
Learning Joint Query Interpretation and Response Ranking
Uma Sawant

IIT Bombay, Yahoo! Labs
uma@cse.iitb.ac.in

Soumen Chakrabarti
IIT Bombay

soumen@cse.iitb.ac.in

ABSTRACT
Thanks to information extraction and semantic Web efforts,
search on unstructured text is increasingly refined using se-
mantic annotations and structured knowledge bases. How-
ever, most users cannot become familiar with the schema
of knowledge bases and ask structured queries. Interpret-
ing free-format queries into a more structured representa-
tion is of much current interest. The dominant paradigm
is to segment or partition query tokens by purpose (refer-
ences to types, entities, attribute names, attribute values,
relations) and then launch the interpreted query on struc-
tured knowledge bases. Given that structured knowledge
extraction is never complete, here we choose a less trodden
path: a data representation that retains the unstructured
text corpus, along with structured annotations (mentions of
entities and relationships) on it. We propose two new, natu-
ral formulations for joint query interpretation and response
ranking that exploit bidirectional flow of information be-
tween the knowledge base and the corpus. One, inspired by
probabilistic language models, computes expected response
scores over the uncertainties of query interpretation. The
other is based on max-margin discriminative learning, with
latent variables representing those uncertainties. In the con-
text of typed entity search, both formulations bridge a con-
siderable part of the accuracy gap between a generic query
that does not constrain the type at all, and the upper bound
where the “perfect” target entity type of each query is pro-
vided by humans. Our formulations are also superior to a
two-stage approach of first choosing a target type using re-
cent query type prediction techniques, and then launching a
type-restricted entity search query.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Query interpretation; Entity search

1. INTRODUCTION
Web information representation is getting more sophisti-

cated, thanks to information extraction and semantic Web
efforts. Much structured and semistructured data now sup-
plements unstructured, free-format textual pages. In verti-
cals such as e-commerce, the structured data can be accessed
through forms and faceted search. However, a large number
of free-format queries remain outside the scope of verticals.
As we shall review in Section 2, there is much recent research
on analyzing and annotating them.

Here we focus on a specific kind of entity search query:
some words (called selectors) in the query are meant to oc-
cur literally in a response document (as in traditional text

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

search), but other words hint at the type of entity sought
by the query. Unlike prior work on translating well-formed
sentences or questions to structured queries using deep NLP,
we are interested in handling “telegraphic” queries that are
typically sent to search engines. Each response entity must
be a member of the hinted type.

Note that this problem is quite different from finding an-
swers to well-formed natural language questions (e.g., in
Wolfram Alpha) from structured knowledge bases (perhaps
curated through information extraction). Also observe that
we do not restrict ourselves to queries that seek entities by
attribute values or attributes of a given entity (both are
valuable query templates for e-commerce and have been re-
searched). In our setup, some responses may only be col-
lected from diverse, open-domain, free-format text sources.
E.g., typical driving time between Paris and Nice (the target
type is time duration), or cricketers who scored centuries at
Lords (the target type is cricketers).

Query: losing team of baseball world series 1998

Correct Type:
Major_league_baseball_teams

Entity: San Diego Padres

By comparison, the Padres have been to two
World Series, losing in 1984 and 1998.

mentionOf

Incorrect type:
World_Series_Hockey_teams

Word matches
instanceOf

Evidence snippet:

Figure 1: Example of a collective, joint query in-
terpretation and entity ranking problem; includes a
query containing different possible hint and selector
words, partially matching types with member enti-
ties and corpus snippets

The target type (or a more general supertype, such as
sportsperson in place of cricketer) may be instantiated in a
catalog, but the typical user has no knowledge of the catalog
or its schema. Large catalogs like Wikipedia or Freebase
evolve “organically”. They are not designed by linguists, and
they are not minimal or canonical in any sense. Types have
overlaps and redundancies. The query interpreter should
take advantage of specialized types whenever available, but
otherwise gracefully back off to broader types.

Figure 1 shows a query that has at least two plausible hint
word sets: {team, baseball} (correct) and {world, series} (in-

correct). Hint words partially match descriptions of types in
a catalog, which lead to member entities. Potential response
entities are mentioned in document snippets (one shown),
which in turn partially match selector words (world, series,
losing, 1998). Given a limited number of types to choose
from, a human will find it trivial to pick the best. However,
a program will find it very challenging to decide which sub-
set of query words are type hints, and, even after that, to
select the best type(s) from a large type catalog. This query
interpretation task is one part of our goal.

We posit that corpus statistics provide critical signals for
query interpretation. For example, we might benefit from
knowing that San_Diego_Padres rarely co-occurs with the
word “hockey”, which can be known only from the corpus.
Query interpretation should ideally be done jointly with
ranking entities from the corpus, because it involves a del-
icate combinatorial balance between the hint-selector split,
and the (rather noisy) signals from the quality of matches be-
tween type descriptions and hint words, snippets and other
words, and mentions of entities in said snippets.

Although query typing has been investigated before [38,
5], to the best of our knowledge this is the first work on
combining type interpretation with learning to rank [21]. In
Section 4, we present a natural, generative formulation for
the task using probabilistic language models. In Section 5
we present a more flexible and powerful max-margin discrim-
inative approach [19, 7].

In Section 6, we report on experiments involving 709 queries,
over 200,000 types, 1.5 million entities, and 380 million ev-
idence snippets collected from over 500 million Web pages.
The entity ranking accuracy of a reasonable query inter-
preter will be between the “lower bound” of a generic system
that makes no effort to identify the target type (i.e., all cat-
alog entities are candidates), and the upper bound of an
unrealistic “perfect” system that knows the target type by
magic. Our salient experimental observations are:
• The generative language model approach improves en-

tity ranking accuracy significantly beyond the lower
bound wrt MAP, MRR and NDCG.
• The discriminative approach is superior to generative;

e.g., it bridges 43% of the MAP gap between the lower
and upper bounds.
• In fact, if we discard the entity ranks output from our

system, use it only as a target type predictor, and is-
sue a query with the predicted type, entity ranking
accuracy drops.
• Our discriminative approach beats a recent target type

prediction algorithm by significant margins.
• NLP-heavy techniques are not robust to telegraphic

queries.
Our data and code will be made publicly available at
http://www.cse.iitb.ac.in/~soumen/doc/CSAW/.

2. RELATED WORK
Interpreting a free-format query into a structured form has

been explored extensively in the information retrieval (IR)
and Web search communities, with several recent dedicated
workshops1. A preliminary but critical structuring step is

1ciir.cs.umass.edu/sigir2010/qru
ciir.cs.umass.edu/sigir2011/qru
strataconf.com/stratany2011/public/schedule/detail/21413
sysrun.haifa.il.ibm.com/hrl/smer2011

to demarcate phrases [6] in free-format queries. There is
also a large literature on topic-independent intent discovery
[10, 18] as well as topic-dependent facet [30] or template [1]
inference.

The problem of disambiguating named entities mentioned
in queries is superficially similar to ours, but is technically
quite different. In Figure 2, query word ymca may refer
to different entities, but additional query word lyrics hints
at type music, whereas address hints at type organization.
Note that the query text directly embeds a mention of an en-
tity, not a type. Disambiguating the entity (usually) amounts
to disambiguating the type—contrast Figure 2 with Figure 1.
A given mention usually refers to only a few entities. In
contrast, misinterpreting the hint often pollutes the entity
response list beyond redemption. Delaying a hard choice of
the target type, or avoiding it entirely, is likely to help.

