An introduction to Entity Search

Uma Sawant

IIT Bombay, LinkedIn

February 2017

Query : agatha christie books

Agatha Christie bibliography - Wikipedia

https://en.wikipedia.org/wiki/Agatha_Christie_bibliography -

Agatha Christie (1890–1976) was an English crime novelist, short story writer and playwright. ... Additionally she wrote two volumes of poetry, two autobiographical **books** and six romantic works under the pseudonym Mary Westmacott. One of ...

Novels · Short story collections · Miscellany · Broadcast works

Shop for agatha chris... on Google Sponsored 🕕

The World's Favourite: And Then There Were None, Murder on the Orient ₹ 374 - Amazon India

Query : deep learning researchers

What I want

Andrew Ng Geoffrey Hinton Yann LeCun Sepp Hochreiter

Query : universities known for neuroscience

What I want

Stanford John Hopkins Yale U. Chicago

What I get

universities known for neuroscience									
All	News	Maps	Images	Videos	More 🔻	Search tools			
About	About 92,60,000 results (0.47 seconds)								
Top Neuroscience and Behavior Universities in the World www.usnews.com/education/bestuniversities/neuroscience-behavior ▼ See the US News rankings for the world's top universities in Neuroscience and Behavior. Compare the academic programs at the world's best universities. University College London - University of CaliforniaSan 2015 Best Colleges Offering Neuroscience Degrees colleges.startclass.com/d/o/Neuroscience ▼ Looking for the best colleges offering Neuroscience Degrees? Compare Neuroscience Degrees 2120. The Columbia University in the City of New Yo									
Neu grad- See th best r · Onlir	Neuroscience / Neurobiology - US News & World Report grad-schools.usnews.rankingsandreviews.com → … → Biological Sciences ▼ See the top ranked neuroscience and neurobiology programs at US News. Use the best neuroscience and neurobiology program rankings to find the right … High Schools • Online Programs • Community Colleges • Global Universities.								

~28% of Web search queries

Lin et al., WWW 2012

The big picture

How to organize and search this big data?

Medical, satellite, VoIP, personal assistants, games, scanners, email, instant messaging, IOT, peer-to-peer, security systems ...

Information explosion

Users want direct answers

Documents vs. entities (dual view)

Knowledge graph

- 1. High precision (subject, relation, object) fact triplets
- 2. Not all information from Web is present in KG
- Extracted using natural language resources and tools e.g. pos tagger, dictionaries, rule based systems ...
- 4. Example : Wikipedia (infobox), Freebase, dbpedia

Knowledge graph (KG) of entities, types, relations

Problem statement : KG-driven entity search

Given structured information in a knowledge graph, how to answer any query?

Problem statement : KG-driven entity search entity-seeking

Given structured information in a knowledge graph, how to answer any query?

Entity - seeking queries	Other queries
Who is the lead singer of Euphoria band?	How did world war 2 enfold?
olympics most award winning country	If a = 2, b = 5,, is a * b ?
Name the deepest lake in the world.	How to make vanilla Ling?

spanish poet died civil war Which spanish poet died in the civil war?

Federico_Garcia_Lorca

Talk outline

- Overview of entity search
- Challenges in building an entity search system
- Query interpretation and ranking for entity search
 - Discriminative and Generative models for joint QI and ranking
 - Deep learning
- Experiments and results

How does an entity search engine work?

spanish poet died civil war Which spanish poet died in the civil war?

Federico_Garcia_Lorca

Recipe

- 1. Find a structured interpretation of the query by recognizing 'semantic hints'
 - a. Entities
 - b. Types
 - c. Relations
- 2. Execute the structured query on the knowledge graph.

Query to answer

spanish poet died civil war Which spanish poet died in the civil war?

?x /people/deceased_person/place_of_death Civil_War ?x /type/object/type /book/author

What is the difficulty?

But ... there is a wall between query and answer!

- Query understanding is difficult
 - a. Many correct / incorrect interpretations
 - b. Query syntax cannot always be depended on (keyword queries have no syntax)

But ... there is a wall between query and answer!

- Incomplete / noisy information sources
 - a. Missing KG links
 - b. Incorrect KG links
 - c. Information needed to answer a query may be scattered in multiple places

But ... there is a wall between query and answer!

• Other challenges such as Web-scale data, index design, distributed processing, parallelization ... (not in focus for this talk)

How do I solve this problem?

