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ABSTRACT
Understanding unstructured text in e-commerce catalogs is im-
portant for product search and recommendations. In this paper,
we tackle the product discovery problem for fashion e-commerce
catalogs where each input listing text consists of descriptions of
one or more products; each with its own set of attributes. For in-
stance, [this RED printed short top paired with blue
jeans makes you go green] contains two products: item top
with attributes {pattern=printed, length=short, brand=RED} and
item jeans with attributes {color=blue}. The task of product discov-
ery is rendered quite challenging due to the complexity of fashion
dictionary (e.g. RED is a brand or green is a metaphor) added to the
difficulty of associating attributes to appropriate items (e.g. associat-
ing RED brand with item top). Beyond classical attribute extraction
task, product discovery entails parsing multi-sentence listings to
tag new items and attributes unknown to the underlying schema;
at the same time, associating attributes to relevant items to form
meaningful products. Towards solving this problem, we propose
a novel composition of sequence labeling and multi-task learning
as an end-to-end trainable deep neural architecture. We systemati-
cally evaluate our approach on one of the largest tagged datasets in
e-commerce consisting of 25K listings labeled at word-level. Given
23 labels, we discover label-values with F1 score of 92.2%. To our
knowledge, this is the first work to tackle product discovery and
show effectiveness of neural architectures on a complex dataset
that goes beyond popular datasets for POS tagging and NER.
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1 PRODUCT DISCOVERY
In an e-commerce product marketplace such as Amazon, Myntra
or Flipkart, geographically distributed sellers upload their product
listings to a central product listing platform. While some brands
and sellers provide structured descriptions consisting of key-value
pairs, the vast majority of sellers only provide unstructured natu-
ral language descriptions. Typically, such unstructured listing text
consists of a title and a description; where the title is a collection
of important keywords, and the description details attributes or
specifications of the product possibly spread over multiple sen-
tences with ill-formed text and non-standard terminologies. For
fashion e-commerce, which is the focus of this work, the products
are typically apparels (shirt, top, jeans) or accessories (footwear,
purses) and the attributes are typically brand name, color, fabric,
pattern etc.

We parsed more than 2 million fashion listings across prominent
fashion e-commerce portals in India and discovered that as high
as 35% of listings contain multiple products in the text, each with
its own set of attributes. Take for instance an example shown in
Table 1. Although the title of this listing signifies the underlying
product as a top, it also contains an occurrence of a secondary item,
legging, with its own set of attributes. We selected about 25K of
these fashion listings, spread across different items, to manually
inspect and then quantify the number of listings with multiple
items and attributes. Table 2 shows the distribution of attributes
for a few selected fashion items, along with the distribution of co-
occurring secondary fashion items and their respective attributes
on 25K tagged listings.

Text-based search engines on e-commerce platforms work on
the principle of keyword indexing. However, owing to the pres-
ence of multiple fashion items in the text, many search queries,
today, fetch irrelevant fashion items resulting in poor user experi-
ence. Apart from search engines, obtaining structured information
of multiple products and identifying the dominant product is im-
mensely useful for recommendation engines and advertisement
businesses that serve contextual and relevant advertisements based
on an e-commerce page, or any Web page content.

1.1 Challenges in product discovery
Transforming such unstructured text into appropriate structured
form involves several challenges.

• Ungrammatical text: Bulk of product listings uploaded
on e-commerce and marketplace platforms do not exhibit
grammatical structure of natural language; many times text
contains contains typographical errors and abbreviations.

https://doi.org/10.1145/3152494.3152503
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Fashion listing title: Perfectly designed printed tops
description: This mandarin top from Indigo fashion will make you go gaga this season, dress
up for that perfect cocktail party. This georgette top is soft against your skin, team it with a
black jegging to accentuate blue color, waist length, 3/4 sleeves.

Expected output product 1: {apparel = top, pattern = printed, neck = mandarin, fabric = georgette, color = blue,
sleeve = three-fourth, length = waist-height, occasion = cocktail-party, brand: Indigo fashion}
product 2: {apparel = jegging, color = black}

Table 1: Example listing in fashion commerce containing two products. Note that dress is not a valid keyword for this example
whereas indigo, which is also a color, is part of the brand name.

primary item primary attributes secondary items secondary attributes

top color 84%, pattern 65%, fabric 59%, brand 29% blouse 17%, jeans 16% color 33%, pattern 6%
kurti color 89%, length 71%, pattern 57%, fabric 54% legging 14%, jegging 11% color 23%, pattern 2%
dress color 79%, length 67%, sleeve 46%, shape 31% pump 13%, wedge 8% color 17%, pattern 2%

Table 2: Distribution of attributes and secondary products for sample fashion items. As an example, 84% of listings for fashion
item tophave at least one color value, 16%havementions of jeans as one of the secondary fashion items, and 33%havementions
of secondary color attribute that is attached to secondary fashion items