Query:
ymca lyrics

Query:
ymca address

Entity:
YMCA_(song)

Entity:
YMCA_(org)

Type: Music Type: Organization

instanceOf instanceOf

Le
ar

n
to

pi
c

m
od

el

Le
ar

n
to

pi
c

m
od

el

Figure 2: Disambiguating named entities in queries.

For entity disambiguation, Guo et al. [15] proposed a prob-
abilistic language model through weak supervision that learns
to associate, e.g., lyrics with music and address with organi-
zation. Pantel et al. [25, 26] pushed this farther by exploiting
clicks and modeling intent. Hu et al. [17] addressed a similar
problem. None gave a discriminative max-margin formula-
tion, or unified the framework with learning to rank.

Given that the database community uses SQL and XQuery
as unambiguous, structured representations of information
needs, and that the NLP community seeks to parse sen-
tences to a well-defined meaning, there also exists conver-
gent database and NLP literature on interpreting free-format
(source) queries into a suitable target“query language”. Nat-
urally, much of this work seeks to identify types, entities,
attributes, and relations in queries. Although the theoreti-
cal problem is challenging [14], a common underlying theme
is that each token in the query may be an expression of
schema elements, entities, or relationships: this leads to a
general assignment problem, which is solved approximately
using various techniques, summarized below.

Sarkas et al. [33] annotated e-commerce queries using schema
and data in a structured product catalog. In the context of
Web-extracted knowledge bases such as YAGO [35], Pound
et al. [29, 28] set up a collective assignment problem with a
cost model that reflects syntactic similarity between query
fragments and their assigned concepts, as well as semantic
coherence between concepts [20]. Sarkas, Pound and oth-
ers, like us, handle “telegraphic queries” that may not be
well-formed sentences. DEANNA [39] solved the collective
assignment problem using an integer program. It is capa-
ble of parsing queries as complex as “which director has
won the Academy Award for best director and is married
to an actress that has won the Academy Award for best ac-

km.aifb.kit.edu/ws/jiwes2012

http://ciir.cs.umass.edu/sigir2010/qru/
http://ciir.cs.umass.edu/sigir2011/qru/
http://strataconf.com/stratany2011/public/schedule/detail/21413
http://sysrun.haifa.il.ibm.com/hrl/smer2011/
http://km.aifb.kit.edu/ws/jiwes2012/

tress?” As might be expected, DEANNA is rather sensitive
to query syntax and often fails on telegraphic queries. All
these systems interpret the query with the help of a fairly
clean, structured knowledge base. [33, 29, 28, 39] do not
give discriminative learning-to-rank algorithms that jointly
disambiguate the query and ranks responses. IBM’s Watson
[24] identifies candidate entities first, and then scores them
for compatibility with likely target types.

In this work, we do not assume that a knowledge base
has been curated ahead of time from a text corpus. Instead
we assume entities and types have been annotated on spans
of unstructured text. Accordingly, we step back from so-
phisticated target schemata, settling for three basic relations
(instanceOf, subTypeOf, and mentionOf, see Figure 1) that
link a structured entity catalog with an unstructured text
corpus (such as the Web). On the other hand, we take the
first step toward integrating learning-to-rank [21] techniques
with query interpretation.

Closest to our goal are those of Vallet and Zaragoza [38]
and Balog and Neumayer (B&N) [5]. Vallet and Zaragoza
first collected a ranked list of entities by launching a query
without any type constraints. Each entity belongs to a hi-
erarchy of types. They accrued a score in favor of a type
from every entity as a function of its rank, and ranked types
by decreasing total score. B&N investigated two techniques.
In the first, descriptions of all entities e belonging to each
type t were concatenated into a super document for t, and
turned into a language model. In the second (similar in
spirit to Vallet and Zaragoza), the score of t was calculated
as a weighted average of probabilities of entity description
language models generating the query, for e ∈ t.

These approaches [5, 31] use long entity descriptions, such
as found on the Wikipedia page representing an entity, but
not a corpus where entity mentions are annotated. The cor-
pus documents may well not be definitional, and yet remark-
ably improve entity ranking accuracy, as we shall see. None
of [38, 5, 31] attempt a segmentation of query words by pur-
pose (target type vs. literal matches).

3. BACKGROUND AND NOTATION

3.1 “Telegraphic” queries
A “telegraphic” entity search query q expresses an infor-

mation need that is satisfied by one or more entities. Query
q is a sequence of |q| words. The jth word of query q is
denoted wq,j , where j = 1, . . . , |q|, and subscript q in wq,j

is omitted if clear from context. We will interchangeably
use q (as a query identifier) and ~q (to highlight that it is a
sequence of words). Unlike full, well-formed, grammatical
sentences or questions, telegraphic queries resemble short
Web search queries having no clear subject-verb-object or
other complex clausal structure. Some examples of natural
telegraphic entity search queries and possible natural lan-
guage “translations” are shown in Figure 3. Q denotes a set
of queries.

3.2 The entity and type catalog
The catalog (T , E ,⊆+,∈+), is a directed acyclic graph of

type nodes t ∈ T , with edges representing the “is-subtype-
of” transitive binary relation ⊆+. Each type t is described
by one or more lemmas (descriptive phrases) L(t), e.g., Aus-
trian physicists.

Q1 Woodrow Wilson was presi-
dent of which university?

woodrow wilson president
university

Q2 Which Chinese cities have
many international compa-
nies?

chinese city many
international companies

Q3 What cathedral is in Claude
Monet’s paintings?

cathedral claude monet
paintings

Q4 Along the banks of what
river is the Hermitage Mu-
seum located?

hermitage museum banks of
river

Q5 At what institute was Dolly
cloned?

dolly clone institute

Q6 Who made the first air-
plane?

first airplane inventor

Figure 3: Natural language queries and typical
telegraphic forms, with potential type description
matches underlined.

Each entity e in the catalog is also represented by a node
connected by “is-instance-of” edge(s) to one or more most
specific type nodes, and transitively belongs to all super-
types; this relation is represented as ∈+. An entity e may
be a candidate for a query q. The set of candidate entities
for query q is called Eq ⊆ E . In training data, an entity e
may be labeled relevant (denoted e+) or irrelevant (denoted
e−) for q. Eq is accordingly partitioned into E+q , E−q .

3.3 Annotated corpus and snippets
The corpus is a set of free-format text documents. Each

document is modeled as a sequence of words. Entity e is
mentioned at some places in an unstructured text corpus.
A “mention” is a token span (e.g., Big Apple) that gives
evidence of reference to e (e.g., New York City). The men-
tion span, together with a suitable window of context words
around it, is called a snippet. The set of snippets mentioning
e is called Se. c ∈ Se is one snippet context supporting e.

In the Wikipedia corpus, most mentions are annotated
manually as wiki hyperlinks. For Web text, statistical learn-
ing techniques [20, 16] are used for high-quality annotations.
Here we assume mentions to be correct and deterministic.
Extending our work to noisy mentions is left for future work.

4. GENERATIVE FORMULATION
Given the success of generative techniques in corpus mod-

eling [8], IR [41] and entity ranking [3, 4], it is natural to
propose a generative language model approach to joint query
interpretation and response ranking.

As is common in generative language models, we will fix
an entity e and generate the query words, by taking the
following steps:

1. Choose a type from {t : e ∈+ t};
2. Describe that type using one or more query words,

which will be called hint words;
3. Collect snippets that mention e; and
4. Generate the remainder of the query by sampling words

from these snippets.
Our goal is to rank entities by probability given the query,
by taking the expectation over possible types and hints.