Our method

- 1. Entity ranking problem (instead of graph query identification problem)
 - a. For each input query q, generate output ranking over entities using any number of information sources

Our method

- 1. Entity ranking problem
 - a. For each input query q, generate output ranking over entities
- 2. Incomplete / noisy information sources
 - a. Use both annotated corpus and KG as information sources

Query to answer

Our method

- 1. Entity ranking problem
 - a. For each input query q, generate output ranking over entities
- 2. Incomplete / noisy information sources
 - a. Use both annotated corpus and KG as information sources
- 3. Query interpretation is difficult
 - a. Ideal query interpretation as a latent variable
 - b. Consider many possible interpretations and jointly solve the interpretation and ranking problem

Simplified view of related work

Our approach (recipe)

- 1. Generate candidate interpretations and hence candidate answer entities
- 2. Gather supporting evidence / features from KG and corpus
- 3. Run discriminative / generative models to perform joint interpretation and ranking

Candidate generation

Input : Query q

- 1. Identify in-query entities E_1
- 2. Gather text snippets containing query words and an entity
- 3. Identify answer entity set E_2
 - a. Neighbours of E_1 in KG
 - b. Entities that occur in corpus snippets
- 4. All the KG paths between $\rm E^{}_1$ and $\rm E^{}_2$, and corpus snippets are candidate query interpretations I

Feature generation

Goal : Generate a feature vector to describe the match between query q, candidate interpretation I and candidate answer entity e

Features :

- 1. Entity tagger score for query entity
- 2. Match score for (q, t)
- 3. Match score for (q, r)
- 4. Corpus snippet score for q
- 5. Deep neural networks ! (a.k.a. The magic wand)
- 6. ...

Models for joint QI and Ranking

- 1. Goal : Correct entity should score higher than incorrect entity
- 2. Constraint : Ideal interpretation unknown
- 3. Models :
 - a. Latent Variable Discriminative Model (LVDT)
 - b. Graphical model

Model 1 : Latent Variable Discriminative Model

LVDT formulation

- Constraints based on best scoring interpretation
 - Find weight vector s.t. Best scoring positive entity interpretation scores higher than best scoring negative entity interpretation
- Non convex formulation, solved via alternative optimization

LVDT complete formulation

$$\begin{split} \min_{w,\xi,u} \ \frac{1}{2} \|w\|^2 + \frac{C}{|\mathcal{Q}|} \sum_{q \in \mathcal{Q}} \frac{1}{|\mathcal{E}_q^+| \, |\mathcal{E}_q^-|} \sum_{e_2 + \in \mathcal{E}_q^+, e_2^- \in \mathcal{E}_q^-} \xi_{q, e_2^+, e_2^-} \\ \forall q, e_2^+, e_2^-, e_1', t_2', r' : & \sum_{z, e_1, t_2, r} u(q, z, e_1, t_2, r, e_2^+) w \cdot \phi(q, z, e_1, t_2, r, e_2^+) \\ & \geq 1 - \xi_{q, e_2^+, e_2^-} + w \cdot \phi(q, z, e_1', t_2', r', e_2^-) \\ & u(q, z, e_1, t_2, r, e_2^+) \in \{0, 1\} \\ \forall q, e_2^+ : & \sum_{z, e_1, t_2, r} u(q, z, e_1, t_2, r, e_2^+) = 1 \\ & \forall q, e_2^+, e_2^- : \xi_{q, e_2^+, e_2^-} \ge 0 \end{split}$$

Model 2 : Graphical model

- Generative model represented as a graph
- Nodes = variables (observed evidence or hidden parameters)
- Edges = dependencies between variables
- Potentials = Unnormalized weights on the edges, indicate connection strength
- Inference = Assign best values to nodes

Model 2 : Graphical model

Experiment setup

- Freebase knowledge graph
 - ~29 million entities, 14K types, ~4.6K relation types
- FACC1/ClueWeb09B entity-annotated corpus :
 - \circ 50 million pages, ~13 annotations per page
- Querysets

Source	Queryset	#queries	Туре
TREC-INEX	TI-KW	704	Keyword
	TI-NLQ	704	Well-formed
WebQuestions	WQ-KW	803	Keyword
	WQ-NLQ	5810	Well-formed

Does joint query interpretation and ranking work better than two-stage?

- Setting : Compare two-stage type-predictor + ranking with our models
- State-of-the-art target type predictor (Balog et. al.)
- Union of k types to improve recall
- Launch type-restricted query on corpus + graph

Conclusion : Upto 10% absolute gain through joint prediction and ranking

LVDT

End-to-end comparison with related work

% MAP (KW queries)

% MAP (NL queries)

• 1 to 15% absolute MAP gain over Joshi 2014 and Aqqu++

Aqqu++

US

WQ NLQ

Joshi et al

Failure analysis

- Good
 - Queries including qualifiers such as 'first', 'oldest' (Who was the first U.S. president ever to resign?)
 - Incomplete knowledge graph (president sworn on airplane)
 - No clear query entity e_1 (Which kennedy died first?)
- Bad
 - When to trust which information source?
 - Corpus popularity promotes incorrect entities : Jon_Stewart ranked above Madeleine_Smithberg for "creator of the daily show"
 - Failure of type/relation CNNs

Take-away

- 1. Entity search is a critical component of Web search, but non-trivial.
- 2. Knowledge graph and corpus offer complementary benefits.
- 3. Joint query and interpretation performs better than two-stage approach.

