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Abstract. Single shot multi-box object detectors [13] have been recently
shown to achieve state-of-the-art performance on object detection tasks.
We extend the single shot detection (SSD) framework in [13] and propose
a generic architecture using a deep convolution-deconvolution network.
Our architecture does not rely on any pretrained network, and can be
pretrained in an unsupervised manner for a given image dataset. Fur-
thermore, we propose a novel approach to combine feature maps from
both convolution and deconvolution layers to predict bounding boxes
and labels with improved accuracy. Our framework, Conv-Deconv SSD
(CDSSD), with its two key contributions – unsupervised pretraining
and multi-layer confluence of convolution-deconvolution feature maps –
results in state-of-the-art performance while utilizing significantly less
number of bounding boxes and improved identification of small objects.
On 300×300 image inputs, we achieve 80.7% mAP on VOC07 and 78.1%
mAP on VOC07+12 (1.7% to 2.8% improvement over StairNet [21],
DSSD [5], SSD [13]). CDSSD achieves 30.2% mAP on COCO performing
at-par with R-FCN [3] and faster-R-FCN [18], while working on smaller
size input images. Furthermore, CDSSD matches SSD performance while
utilizing 82% of data, and reduces the prediction time per image by 10%.

Keywords: Single Shot Detection, Unsupervised Learning, Feature
Map Confluence

1 Introduction

Image object detection involves identifying bounding boxes encapsulating ob-
jects and classifying each bounding box to recognize the underlying object cat-
egory. Recently there has been mounting interest in the research community to
detect multiple objects in an image using Single Shot Detection techniques [13,
16]. These techniques effectively combine region proposal and classification into
a single step by foregoing the candidate box proposal (or region proposal) mod-
ule employed by several two-step detection techniques [6, 7, 18, 1, 11]. Not only
this results in much faster object detection but it also improves accuracy [13, 16,
5, 21]. One of the two prominent works, You Only Look Once (YOLO) [16], con-
siders the global feature map of an image and utilizes a fully-connected layer to
output object detections with a fixed set of regions. The other prominent work,
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Fig. 1. Detection output comparison of (a) SSD [13], (b) Stairnet [21], and (c) CDSSD.
CDSSD results in superior performance in detecting small as well as large objects

Single Shot MultiBox Detector (SSD, henceforth) [13], considers a set of layers
(or feature maps) and a set of boxes at various scales, and employs convolutional
filters to predict objects inside each box. Owing to its design choice to consider
multiple feature maps from different layers in a deep network (multi-scale rep-
resentation), SSD performs significantly better than YOLO.

While SSD [13] has achieved state-of-the-art results, it has three fundamen-
tal drawbacks. (a) When applying default bounding boxes, SSD considers each
feature map in isolation (see Fig. 2). Thus it can not exploit the semantic infor-
mation of later layers for better object detection on initial layers. Consequently,
SSD does not perform well on smaller size object detection which is attempted
by initial layers. (b) SSD architecture relies on features maps pretrained on the
classical Imagenet dataset [20, 9] without attempting to learn robust feature
maps from the vast collection of unlabeled datasets. (c) SSD needs to evaluate
several thousands of bounding boxes to detect only a few objects in an image.

Several follow-up works attempt to eliminate limitation (a) by combining
feature maps at different layers of convolution networks, or inserting additional
context by extending the base convolution block with a deconvolution block [16,
13, 5, 21, 17, 10, 1, 11, 2]. However, none of the prior approaches explore unsu-
pervised pretraining to learn robust features; but use either VGG-16 [20] or
ResNet-101 [9] to bootstrap the object detection training. [16, 13, 5, 21, 17, 11]
partially exhibit some scope to improve the performance on objects of different
sizes and scales by combining information from different feature maps. How-
ever, they rely on features computed only from convolution networks, or result
in consideriably slower speed detection [5], or are not end-to-end trainable. In
contrast to this prior work, we draw inspirations from convolution-deconvolution
techniques used in semantic segmentation tasks [15, 22], and base our design on
convolution auto-encoders. Specifically, our contributions are as follows:

– We design an end-to-end trainable convolution-deconvolution based single
shot detection framework to detect multiple objects in an image. This frame-
work enables unsupervised pretraining of the underlying network.

– We design a refined SSD technique that carefully combines feature maps
from both convolution and deconvolution blocks. Fusing of generic features
from initial layers close to the input with semantically rich features of later



layers close to the output detection from both convolution and deconvolution
blocks helps us significantly reduce the required number of default bounding
boxes.