4.1 Choosing a type given e

Given entity e, we first pick a type t such that e ∈+ t,
and describe t in the query (with the expectation that the
system will infer t, then instantiate it to e as a response).
So the basic question looks like: “if the answer is Albert

en.wikipedia.org/wiki/Category:Austrian_physicists
en.wikipedia.org/wiki/Category:Austrian_physicists
http://en.wikipedia.org/wiki/New_York_City

Einstein, what type (among scientist, person, organism, etc.)
is likely to be mentioned in the query, before we inspect the
query?” (After we see the query, our beliefs will change,
e.g., depending on whether the query asks “who discovered
general relativity?” vs. “which physicist discovered general
relativity?”) So we need to design the prior distribution
Pr(t|e).

Recall that there may be hundreds of thousands of ts, and
tens of millions of es, so fitting the prior for each e separately
is out of the question. On the other hand, the prior is just a
mild guidance mechanism to discourage obscure or low-recall
types like“Austrian Physicists who died in 1972”. Therefore,
we propose the following crude but efficient estimate. From
a query log with ground truth (i.e., each query accompanied
with a t provided by a human), accumulate a hit count Nt

for each type t. At query time, given a candidate e, we
calculate

Pr(t|e) =

Nt + γ∑

t′:e∈+t′(Nt′ + γ)
, e ∈+ t

0, otherwise
, (1)

where γ ∈ (0, 1) is a tuned constant.

4.2 Query word switch variables
Suppose the query is the word sequence (wj , j = 1, . . . , |q|).

For each position j, we posit a binary switch variable zj ∈
{h, s}. Each zj will be generated iid from a Bernoulli dis-
tribution with tuned parameter δ ∈ (0, 1). If zj = h, then
word wj is intended as a hint to the target type. Otherwise
wj is a selector sampled from snippets mentioning entity e.
The vector of switch variables is called ~z.

The number of possible partitions of query words into
hints and selectors is 2|q|. By definition, telegraphic queries
are short, so 2|q| is manageable. One can also reduce this
search space by asserting additional constraints, without
compromising quality in practice. E.g., we can restrict the
type hint to a contiguous span with at most three tokens.

Given ~q and a proposed partition ~z, we define two helper
functions, overloading symbols s and h:

Hint words of q: h(~q, ~z) = {wq,j : zj = h} (2)

Selector words of q: s(~q, ~z) = {wq,j : zj = s}. (3)

With these definitions, in the exhaustive hint-selector par-
tition case, ~z is the result of |q| Bernoulli trials with hint
probability δ ∈ (0, 1) for each word, so we have

Pr(~z) = δ|h(~q,~z)|(1− δ)|s(~q,~z)|. (4)

δ is tuned using training data.
In this paper we will consider strict partitions of query

words between hints and selectors, but it is not difficult to
generalize to words that may be both hints and selectors.
Assuming each query word has a purpose, the full space
grows to 3|q|, but assuming contiguity of the hint segment
again reduces the space to essentially O(|q|).

4.3 Type description language model
Globally across queries, the textual description of each

type t induces a language model. We can define the ex-
act form of the model in any number of ways, but, to keep
implementations efficient, we will make the commonly used
assumption that hint words are conditionally independent
of each other given the type. Each type t is described by

one or more lemmas (descriptive phrases) L(t), e.g., Aus-
trian physicists. Because lemmas are very short, words are
rarely repeated, so we can use the multivariate Bernoulli [23]
distribution derived from lemma `:

P̂r(w|`) =

{
1, if w appears in `,

0, otherwise
(5)

Following usual smoothing policies [41], we interpolate the
smoothed distribution above with a background language
model created from all types:

P̂r(w|T) =

∑
t∈T ~w appears in ` ; ` ∈ L(t)�

|T | ; (6)

in words, the fraction of all types that contain w. ~B� is 1
if Boolean condition B is true, and 0 otherwise. We splice
together (5) and (6) using parameter β ∈ (0, 1):

Pr(w|`) = (1− β)P̂r(w|`) + βP̂r(w|T). (7)

The probability of generating exactly the hint words in the
query is

Pr(h(~q, ~z)|`) =
∏

w∈h(~q,~z)

Pr(w|`)
∏

w 6∈h(~q,~z)

(1− Pr(w|`)), (8)

where w ranges over the entire vocabulary of type descrip-
tions. In case of multiple lemmas describing a type,

Pr(·|t) = max
`∈L(t)

Pr(·|`); (9)

i.e., use the most favorable lemma. All fitted parameters in
the distribution Pr(w|`) are collectively called ϕ.

4.4 Entity snippet language model
The selector part of the query, s(~q, ~z), is generated from

a language model derived from Se, the set of snippets that
mention candidate entity e. For simplicity we use the same
kind of smoothed multivariate Bernoulli distribution to build
the language model as we did for the type descriptions. Note
that words that appear in snippets but not in the query are
of no concern in a language model that seeks to generate the
query from distributions associated with the snippets. Sup-
pose corpusCount(e) is the number of mentions of e in the
corpus C, and corpusCount(e, w) be the number of mentions
of e where w also occurs within a specified snippet window
width. The unsmoothed probability of generating a query
word w from the snippets of e is

P̂r(w|e) =
corpusCount(e, w)

corpusCount(e)
=
|{s ∈ Se : w ∈ s}|
corpusCount(e)

. (10)

As before, we will smooth the above estimate using an corpus-
level, entity-independent background word distribution esti-
mate:

P̂r(w|C) =
1

|C| (number of documents containing w). (11)

And now we use the interpolation

Pr(w|e) = (1− α)P̂r(w|e) + αP̂r(w|C), (12)

where α ∈ (0, 1) is a suitable smoothing parameter. The
fitted parameters of the Pr(w|e) distribution are collectively
called θ. Similar to (8), the selector part of the query is

en.wikipedia.org/wiki/Category:Austrian_physicists
en.wikipedia.org/wiki/Category:Austrian_physicists

W Z

θE

T

ϕ

Figure 4: Plate diagram for generating a query q
from a candidate entity e. Only (wq,j : j = 1, . . . , |q|)
are observed variables. ϕ represents the type de-
scription language model and θ represents the entity
mention snippets language model. (zq,j : j = 1, . . . , |q|)
are the hidden switch variables. T is the hidden type
variable.

generated with probability

Pr(s(~q, ~z)|e) =
∏

w∈s(~q,~z)

Pr(w|e)
∏

w 6∈s(~q,~z)

(1− Pr(w|e)), (13)

except here w ranges over all query words.

4.5 Putting the pieces together
A plate diagram for the process generating a query ~q

is shown in Figure 4. Vertices are marked with random
variables E, T, Z,W whose instantiations are specific values
e, t, ~z, w ∈ q.

The hidden variables of interest are the binary Z ∈ {h, s},
for selecting between type hint (h) and selector (s) words;
and T , the type of one query. Each query picks one hidden
value t, and a vector of |q| size for Z, denoted ~z. The only ob-
served variables are the |q| query words (wj : j = 1, . . . , |q|).
Also, α, β, γ, δ are hyper-parameters tuned globally across
queries.

In the end we are interested in arg maxe Pr(e|~q), where

Pr(e|~q) ∝ Pr(e, ~q) = Pr(e) Pr(~q|e) = Pr(e)
∑
t,~z

Pr(~q, t, ~z|e)

= Pr(e)
∑
t,~z

Pr(t|e)Pr(~z|e, t) Pr(~q|e, t, ~z) (14)

≈ Pr(e)
∑
t,~z

Pr(t|e)Pr(~z) Pr(~q|e, t, ~z) (15)

= Pr(e)
∑
t,~z

Pr(t|e) Pr(~z)︸ ︷︷ ︸
(4)

Pr(h(~q, ~z)|t)︸ ︷︷ ︸
(9)

Pr(s(~q, ~z)|e)︸ ︷︷ ︸
(13)

.

