x y z u ?

x y u ?

x y u ?

z u

??

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 22/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{z} {u, x}

{u, x , z}

{u} u ?

x y z u ?

x y u ?

x y u ?

z u

??

x y u ?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 23/38

Second Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

{u, x}

{u, x}{u, x}

{u, x}

{u} u ?

x y u ?

x y u ?

{z}z u

{u, x , z} x y z u ?

x y u ?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 23/38

Second Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

L
iv
en
es
s
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{u, x}

{u} u ?

x y u ?

x y u ?

{x , y ,z}

{u, x , z} x y z u ?

z u

x y u ?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 23/38

Second Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

L
iv
en
es
s
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{u, x}

{u} u ?

x y u ?

x y u ?

{x , y ,z}

{u, x , y ,z} x y z u ?

z u

x y u ?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 23/38

Second Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{u, x}

{u} u ?

x y u ?

x y u ?

{x , y ,z}

{u, x , y ,z} x y z u ?

z u

x y u ?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 23/38

Second Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{u, x}

{u} u ?

x y u ?

x y u ?

{x , y ,z}

{u, x , y ,z} x y z u ?

x y z u

x y u ?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 23/38

Second Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{u, x}

{u} u ?

x y u ?

x y u ?

{x , y ,z}

{u, x , y ,z} x y z u ?

x y z u

x y z u

x y u ?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 23/38

Second Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2n3 z = y n3

n4

y = &x

use u

use x

n4

P
o
in
ts
-t
o
A
n
al
ys
is

{u, x}

{u, x}{u, x}

{u, x}

{u} u ?

x y u ?

x y u ?

{x , y ,z}

{u, x , y ,z} x y z u ?

x y z u

x y z u

x y z u ?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 24/38

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 24/38

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

• c is live at program entry

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 24/38

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

c ?

• c is live at program entry

• Assume that c points to “?” at
program entry

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 24/38

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

c ?

c ?

a b e
• c is live at program entry

• Assume that c points to “?” at
program entry

• Perform usual may points-to
analysis

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 24/38

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

c ?

c ?

a b e

c ?

a b e
• c is live at program entry

• Assume that c points to “?” at
program entry

• Perform usual may points-to
analysis

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 24/38

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

c ?

c ?

a b e

c ?

a b e

c a b e

?

• c is live at program entry

• Assume that c points to “?” at
program entry

• Perform usual may points-to
analysis

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 24/38

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

c ?

c ?

a b e

c ?

a b e

c a b e

?

• c is live at program entry

• Assume that c points to “?” at
program entry

• Perform usual may points-to
analysis

• Since c has multiple pointees, it
is a MAY relation

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Formulating LFCPA 24/38

Discovering Must Points-to Information from May Points-to
Information

a = &b
b = &e1

c = &a2 c = &d3

∗c = &d
∗a = &e4

∗c = e5

c ?

c ?

a b e

c ?

a b e

c a b e

?

• c is live at program entry

• Assume that c points to “?” at
program entry

• Perform usual may points-to
analysis

• Since c has multiple pointees, it
is a MAY relation

• Since a has a single pointee, it
is a MUST relation

Uday Khedker IIT Bombay

Part 4

Interprocedural Analysis

IIT Delhi LFCPA: Interprocedural Analysis 25/38

Call Strings Method Using Value Based Termination

• The classical Sharir-Pnueli call string method with a small change in
the termination criteria

◮ Classical approach [Sharir, Pnueli. 1981]
Construct all call strings upto the length K · (|L|+ 1)2

◦ L is the lattice of data flow values and K is the maximum number of
distinct call sites in any call chain

◦ This bound is for general frameworks. For simpler frameworks such
as separable or bit vector frameworks, the bounds are smaller

◮ Our approach [Khedker, Karkare. 2008]
Use equivalence of data flow values

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 26/38

A Points-to Analysis Example to Show the Difference

main()

{ x = &y;

z = &x;

y = &z;

p(); /* C1 */

}

p()

{ if (...)

{ p(); /* C2 */

x = *x;

}

}

• Number of distinct call sites in a call chain
K = 2.

• Number of variables: 3

• Number of distinct points-to pairs: 3× 3 = 9

• L is powerset of all points-to pairs

• | L |= 29

• Length of the longest call string in
Sharir-Pnueli method
2× (|L|+ 1)2 = 219 + 210 + 1 = 5, 25, 313

• All call strings upto this length must be
constructed by the Sharir-Pnueli method!