• Partially known schema: Though one can define product
schema in terms of item types such as apparel or footwear
and attribute types such as color, fabric or brand, such
schema is often volatile containing tens (e.g., colors) or even
thousands (e.g., brands) of values that get added or deleted
due to fast moving fashion trends. For instance, 8 new colors
and 241 new brands were added in a fashion season of two
quarters on prominent Indian fashion marketplaces. Hence,
it becomes imperative to discover previously unknown fash-
ion item values and attribute values from the listing text.
• Keyword ambiguity: ‘Indigo Fashion’, ‘Red’, ‘Blue’, ‘House
of Cocktail’, ‘Tip Tops’, ‘Bodycon’ are a few examples of
fashion commerce brand names that also share popular color
values, shape values or occasion values. ‘High’ is a neck value
as well as length value; ‘long’ is a sleeve value as well as
length value; ‘shirt’ in ‘shirt dresses’ is a shape value and
‘dress’ is commonly used to refer to upper or full-body wear.
During curation and tagging process, we found that more
than 30% of label-values either have at least two labels or used
as a colloquial term. Moreover, unlike popular POS or NER
datasets, e-commerce listings contain tens of sentences in
description and the context around a fashion item is typically
spread over multiple sentences. Thus, it is quite challenging
to identify important fashion items and their attributes from
such text data.
• Product-attribute attachment ambiguity : Table 1
shows a representative example where complementary ap-
parel or footwear items often appear side-by-side in the same
text description. One needs to correctly associate attributes
such as color or brand to appropriate items to form a prod-
uct. Moreover, to index a listing with relevant items and
attributes, we must identify the dominant product in such
cases.

1.2 Problem definition
Keeping in mind all the above challenges, we now formally define
the product discovery problem.

Given a partial schema consisting of items and attributes and
an unstructured text snippet possibly consisting of multiple
sentences, product discovery entails the discovery of one of
more products from the text through the identification of val-
ues of items and attributes; and the affiliation of each attribute
with an appropriate item.

Item in our case is a fashion item of type apparel or footwear, e.g.,
‘dress’ is one of the possible value for type ‘apparel’. Similarly,
attributes in our case are fashion attributes such as sleeve, brand.
‘Sleeveless’ for instance, is one of the possible values that we want
to tag with attribute type ‘sleeve’. We do not assume that we know
in advance all possible values of an attribute type in our schema.
But we assume that we know the taxonomy of fashion items and
attributes (examples in table 3), which includes the names of the
products and the attributes.

keyword-types labels values
(known schema) (not known)

fashion item apparel tops, jeans
footwear wedges, pumps

attributes sleeve angel, puff
brand indigo fashion
color cornsilk, dust

Table 3: Examples of candidate words and phrases to be
tagged with appropriate labels
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While prior works [12, 14] attempt to extract attributes from
e-commerce product listings, these techniques consider only the
title text, consisting of only a few words, ignoring descriptions.
Hence, these techniques do not capture the long-term dependen-
cies and relationships in an unstructured product listing. Most of
the recent literature [5, 9, 11, 15, 16] on classical sequence label-
ing or NER problems has been designed and evaluated on popular
POS tagging and NER datasets that have well formed grammatical
English. Online commerce listings have characteristics of high vari-
ability in the formation and structure of sentences with product
context often spread across multiple sentences. Performance testing
on such datasets has not received much attention in prior work.
Furthermore, none of the prior work attempts product discovery
considering multiple items in a listing text. Note that we not only
need to identify key items and attributes from the text, but also
associate attributes to appropriate items to form meaningful prod-
ucts. The following example, "title : Arcilia frill tops and blouses,
description : comes in blue and off white pattern, combine this top
with cropped blue jeans and black wedges", we wish to discover the
following products (1) label:apparel-item value:top, label:color values
blue, off-white, (2) label:apparel-item value:jean, label:color value blue,
label:style value cropped, (3) label:footwear-item wedges,label:color
value black; along with the fact that the first product is the dominant
product (to be indexed by search engines appropriately).

1.3 Our contributions
Inspired by the recent advances in deep learning [1, 7, 9–11, 15,
17], we design a novel deep neural architecture that composes
sequence labeling with multi-task learning to jointly solve attribute
and fashion item labeling and attribute-to-fashion-item affiliation.
Our architecture consists of an end-to-end trainable neural network
with layers of character-embedding, Convolutional Neural Network
(CNN), Bidirectional Long Short Term Memory Network (BLSTM)
and cascaded Conditional Random Fields (CRF). The contributions
of our work are as follows.

• To our knowledge, this is the first work to formulate the
product discovery problem on unstructured text snippets
and propose an end-to-end design based on deep neural
architectures to solve the problem.
• Going beyond popular POS tagging and NER datasets, we
experiment and evaluate our approach on one of the largest
tagged datasets in e-commerce domain consisting of 23 labels
and 25K labeled listings (or SKUs).
• We achieve state-of-the-art results for product discovery
with 92.1% accuracy and 92.2% F1 score. Compared to prior
work [5] on parsing e-commerce listings, we achieve more
than 13% gain in accuracy.

This paper is organized as follows. In Section 2, we discuss the
challenges and present our solutions. In Section 3 we discuss our
experiments. In Section 4 we provide an overview of the related
work and finally outline the future work and our conclusions in
Sections 5 and 6 respectively.