To get from (14) to (15) we make the simplifying assumption
that the density of hint words in queries is independent of
the candidate entity and type. As mentioned before, adding
over t, ~z is feasible for telegraphic queries because they are
short. The prior Pr(e) may be uninformative (i.e., uniform),
or set proportional to |Se| [22], or use shrunk estimates from
answer types in the past. We use Pr(e) = |Se|/

∑
e′ |Se′ |.

If we allow a query word to represent both a type hint and
a selector, the clean separation after (15) no longer works,
but it is possible to extend the framework using a soft-OR
expression. We omit details owing to space constraints.

4.6 Explaining a top-ranking entity
In standard text search, top-ranking URLs are accompa-

nied by a summary with matching query words highlighted.
In our system, top-ranking entities need to be justified by
explaining to the user how the query was interpreted. Specif-
ically, we need to show the user the inferred type, and the
inferred purpose (hint or selector) of each query word.

Pr(t, ~z|e, ~q) ∝ Pr(e, t, ~q, ~z)

= Pr(e) Pr(t|e)Pr(~z|e, t) Pr(~q|e, t, ~z)

≈ Pr(e) Pr(t|e)Pr(~z) Pr(~q|e, t, ~z) (16)

approximating Pr(~z|e, t) ≈ Pr(~z) as before. Now we can re-
port arg maxt,~z Pr(t, ~z|e, ~q) as the explanation for e. It is also
possible to report marginals such as Pr(t|e, ~q) or Pr(zj |e, ~q)
this way.

4.7 Potential pitfalls
As often happens, a generative formulation starts out feel-

ing natural, but is soon mired in a number of questionable
assumptions and tuned hyper parameters. In recent times,
this story has played out in many problems, such as informa-
tion extraction [32] and learning to rank [21], where gener-
ative language models were proposed earlier, but the latest
algorithms are all discriminatively trained. The above for-
mulation has several potential shortcomings:
• The modeling of Pr(t|e) is necessarily a compromise.
• Pr(zj) is assumed to be independent of q and e, and

iid. These assumptions may not be the best.
• In the interest of computational feasibility, the lan-

guage models for both types and snippets are simplis-
tic. Phrase and exact matches are difficult to capture.
• Hyper parameters α, β, γ, δ can only be tuned by sweep-

ing ranges; no effective learning technique is obvious.
• As often happens with complex generative models, the

scales of probabilities being multiplied (15) are diverse
and hard to balance.

5. DISCRIMINATIVE FORMULATION
Instead of designing conditional distributions as in Sec-

tion 4, here we will design feature functions, and learn weights
corresponding to them by using relevant and (samples of) ir-
relevant entity sets E+q , E−q associated with each query q, as
is standard in learning to rank [21]. The benefit is that it
is much safer to incrementally add highly informative but
strongly correlated features (such as exact phrase match,
match with and without stemming, etc.) to discriminative
formulations.

Standard notation used in structured max-margin learning
uses φ(x, y) ∈ Rd as the feature map, where x is an obser-
vation and y is the label to be predicted. A model λ ∈ Rd

is fitted so that λ · φ(x, ycorrect) > λ · φ(x, yincorrect). Once
λ gets fixed via training, given a new text instance xtest,
inference is the process of finding arg maxy λ · φ(xtest, y).

In our case, we use the notation φ(q, e, t, ~z) for the feature
map. q gives us access to the sequence of words in the query,
and is the analog of x above. e gives us access to the snippets
Se that support e, and is the analog of y above. t and ~z are
latent variable [40] inputs to the feature map whose role will
be explained shortly.

Guided by the generative formulation in Section 4, we
partition the feature vector as follows:

φ(q, e, t, ~z) =
(
φ1(q, e), φ2(t, e), φ3(q, ~z, t), φ4(q, ~z, e)

)
, (17)

where
• φ1(q, e) models the prior for e.
• φ2(t, e) models the prior Pr(t|e).
• φ3(q, ~z, t) models the compatibility between the type

hint part of query words and the proposed type t.
• φ4(q, ~z, e) models the compatibility between the selec-

tor part of query words and Se.

5.1 Features φ1 modeling entity prior
In Section 4.5 we used Pr(e) = |Se|/

∑
e′ |Se′ | as a prior

probability for e. It is natural to make this one element
in φ1. But the discriminative setup allows us to introduce
other powerful features.
|Se| does not distinguish between snippets that match the

query well vs. poorly. Let IDF(w) be the inverse document
frequency [2] of query word w, and IDF(q) =

∑
w∈q IDF(w).

c ∩ q is the set of query words found in snippet c, with to-
tal IDF(c ∩ q) =

∑
w∈c∩q IDF(w). Then the match-quality-

weighted snippet support for e is characterized as

φ1(q, e)[·] =
1

2|q| IDF(q)

∑
c∈Se

IDF(c ∩ q), (18)

where 2|q| IDF(q) normalizes the feature across diverse queries.
Another feature in φ1 relates to negative evidence. If

there are other words present, a query that directly men-
tions an entity is hardly ever answered correctly by that
entity; Tom Cruise could not be the answer for the query
tom cruise wife. Another (0/1) element in φ1 is whether
a description (“lemma”) of e is contained in the query. In
our experiments, the model element in λ corresponding to
this feature turns out a negative number, as expected.

5.2 Features φ2 modeling type prior
We have already proposed one way to estimate Pr(t|e) in

Section 4.1. This estimate a natural element in φ2. We can
also help the learner use the generality or specificity of types,
measured as this feature:

∣∣{e : e ∈+ t}
∣∣/|E|. In our experi-

ments, the element of λ corresponding to this feature also
got negative values, indicating preference of specific types
over generic ones. This corroborates earlier observation re-
garding the depth of desired types in a hierarchy [5].

5.3 Hint-type compatibility features φ3

Given the input parameters of φ3(~q, ~z, t), we compute the
hint word subsequence h(~q, ~z) as in (2). Now we can define
any number of features between these hint words and the
given type t, which has lemma set L(t).
• A standard feature borrowed from (9) is Pr(h(~q, ~z)|t).
• Unlike in the generative formulation, we can add syn-

thetic features. E.g., a feature that has value 1 if `
matches the subsequence h(~q, ~z) exactly.
• In Section 4, the size of h(~q, ~z) was drawn from a bi-

nomial distribution controlled by hyper parameter δ.
To model more general distributions, we use binary
features of the form{

1, |h(~q, ~z)| < k

0, otherwise

for k = 1, . . ., to capture the belief that smaller number
of hint words is preferable.

5.4 Selector-snippets compatibility features φ4

Now consider q and its selectors s(~q, ~z) ⊆ q as word sets
(no duplicates), and the snippets Se supporting candidate
entity e. φ4(q, ~z, e) will include feature/s that express the
extent of match or compatibility between the selector words
and the snippets. We need to characterize and then combine
two kinds of signals here:
• The rarity (hence, informativeness) of a subset of s(~q, ~z)

that match in snippets, and
• The number of supporting snippets [22] that match a

given word set.
(A third kind of signal, proximity [27, 37, 36], is favored indi-
rectly, because snippets have limited width. A more refined
treatment of proximity is left for future work.)