End-to-end entity search systems

1. Aqqu:

http://ad-publications.informatik.uni-freiburg.de/CIKM_freebase_qa_BH_2015. materials/

- 2. Sempre : <u>http://www-nlp.stanford.edu/software/sempre/</u>
- 3. CSAW : <u>https://www.cse.iitb.ac.in/~soumen/doc/CSAW/</u>
- 4. Ours (work in progress)

References

- 1. Features and aggregators for ranking interpreted entity search queries (Technical report)
- Joint query (type) interpretation and ranking for entity-seeking queries (WWW 2013)
- 3. Corpus and knowledge graph driven query segmentation and ranking (EMNLP 2014)
- 4. Hannah Bast and Elmar Haussmann. More accurate question answering on freebase. (CIKM 2015).
- 5. Aliaksei Severyn and Alessandro Moschitti. 2015. 829 Learning to rank short text pairs with convolutional 830 deep neural networks. (SIGIR '15)
- 6. Antoine Bordes, Sumit Chopra, and Jason Weston. (2014). Question answering with subgraph embeddings

Thank you! Questions? Comments?

Extra slides

Related work (bridge query to answer gap)

1. Query understanding

- a. Feature engineering using hand-created features (<u>Bast2015</u>) vs. Deep neural networks (<u>Dong2015</u>, <u>Stagg2015</u>, Sawant2017),
- b. Take advantage of natural language syntax e.g. semantic parsers (<u>Berant2013</u>, <u>Berant2014</u>, <u>Berant2016</u>) vs. segmentation based models for keyword queries (<u>Sawant2013</u>, <u>Joshi2014</u>)
- c. Two-staged approach of query interpretation followed by ranking (<u>Berant2013</u>) vs Joint query interpretation and ranking (<u>Sawant2013</u>, <u>Joshi2014</u>)

Related work (bridge query to answer gap)

- 1. Query understanding
- 2. Incomplete / noisy information sources
 - a. Enrich KG facts with text descriptions (Robust QA)
 - b. Add more facts to KG (Renoun, Reverb)
 - c. Discover new types and add to KG (Universal schema)
 - d. Discover missing entity annotations in the Web corpus (TMI)
 - e. Combine information from KG and corpus (<u>Sawant2013</u>, <u>Joshi2014</u>)
 - f. Add type annotations to Web corpus (FIGER)

Related work (bridge query to answer gap)

- 1. Query understanding
- 2. Incomplete / noisy information sources
- 3. Getting to the perfect answer
 - a. Pose it as a "KG query prediction problem" : Returns an answer set after KG query execution. Know when you don't know the answer
 - i. <u>Berant2013</u>, <u>Berant2014</u>, <u>Dong2015</u>, <u>Stagg2015</u>, <u>Berant2016</u>, ...
 - ii. Problem : no order between answer set, need ideal interpretation as labeled data
 - b. Pose the problem as a "entity ranking problem" : allow ordering between answer entities.
 - i. Sawant2013, Joshi2014,
 - ii. Problem : will always have an answer, even for invalid questions.

Tools for annotating and indexing corpus and graph

1. Indexing : Lucene (http://lucene.apache.org/core/), mg4j (http://mg4j.di.unimi.it/)

2. Tagging text with wikipedia entities : tagme (<u>https://tagme.d4science.org/tagme/</u>), wikipedia miner (<u>https://sourceforge.net/projects/wikipedia-miner/</u>)

3. Querying an existing graph :

http://ad-publications.informatik.uni-freiburg.de/CIKM_freebase_qa_BH_2015.mat erials/ This software queries a graph index loaded in virtuoso and performs question answering .

Graphical model toolkit

Keving Murphy has a comprehensive list -https://www.cs.ubc.ca/~murphyk/Software/bnsoft.html

Datasets / querysets

- 1. ClueWeb12 and ClueWeb09 Web corpus -
 - a. http://lemurproject.org/clueweb12/
 - b. <u>http://lemurproject.org/clueweb09/</u>
- 2. Freebase entity annotations for the above -
 - a. <u>http://lemurproject.org/clueweb12/FACC1/</u>,
 - b. <u>http://lemurproject.org/clueweb09/FACC1/</u>
- 3. Question-answer querysets -
 - a. <u>https://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a/</u>
 - b. <u>http://bit.ly/10CKbVW</u>
- 4. Linked Open Data : Haven't used this myself, but recommended by others -http://linkeddata.org/home