CS 618 Program Analysis: Practice Questions

Uday P. Khedker
(http://www.cse.iitb.ac.in//uday)
Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

November 14, 2009

About These Questions

These questions are a copyrighted mate@2009 Uday Khedker) and have been designed for the
course CS 618: Program Analysis offered at the Departmedoofputer Science and Engineering,
IIT Bombay. They are made available only for academic use a®mal accompanying the book
Data Flow Analysis. Theory and Practice by Khedker, Sanyal, and Karkare. Eventually they are
expected to be included in the next edition of the book. Adddl material accompanying the book
can be found at the book page http://www.cse.litb.ac.iaiudfaBook-web.

. Number of
Topic Questions Page Number
Bit vector data flow frameworks 14 2
Theoretical abstractions in data flow analysis B e
General data flow frameworks
Interprocedural data flow analysis 13 14

We would be happy to receive suggestions for correctionsrapdovements in questions. We
also welcome new questions or ideas for new questions.

http://www.cse.iitb.ac.in/~uday/dfaBook-web
http://www.cse.iitb.ac.in/~uday/dfaBook-web

1 Bit Vector Data Flow Frameworks

1. Consider the available expressions analysis framevaorthé following control flow graph.

(@)
(b)

(©)
(d)

(€)

(f)

(@)

m [ax b

ny
R
3

>

i FLS

Ny

ns[]

What should bé/? Which program point should it be associated with? What lshiog!
the initialization for all internal nodes?

Perform available expression analysis using roundhriérative algorithm by traversing
the graph in the forward direction. Show the values for eamderin each iteration. How
many iterations are needed for this analysis?

Repeat the analysis by traversing the graph in the backeeection. In backward traver-
sal, comput&ut, before computindn,. How many iterations do you need now?

Show the trace of the worklist iterative algorithm foetgiven control flow graph. As-
sume that the work list follows FIFO (First in First Out) poyi

Step No.| Program Point Remaining| Data Flow| Program Point(s) Resulting
Selected Work list Value Added Work list

Compare the work performed by the two algorithms for tivergcontrol flow graph in
terms of the total number of nodes processed until convesgisrestablished.

Let one unit of work be defined as processing one node (i.epating /n and Out for
the node). Include the initialization @f; and Out; as one visit to node Compare the
work done by

(i) Round robin analysis with forward traversal
(i) Round robin analysis with backward traversal
(iif) Work list based method

Which algorithm involves less work? Why?

Does your work list contain nodes that need not be induddat? Can you suggest how
the worklist algorithm can be made more efficient in termsafes processed?

What is the depth of this graph? What is its width for aafalié expressions analysis
with forward traversal in a round robin method? What is itdtwifor if the direction of
traversal is changed to backward? In each case, identifwithin defining information
flow path.

2. Consider the following dump hygcc for a C program.

BLOCK 5

PRED: ENTRY (fallthru) do>e. e
e = a x b; .
d = 3;
d=Db *c; # SUCC: 6 (fallthru)
SUCC: 3 (fallthru) '
BLOCK 3 ﬁ EfL{ggK 2 (fallthru) 5 (fallthru)
PRED: 2 (fallthru) 6 (true) 13> ' e o
<LO>:; s
c =d * e;
e = c x d;
c = a *x b;

if (c < d) goto <L1>;
else goto <L2>;
SUCC: 4 (true) 5 (false)

if (c < d) goto <LO>;
else goto <L3>;
SUCC: 3 (true) 7 (false)

BLOCK 4 # BLOCK 7

PRED: 3 (true) # PRED: 6 (false)

o | : alse
i <L4>:;

D.1547 = d * e;
return D.1547;
SUCC: EXIT

goto <bb 6> (<L3>);
SUCC: 6 (fallthru)

(a) Draw the control flow graph. Which control construct maydbeen used in the input C
program?

(b) Perform available expressions analysis. Clearly sGewy andKill, and the initial values
of In, andOuty, and the values ah, and Out,, in each iteration of analysis.