– On input image size of 300 × 300, we achieve state-of-the-art accuracy on
several object detection tasks with 80.7% mAP on VOC07, 78.1% mAP
on VOC07+12 (1.7% improvement over StairNet [21, 5], 2.8% improvement
over [13]), and 30.2% mAP on COCO. We improve detection performance of
both small as well as large objects, as well as visually impoverished objects
while reducing the prediction time per image by 10%.

2 Limitations of Related Work

As compared to SSD, some recent approaches [6, 7, 18] first learn a separate
bounding box (or region) proposal network, followed by learning a separate clas-
sification network on top of the proposal network. However, such two-stage object
detectors suffer from high memory usage and poor inference time. In compar-
ison, SSD networks [19, 13, 16] have been shown to perform better and faster.
Furthermore, most of the object detection techniques, including Overfeat [19],
SPPnet [8], Fast R-CNN [6], Faster R-CNN [18], and YOLO [16], utilize only
a single layer (typically the top-most layer) of a convolution network to detect
objects. This approach does not exploit different feature sets learned by differ-
ent feature maps at different scales [13, 5, 21], and therefore is severely limited
in identifying objects of different sizes and scales. In comparision, the state-of-
the-art SSD networks [13, 17] utilize feature maps from different layers in order
to focus on objects that appear in certain sizes. However, they operate on each
feature map independently without combining them in a meaningful manner.
Hence, these SSD networks [13, 17] do not particularly perform well towards
identification of smaller size objects [1, 11, 5, 21].

In order to consider feature maps from different layers in a combined fash-
ion, [1] concatenates features of different layers before applying box proposals
to detect objects. Taking a step further, [2] applies deconvolution on multiple
layers of the underlying convolution network to increase feature map resolution.
However, it results in significant memory and prediction time requirement. [11]
too leverages the pyramidal shape of the convolution network and attempt to
utilize semantics at different scales of feature maps by inserting nearest neigh-
bor upsampling. In another work, instead of focusing only on the convolution
block, [5] adds a deconvolution context layer to address the problem of shrink-
ing resolution of feature maps in the convolution block. [21] further exploit the
deconvolution context and design a top-down feature combining module that
progressively encodes semantic information with low level features.

Our approach is partially inspired by [5, 21] in terms of adding deconvolution
context and utilizing feature maps at different layers in a network. However, as
shown in Fig. 2 neither [5, 21] nor any of the prior approaches explore unsuper-
vised learning to improve SSD [13] performance. Moreover, none of the prior
work exploits the difference in features learned by different layers in both convo-
lution and deconvolution blocks. By refreshing SSD with unsupervised learning
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Fig. 2. Difference in SSD architectures in using deconvolution and feature map conflu-
ence (a) SSD [13], (b) DSSD [5], (c) Stairnet [21], (d) CDSSD (this work)

and confluence of feature maps from convolution and deconvolution blocks, we
show that our approach results in state-of-the-art performance on benchmark
datasets [12, 4].

3 CDSSD Architecture

In this section, we first give a primer on SSD architecture. We then progres-
sively introduce unsupervised learning and feature map confluence in the SSD
architecture. Finally we showcase a method to reduce the requirement of default
bounding boxes, and then explain our methodology of training and testing.

3.1 SSD

The SSD network is a convolutional architecture that utilizes different layers
to predict presence of multiple objects in an image. To recognize objects at
different scales, SSD utilizes predictions on different feature maps, each from a
different layer, of a single network. These feature maps are processed by a fixed-
size collection of bounding boxes customized for each layer. For feature map f of
size m×n with p channels, K default-sized bounding boxes are applied on each
of m× n cells. Subsequently, C filters of size 3× 3× p are applied for each cell
and for a given bounding box to produce individual scores to predict each of C
classes, and 4 additional filters are applied to produce offsets (center co-ordinate,
height, width) to position the box on the underlying cell in order to encapsulate
the object (as shown in Fig. 3(c)). Note that, for a given feature map f , the
default boxes are scaled with a scaling factor fscale with respect m and n and
thus, they are customized to have different aspect ratios. Hence, bounding boxes
on initial stage feature maps cover a smaller receptive field to identify objects at
a smaller scale, whereas bounding boxes on later stage feature maps cover larger
receptive fields to identify objects with larger scale. By utilizing predictions for
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Fig. 3. CDSSD combines information from convolution and deconvolution feature maps

all the default boxes with different scales and aspect ratios from all locations of
many feature maps, SSD attempts a diverse set of predictions, covering various
input object sizes and shapes.