A snippet c ∈ Se, interpreted as a subset of query words
q, covers s(~q, ~z) if c ⊇ s(~q, ~z). Otherwise c ⊂ s(~q, ~z). Re-
call every snippet c has an IDF(c) =

∑
w∈c∩q IDF(w). We

propose two features:

1

2|q| IDF(q)

∑
c⊇s(~q,~z)

IDF(s(~q, ~z))

=
IDF(s(~q, ~z)) |{c : c ⊇ s(~q, ~z)}|

2|q| IDF(q)
(19)

and
1

2|q| IDF(q)

∑
c⊂s(~q,~z)

IDF(c). (20)

We found the separation above to be superior to collapsing
covering and non-covering snippets into one sum. Another
useful feature was the fraction of snippets c such that c = q
(exactly matching all query words).

5.5 Inference and training
With a wrong choice of hint-selector partition ~z, or a

wrong choice of type t, even a highly relevant response e
could score very poorly. Therefore, any reasonable scoring
scheme should evaluate e under the best choice of t, ~z. I.e.,
the score of e should be

max
t:e∈+t,~z

λ · φ(q, e, t, ~z). (21)

(Note that t ranges over only those types to which e be-
longs.) In learning to rank [21], three training paradigms
are commonly used: itemwise, pairwise and listwise. Be-
cause of the added complexity from the latent variables t, ~z,
here we discuss itemwise and pairwise training. Pairwise
linear discrimination [19] remains an effective approach for
learning to rank. Listwise training is left for future work, as
is the use of nonlinear models like boosted regression trees.

In itemwise training, each response entity e is one item,
which can be good (relevant, denoted e+) or bad (irrelevant,
denoted e−). Following standard max-margin methodology,
we want

∀q, e+ : max
t,~z

λ · φ(q, e+, t, ~z) ≥ 1− ξq,e+ , and (22)

∀q, e− : max
t,~z

λ · φ(q, e−, t, ~z) ≤ 1 + ξq,e− , (23)

where ξq,e+ , ξq,e− ≥ 0 are the usual SVM-style slack vari-
ables. Constraint (23) is easy to handle by breaking it up

http://en.wikipedia.org/wiki/Tom_Cruise

into the conjunct:

∀q, e−, ∀t,∀~z : λ · φ(q, e, t, ~z) ≤ 1 + ξq,e− . (24)

However, (22) is a disjunctive constraint, as also arises in
multiple instance classification or ranking [7]. A common
way of dealing with this is to modify constraint (22) into

∀q, e+ :
∑
t,~z

u(q, e+, t, ~z)λ · φ(q, e+, t, ~z) ≥ 1− ξq,e+ (25)

where u(q, e, t, ~z) ∈ {0, 1} and

∀q, e+ :
∑
t,~z

u(q, e+, t, ~z) = 1.

This is an integer program, so the next step is to relax the
new variables to 0 ≤ u(q, e, t, ~z) ≤ 1 (i.e., the (t, ~z)-simplex).
Unfortunately, owing to the introduction of new variables
u(· · ·) and multiplication with old variables λ, the optimiza-
tion is no longer convex.

Bergeron et al. [7] propose an alternating optimization:
holding one of u and λ fixed, optimize the other, and repeat
(there are no theoretical guarantees). Note that if λ is fixed,
the optimization of u is a simple linear program. If u is fixed,
the optimization of λ is comparable to training a standard
SVM. The objective would then take the form

1
2
‖λ‖2 +

C

|Q|
∑
q∈Q

∑
e+∈E

+
q
ξq,e+ +

∑
e−∈E

−
q
ξq,e−

|E+q |+ |E−q |
(26)

Here C > 0 is the usual SVM parameter trading off training
loss against model complexity. Note that u does not appear
in the objective.

In our application, φ(q, e, t, ~z) ≥ ~0. Suppose λ ≥ ~0 in some
iteration (which easily happens in our application). In that
case, to satisfy constraint (25), it suffices to set only one
element in u to 1, corresponding to arg maxt,~z λ ·φ(q, e, t, ~z),
and the rest to 0s. In other words, a particular (t, ~z) is chosen
ignoring all others. This severely restricts the search space
over u, λ in subsequent iterations and has greater chance of
getting stuck in a local minima.

To mitigate this problem, we propose the following anneal-
ing protocol. The u distribution collapse reduces entropy
suddenly. The remedy is to subtract from the objective (to
be minimized) a term related to the entropy of the u distri-
bution:

(26) +D
∑
q,e+

∑
t,~z

u(q, e+, t, ~z) log u(q, e+, t, ~z). (27)

Here D ≥ 0 is a temperature parameter that is gradually
reduced in powers of 10 toward zero with the alternative
iterations optimizing u and λ. Note that the objective (27)
is convex in u, λ and ξ∗. Moreover, with either u or λ fixed,
all constraints are linear inequalities.

1: initialize u to random values on the simplex
2: initialize D to some positive value
3: while not reached local optimum do
4: fix u and solve quadratic program to get next λ
5: reduce D geometrically
6: fix λ and solve convex program for next u

Figure 5: Pseudocode for discriminative training.

Very little changes if we extend from itemwise to pairwise
training, except the optimization gets slower, because of the

sheer number of pair constraints of the form:

∀q, e+, e− : max
t,~z

λ · φ(q, e+, t, ~z)−max
t,~z

λ · φ(q, e−, t, ~z)

≥ 1− ξq,e+,e− . (28)

The itemwise objective in (26) changes to the pairwise ob-
jectice

1
2
‖λ‖2 +

C

|Q|
∑
q∈Q

1

|E+q | |E−q |

∑
e+∈E

+
q ,e−∈E−q

ξq,e+,e− . (29)

For clarity, first we rewrite (28) as

∀q, e+, e− : max
t,~z

λ · φ(q, e+, t, ~z)

≥ 1− ξq,e+,e− + max
t′,~z′

λ · φ(q, e−, t
′, ~z′).

Then we pull out t′, ~z′:

∀q, e+, e−, t′, ~z′ : max
t,~z

λ · φ(q, e+, t, ~z)

≥ 1− ξq,e+,e− + λ · φ(q, e−, t
′, ~z′).

Finally, we use a new set of u variables to convert this to an
alternating optimization as before:

∀q, e+, e−, t′, ~z′ :
∑
t,~z

u(q, e+, t, ~z)λ · φ(q, e+, t, ~z)

≥ 1− ξq,e+,e− + λ · φ(q, e−, t
′, ~z′). (30)

These enhancements do not change the basic nature of the
optimization.

5.6 Implementation details

5.6.1 Reducing computational requirements
The space of (q, e, t, ~z) and especially their discriminative

constraints can become prohibitively large. To keep RAM
and CPU needs practical, we used the following policies; our
experimental results are insensitive to them.
• We sampled down bad (irrelevant) entities e− that

were allowed to generate constraint (28).
• For empty h(~q, ~z) = ∅, φ3(q, ~z, t) provides no signal.

In such cases, we allow t to take only one value: the
most generic type Entity.

5.6.2 Explaining a top-ranking entity
This is even simpler in the discriminative setting than

in the generative setting; we can simply use (21) to report
arg maxt,~z λ · φ(q, e, t, ~z).

5.6.3 Implementing a target type predictor
Extending the above scheme, each entity e scores each

candidate types t as score(t|e) = max~z λ · φ(·, e, t, ~z). This
induces a ranking over types for each entity. We can choose
the overall type predicted by the query as the one whose sum
of ranks among the top-k entities is smallest. An apparently
crude approximation would be to predict the best type for
the single top-ranked entity. But k > 1 can stabilize the
predicted type, in case the top entity is incorrect. (We may
want to predict a single type as a feedback to the user, or
to compare with other type prediction systems, but, as we
shall see, not for the best quality of entity ranking, which is
best done collectively.)