(c) Show common subexpression elimination using the abateeftbw values.

3. Perform reaching definitions analysis on the following3¥sing round-robin algorithm. List
Gen andKill for each noode and show the complete trace dhalut values in each iteration.
Do you find any scope of copy propagation?

m|a=3]

i

ng| print a,b,c,d

4. The following function computes th@" fibonacci number for a givem > 1. Construct its
control flow graph and perform reaching definitions analyBis you find any scope for copy
propagation?

int fib(unsigned int m)
{ int f0, f1, f2, 1i;

fO = 0;

f1 =1;

if (m <= 1)
f2 = m;

else

{ for (i=2; i<=m; i++)
{ f2 = f0 + f1;

f0 = f1;
f1 = £2;
}
}
return f2;

5. Construct an instance of live variables analysis whiajuires four iterations to converge
regardless of whether the control flow graph is traverseaiwdrd direction (i.e. reverese
depth first order), or in the backward direction (i.e. deptst rder).

e You need to construct a control flow graph and show the dataidues in each iteration
for both directions of traversal.

e Convergence in four iterations means that the data flow sateenputed in the first
three iterations are different but the data flow values cdepin the fourth iterations
are identical to the data flow values computed in the thingiten.

e Assume that in a forward traversat, is computed befor®ut, whereas in a backward
traversal Outy is computed beforén,.
6. Construct an instance of live variables analysis sucdh tha
¢ the maximum fixed point assignment for the instance is difiefrom its minimum fixed
point assignment, and

e the computation of maximum fixed point assignment convenrg&s-1 iterations (3 for
computation and 1 for discovering convergence), and

e the computation of minimum fixed point assignment also coge®in 3+1 iterations.

Assume that analysis is performed by making a backwardrsal/ever the control flow graph.

7. Construct a C program for which available expressiongyaisarequires four iterations to
converge. You are not allowed to ugeto statements in your C programs. Assume that the
control flow graph is traversed in forward direction (i.eveeese depth first order). Show the
data flow values in each iteration.

8. Recall that it is possible to perform total and partialiality analyses together by using
the component lattice shown below. Perform this analysigHe following program using
the round robin iterative method. Assume that the contre¥ fipaph is traversed in reverse
postorder (i.e. forward direction). Is the result of youabysis any different from the results
obtained by independent analyses? Why?

m [ax b

unknown {

a0 o

must 10 nz[@a=] ny[axc|
\ /
may ns (@b

ne| |

9. Backward Sicing finds the smallest set of statements relevant to a given ctathpo at a
program point of interest (known as ttgicing Criterion). The first step in slicing is to
construct a set of variables that are directly relevanteacttimputation at the slicing criterion.

For each edge— j in the CFG, a variable is relevant at (denoteds € Relevant(i)) if:

(v € Relevant(j) Av ¢ Def(i))V (ve Ref (i) A Def (i) N Relevant(j) # 0)

Consider the following example:

Program Directly relevant variables
e b € Relevant(L4) becauseb € Relevant(L5) and

Li: b = 5; b ¢ Def (L4)
L2: ¢ = 10;

. e b € Relevant(L2) becauseb € Relevant(L4) and

if (<cond>) b Def(L2
L3: a=a+ c; ¢ € ()

else

a € Relevant(L4), becausea € Ref(L4) and

L4: a=a+1; a € Def (L4) N Relevant(L5)
L5: return (axb);

// slicing criterion

a,C € Relevant(L3), because, c € Ref (L3) and
a € Def (L4) N Relevant(L5)

Define the data-flow equations for computiRefevant(i). Please provide:

(a) Definitions ofGen, Kill, In, Out.