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 26/38

A Points-to Analysis Example to Show the Difference

main()

{ x = &y;

z = &x;

y = &z;

p(); /* C1 */

}

p()

{ if (...)

{ p(); /* C2 */

x = *x;

}

}

• Value based termination requires only three
call strings: λ, c1, and c1c2

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 27/38

Value Based Termination of Call String Construction

Startp

Endp

Procedure
Body

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 27/38

Value Based Termination of Call String Construction

Startp

Endp

σ0,x0

σ0,y0

• Context sensitive analysis retains
distinct data values for each
context reaching a procedure

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 27/38

Value Based Termination of Call String Construction

Startp

Endp

σ0,x0

σ0,y0

σ1,x1

σ1,y1

• Context sensitive analysis retains
distinct data values for each
context reaching a procedure

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 27/38

Value Based Termination of Call String Construction

Startp

Endp

σ0,x0

σ0,y0

σ1,x1

σ1,y1

x2

y2

σ2,x1

σ2,y1

• Context sensitive analysis retains
distinct data values for each
context reaching a procedure

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 27/38

Value Based Termination of Call String Construction

Startp

Endp

σ0,x0

σ0,y0

σ1,x1

σ1,y1

x2

y2

σ2,x1

σ2,y1

σ3,x1

σ3,y1

• Context sensitive analysis retains
distinct data values for each
context reaching a procedure

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 27/38

Value Based Termination of Call String Construction

Startp

Endp

σ0,x0

σ0,y0

σ1,x1

σ1,y1

x2

y2

σ2,x1

σ2,y1

σ3,x1

σ3,y1

σ4,x2

σ4,y2

• Context sensitive analysis retains
distinct data values for each
context reaching a procedure

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 27/38

Value Based Termination of Call String Construction

Startp

Endp

σ0,x0

σ0,y0

σ1,x1

σ1,y1

x2

y2

σ2,x1

σ2,y1

σ3,x1

σ3,y1

σ4,x2

σ4,y2

• Context sensitive analysis retains
distinct data values for each
context reaching a procedure

• Many data flow values could be
identical

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 27/38

Value Based Termination of Call String Construction

Startp

Endp

σ0,x0

σ0,y0

σ1,x1

y1

x2

y2

σ2,x1

y1

σ3,x1

y1

σ4,x2

σ4,y2

• Context sensitive analysis retains
distinct data values for each
context reaching a procedure

• Many data flow values could be
identical

• It is sufficient to propagate a
single representative data flow
value

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 27/38

Value Based Termination of Call String Construction

Startp

Endp

σ0,x0

σ0,y0

σ1,x1

σ1,y1

x2

y2

σ2,x1

σ2,y1

σ3,x1

σ3,y1

σ4,x2

σ4,y2

• Context sensitive analysis retains
distinct data values for each
context reaching a procedure

• Many data flow values could be
identical

• It is sufficient to propagate a
single representative data flow
value

• We only need to regenerate the
missing contexts

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 27/38

Value Based Termination of Call String Construction

Startp

Endp

σ0,x0

σ0,y0

σ1,x1

σ1,y1

x2

y2

σ2,x1

σ2,y1

σ3,x1

σ3,y1

σ4,x2

σ4,y2

• Context sensitive analysis retains
distinct data values for each
context reaching a procedure

• Many data flow values could be
identical

• It is sufficient to propagate a
single representative data flow
value

• We only need to regenerate the
missing contexts

• Much fewer call strings are passed
on to the callees

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 27/38

Value Based Termination of Call String Construction

Startp

Endp

σ0,x0

σ0,y0

σ1,x1

σ1,y1

x2

y2

σ2,x1

σ2,y1

σ3,x1

σ3,y1

σ4,x2

σ4,y2

• Context sensitive analysis retains
distinct data values for each
context reaching a procedure

• Many data flow values could be
identical

• It is sufficient to propagate a
single representative data flow
value

• We only need to regenerate the
missing contexts

• Much fewer call strings are passed
on to the callees

The number of call strings is reduced without any loss of precision

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 28/38

Value Based Termination of Call String Construction

• Seem straight forward for non-recursive procedures

• What if a procedure is recursive?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 28/38

Value Based Termination of Call String Construction

• Seem straight forward for non-recursive procedures

• What if a procedure is recursive?