2 DESIGN: COMPOSITION OF SEQUENCE
LABELING AND MULTI-TASK LEARNING

Products to be discovered in the input text listing can be completely
specified with the help of two types of labels for each word:

keyword labels (e.g. red[color] dress[apparel] with[-] black[color]
shoes[footwear]) 1) and attribute-product affiliation labels
(red[P1] dress[P1] with[-] black[P2] shoes[P2]) where P1 is dress
and P2 is shoes.

This labeling scheme works fine for almost all of the product
listings, except those which have more than one product of the
same type, e.g. two tops or two leggings. However, we found
that such occurrences are rare; less than 0.05% a sample of 25K
tagged listings had such more than 1 product of the same type.
Furthermore, after parsing 2 million listings, we find that a listing
at the most contains 5 different products and hence we keep 5 as
the fanout for affiliate label prediction.

Discovery of above two types of labels converts our problem to
a sequence labeling or Named Entity Recognition (NER) problem
with two distinct classes of labels. Formally, this problem can be
described as follows. Let La and Lc be the sets of all possible
keyword labels and attribute-product affiliation labels respectively.
Given an input text sequence X = {x1, . . . ,xT }, the corresponding
keyword labels can be specified as

Ya = {y
a
1 , . . . ,y

a
T | y

a
i ∈ La }

Similarly, attribute-product affiliation can be specified via another
label sequence

Yc = {y
c
1 , . . . ,y

c
T | y

c
i ∈ Lc }

Given X, the task of product discovery is to predict Y∗ =
argmaxYa,Yc p (Ya ,Yc |X)

2.1 Design requirements
In this section we design a framework to discover products from a
listing. We first enlist the key characteristics of the product discov-
ery task. These characteristics motivate our choice of components
in the end-to-end trainable neural network.
• The language of fashion: Capturing the fashion domain
grammar and language such as ‘accessarize’, ‘complements’,
“bold and bright colors”, ‘luxe’ is important for the precise
attribute and product label identification. Some phrases such
as “winter clothing” or “formal look”, though not specifying
any attribute or clothing item in particular, can heavily influ-
ence the probability distribution of possible attributes found
in the surrounding text; in this case fashion items such as
jackets and office full shirt respectively. Furthermore, such
influence may extend to words quite far away in the text.
This necessitates a robust mechanism to extract features out
of fashion listings and model long-term word dependencies.
• Dependence between keyword and affiliation labels:
Although we specify our problem in terms of two labeling

1OTHER is a catch-all negative label indicating that the word is not a clothing-item or
attribute
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tasks, it is important to note the the two sets of labels exhibit
dependencies. The information that black is marked as a
color in [BLUE releases a range of black dresses]
increases the chance of BLUE being tagged as a brand instead
of color (even if BLUE is not specified in capital case). Know-
ing there exist multiple neck-type keyword labels in a given
text increases the chance that the attributes are affiliated to
different products. For text snippets such as [half-sleeve
top in red color], the fact that the previous word men-
tions a sleeve-type makes it more likely that the next label
could be an apparel type than waist-size label. Dresses and
sandals are more likely to co-occur in a listing than dresses
and jeans.
Capturing such dependencies between keyword labels and
attribute-product affiliation labels is imperative for correct
labeling.
• Importance of word and character level features : The
importance of word and character features such as capital-
ization, phrasing, function words in keyword or natural lan-
guage text processing is undisputed. Product description
data is no different, and it is important to consider both char-
acter and word level representations or features of the input
text.

Bidirectional LSTM

Keyword label and affiliation label prediction layer

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Feature 
extraction

R
epresentation 

red

M
ulti-task 

prediction

  P1
  color

Character and word embedding layer

P1
apparel

P2
color

LSTM

LSTM

P2
footwear

dress black shoes

ec ew

of ob

ya
yc

 x

Figure 1: System Architecture (ew , ec ,of ,ob shown only for
the word red to reduce clutter.)

Each of the above aspects naturally leads to certain design
choices in our deep learning framework. For the input representa-
tion, we use both character andword representations. Wemake
use of both char2vec and word2vec representations to represent a
word in our vocabulory. For feature extraction, we use Long Short
Term Memory (LSTM) networks, which are a class of recurrent
neural networks designed to capture long-distance dependencies.

As the data contains both forward and backward dependencies,
we use bi-directional LSTMs. We model the entire listing text,
consisting of multiple sentences and hence few tens of words, using
a bi-directional LSTM. Our task is then to predict two labels for
each of the words in a listing. For label predictions, we use con-
ditional random fields (CRFs), on the top of LSTM, which are a
natural choice for sequence learning problems. Finally, given the
dependency of our two set of labels, we propose joint training of
our two tasks through amulti-task framework. Our multi-taks
framework jointly learns to predicts the two sets of labels.

2.2 Architecture
Figure 1 shows our end-to-end architecture composed of three main
components.

Representation. The first component is responsible for converting
the input text into a vector representation. For each word, we look
up a vector ew from a pre-trained embedding table. We consider
publicly available word2vec embeddings and further fine-tune the
word embeddings on the listings in our training dataset. To capture
character-level features for each word, we use a convolutional neu-
ral network [11] over individual character embeddings, followed by
a max-pooling layer to create a fixed length representation ec for
each wordw . We consider different embeddings for different char-
acters taking into account capitalization and other variations. We
concatenate the above two vectors, a vector obtained via word2vec
fine-tuning and a vector obtained via the application of CNN on
character embeddings, to create a final vector representation [ec ,
ew ] for each word and feed it to the next layer.