6. EXPERIMENTS

6.1 Testbed

6.1.1 Catalog and annotated corpus
Our type and entity catalog was YAGO [35], with about

200,000 types and 1.9 million entities. An annotator trained
on mentions of these entities in Wikipedia2 was applied [12]
over a Web corpus from a commercial search engine, having
500 million spam-free Web pages. This resulted in about 8
billion entity annotations, average 16 annotations per page.
These were then indexed [13].

6.1.2 Type constrained entity search
The index supports semistructured queries specified by:
• an answer type t from among the 200,000 YAGO types,
• a bag of words and phrases in a IDF-WAND (weak-

and) operator [11], and
• a snippet window width.

A DAAT [11] query processor returns a stream of snippets at
most as wide as the given window width limit, that contain a
mention of some entity e ∈+ t and satisfies the WAND pred-
icate. In case of phrases in the query, the WAND threshold
is computed by adding the IDF of constituent words.

Our query processor is implemented using MG4J [9] in
Java, with no index caching. Basic keyword WAND queries
take a few seconds over 500 million documents. Setting
t = Entity, the root type, and asking for a stream of all
entities in qualifying snippets, slows down the query by a
small factor. A discriminative snippet scoring and aggrega-
tion technique [34] achieves entity ranking accuracy superior
to recent approaches.

6.2 Queries with ground truth
We use 709 entity search queries collected from many years

of TREC and INEX competitions, along with relevant and
irrelevant entities. Two paid masters students, familiar with
Web search engines, read the full TREC/INEX description
of entity search queries and wrote out queries they would
naturally issue to a commercial search engine. They also
selected the best (as per their judgment) type from YAGO
for each query, as ground truth. The distribution of types
is heavy-tailed, with 69% of the atypes in this list occurring
only once and top four atypes accounting for one third of
queries. The atypes towards top are mostly generic (loca-
tion, person, etc.), while those toward the bottom are more
specific (Brooklyn Dodgers players, Dilbert characters etc.).
This data is publicly available at bit.ly/WSpxvr. Launch-
ing the queries with the known types resulted in 380 million
snippets supporting candidate entities; these are also avail-
able on request. We also performed type prediction (Sec-
tion 5.6.3) on dataset provided in [5]. Since this dataset
does not contain ground truth of relevant entities for each
query, we did not test entity ranking.

6.3 Generic and “perfect” baselines
The ranking accuracy of a reasonable query interpreter

algorithm in our framework will lie between two baselines:
Generic: The generic baseline assumes zero knowledge of

query types, instead using t = Entity, the root/s of
the type hierarchy in the catalog.

2Cross validated accuracy on Wikipedia was about 90%.

“Perfect”: The“perfect”baseline assumes complete (human-
provided) knowledge of the type and uses it in the
semistructured query launched over the catalog and
annotated corpus.

Of course, even“perfect”may perform poorly in some queries,
because of lack of support for relevant entities in the cor-
pus, snippets incorrectly or not annotated (both false posi-
tive and negative), incorrect absence of paths between types
and entities in the catalog, or some inadequacy of the type-
constrained entity ranker. It is also possible for an algo-
rithm (including ours) to perform worse than generic on
some queries, by choosing a particularly unfortunate type,
but obviously it should do better than generic on average,
to be useful.

6.4 Measurements and results
As is standard in entity ranking research, we report NDCG

at various ranks, mean reciprocal rank (MRR, not trun-
cated) and mean average precision (MAP) at the entity (not
document) level. Space constraints prevent us from defin-
ing these; see Liu [21] for details. For Discriminative, C
is tuned by 5-fold cross validation at the query level. For
Generative, we swept over α, β, γ, δ in powers of 10 (e.g.
10−5, 10−4, . . . , 1).

Generic Generative Discriminative Perfect

MAP 0.323↓↓ 0.414↓ 0.462 0.644

MRR 0.332↓↓ 0.432↓ 0.481 0.664

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10Rank

N
D
C
G

perfect

discriminative

generative

generic

Figure 6: Generic, generative, discriminative and
“perfect” accuracies.

6.4.1 Our algorithms vs. generic and perfect
For our techniques to be useful, they must bridge a sub-

stantial part of the gap between the generic lower bound and
the perfect upper bound. Figure 6 confirms that Generative
bridges 28% of the MAP gap between generic and perfect,
whereas discriminative is significantly better at 43%. MRR
and NDCG follow similar trends. All gaps are statistically
significant at 95% confidence level (indicated by ↓).

Figure 6 is aggregated over all queries. Figure 7 focuses
on average precision disaggregated into queries, comparing
discriminative against generic. While some queries are dam-
aged by discriminative, many more are improved.

Failure analysis revealed residual (t, ~z) ambiguity, coupled
with lack of ∈+ or ⊆+ paths in an incomplete catalog to be
the major reasons for losses on some queries. Even though
there is some ground yet to cover to reach “perfect” levels,
these results show there is much hope for automatically in-
terpreting even telegraphic queries.

6.4.2 Benefits of annealing optimization
Figure 8 shows that discriminative with our entropy-based

annealing protocol performs significantly (marked with “↓”)

https://docs.google.com/spreadsheet/ccc?key=0AnsqzHjpPcG4dE1haGV4bXRFV01rMG5YYklveF9tQmc#gid=1
http://bit.ly/WSpxvr

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Queries-->

M
A

P
 d

if
fe

re
n
c
e

Gain

Loss

Figure 7: MAP of discriminative minus map of
generic, compared query-wise between generic and
discriminative. Below zero means discriminative did
worse than generic on that query. Queries in (arbi-
trary) order of discriminative AP gain.

better than the scheme proposed by Bergeron et al.[7]. This
may be of independent interest in multiple instance ranking
and max-margin learning with latent variables.

Bergeron (26) Entropy (27)

MAP 0.416↓ 0.462

MRR 0.432↓ 0.481
Figure 8: Benefits of annealing protocol.

6.4.3 Comparison with B&N’s type prediction
B&N [5] proposed two models, of which the“entity-centric”

model was generally superior. Each entity e was associated
with a textual description (e.g., Wikipedia page) which in-
duced a smoothed language model θe. B&N estimate the
score of type t as

Pr(q|t) =
∑

e∈+t Pr(q|θe) Pr(e|t), (31)

where Pr(e|t) was set to uniform. Note that no corpus (apart
from the one of entity descriptions) was used. The output
of B&N’s algorithm (hereafter, “B&N”) is a ranked list of
types, not entities. We implemented B&N, and obtained ac-
curacy closely matching their published numbers, using the
DBpedia catalog with 358 types, and 258 queries (different
from our main query set and testbed).

B&N Discr(k = 1) Discr(k = 5) Discr(k = 10)
MAP 0.33 0.33 0.384 0.390

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10Rank

T
y
p
e
 N

D
C

G

Discr(k=10)

Discr(k=5)

Discr(k=1)

B&N

Figure 9: Type prediction by B&N vs. discrimina-
tive.

We turned our system into a type predictor (Section 5.6.3),
and also used DBpedia like B&N and compared type predic-
tion accuracy on dataset provided in [5]. Results are shown
in Figure 9 after including the top k returned types. At
k = 1, our discriminative type prediction matches B&N,
and larger k performs better, owing to stabilizing consen-
sus from lower-ranked entities. Coupled with the results in
Section 6.4.6, this is strong evidence that our unified formu-
lation is superior, even if the goal is type prediction.