(b)
()
(d)

Interpretation oB/ for the problem with appropriate assumptions.
Lattice, confluence operation, and default initiali@at
Comment on separability of the problem with illustratio

10. Perform partial redundancy elimination for the follagyicontrol flow graphs. Use bit vector
notation for convenience.

ni| axb
N)
Ny a=2 t():a*b
= 2| pxc 1| 2=t
na|axb 4 | t1=bxc
s [E=] ”3 "
Ny axb [
bsc to=axb
c=tp
2 t1=bxc
[ol
/. \ 3 t1=Dbxc
n3| | n5|a*b| n9 b=t
]
n4|a>|<b| nG|a>|<b| laxb| Mo |
t1=Dbxc
n7 [a=] “la=t
(E)

(@)
(b)
(€)
(d)
(€)

()
(@)

List the values ofseny, Killy, AntGenp,.

ComputePaviny/PavOutp, andAvin,/ AvOuty for each noden.
Show the values df, and Out,, for each node in each iteration.
Show the values dRedundant, and/nsertp.

Show the hoisting paths and explain the resulting teansdtion intuitively. If no hoisting
is possible, explain why it is not possible.
What is the width of the CFG for PRE? Identify the width elehining path.

ComputerAntiny/AntOut,. Do you observe any relationship between these values and
the Iny/Outy, values for PRE?

11. Construct a C program for which PRE requires 5 iteratadmeund robin iterative analysis (4
to converge and 1 to detect convergence). Assume that theotfiow graph is traversed in
postorder (i.e. backward direction). You have to meet thieviong design constraints.

e The program should not contain goto statements or nest@d.loo

e Design the program to contain a single expression for arsalys

e The structure of the program should not resemble the stresthat we have seen in the
class.

Simple programs will receive more credit.

(&) Write the program and draw the corresponding control §oaph.

(b) Show the final values of available expressions and pigrasailable expressions analy-
ses.

(c) Perform work list based PRE analysis for your progranovistine trace of analysis in the
following format. Assume that the work list follows FIFO (Bi in First Out) policy.

Step No.| Program Point Remaining| Data Flow| Program Point(s) Resulting
Selected Work list Value Added Work list

(d) Show an ifp leading to 5 iterations of round robin anays$ndicate the step numbers in
your trace of the work list algorithm that cover this ifp.

12. Construct a C program for which MFP and LFP assignmenBRE are different.

13. LetN be the set of nodes of a control flow graph. A nodeN dominates a nodg < N,
denotedx domy, if and only if x appears on every path froStart to y. The dominance
relationdom is reflexive, transitive, and antisymmetric. An example @fahator information
has been shown below.

Node| Dominators|
ng {n]_}

ng | {ng,nz}

n3 {ng,np, N3}
N4 {ny,no,ng}
Ns {ny,np,ns}

Define a data flow analysis for computing dominators of eaaend he result on analysis
should be to compute, for a given nodea setdomln, which is the set of dominators of
excludingn anddomOut, which includes also.

In particular, you need to speciBl, the program point with whicBI should be associated,
the flow functions in terms ofen,, andKill,, the confluence operation, and tie them into data
flow equations. Is your framework a bit vector framework?

14. Letthe set of dominators of nogée denoted bylom(y). An immediate dominator of a node
yis anode € dom(y) such that'w € (dom(y) —{y}), w € dom(z). Intuitively, an immediate
dominator ofy is the dominator that is “closest” tobut is noty.

Define a data flow analysis based method to compute immedatedtors.

2 Theoretical Abstractionsin Data Flow Analysis

1. Is the following poset a lattice? If not, explain whethersia meet semilattice or a join
semilattice. If yes, explain whether it is a complete l&tte a bounded lattice.

/@\
o
®

2. Assume thakt is a complete lattice in which all strict chains are boundeigen a monotonic
functionf : L — L, show that

3k > 0 such thatf *1(1L) = fK(1L) andvj < k, fIF(1)#£ fi(L)
Prove thatf X(_L) is the least fixed point.
3. Givenf : L~ L, prove that the following two definitions of monotonicityeagquivalent.

vx,yel, xCy = f(x)Cf(y)
vxyel, f(xny) E f(x)rf(y)

4. Letf, andfi_j denote the flow functions associated with patnd edge — j, respectively.
Let Paths(i) denote the paths fromntry toi. Given the definitions of MFP and MoP,

MoP(i) = [l fo(BI)
pePaths(i)

MFP(i) = [1 fp.i(MFP(p))
pePred(i)

show thatvi, MFP(i) = MoP(i) for distributive frameworks.