Feature extraction. The next component is responsible for extract-
ing features and capturing long range dependencies from the input.
We use LSTMs for the same. An LSTM can formally be described
as :

it =σ (Wi [ht−1,xt ] + bi )

C̄t =tanh(Wc [ht−1,xt ] + bC )

Ct =ft ∗Ct−1 + it ∗ C̄t

ot =σ (Wo[ht−1,xt ] + bo )
ht =ot ∗ tanh(ct )

where xt is the input ([ec , ew ] in our case),Wi is the weight, bi is
the bias, ht is the hidden node and ot is the output at step t .

A bi-directional LSTM contains two LSTMs, one for each di-
rection of a sequence. The output of both LSTMs (say of and ob

for forward and backward LSTM) is concatenated ([of , ob ]) and
presented to the next layer as features.

Prediction. The final section is responsible for prediction of the
two types of labels - keyword labels and product-attribute affiliation
labels. We now discuss three possible designs for this layer.
• Multi-task disjoint prediction : In this design, as shown in
Figure 2a, keyword label prediction and product-attribute
assignment label prediction is done via two separate pre-
diction models which are trained together via a multi-task
framework. In this design, the feature production layer re-
mains shared; however, each label is predicted via a separate
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(a) Label prediction via disjoint CRFs
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(b) Prediction via joint state CRF

CRF(P)
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CRF(P)

CRF(A)
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CRF(A)

color apparel color

blackdressred
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(c) Label prediction via cascaded CRFs

Figure 2: Multiple designs for Keyword label and affiliation label prediction layer (also see Figure 1)

CRF layer. Thus, keyword label prediction does not influ-
ence product-attribute assignment label prediction. Note
that, both the models have the identical input ([of , ob ]) com-
ing from the feature extraction layer. This design is similar
to a prior work [15].
• Joint prediction : We treat the two labels as a single joint label
{(ya ,yc ) | ya ∈ La ,yc ∈ Lc } and use a single prediction
model in the joint label space. This is shown in Figure 2b.
However, as a generic design choice this approach can result
in a large label set and hence may not be scalable.
• Multi-task cascaded prediction : Here we propose to keep the
label spaces separate, but train them together via a multi-task
framework. Given the conditional dependency on affiliation
labels from keyword labels, we tie up the two tasks in our
multi-task prediction. As shown in Figure 2c, we supply the
output distribution of attribute prediction model as addi-
tional features to the input of product-attribute affiliation
prediction model. The reverse configuration, supplying af-
filiation prediction to keyword prediction, is also possible.
However, it is intuitive to see that, for our specific problem
of product discovery from e-commerce listings, the keyword
labels strongly influence the affiliation labels (e.g., the oc-
currence of two distinct fashion items signifies at least two
affiliation labels).

Given that our data is sequential, we chose CRFs as basic building
blocks in both designs. A CRF is an undirected graphical model that
captures the conditional probability distribution on labels given the
input as follows. Let C be the set of cliques in the graphical model

over input data x and labels y. Then,

p (y |x ) = 1
Z (x )

∏
c ∈C ϕ (xc ,yc ) (1)

ϕ (xc ,yc ) = exp(
∑
i wi fi (xc ,yc )) (2)

Here, ϕ is called potential function while Z is the partition func-
tion.

3 EVALUATION
In this section, we evaluate the techniques described in the pre-
vious section on e-fashion product listings tagged at word level.
First, we describe our dataset and our data preparation procedure.
We then evaluate the deep neural architectures described in the
previous section against the state-of-the-art neural architectures
for sequence labeling proposed in prior work. We further compare
our approach with a prior approach, that utilizes a combination of
word2vec [18] and CRF, that was proposed to solve named-entity
recognition on the text that appears in title section of e-commerce
listings. Finally, we extend our approach to solve the problem of
identifying the dominant product of a listing in the presence of
multiple products.

Our experiments are governed by the following questions:
(1) Are neural architectures, consisting of state-of-the-art com-

ponents, effective on highly unstructured data (e-commerce
product listings) for the task of product discovery?

(2) What is the degree of improvement one can expect on
tasks that involve parsing large paragraphs by employing a
neural architecture for multi-task learning against popular
word2vec based approaches?
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(3) How much unlabeled and labeled data do we need to achieve
high performance via end-to-end trainable neural networks?

3.1 Dataset

samples #sentences #tokens vocab size
5/50/95 pc(*)

train: 12760 1/11/17 1276K 8.3K
validate: 4950 1/12/19 293K 1.7K
test: 7280 1/11/25 563K 3.7K

Table 4: Summary of dataset used for training, validation
and testing (*) pc indicates percentile. See text for explana-
tion.