3.2 Unsupervised pretraining

Our first fundamental improvement to SSD is to facilitate unsupervised training
of the underlying network architecture. As we show in Section 4, this results in
significant performance improvement. We use ResNet 101 architecture [9] and
construct a convolution-deconvolution based auto-encoder (shown in Fig. 3(a)).
Previously [5] have shown that ResNet 101 architecture results in more than
1.4% mAP gain in SSD as compared to VGG16 [20]. For the deconvolution
block, we use learned upsampling and learned deconvolution, instead of bi-linear
upsampling. The deconvolution block produces an image of the same dimension
as input. We use an input image of 300×300×3, with 7 meta-layers of convolution
and pooling and 7 meta-layers of deconvolution with learned upsampling. Given
an image dataset, we first pretrain the architecture before applying supervised
object detection. 3 Since our architecture is based on fully convolution networks,
CDSSD can in fact process any arbitrary sized images.

3 Our network is not symmetric. During deconvolution, we simply apply learned up-
sampling and learned deconvolution without residual blocks.



3.3 Combining feature maps

[23, 14] observe that the initial layers of a deep network lack strong semantic
information and respond to only high-level features of an image. Furthermore,
the improvement in acquiring semantic information across consecutive feature
maps is only marginal, especially in initial layers of a network. Based on these
observations, our second fundamental improvement to SSD is to fuse generic and
semantic features to enrich feature maps. Unlike prior work, we combine features
from different layers of both convolution and deconvolution network (Fig. 3(a)).

To augment feature maps from layers at different levels, firstly, we combine
layer l with layer l + level stride. Based on observations in [23, 14], we do not
fuse consecutive layers, but set level stride as 2 to receive sufficient semantic
information gain. However, since different layers have different sizes as well as
different scales of bounding box, we apply a learnable upscaling operation on
layer l + level stride (Fig. 3 (b)) to combine them effectively. The scaling oper-
ation ensures that the resulting feature map has the same dimension as layer l
while it also accounts for semantic information contained in layer l+level stride.
For example, as shown in Fig. 3 (b), to scale 10× 10 feature map, we first apply
4 × 4 × 512 deconvolution operation and then apply a 3 × 3 × 512 convolution
operation to reduce the feature map size to 38× 38. This is followed by a batch
normalization layer to receive the final 38 × 38 feature map. Note that, we ap-
ply similar operation on both convolution and deconvolution blocks to process
different layers. Addition of context from deconvolution block only improves the
performance as we show in Section 4, without affecting the detection speed.

Secondly, for a given level of a meta-layer, we combine all the four feature
maps; two from the convolution block and two from deconvolution block, as
shown in Fig. 3(a), into a final feature map by taking element-wise learnable
ReLU operation. Based on observations in [5], we further apply 3 × 3 filter on
this feature map to extract another layer of features. Similar to SSD, we then
apply a set of K default-boxes and (C + 4)×m× n×K filters on the resulting
feature map to predict detection of objects. We apply this set of operations on
meta-layer 3 to meta-layer 5 as shown in Fig. 3 (a). Since there are no feature
maps to pair with the last level stride of convolution and initial level strides
of deconvolution feature maps (6th and 7th meta-layer), we combine them in
element-wise learnable ReLU and process the resulting feature map. Since 6th
and 7th meta-layers have higher reception field and contain richer semantic in-
formation, they are quite capable of detecting bigger size and scale objects [5].

3.4 Box pooling: reducing the number of default boxes

In the original SSD implementation, the authors apply default bounding boxes
to every cell of m × n feature map with p channels. We consider a box-pooling
approach where we pick the dominant cell in l × l window, with a stride of
l on m × n feature map, and apply a set of default boxes on the dominant
cell. This reduces the number default boxes by l2 per feature map. This design
choice is governed by two phenomena observed during our ablation study: (1)



Unsupervised pre-training helps in learning significantly better feature maps (2)
Given that we combine feature maps from different layers of both convolution
and deconvolution blocks, there is no need to exhaustively search for objects for
every cell of of every feature map. We show in Section 4 that box-pooling does
not affect precision and recall of object detection.