5. Construct an instance of a framework by describing acklttia C relation, and a1 operation
and by constructing a control flow graph with the associated functions. Assume the
following data flow equations:

Inn =

{ Bl nis Start block

M Outp otherwise
pepred(n)
Outn = fn(/nn)

The constructed instance should have the following charistics:

e L must be a complete lattice.
e Every flow functionf, must be distributive.

e Select aBJ, an initialization, and flow functions such that the rounbinaterative algo-
rithm shouldnot terminate for this instance.

Does your instance have a fixed point assignment? If yesagxwhy the round robin iterative
algorithm does not terminate. If it does not have a fixed pagsignment, explain why.

6. Recall that a data flow framewock, 1, F) is k-bounded if
VfeFvxel, £ (x)=xnfx)nf3x)n...=xnfx)nfxmn...nfkx)

Is the boundedness paramekerelated to the the component lattice? The overall lattice?
Justify your answer in the context of

(a) Constant propagation
(b) Available Expressions Analysis
(c) Combined Total and Partially Available Expressions sz

3 General Data Flow Frameworks

1. Perform possibly uninitialized variables analysis floe following CFG using round-robin
algorithm and show the values b# Out in each iteration.

m|a=3]

n2|b:5i |d:a+1|n3

Ny c=Db

pl

ng| print a,b,c,d

2. Perform faint variables analysis for the following CFGmd-robin algorithm and show the
values of/n/Out in each iteration.

—
N4
nz| print d
1I—

3. (a) Construct a CFG containing only one back edge such that

() Faintvariables analysis requires four iterations afkveard traversal for convergence
(i.,e. values in 2nd and 3rd iterations are different but thki@s in 3rd and 4th
iteration are identical).

(i) Does the result of your analysis lead to dead code ektndm?

(iif) Perform live variables analysis on the same graph. Hoany iterations does it
take? What is the relationship between dead variables eswtised by live variables
analysis and faint variables?

(b) Construct another example of faint variables analysigwhas 3 back edges but requires
only two iterations to converge.

4. Construct an instance of possibly uninitialized vargatdnalysis such that

¢ the maximum fixed point assignment for the instance is difiefrom its minimum fixed
point assignment, and

e the computation of maximum fixed point assignment convenrg&s-1 iterations (3 for
computation and 1 for discovering convergence), and

e the computation of minimum fixed point assignment also coge®in 3+1 iterations.
Assume that analysis is performed by making a forward teal@ver the control flow graph.

5. Consider the constant propagation framework for th@¥athg control flow graph.

n1
9
=21

s]

(@) Compute the maximum fixed point for constant propagatiorthe give control flow
graph. How many iterations does it need?

>

10

(b) Observe that,, does not have a fixed point. Still the data flow equations caenptixed
point. How?

6. Perform constant propagation for the following prograsmg the round robin iterative method.
Assume that the control flow graph is traversed in the forvaarekction.

e[]

7. (&) Perform constant propagation for the following twograms using round-robin algo-
rithm. Show the complete trace (in tabular form) of @llOut values in each iteration.
Clearly specify the number iterations in each case.

="
]

Ny

]
pee

e l
neq ns[c=d]
Fa— l
Nio| | no[a=Dh]

(b) Repeat constant propagation analysis for the same CR&hdnyging the statements in
selected nodes as described belaw:containsa = b, ng containsb = ¢, ng contains
¢ =d, ny containsd = 2. How does the number of iterations changes?

8. Recall that copy constant propagation is a simplifiedigaref constant propagation in ex-
pressions are not evaluated; whenever expression ex@luatiequired, the result of the ex-
pression is assumed to be Perform copy constant propagation for the following CFG.