3.1.1 Size of dataset. We consider 24890 fashion listings that are
tagged at word level for attribute and product discovery (data prepa-
ration described next). These listings are collected from 12 leading
e-commerce and marketplace databases in India. The dataset split
across train, validation and test samples is shown in table 4. The
sentences column in this table shows 5th percentile, 50th percentile
and 95th percentile number of sentences for each listing, when the
listings are ordered by the number of sentences contained. For in-
stance, 95% of listings in training dataset have at most 17 sentences,
50% of listings in the training set have at most 11 sentences and so
on. The table also shows the number of tokens (at word level) and
vocabulary size of the dataset. Note that the vocabulary size is quite
large, partly due to the wide range of brand and merchant names,
although we consider only a single e-commerce domain– fashion.
The large vocabulary represents the unstructured and unorganized
nature of the data where different sellers describe fashion with
different semantics. In addition to these 25K labeled listings, we
crawl 2M fashion e-commerce listings for the purpose of analysis
and pretraining of models.

label examples

apparel (western) top, short, shirt, skirt, dress
apparel (ethnic) lehenga, saree, anarkali, kurti

footwear pump, wedges, shoes, flat
shape shirt, wrap, bodycon, spathetti
sleeve sleeveless, short, full, cap
pattern cartoon, animal, polka-dot, plaid
fabric lace, crochet, fur, satin
color indigo, lime, silver, orchi

color-type soft, dark, cool, warm
length mini, short, maxi, knee-length
occasion cocktail party, wedding, formal
brand cocktail house, lime road, bodycon

Table 5: Sample labels and values

3.1.2 Labels and unseen data. We consider 23 keyword labels
to tag words and phrases. In the cases of key phrases such as brand
names that often span multiple words, we tag each of the words
by the same associated labels. This is a weaker form of labeling
as compared to BIO scheme that has start and end labels for key
phrases but a stringent case for evaluating label accuracy. A subset
of these labels and some of the values they take is shown in table 5.
It is important to note that fashion (and most of the online retail
domain such as consumer electronics) is a time-variant domain;
hence, we cannot rely on all values to be known apriori for each
label. Only a few popular values, (for instance, bodycon, spaghetti
etc. for shape) remain static and appear frequently. For instance,
four new shape values are added for fashion listings across two
fashion seasons within a year. The discovery problem becomes even
more important towards identifying brand names that are added
and deleted quite frequently.

For apparel-type and footwear-type as labels, we consider 18
fashion items (such as tops, dress, jeans, shorts, pumps, wedges)
and select 750 to 1000 tagged samples for each of the items. We
have total 5311 unique label values in 24890 fashion listings and
more than 110K total label values tagged with labels. For each of
the 23 keyword labels, we split respective label values across train,
validation and test in approximately 70%, 10% and 20% proportion.
Thus, about 20% of the label values for each of the labels are never
seen by the machine learned models during the training phase.

3.1.3 Dataset preparation. To label the above data at word level
by keyword labels and affiliation labels, we employed two curators
aided by automation. We first crawled the most popular values
for each of labels from the Web and used those values to build a
temporary attribute and attribute-values schema. Given a listing,
we used a simple string-match approach to tag every possible occur-
rence of label-values in words or phrases by respective labels. Often
a word received multiple labels (e.g., indigo as a color as well as
brand in ‘indigo fashion’) due to semantic disambiguity (precision
error). Furthermore, since a web crawl may not fetch all possible
attribute-values, the above procedure missed to assign a label to a
few words or phrases which were valid label values (recall error).

At this point, we asked the curators to independently correct
the labels or add new labels to prepare a tagged listing. We selected
only those samples which had a consensus on all labels by both the
curators. We logged correction actions by both the curators and
found that both of them corrected at least 32% of the tags from the
ones output by string-matching automation software. This includes
words or phrases that are marked incorrectly (for instance, although
‘high’ is a neck type, high in ‘this is high class dress’ is used in a
general sense) as well as words or phrases with at least two labels
(semantic disambiguation). Among all the tags eventually labeled,
we found that the curators discovered 12% new label-values.

3.1.4 Multi-product listings and semantic ambiguity. Out of 25K
tagged listings, more than 35% of the listings have at least two
fashion items, apparel or footwear or both. More than 63% of listings
have at least 4 attribute values associated with at least one fashion
item. Among the 5311 labels across all listings, 1063 have at least
two labels conflicting between colors, brands, merchants, shape,
pattern and neck types. While 32% tags were corrected among total
tags for all listings, about 20% label-values have semantic ambiguity
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with other label-values. Identifying all fashion items and associated
attributes from a product listing with high precision and high recall
thus becomes quite challenging.

We assume that a product in a listing can have multiple oc-
currences of its constituent items and attributes; however all oc-
currences of the same fashion item refer to a single product. For
instance, [red colored top with blue color jeans, the
top has printed pattern] has multiple occurrences of words
‘top’; we assume that there is only one underlying product with its
constituent item as ‘top’. As mentioned earlier, less than 0.05% of
cases in our tagged dataset violate this assumption.

3.2 Setup details
We used Theano library with Lasagne package to build and train
neural networks on AWS g2 instances that have NVIDIA GRID
GPUs, each with 1,536 CUDA cores and 4 GB of video memory.
Each word and special character is treated as a separate input token.
We do not preprocess data and do not hand-craft any features.