• Read our CC 2008 paper, or my book, or my extra slides

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Interprocedural Analysis 28/38

Value Based Termination of Call String Construction

• Seem straight forward for non-recursive procedures

• What if a procedure is recursive?

• Read our CC 2008 paper, or my book, or my extra slides

• If none of it seems possible, invite me for another talk

Uday Khedker IIT Bombay

Part 5

Measurements

IIT Delhi LFCPA: Measurements 29/38

Implementation

• LTO framework of GCC 4.6.0

• Naive prototype implementation

(Points-to sets implemented using linked lists)

• Implemented FCPA without liveness for comparison

• Comparison with GCC’s flow and context insensitive method

• SPEC 2006 benchmarks

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Measurements 30/38

Analysis Time

Program kLoC
Call
Sites

Time in milliseconds
L-FCPA

FCPA GPTA
Liveness Points-to

lbm 0.9 33 0.55 0.52 1.9 5.2

mcf 1.6 29 1.04 0.62 9.5 3.4

libquantum 2.6 258 2.0 1.8 5.6 4.8

bzip2 3.7 233 4.5 4.8 28.1 30.2

parser 7.7 1123 1.2×103 145.6 4.3×105 422.12

sjeng 10.5 678 858.2 99.0 3.2×104 38.1

hmmer 20.6 1292 90.0 62.9 2.9×105 246.3

h264ref 36.0 1992 2.2×105 2.0×105 ? 4.3×103

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Measurements 31/38

Unique Points-to Pairs

Program kLoC
Call
Sites

Unique points-to pairs

L-FCPA FCPA GPTA

lbm 0.9 33 12 507 1911

mcf 1.6 29 41 367 2159

libquantum 2.6 258 49 119 2701

bzip2 3.7 233 60 210 8.8×104

parser 7.7 1123 531 4196 1.9×104

sjeng 10.5 678 267 818 1.1×104

hmmer 20.6 1292 232 5805 1.9×106

h264ref 36.0 1992 1683 ? 1.6×107

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Measurements 32/38

Precise Context Information is Small and Sparse

Total No. and percentage of functions for call-string counts

Program no. of 0 call strings 1-4 call strings 5-8 call strings 9+ call strings

functions L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA

lbm 22
16 3 6 19

0 0 0 0
(72.7%) (13.6%) (27.3%) (86.4%)

mcf 25
16 3 9 22

0 0 0 0
(64.0%) (12.0%) (36.0%) (88.0%)

bzip2 100
88 38 12 62

0 0 0 0
(88.0%) (38.0%) (12.0%) (62.0%)

libquantum 118
100 56 17 62 1

0 0 0
(84.7%) (47.5%) (14.4%) (52.5%) (0.8%)

sjeng 151
96 37 43 45 12 15

0
54

(63.6%) (24.5%) (28.5%) (29.8%) (7.9%) (9.9%) (35.8%)

hmmer 584
548 330 32 175 4 26

0
53

(93.8%) (56.5%) (5.5%) (30.0%) (0.7%) (4.5%) (9.1%)

parser 372
246 76 118 135 4 63 4 98

(66.1%) (20.4%) (31.7%) (36.3%) (1.1%) (16.9%) (1.1%) (26.3%)

9+ call strings in L-FCPA: Tot 4, Min 10, Max 52, Mean 32.5, Median 29, Mode 10

h264ref 624
351

?
240

?
14

?
19

?
(56.2%) (38.5%) (2.2%) (3.0%)

9+ call strings in L-FCPA: Tot 14, Min 9, Max 56, Mean 27.9, Median 24, Mode 9

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Measurements 33/38

Precise Usable Pointer Information is Small and Sparse

Total No. and percentage of basic blocks (BBs) for points-to (pt) pair counts

Program no. of 0 pt pairs 1-4 pt pairs 5-8 pt pairs 9+ pt pairs

BBs L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA

lbm 252
229 61 23 82

0
66

0
43

(90.9%) (24.2%) (9.1%) (32.5%) (26.2%) (17.1%)

mcf 472
356 160 116 2

0
1

0
309

(75.4%) (33.9%) (24.6%) (0.4%) (0.2%) (65.5%)

libquantum 1642
1520 793 119 796 3 46

0
7

(92.6%) (48.3%) (7.2%) (48.5%) (0.2%) (2.8%) (0.4%)

bzip2 2746
2624 1085 118 12 3 12 1 1637

(95.6%) (39.5%) (4.3%) (0.4%) (0.1%) (0.4%) (0.0%) (59.6%)