11

N10

ny | read(e);
|
a=7b=2;f =€
2 if (f>0)
N
a=2,
N3 if (f >e+2)
g b=c+1,
'f(bZQ ne| if (f >e+1)
ng| f="~%+1;
AN
n;| c=d; ng| d=f+Db;
N /
e=a+tb; Ng fiiil
l

9. Create an example of constant propagation for whicitbg, the MFP, and thel FP, are all
different from each other.

10. Consider the following program fragments for pointsualysis.

if (...)

p=
else

p:
x = &a;
y = &b;
xp = &c;
xy = &a;

if (...)

p = &y;
else

p = &x;
y = &b;
x = &a;
xy = &a;
*p = &c;

(&) Show the result of flow insensitive May points-to anaysi
(b) Show the result of flow sensitive May points-to analysis.
(c) Show the result of flow sensitive Must points-to analysis

11. Perform independent May and Must points-to analysesetfiallowing control flow graph.
When performing May points-to analysis, assume conseevdfiust points-to information
(no pointer points to any location). When performing Musinpg-to analysis, assume conser-
vative May points-to information (a pointer points to evergation).

12

12.
13.
14.
15.
16.

[B=c]

Is May points-to analysis framewokkbounded? If yes, what is the valuel&t
Is Must points-to analysis framewdtkbounded? If yes, what is the valuelét
Create an example to show the non-distributivity of Maings-to analysis framework.
Create an example to show the non-distributivity of Maghts-to analysis framework.

Perform liveness analysis of heap references for thewiwlg program. Clearly specify the
number iterations.

ng | printx.d

17. Construct a control flow graph for this program and penfexplicit liveness analysis for heap

references in the following program. You have to show/theand Outy, in each iteration.

bool find(int n, Tree * t)
{ found = false;
while (t !'= NULL)
{ if (n == t->n)
{ found = true; break; }
else if (n < t->n)
t = t->1;
else t = t->r;

}

}

13

18. Consider the following programs for heap referenceyanal

(a) Show the final explicit liveness access graphs for eade.no

(b) Liveness graphs of programs (b) and (c) are identicabdén;. Why is this semantically
correct inspite of the fact that both the programs have wiffestructures?

19. Consider the following access graphs representingagxfiveness at some program point
(perhaps in different programs).

FOyON
2eOn0 000 NGOG SS0

Unfortunately the student who constructed these acceghgfargot to attach a statement
number as a subscript to the node labels and has misplacgadfeams which gave rise
to these graphs. Please help her by constructing (indep8n@dEGs for which these access
graphs represent explicit liveness at some program poititarCFGs. Please also show the
liveness access graphs at all other program points in thesCFG

20. Is the access patn live at the entry of nodes? Does explicit liveness include it? If there
is a discrepancy in your observation and the result of eifileness analysis, please suggest
how this discrepancy can be removed. If there is no disc@paxplain why there is no
discrepancy.

Ny

nX=Y] R=7n

N4 |y.n= Null
N
N5 | print x.n.n.d

21. Create an example of explicit liveness analysis in HR#hghat it requires five iterations. The
values must change in the first four iterations and shouldneonstant in the fifth iteration.
Draw the CFG and show the values in each iteration.

22. Construct an example to show that explicit livenessyaigls non-distributive.

14

23. Is it possible to get the following two liveness accesgpbs reaching the same program point
p along two different control flow paths? Please explain ymsvweer and describe the conclu-
sion that you draw from your explanation.

=~~~ | O~

24. Perform explicit liveness analysis for the followingntwl flow graph. What nullification
statements, if any, can be inserted and at what points?

ng| w=X

v
nz | while (x.data< max)|

[y =Xt] s [X Pt
|

ng X =Yy.lptr | ng|print x.datg
]

25. Heap reference analysis computes explicit livenesact program point and then aliasing
information is used to compute implicitly live access patlisliscovering link aliases of the
explicitly live access paths. There are two ways of doing:thi

e Implicitly live access paths are computeuting explicit liveness analysis and are prop-
agated backwards in the program along with the explicitlg Access paths.

e Implicitly live access paths are computafter explicit liveness analysis and are not
propagated backwards.