6.4.4 Comparison with B&N-based entity ranking
A type prediction may be less than ideal, and yet entity

prediction may be fine. One can take the top type predicted
by B&N, and launch an entity query (see Section 6.1.2) with
that type restriction. To improve recall, we can also take the
union of the top k predicted types. The result is a ranked
list of entities, on which we can compute entity-level MAP,
MRR, NDCG, as usual. In this setting, both B&N and
our algorithm (discriminative) used YAGO as the catalog.
Results for our dataset (Section 6.2) are shown in Figure 10.

k MAP MRR %Q better %Q worse
1 0.066 0.068 5.50 88.58
5 0.137 0.144 15.80 76.30

10 0.171 0.180 20.73 69.53
15 0.201 0.211 24.54 63.47
20 0.204 0.215 26.80 60.51
25 0.222 0.233 29.34 56.84
30 0.232 0.244 29.76 55.01

Generic 0.323 0.432 — —
Figure 10: B&N-driven entity ranking accuracy.

We were surprised to see the low entity ranking accuracy
of B&N (which is why we recreated very closely their re-
ported type ranking accuracy on DBpedia). Closer scrutiny
revealed that the main reason for lower accuracy was chang-
ing the type catalog from DBpedia (358 types) to YAGO
(over 200,000 types). Entity ranking accuracy is low because
B&N’s type prediction accuracy is very low on YAGO: 0.04
MRR, 0.04 MAP, and 0.058 NDCG@10. For comparison,
our type prediction accuracy is 0.348 MRR, 0.348 MAP, and
0.475 NDCG@10. This is entirely because of corpus/snippet
signal: if we switch off snippet-based features φ4, our accu-
racy also plummets. The moral seems to be, large organic
type catalogs provide enough partial and spurious matches
for any choice of hints, so it is essential (and rewarding) to
exploit corpus signals.

6.4.5 Role of the corpus
A minimally modified B&N that uses the corpus may re-

place Wikipedia entity descriptions with corpus-driven de-
scriptions, i.e., a pseudo-document made up of all snippets
retrieved for a particular entity from the corpus. As we see
in Figure 11, ranking accuracy improves marginally. This
indicates that in the case of Web-scale entity search, an im-
perfectly annotated corpus can prove to be more useful than
a small human-curated information source.

k MAP MRR %Q better %Q worse
1 0.070 0.078 5.08 88.01
5 0.163 0.170 15.94 73.77

10 0.213 0.222 22.28 63.47
15 0.237 0.246 26.66 55.99
20 0.270 0.279 29.34 49.65
25 0.277 0.287 30.89 45.98
30 0.287 0.299 32.16 42.45

Generic 0.323 0.432 — —
Figure 11: B&N-driven entity ranking accuracy with
corpus-driven entity description.

On an average, B&N type prediction, followed by query
launch, seems worse than generic. This is almost entirely
because of choosing bad types for many, but not all queries.
There are queries where B&N shows a (e.g., MAP) lift be-
yond generic, but they are just too few (Figure 12).

-1

-0.5

0

0.5

1

1 101 201 301 401 501 601 701
Query-->

M
A

P
 c

ha
ng

e

Discr

B&N

Figure 12: 2-stage entity ranking via B&N does
boost accuracy for some queries, but the overall ef-
fect is negative. Joint interpretation and ranking
also damages some queries but improves many more.

6.4.6 Benefits of joint inference
The beneficial role of the corpus is now established, but is

joint inference really necessary, if a good query type inter-
preter were available? To test this in a controlled setting,
we run our system, throw away the ranked entity list, and
only retain the predicted type (Section 5.6.3), then launch
a query restricted to this type (Section 6.1.2) and measure
entity ranking accuracy.

Joint 2-stage 2-stage 2-stage
(k = 1) (k = 5) (k = 10)

MAP 0.462 0.370↓ 0.361↓ 0.365↓

MRR 0.481 0.384↓ 0.375↓ 0.377↓

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10Rank

N
D

C
G

Joint
2stage(k=1)
2stage(k=5)
2stage(k=10)

Figure 13: Joint inference improves entity ranking
quality compared to 2-stage.

Figure 13 shows that the result is significantly (shown by
“↓”) less accurate than via joint inference, even after tuning
k, which indicates that no single inferred type may retain
enough information for the best entity ranking, and that
joint inference is indeed vital.

6.4.7 Coarse DBpedia types with Web corpus
A plausible counter-argument to the above experiments is

that, by moving from only 358 DBpedia types to over 20,000
YAGO types, we are making the type prediction problem
hopelessly difficult for B&N, and that this level of type re-
finement is unnecessary for high accuracy in entity search.
We modified our system to use types from DBpedia, and
correspondingly re-indexed our Web corpus annotations us-
ing DBpedia types. As partial confirmation of the above
hypothesis, the entity ranking accuracy using B&N did in-
crease substantially. However, as shown in Figure 14, the
entity ranking accuracy achieved by our discriminative al-
gorithm remains unbeaten. Also compare with Figure 6 —
whereas B&N improves by coarsening the type system, our
discriminative algorithm seems to be degraded by this move.

k MAP MRR
1 0.135 0.145
5 0.240 0.250

10 0.295 0.305
Discr 0.422 0.437

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10Rank-->

E
nt

 N
D

C
G

B&N(k=1) B&N(k=5)
B&N(k=10) Discr

Figure 14: Entity ranking accuracy using DBpedia
types.

6.4.8 DEANNA on telegraphic queries
We also tried to use the Web interface to send a sample of

our telegraphic queries and their well-formed sentence coun-
terparts to DEANNA [39] and receive back the interpreta-
tion. We manually inspected their output. Some anecdotes
are shown in Figure 15. The queries are from Figure 3. None
of the telegraphic queries was successfully interpreted. The
well-formed questions saw partial success.

QID Well-formed Telegraphic

Q1 Missing target type Empty
Q2 Incorrect, missed

Wikipedia type “list of
cities in China”

Incorrect fragments

Q3 Incorrect target type
(painting)

Empty

Q4 Incorrect fragments Incorrect fragments
Q5 Incorrect fragments Empty
Q6 No target type Empty

Figure 15: DEANNA interpretations of some of our
queries.

7. CONCLUSION
We initiated a study of generative and discriminative for-

mulations for joint query interpretation and response rank-
ing, in the context of targeted-type entity search needs ex-
pressed in a natural “telegraphic” Web query style. Using
380 million snippets from a Web-scale corpus with 500 mil-
lion documents annotated at 8 billion places with over 1.5
million entities and 200,000 types from YAGO, we showed
experimentally that jointly interpreting target type and rank-
ing responses is superior to a two-phase interpret-then-execute
paradigm.

Our work opens up several directions for further research.
Our notion of selectors can be readily generalized to allow
mentions of entities as literals [15, 26] in the query. More
sophisticated training using bundle methods may further im-
prove the discriminative formulation. Finally, modeling list-
wise [21] losses, and/or exploring more powerful non-linear
scoring functions (e.g., via boosting) may also help.

https://d5gate.ag5.mpi-sb.mpg.de/deannaWeb/deannaIlpNew.htm

8. REFERENCES
[1] G. Agarwal, G. Kabra, and K. C.-C. Chang. Towards rich

query interpretation: walking back and forth for mining
query templates. In WWW Conference, pages 1–10. ACM,
2010.

[2] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[3] K. Balog, L. Azzopardi, and M. de Rijke. Formal models for
expert finding in enterprise corpora. In SIGIR Conference,
pages 43–50, 2006.