Similar to SSD [13], we tile the default boxes of different scales on different
features maps so that specific feature maps learn to be responsive to particular
scales of the objects. To compute different aspect ratios for each cell, we take a
statistical approach and compute a cumulative distribution of aspect ratios of
the ground truth boxes in a given dataset. We then divide the distribution into B
bins and pick the average value of a bin as one of the aspect ratio, thus resulting
in B aspect ratios. For each bi ∈ B, for a feature map with size m× n and scale
of fscale, we then set height to be m× bi×fscale and width to be n× bi×fscale.
With optimized aspect ratios that fit the underlying dataset and different scales
for different layers, we apply appropriate default boxes at box-pooled locations
in each feature map, covering different object sizes and shapes.

4 Results

Our experiments are governed to answer the following key question: can we
achieve state-of-the-art results on object detection benchmarks by employing un-
supervised learning and confluence of feature maps from convolution and de-
convolution blocks? Towards answering this question, we compare our approach
with prior work on two benchmark datasets: PASCAL VOC and MS COCO. We
compare our approach with the original SSD [13] that employs only convolution
block, DSSD [5] that uses deconvolution blocks as additional context for con-
volution blocks, and Stairnet [21] that progressively merges feature maps close
to traditional classification layers with feature maps close to input layers. SSD,
DSSD and Stairnet do not employ unsupervised learning and do not consider
confluence contextual and semantic features from convolution and deconvolution
blocks. We also do an extensive ablation study to quantify improvement by each
of the modules that we have contributed to extend SSD framework. We develop
CDSSD as a Tensorflow module.

4.1 Training

The configuration of our network architecture is shown in Fig. 3. We keep the
dropout layers during unsupervised training and remove them while training
for object detection. We train our models on Azure GPU instances that have
NVIDIA K80 GPUs with 12GB of memory. We use batch size of 16, momentum
as 0.9 and weight decay 0.0005. Similar to SSD [13], we match a default box to
target ground truth boxes, if Jaccard overlap is larger than a threshold (e.g. 0.5).
We compute the target ground truth box for each layer of the network by scaling
it with respect to the feature map and original image sizes. We minimize the
joint localization loss (i.e., smooth L1) and confidence loss (i.e., softmax-cross-
entropy). To avoid the imbalance between the positive and negative training



examples, we sort the negative boxes using the joint loss for each default box
and then pick the top ones to maintain a 2:1 negative to positive ratio. We
found 2:1 ratio leads to faster optimization as compared to the ratio of 3:1 as
mentioned in the original SSD paper.

We further make the model robust to different input object sizes and shapes
by invoking extensive augmentation. Specifically, we sample a patch from a
ground truth box so that the minimum Jaccard overlap with the objects is
0.5, 0.7, or 0.9. Furthermore, we randomly sample a patch between [0.5, 1] of
the original image size, and the aspect ratio is between [1, 2]. Also, we randomly
flip each patch horizontally with probability of 0.5, apply different transforma-
tions such as gaussian blur, emboss, edge prominence, random black-out of 20%
of pixels, and color (hue, saturation, contrast) distortions. We apply 3 × 3 box
pooling for layer 3 and 4, 2× 2 box pooling for layer 5, and no box pooling for
layer 6 and 7. We apply non-maximum suppression (NMS) to post-process the
predictions to get final detection results.

4.2 PASCAL VOC

method network mAP boxes fps lib

YOLOv2 352 [16] DarkNet-19 73.7 98 81 DarkNet
SSD300 [13] VGGNet 77.5 8732 62 Caffe
DSSD321 [5] ResNet-101 78.6 43688 9.5 Caffe
Stairnet [21] VGGNet 78.8 8732 30 PyTorch
CDSSD300 ResNet-101 80.7 1182 51 TF

CDSSD300 (82% data) ResNet-101 77.9 1182 51 TF
Table 1. Comparison of single-shot detection techniques trained on VOC07+12 train-
val and evaluated on VOC2007 test dataset. CDSSD outperforms other state-of-the-art
methods while maintaining high speed of detection.

When training on VOC07+12 trainval, we train the entire network with
learning rate at 10−3 for 45K batches, and then with learning rate of 10−4 for
60K batches to execute unsupervised pretraining on the underlying train dataset
4. During object detection training, we again fine-tune the entire network with
learning rate of 2 × 10−3 for 40K iterations, and 60K iterations with learning
rate of 10−4. Results over VOC07 test dataset are shown in Tab. 1. To eval-
uate on VOC12 test dataset, as shown in Tab. 2, we use VOC07 trainvaltest,
VOC12 trainval for training. We train CDSSD model for 65K iterations with
10−3 learning rate and 2×10−4 learning rate for 80k iterations for unsupervised
pretraining, and 10−3 and 10−4 learning rate for supervised training for 40K and
65K iterations respectively.