Perform heap reference analysis for the following programshow that for correctness it is

necessary to compute implicitly live access paths durimiexliveness analysis. Also show

how it results in imprecise liveness information. (Sinces torogram does not have loops,
there is no need to construct access graphs. Give your aisteems of sets of access paths
for liveness and pairs of access paths for aliasing.)

Y [

4

I nter procedural Data Flow Analaysis

1. Consider the following program.

(@) Draw control flow graphs of the two procedures and perfavailable expressions anal-
ysis using functional approach. Clearly shdWyin(n) and ®(n) for each blockn in
proceduresain andp. You have to provide complete trace of computation of these fl

int a, b,

int main()

{ c = axb
pO;

}

C;

void pQO
{ if (...)
{ a = axb;
pO;
}
}

functions in a tabular form.

(b)

in the following format:

Construct a supergraph for the program and performpndeedural available expressions
analysis using the call strings approach assuming that aitaheeds to appear in a call
string at most thrice. Use the work list approach and showrttee of your computation

Step
No.

Selected

Qualified Data Flow Value

Remaining Work List

Node | INj

OUT,

Intraprocedura
Nodes

Call/Return
Nodes

(€)

algorithm requires that

e intraprocedural nodes are processed before any calliratude in the worklist, and

Use the modified call strings approach and perform imtegdural available expressions
analysis. Clearly indicate representation and regermerati call strings. Recall that the

e call nodes are processed before any return node in the vebrk li

Do you have to construct fewer call strings?

2. Perform interprocedural available expressions amalfigsithe following program using the
functional approach. Draw the control flow graphs and cocssummary flow functions by

iterating over them. Show the trace of construction in al&tform.

16

7 void p (void)
8. { if ...
9. { a = axb;
1. void main(void) 10. pO;
2. { 11. }
3. ¢ = a*b; 12. else if (...)
4. pO; 13. { c =a * b;
5. printf ("%d\n", c); | 14 pO;
6. } 15. printf ("%d\n", c);
16. }
17. else
18. ; /* ignore */
19. +

What does your analysis conclude about the availabilitg-olb at line 187 At line 67 Ifitis
not available, please show an interprocedurally valid p&thg with the expression is killed.

3. Construct an instance of interprocedural available esgions analysis to show that the re-
sult of context sensitive interprocedural analysis is numexise than the result of context
insensitive interprocedural analysis.

4. Construct an example of liveness analysis to show thaegbsensitive interprocedural data
flow analysis is more precise compared to context inseesitkerprocedural data flow analy-
sis. You do not have to perform analysis but only show possittérprocedurally invalid paths
in a supergraph which, if not avoided, lead to imprecisianyfour instance of interprocedural
liveness analysis.

Your program must have a single variable which must be a ¢jidréable. Use only two
procedures, one of which must b@in and is not called by any procedure.

5. Construct a supergraph for the program shown below. Perifaterprocedural available ex-
pressions analysis using call-strings approach. Use thie Ngb approach and give a table of
the trace of the algorithm.

Main P Q T
1. start 1. start 1. start 1. start
2. call P 2. axb 2. if() then 2. call Q
3. cxd 3. if() then 2. a=>5 3. end
4, call T 4, call Q 3. else
5. end 5. else 4, b=6

6. call T 6. end

7. ¢c=5

8. end

6. Recall that the 3 occurrences bound on call strings farpmbcedural data flow analysis of
bit vector frameworks is a general program independent td@uma fewer than 3 occurrences

17

of any call sites in every call string may be sufficient for gogpnograms. Using the reasoning
for 3 occurrences bound, explain why a single occurrencengfcall site is sufficient for
computing a precise solution for available expressiondyaisaof the following program.
(You have to explain this without performing data flow anay)s