3.2.1 Model parameters. For initializing model parameters, we
follow procedure in [11] and report results for the parameters that
give us the best performance.

layer hyper-parameters value

CNN window size 4
number of filters 28

LSTM state size 240
initial state 0

Dropout rate 0.5

Other batch size 16
initial learning rate 0.01

decay rate 0.06
momentum 0.9

gradient clipping 5.0
epochs 35

Table 6: Hyper parameters for all experiments

We initialize character embeddings as uniform samples from
[-
√

4
d , +
√

4
d ]. Here d indicates embedding dimension, which we

set to 28. As observed in [11], original word2vec embeddings are
fundamentally trained without considering common symbols, punc-
tuations and digits. Since we do not use any data pre-processing,
instead of word2vec, we choose GloVe [4] embeddings with embed-
ding dimension 100. We fine tune GloVe embeddings on 2M fashion
listings crawled separately. Furthermore, we fine tune character-
level and GloVe embeddings during gradient updates of the neural
network model. Furthermore, We tune the hyper-parameters on the
development sets by grid search and arrive at parameters shown in
table 6. We observe that drop out achieves significant performance
boost in accuracy (thus we corroborate the observation in [11]) and
apply dropout on character embeddings before inputting to CNN,
and on both the input and output vectors of BLSTM. Model train-
ing is then relatively straightforward and we follow the standard

applications of gradient based learning and backpropagation. We
apply early stopping procedure as mentioned in [11] and observe
that we achieve best performance at 35 epochs.

Towards a fair comparison, we pre-train neural networks for all
approaches on 2M listings for the task of predicting next word in
the text. Note that, for approaches in prior work, we set the sizes
of hidden vectors and other hyper-parameters as mentioned in the
respective works.

3.2.2 Metrics. We evaluate all approaches on weighted preci-
sion, weighted recall, weighted F1 and weighted accuracy for at-
tribute as well as product-attribute affiliation predictions. For in-
stance, we compute weighted F1 for labels as follows:

∑
i ∈La Pi ×

F1i where Pi is the fraction of all tags to predict for label i . We evalu-
ate labeling accuracy for two tasks separately: labeling of keywords
by product-types and attribute-types and labeling of association
of keywords to products. We also compute the joint accuracy (in-
stances where we get both the tasks right) and consider it as the
accuracy for product discovery task. Furthermore, we consider two
cases for the evaluation: keyword values that are present in train
and validation set (in-vocabulary) and keyword values that are not
present in train or validation set (out-of-vocabulary).

3.2.3 Evaluation. We compare our proposals discussed in Sec-
tion 2. For our baseline we train two separate end-to-end neural
networks each for the individual tasks of keyword prediction and
product-attribute affiliation prediction.

Now, instead of having two separate networks, neural architec-
ture in [15] shares network parameters to solve product discovery.
The shared part of the network contains word-level embedding as
the input layer along with bidirectional LSTM as the feature forma-
tion layer. The network then has two separate CRFs for each of the
tasks. In comparison, we evaluate our proposed approaches: joint-
CRF where we consider a single end-to-end network that outputs
a label as an item-attribute pair in a joint fashion and cascading-
CRF where we output keyword label as well as associated product
with two CRFs working in tandem while sharing input and feature
formation layers. For joint-CRF approach, we consider number of
fashion items × number of attribute types as labels. In our dataset,
we have 18 apparel and other fashion items and 21 attribute types,
thus total 23 labels.

3.3 Comparison of multi-task approaches
Results in Table 7 indicate that joint-CRF approach performs sig-
nificantly better than having two separate CRFs for each task. This
corroborates our hypothesis that joint prediction of attribute and
product for each input word is a better design approach than tra-
ditional multi-task approach of two separate CRFs. Furthermore,
our cascading-CRF approach gives even greater accuracy and F1
score than joint-CRF approach. This validates our design approach
that is based on the dependency between attribute prediction and
product association in product discovery: if the underlying context
and semantics is captured correctly, only a few attributes can be
associated with a given product and vice-versa. For instance, while
color applies to most of the products, sleeve type applies only to
full-body or upper-body clothing. Cascading-CRF approach exploits
such dependency and hence it results in superior performance.
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criteria approach (acc, f1) (prec, recall)

baseline (84.6%, 85.2%) (86.4%, 84.2%)
in-vocab prior-work [15] (89.4%, 90.2%) (89.4%, 91.1%)
label joint (92%, 92.8%) (93.4%, 92.4%)

prediction cascading (93.4%, 94.1%) (94.1%, 94.3%)

baseline (89.5%, 89.8%) (89.4%, 90.3%)
product prior-work [15] (93%, 92.6%) (92.4%, 92.9%)
attribute joint (95.7%, 95.8%) (96.3%, 95.4%)
affiliation cascading (97.7%, 98.6%) (98.4%, 98.9%)

prior-work [15] (81%, 80.84%) (81.4%, 80.3%)
product joint (90.5%, 90.9%) (90.7%, 91.3%)
discovery cascading (92.1%, 92.2%) (92.7%, 91.8%)