We see that by adding unsupervised pretraining and confluence of feature
maps, CDSSD consistently outperforms SSD, DSSD, Stairnet by 1% to 5% points
for several object categories. CDSSD especially shows significant improvement
for small objects such as bird, tv and bottle. Furthermore, CDSSD also shows

4 Due to reduced batch size, the number of batches or iterations are increased as
compared to the original SSD work.



method aero bike bird boat bottle bus car cat chair cow

SSD300 [13] 88.1 82.9 74.4 61.9 47.6 82.7 78.8 91.5 58.1 80.0
DSSD321 [5] 87.3 83.3 75.4 64.6 46.8 82.7 76.5 92.9 59.5 78.3
StairNet [21] 87.7 83.1 74.6 64.2 51.3 83.6 78.0 92.0 58.9 81.8
CDSSD224 85.2 79.5 71.4 60.1 44.5 79.1 74.8 84.3 57.9 79.2
CDSSD300 87.4 83.9 78.3 69.5 54.7 80.2 76.3 88.7 63.4 79.9

CDSSD300 (82%) 85.8 82.7 75.3 64.5 50.5 80.1 75.2 85.8 60.0 78.4

method table dog horse mbike person plant sheep sofa train tv

SSD300 [13] 64.1 89.4 85.7 85.5 82.6 50.2 79.8 73.6 86.6 72.1
DSSD321 [5] 64.3 91.5 86.6 86.6 82.1 53.3 79.6 75.7 85.2 73.9
StairNet [21] 66.2 89.6 86.0 84.0 82.6 50.9 80.5 71.8 86.2 73.5
CDSSD224 63.8 85.1 84.3 84.3 82.9 52.4 77.2 72.8 83.6 72.8
CDSSD300 69.2 89.3 87.8 85.6 82.3 56.8 76.9 76.2 84.3 77.4

CDSSD300 (82%) 66.4 83.4 82.1 84.7 80.3 53.7 75.8 71.9 80.6 74.5

Table 2. mAP comparison of single-shot detection techniques trained on VOC07 train-
valtest, VOC12 trainval and evaluated on VOC12 test dataset. CDSSD results in state-
of-the-art performance for several object categories.

significant improvement for objects such as boat and horse that have definite
backgrounds. CDSSD detects majority objects with high confidence with less
localization error and less confusion for similar object categories 5. Recall of
CDSSD is 93.5% for “strong” criteria of jaccard of overlap of 0.5, about 10%
better than SSD. Finally, CDSSD achieves high-precision at high-recall range
and outperforms SSD and Stairnet (Tab. 3).

method data recall
0.5 0.7 0.9 mAP@70%

SSD300 07+12 91.9 79.7 34.4 44.9
Stairnet 07+12 94.3 83.5 38.8 48.1
CDSSD 07+12 96.1 87.0 44.2 52.6

Table 3. VOC 2012 test dataset to observe mAP at recall greater than 0.7

4.3 Ablation study

To further quantify the benefits of CDSSD, we do an ablation study to progres-
sively add its features and measure mAP on VOC12 test dataset. To quantify the
performance over different sized objects, we consider objects of three different
sizes. Following the methodology in [21], we order the ground truth bounding
boxes on test set for each class by area. We further divide the boxes into three
part: small: less than 25%, medium: between 25% to 75%, and large: above 75%
of image size. Furthermore, when evaluating objects of each size, we ignore the
the ground truth labels for other sizes. As shown in Tab. 4, CDSSD shows signif-
icant improvement using confluence of feature maps, on individual convolution
and deconvolution blocks as well as combination of convolution and deconvolu-
tion feature maps. CDSSD especially shows considerable improvement on small
size objects; it performs about 9% to 14% mAP better than prior work.