N e T A— :
reeda,b | | Startp| ifa=0 i
t:=axb ! !
B a

Cy| call p ! :
SR Cz| call p|

R]_ ii 6(========EE
— R se

n t:=axb i 7 ii
L ||\ ;;
[! I

i Endp i

Endmn Ié':::::::::::::flll g::::::::::::”'

7. Is ax b available immediately aftec; in the following supergraph? If it is not available,
identify and interprocedural valid information flow patfatitauses it to be un-available. How
is it covered by the functional method? By the call stringshrod?

o e o

o Startp |

Startmainl_—’_l . im[c=a+b gi% |
o I |

Ci|call p i | Cp|call p call p|C3

R I ii R Rs ii
Enchein [24D)] ii ngle=d+1| |[d=c+1|ng
2 oy

8. Use the modified call strings method to perform interpdocal available expressions analysis
of the following program.

18

Startimain i

Cy|callp Colcallp call p|Cs
Iylt--- ------- Ei i§==========;': Ivf:::::::::?i
Ry R Rs |
e =

Is expressioma+ b available aR>? At R3? If it is not available, please show an interprocedu-
rally valid path along with the expression is killed.

9. Explain using the staircase diagram why 3 occurrencesafl site are sufficient in any call
string for performing interprocedural data flow analysibifvector data flow frameworks.

10. Consider the following program

(a) Perform call strings based interprocedural copy congteopagation using the modified
call strings method for the following supergraph. Show thaee of work-list algorithm.

(b) Perform copy constant propagation using the functiaparoach. Show the constructed
summary flow functions.

11. Theapproximate call strings approach maintainsk-length suffixes of call strings instead of
full call strings.

19

When length of a call string reaching a call nod€S; in procedureP is less then
k, ¢ is appended to. If length of o is equal tdk, then the first call site is removed
andc; is appended t@, thus maintaining length. Assume thatc; - ¢’,x;) and
(e~ 0’ x¢) reachC; and|o’| = k— 1. Then(od’- ¢, x; M) is propagated further.

At return nodeR;, the last call site; is removed from the incoming call string
and all call sites containing a call to proced#are attached at the first position,
thereby reconstructing the call strings whose first cadl sids removed &F;. As-
sume thato’ - ¢;, x;) reachR;, then(c; - 0’,x) and(cx - 0’,X) are propagated further.

Construct an example where an imprecise solution is cordgutehis method. Assume any
value ofk > 1 and any data flow problem.

12. (a) Perform interprocedural constant propagationtferfollowing program using the func-
tional approach. Draw the control flow graphs and constmetraary flow functions by
iterating over them. Show the trace of construction in al&tform.

1 void main(void) 7. void p (void)
2 { 8. { if (..)
3. a = 5; 9. { a = a+7;
4. pO; 10. p(O);
5 printf ("%d\n", a); | 11 a = a7,
6 } 12, }

13. b

Does variablea have a constant value at line 5? What does your analysisuaaeabout
it?

(b) Draw the supergraph for the above program and explainiffieulty in performing in-
terprocedural constant propagation over the program ukaglassical Sharir-Pnueli call
strings method. Does the problem go away if we use the modiaédstrings method?
Why?

(c) Use approximate call strings method witk= 2 for interprocedural constant propagation
analysis of the above program. Does the problem you destciitbanswer to part (b)
above go away now? Why?

Does your method discovarto be constant line 5? Why?

13. Perform may points-to analysis for the following prognasing modified call strings method.
Make conservative assumptions about must points-to irddon. How many call strings do
you need to construct? How many call strings would be redusethe Sharir-Pnueli method?

main() pO

{ x = &y; { if (..
z = &x; { pO; /x C2 %/
y = &z; X = *x;
p(O); /% CL %/ ¥

} }

20

	Bit Vector Data Flow Frameworks
	Theoretical Abstractions in Data Flow Analysis
	General Data Flow Frameworks
	Interprocedural Data Flow Analaysis