Table 7: Comparison of multi-task neural architectures for
product discovery

Regarding the evaluation of prior work, it is worth noting a cou-
ple of observations: (1) The fashion-commerce listing data that we
have, as mentioned earlier, is highly unstructured, and the approach
in prior work [15] yields considerably lower values for accuracy
and f1 score as compared to the application of the same approach on
the native data in [15]. (2) The approach in [15] uses 40K sentences
for training, 4K sentences for validation and 4K sentences for test
which is an order of magnitude lesser than the size of our dataset;
hence, the presence of variance in the validation and test dataset is
not the cause for the worse performance of prior work compared
to our approach. We thus choose cascaded-CRF as our approach to
compare against prior work and report the final accuracy and F1
numbers.

criteria (acc, f1) (prec, recall)

4K (61%, 60.9%) (61.6%, 60.3%)

7K (82.2%, 82.9%) (82.6%, 83.3%)

10.5K (89.5%, 90.04%) (89.7%, 90.4%)

12K (91.3%, 91.6%) (91.3%, 92%)

14K (90.4%, 91.7%) (91.5%, 92.1%)
Table 8: Dataset requirement for task at hand

We further evaluate our approach of cascaded CRF on differ-
ent sizes of training datasets, see table 8. We observe that for the
problem at hand, performance of our model, for the best set of
hyper-parameters, approaches a saturation point at 12K examples.
We also crawled additional 1.5M fashion e-commerce listings to
evaluate our approach in the wild. Our trained model discovered
and tagged more than 2.6M fashion products with more than 9.5M
fashion attributes. Thus, we believe that by tagging only a few thou-
sand examples at word level, one can expect end-to-end trainable
neural networks to achieve high performance on tasks as complex
as product discovery on e-fashion listings. Furthermore, we believe
that our approach is quite generic and can be utilized to discover

criteria approach (acc, f1) (prec, recall)

baseline (87.1%, 87.7%) (88.3%, 87.2%)
in-vocab prior-work (91.1%, 91.5%) (90.8%, 92.3%)
label joint (92.8%, 93.9%) (94.6%, 93.4%)

prediction cascading (95.2%, 95%) (94.9%, 95.2%)

baseline (80.5%, 80.79%) (80.4%, 81.2%)
out-vocab prior-work (85.9%, 86.59%) (85.9%, 87.3%)

label joint (91.3%, 91.24%) (91.2%, 91.4%)
prediction cascading (92.2%, 92.29%) (92.5%, 92.1%)

Table 9: Comparison of each approach on out-of-vocabulary
data

multiple items and respective attributes from an unstructured text
in any other domain with a small set of samples tagged at word
level.

3.4 Performance on out-of-vocabulary
attribute values

Table 9 shows comparison of these approaches on in-vocabulary
label-values and out-of-vocabulary label-values. As we mentioned
earlier, about 20% of the label-values among all label-values are
not seen by the model; that we evaluate as out-of-vocabulary label
predictions. We observe very little drop in performance by joint
and cascading prediction models while it affects baseline and prior
approaches significantly. This demonstrates that our proposals are
able to capture label dependencies effectively, leading to a good
performance on out-of-vocabulary labels.

3.5 Comparison with non-multi-task product
extraction prior work

Prior work in [5] proposes a word2vec [18] and CRF based NER
approach to tag attributes present in titles (i.e., one sentence) of
e-commerce catalogs. To understand performance improvement by
our approach to solve NER on an e-commerce dataset, we compare
effectiveness of our approach on product discovery and as a conse-
quence on NER against the technique in [5]. Our approach utilizes
character-embedding along with BLSTM, a composition that we
expect to capture dependency and long-term context present in the
listing text. We note that work in [5] processes only titles and does
not consider parsing description along with titles, and hence does
not evaluate NER thoroughly on paragraphs in e-commerce list-
ings. As described in [5], we implement the design using word2vec
approach [18] and use skip-gram, context window size of 2, down-
sampling parameter as 1e-3, number of negative samples as 10 and
set vector dimension to 300.

Towards a fair comparison, we fine-tune word2vec feature vec-
tors by pretraining the model on an unlabeled dataset consisting of
2M listings. Table 10 shows the experimental results. By analyzing
logs obtained during label curation, we observe frequent conflicts
of apparel type against its general use and color type against brand
name. Hence, we specifically compare prior work on such labels
(or entity-types) and evaluate NER on our dataset. We observe that
our approach that utilizes character-embedding, CNN, BLSTM and
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criteria approach (acc, f1) (prec, recall)

apparel prior-work [5] (83%, 82.69%) (82%, 83.4%)
cascaded (95.9%, 95.34%) (94.4%, 96.3%)

color prior-work [5] (80%, 82.3%) (82.3%, 82.5%)
cascaded (93.1%, 92.8%) (92.5%, 93.3%)

brand prior-work [5] (80%, 79.4%) (79.1%, 79.9%)
cascaded (92.4%, 91.7%) (92%, 91.6%)

Table 10: Results for extracting keyword labels

cascaded-CRF significantly outperforms prior work to solve NER on
e-commerce dataset. Furthermore, as shown in table 11, prior work
fails to capture dependency and context across multiple sentences
and performs poorly in doing semantic disambiguation.