9+ pt pairs in L-FCPA: Tot 1, Min 12, Max 12, Mean 12.0, Median 12, Mode 12

sjeng 6000
4571 3239 1208 12 221 41

0
2708

(76.2%) (54.0%) (20.1%) (0.2%) (3.7%) (0.7%) (45.1%)

hmmer 14418
13483 8357 896 21 24 91 15 5949

(93.5%) (58.0%) (6.2%) (0.1%) (0.2%) (0.6%) (0.1%) (41.3%)

9+ pt pairs in L-FCPA: Tot 6, Min 10, Max 16, Mean 13.3, Median 13, Mode 10

parser 6875
4823 1821 1591 25 252 154 209 4875

(70.2%) (26.5%) (23.1%) (0.4%) (3.7%) (2.2%) (3.0%) (70.9%)

9+ pt pairs in L-FCPA: Tot 13, Min 9, Max 53, Mean 27.9, Median 18, Mode 9

h264ref 21315
13729

?
4760

?
2035

?
791

?
(64.4%) (22.3%) (9.5%) (3.7%)

9+ pt pairs in L-FCPA: Tot 44, Min 9, Max 98, Mean 36.3, Median 31, Mode 9

Uday Khedker IIT Bombay

Part 6

Conclusions

IIT Delhi LFCPA: Conclusions 34/38

Observations

• Usable pointer information is very small and sparse

• Data flow propagation in real programs seems to involve only a small
subset of all possible data flow values

• Earlier approaches reported inefficiency and non-scalability because they
computed far more information than the actual usable information

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 35/38

Conclusions

• Building quick approximations and compromising on precision may not be
necessary for efficiency

• Building clean abstractions to separate the necessary information from
redundant information is much more significant

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 35/38

Conclusions

• Building quick approximations and compromising on precision may not be
necessary for efficiency

• Building clean abstractions to separate the necessary information from
redundant information is much more significant

Our experience of points-to analysis shows that

◮ Use of liveness reduced the pointer information . . .
◮ which reduced the number of contexts required . . .
◮ which reduced the liveness and pointer information . . .

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 35/38

Conclusions

• Building quick approximations and compromising on precision may not be
necessary for efficiency

• Building clean abstractions to separate the necessary information from
redundant information is much more significant

Our experience of points-to analysis shows that

◮ Use of liveness reduced the pointer information . . .
◮ which reduced the number of contexts required . . .
◮ which reduced the liveness and pointer information . . .

• Approximations should come after building abstractions rather than before

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 36/38

Future Work

• Redesign data structures by hiding them behind APIs
Current version uses linked lists and linear search

• Incremental version

• Using precise pointer information in other passes in GCC

• Extend it to precise alias analysis of heap data

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 37/38

Parting Thoughts: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 37/38

Parting Thoughts: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 37/38

Parting Thoughts: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 37/38

Parting Thoughts: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 37/38

Parting Thoughts: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed?

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 37/38

Parting Thoughts: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? Client

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 37/38

Parting Thoughts: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? Algorithm, Data Structure

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 37/38

Parting Thoughts: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? Algorithm, Data Structure

Avoid computing some values because

• they have been computed before, or

• they can just be “adjusted”, or

• they are equivalent to some other values

E.g. Value based termination of call strings,
Work list based methods, BDDs

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 37/38

Parting Thoughts: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? Definition of Analysis

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 37/38

Parting Thoughts: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? No One!

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 37/38

Parting Thoughts: The Larger Perspective

exhaustive
computation

computation
restricted
to usable
information

incremental
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed?
These seem orthogonal
and may be used together

Uday Khedker IIT Bombay

IIT Delhi LFCPA: Conclusions 38/38

Last But Not the Least

Thank You!

Uday Khedker IIT Bombay

	Outline
	Introduction
	Background
	Formulating LFCPA
	Interprocedural Analysis
	Measurements
	Conclusions