5 Details omitted due to lack of space



conv-feat deconv-feat box unsup total overall small-O medium-O large-O
confluence confluence pooling pretraining boxes mAP mAP mAP mAP

no no no no 17464 74.5 42.6 76.9 80.6
no no yes no 1182 70.4 35.1 71.5 75.3
yes no no no 17464 74.9 46.5 77.1 80.9
no yes no no 17464 75.4 47.9 77.8 81.8
no yes yes no 1182 74.5 45.2 76.6 78.9
yes yes no no 8752 76.2 56.5 80.2 83.7
yes yes no yes 8752 78.3 59.0 81.6 85.0
yes yes yes yes 1182 78.1 57.4 81.2 84.7

Table 4. Effects of progressively adding confluence of feature maps on convolution
block, deconvolution block, unsupervised learning, and box pooling. Box pooling does
not hamper the performance while drastically reducing the box requirement.

To quantify the performance of unsupervised pretraining when not pre-
trained on the underlying dataset, we train our convolution and deconvolution
network on imagenet dataset to initialize the weights of the network (similar to
SSD [13], DSSD [5], Stairnet [21]). From the table, we also observe that unsuper-
vised learning gives a 2.1% jump in overall mAP. Furthermore, after applying
box pooling, i.e, after reducing the number of boxes from 8732 to 1182, we ob-
serve that CDSSD sees only marginal reduction in mAP. Note that, box pooling
is not effective without unsupervised learning and confluence of feature maps
as shown in Tab. 4. Thus, combining unsupervised learning with feature map
confluence and box pooling, CDSSD results in state-of-the-art results on object
detection datasets while reducing the number of default bounding boxes.

The original version of SSD [13] uses 8732 boxes, DSSD uses substantially
more (17080 to 43688 boxes), whereas CDSSD uses only 1183 boxes. As a result,
SSD takes 46 FPS and DSSD takes 9.5 FPS where CDSSD clocks 51 FPS on
Titan X GPU with a batch size of 1. While Residual-101 network is slower than
VGGNet used in SSD, the reduction in default boxes not only decreases the pre-
diction time but also time spent in non maximal suppression. Furthermore, the
extra deconvolution layers do not incur an overhead since the confluence opera-
tion is light weight, and CDSSD operates on the same number of feature maps as
the original SSD. Thus, CDSSD achieves improved accuracy while maintaining
one of the fastest detection performance.

4.4 MSCOCO

To evaluate CDSSD on MSCOCO dataset, we first optimize the sizes of default
bounding boxes as per the dataset (as explained in Section 3.4) to train and
test prediction of classes and offsets. We train the network in an unsupervised
manner for 260K iterations with learning rate of 10−3. We use the trainval35k
dataset and train the network in a supervised fashion for 210K iterations with
learning rate of 10−3 and 120K iterations with learning rate of 2×10−4. We show
the results on test-dev2015. As shown in Tab. 5, CDSSD performs consistently
better than SSD and DSSD even at higher Jaccard overlap threshold (0.75), and



method avg.precision, IoU avg.precision, area avg.recall, #Dets avg.recall, area
0.5:0.95/0.5/0.75 S/M/L 1/10/100 S/M/L

SSD300 25.1/43.1/25.8 6.6/25.9/41.4 23.7/35.1/37.2 11.2/40.4/58.4
DSSD321 28.0/46.1/29.2 7.4/28.1/47.6 25.5/37.1/39.4 12.7/42.0/62.6

CDSSD300 29.2/48.2/29.9 8.8/31.2/49.3 26.1/39.2/42.3 13.6/44.3/63.7
Table 5. Evaluation of CDSSD on MSCOCO dataset

for different sized objects. Improvement in detection of large objects shows that
CDSSD is able to learn better and robust features. These results corroborate the
benefits of CDSSD on generic object detection datasets towards a better single-
shot detection framework. Fig. 4 shows object detections on COCO test set
images. Our model shows improvements on several fronts such as small objects
like donuts; dense objects e.g. airplanes; objects with distinct context such as
clocks; and objects that have specific relationships with the background.
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Fig. 4. CDSSD out-performs in capturing objects of different size and scale in com-
parison to SSD [13]

5 Conclusion

We design an end-to-end framework using convolution-deconvolution deep net-
works to improve the state-of-the-art of single shot object detection techniques.
Using a combination of unsupervised learning and confluence of feature maps
with different receptive fields, we demonstrate substantial improvement in mAP
for different objects in PASCAL VOC and MS COCO datasets while reducing
the bounding box requirement by 8 times, thus improving inference time by
10%. As a future work, our approach can be used to improve region proposal
based detection techniques as well. We also believe that our work can inspire
several extensions to find more effective and efficient ways to combine feature
maps of convolution and deconvolution blocks to improve image classification,
object detection and semantic segmentation approaches.
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