apparel FP color FP brand FN

wear on dress up to kurti
top of be golden actress from RED

this shirt matches with only
dress blue sky silver lining

dress up pattern with fab dress at
your summer yellow flowers diamond blue

Table 11: False positive and false negative for prior work

3.6 Dominant product
More than 35% of listings in our database contain at least two
products. However, to index and rank a listing, it is important for a
search engine to identify the dominant product from it. To identify
the dominant product, we take a simplified yet effective approach.
We extend the neural network design of product discovery and
train a softmax based classifier on top of hidden state output by the
last state of BLSTM. Based on statistical evidence, we observe that
a listing contains at most 5 products and hence we keep fanout of
softmax to 5 classes. We take neural network trained for product
discovery and fine tune the network on 4K listings for the task of
predicting dominant category. We evaluate the fine tuned model
on 1.5K listings consisting of at least two products and achieve
accuracy of 98.7%.

4 RELATEDWORK
Transforming unstructured text into structured products is a well-
researched area; however, to the best of our knowledge, there is
no prior work that tackles the multi-product discovery problem,
especially using deep neural networks. Importantly, most of the
prior work onmulti-task learning employs two different datasets for
two different types of labels or tasks, we experiment and evaluate
product discovery for multi-task learning while employing a single
dataset tagged for two different tasks.

4.1 Attribute extraction
In one of the earlier works on product extraction, [3] used semi-
supervised learning algorithms using word context as features to
extract product attributes and values from text. [16] presented a
bootstrapping approach for extracting four types of product at-
tributes and their values from product listing titles while relied on
HTML page structure [17]. In other work, the focus of [12] was
only on product attribute extraction, without considering multi-
ple products in a listing text. [5, 16] modeled shopping domain
attribute extraction as a Named Entity Recognition (NER) problem
while considering on the title text of a shopping listing. [5] used
distributed word representations to extract attributes from a title
text. All the above approaches assume that a given listing text de-
scribes only a single product. This is not true in practice, and the
existence of multiple products gives rise to the product-attribute
affiliation constraint. We handle this constraint using a multi-task
learning framework based on a deep neural network that is end-to-
end trainable. Furthermore, we work with a total of 23 attributes
and the complete listing text, which makes our task more complex.

4.2 Sequence labeling
There has been a great deal of progress recently in the area of se-
quence labeling[9, 11] through deep learning. We draw inspirations
the above works and extend it to the task of product discovery
interpreted as a multi-task learning problem. Multi-task learning
has been successfully shown to improve natural language process-
ing [2], Chinese word segmentation [15], text classification [10]
and collaborative filtering [1] tasks. Our work is in parallel with
the above research.

4.3 Text to product matching
Adifferent line of research [6, 8, 13] assumes that structured product
specifications exist in a database and focuses onmatching text offers
to appropriate product specifications. This research does not apply
for our product discovery task as we work on unstructured (as well
as semi-structured) text listings. Moreover, in our case, the schema
is known only partially in terms of category and attribute labels,
not values.

5 FUTUREWORK
Due to the unorganized nature of sellers who upload product list-
ings in a distributed fashion, e-commerce catalogs often have noisy
text with spelling mistakes or spaces omitted between two key-
words. While contextual spelling mistakes can be taken care of in
our current approach, chunking of text by inserting spaces and
other punctuations at appropriate places needs further work. A
possible approach to do contextual chunking is to predict labels at
character level. We are experimenting on extending our framework
for such character-level label prediction. Furthermore, we wish to
apply the existing framework to unstructured text on web pages
such as fashion and lifestyle blogs and evaluate product discovery.
Discovery of products from such text paragraphs where the con-
text is spread at even longer distances is a challenging problem.
Parsing such text may necessitate a new design of an LSTM cell, or
multiple-layers of BLSTM stacked on top of each other.
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6 CONCLUSIONS
In this work, we described the previously untackled problem of
product discovery in e-commerce: identifying multiple items along
with their associated attributes from an e-commerce test listing.
Product discovery from unstructured paragraphs is important for
e-commerce search engines to index product listings appropriately.
Wemodeled product discovery as a multi-task learning problem and
proposed a cascaded-CRF based neural network architecture. Our
architecture captured keyword ambiguity and product-attribute
attachment ambiguity that is widely prevalent e-fashion listings.
We evaluated our approach on a complex dataset of 25K tagged
e-fashion listings. We showed that our approach outperforms state-
of-the-art approach in multi-task learning to result in 92.2% F1 score
and surpasses neural architecture in prior work to solve NER for
e-commerce by 13% for F1 score. We also observed that our multi-
task learning framework could be trained end-to-end with only a
small sample of 12K tagged text listings. To our knowledge, this is
the first work to show effectiveness of neural architectures to solve
product discovery on a large and practical dataset that goes beyond
popular POS and NER datasets. We believe that this approach can be
utilized to discover items and attributes in other domains, e.g., drug
discovery from the vast amount text that is present in health-care
domain. Such text especially contains multiple items each having
its associated attributes.
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