[4] K. Balog, L. Azzopardi, and M. de Rijke. A language
modeling framework for expert finding. Information
Processing and Management, 45(1):1–19, 2009.

[5] K. Balog and R. Neumayer. Hierarchical target type
identification for entity-oriented queries. In CIKM, pages
2391–2394. ACM, 2012.

[6] M. Bendersky, W. Croft, and D. Smith. Two-stage query
segmentation for information retrieval. In SIGIR
Conference, pages 810–811. ACM, 2009.

[7] C. Bergeron, J. Zaretzki, C. Breneman, and K. P. Bennett.
Multiple instance ranking. In ICML, pages 48–55. ACM,
2008.

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[9] P. Boldi and S. Vigna. MG4J at TREC 2005. In E. M.
Voorhees and L. P. Buckland, editors, TREC, number SP
500-266 in Special Publications. NIST, 2005.

[10] A. Broder. A taxonomy of web search. SIGIR Forum,
36(2):3–10, 2002.

[11] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level retrieval
process. In CIKM, pages 426–434. ACM, 2003.

[12] S. Chakrabarti, S. Kasturi, B. Balakrishnan,
G. Ramakrishnan, and R. Saraf. Compressed data
structures for annotated web search. In WWW Conference,
pages 121–130, 2012.

[13] S. Chakrabarti, D. Sane, and G. Ramakrishnan. Web-scale
entity-relation search architecture (poster). In WWW
Conference, pages 21–22, 2011.

[14] R. Fagin, B. Kimelfeld, Y. Li, S. Raghavan, and
S. Vaithyanathan. Understanding queries in a search
database system. In PODS Conference, pages 273–284.
ACM, 2010.

[15] J. Guo, G. Xu, X. Cheng, and H. Li. Named entity
recognition in query. In SIGIR Conference, pages 267–274.
ACM, 2009.

[16] J. Hoffart et al. Robust disambiguation of named entities in
text. In EMNLP Conference, pages 782–792, Edinburgh,
Scotland, UK, July 2011. SIGDAT.

[17] J. Hu, G. Wang, F. Lochovsky, J.-t. Sun, and Z. Chen.
Understanding user’s query intent with Wikipedia. In
WWW Conference, pages 471–480. ACM, 2009.

[18] B. J. Jansen, D. L. Booth, and A. Spink. Determining the
informational, navigational, and transactional intent of Web
queries. Information Processing and Management,
44(3):1251–1266, May 2008.

[19] T. Joachims. Optimizing search engines using clickthrough
data. In SIGKDD Conference, pages 133–142. ACM, 2002.

[20] S. Kulkarni, A. Singh, G. Ramakrishnan, and
S. Chakrabarti. Collective annotation of Wikipedia entities
in Web text. In SIGKDD Conference, pages 457–466, 2009.

[21] T.-Y. Liu. Learning to rank for information retrieval. In
Foundations and Trends in Information Retrieval,
volume 3, pages 225–331. Now Publishers, 2009.

[22] C. Macdonald and I. Ounis. Learning models for ranking
aggregates. In Advances in Information Retrieval, volume
6611 of LNCS, pages 517–529. 2011.

[23] A. McCallum and K. Nigam. A comparison of event models
for naive Bayes text classification. In AAAI/ICML-98

Workshop on Learning for Text Categorization, pages
41–48. AAAI Press, 1998.

[24] J. W. Murdock, A. Kalyanpur, C. Welty, J. Fan, D. A.
Ferrucci, D. C. Gondek, L. Zhang, and H. Kanayama.
Typing candidate answers using type coercion. IBM Journal
of Research and Development, 56(3/4):7:1–7:13, 2012.

[25] P. Pantel and A. Fuxman. Jigs and lures: Associating web
queries with structured entities. In ACL Conference, pages
83–92, Portland, Oregon, USA, June 2011.

[26] P. Pantel, T. Lin, and M. Gamon. Mining entity types from
query logs via user intent modeling. In ACL Conference,
pages 563–571, Jeju Island, Korea, July 2012.

[27] D. Petkova and W. B. Croft. Proximity-based document
representation for named entity retrieval. In CIKM, pages
731–740. ACM, 2007.

[28] J. Pound, A. K. Hudek, I. F. Ilyas, and G. Weddell.
Interpreting keyword queries over Web knowledge bases. In
CIKM, 2012.

[29] J. Pound, I. F. Ilyas, and G. Weddell. Expressive and
flexible access to Web-extracted data: a keyword-based
structured query language. In SIGMOD Conference, pages
423–434. ACM, 2010.

[30] J. Pound, S. Paparizos, and P. Tsaparas. Facet discovery
for structured Web search: a query-log mining approach. In
SIGMOD Conference, pages 169–180, 2011.

[31] H. Raviv, D. Carmel, and O. Kurland. A ranking
framework for entity oriented search using Markov random
fields. In Joint International Workshop on Entity-Oriented
and Semantic Search, pages 1:1–1:6, Portland, OR, 2012.
ACM. Located with SIGIR Conference.

[32] S. Sarawagi. Information extraction. FnT Databases, 1(3),
2008.

[33] N. Sarkas, S. Paparizos, and P. Tsaparas. Structured
annotations of Web queries. In SIGMOD Conference, 2010.

[34] U. Sawant and S. Chakrabarti. Features and aggregators for
web-scale entity search. arXiv 1303.3164, 2013.

[35] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: A
core of semantic knowledge unifying WordNet and
Wikipedia. In WWW Conference, pages 697–706. ACM
Press, 2007.

[36] K. M. Svore, P. H. Kanani, and N. Khan. How good is a
span of terms? exploiting proximity to improve Web
retrieval. In SIGIR Conference, pages 154–161. ACM, 2010.

[37] T. Tao and C. Zhai. An exploration of proximity measures
in information retrieval. In SIGIR Conference, pages
295–302. ACM, 2007.

[38] D. Vallet and H. Zaragoza. Inferring the most important
types of a query: a semantic approach. In SIGIR
Conference, pages 857–858. ACM, 2008.

[39] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath,
V. Tresp, and G. Weikum. Natural language questions for
the Web of data. In EMNLP Conference, pages 379–390,
Jeju Island, Korea, July 2012.

[40] C.-N. J. Yu and T. Joachims. Learning structural SVMs
with latent variables. In ICML, pages 1169–1176. ACM,
2009.

[41] C. Zhai. Statistical language models for information
retrieval: A critical review. Foundations and Trends in
Information Retrieval, 2(3):137–213, Mar. 2008.

	Introduction
	Related work
	Background and notation
	``Telegraphic'' queries
	The entity and type catalog
	Annotated corpus and snippets

	Generative formulation
	Choosing a type given e
	Query word switch variables
	Type description language model
	Entity snippet language model
	Putting the pieces together
	Explaining a top-ranking entity
	Potential pitfalls

	Discriminative formulation
	Features 1 modeling entity prior
	Features 2 modeling type prior
	Hint-type compatibility features 3
	Selector-snippets compatibility features 4
	Inference and training
	Implementation details
	Reducing computational requirements
	Explaining a top-ranking entity
	Implementing a target type predictor

	Experiments
	Testbed
	Catalog and annotated corpus
	Type constrained entity search

	Queries with ground truth
	Generic and ``perfect'' baselines
	Measurements and results
	Our algorithms vs. generic and perfect
	Benefits of annealing optimization
	Comparison with B&N's type prediction
	Comparison with B&N-based entity ranking
	Role of the corpus
	Benefits of joint inference
	Coarse DBpedia types with Web corpus
	DEANNA on telegraphic queries

	Conclusion
	References

