Vani-An Indian Language Text To
Speech Synthesizer

Harsh Jain
Varun Kanade

Kartik Desikan

Final Stage Report

Vani Team
Department of Computer Science and Engineering
Indian Institute of Technology Mumbai
India

April 2004

Dedicated to

Our beloved country...

Vani - An Indian Language Text To Speech
Synthesizer

Vani Team

Abstract

A Text to Speech(TTS) Synthesizer is a computer application that is capable of
reading out typed text. Vani is such a synthesizer primarily developed for Hindi,
but with minor modification could directly be modified for any language which is
phonetic in nature, i.e. what is written is exactly what is read out. This is not
true for languages like English, in which what is written is significantly different
from what is read out, in the sense that the same characters will be pronounced
differently depending on context.

Vani exploits the phonetic nature of Hindi, which makes possible a TTS that
requires very little of language processing. A TTS sytstem consists of mainly two
parts, a language processing module and a signal processing module. In languages
such as English, language processing is a major part. Hindi is read almost as it is
written, so the amount of language processing is very little.

All TTS systems exisiting allow users to specify what is to be spoken, but do
not give any control on how it has to spoken. For Vani we introduce a new encoding
schema called vTrans for giving this control completely to the user. A vTrans file
allows a person to encode exactly what he wants to speak, the way he wants to
speak.

A signal processing module, then will bring out this speech by making appro-
priate variations to the sound database. It will then be possible for our program to

sing/speak in a fashion that one desires.

Declaration

The work in this thesis is based on research carried out at the New Software Lab,
the Department of Computer Science and Engineering, II'T Bombay, India. No part
of this thesis has been submitted elsewhere for any other degree or qualification and

it all our own work unless referenced to the contrary in the text on joint research.

Copyright (© 2004 by Harsh Jain, Varun Kanade, Kartik Desikan.
“The copyright of this thesis rests with the author. No quotations from it should be
published without the author’s prior written consent and information derived from

it should be acknowledged”.

v

Acknowledgements

We would like to thank Prof. Sivakumar was giving us the idea for this project,
and helping us throughout to make this project a reality. We would like to thank
Prof. Ramesh for allowing us to go ahead with this project and also for his en-
couragement. We would like to thank Prof. Aniruddha Sen, TIFR Bombay for
helping us in the beginning of this project, and providing insight into the area. We
would like to thank Pranav, Kshitiz for recording voice samples for us, and allowing
us to play with their voice :). We would finally like to thank the Department
of Computer Science and Engineering, II'T Bombay for all the support and

resources that were made available to us.

Contents

Abstract

Declaration

Acknowledgements

1 Study of a TTS

2 Motivation

3 Language Processing

3.1 Schwa Deletion
3.2 The Algorithm

4 vTrans

4.1 What vTrans contains

4.2 The formal definition

5 Generation of Unlimited Speech

5.1 Theoritical Aspects

5.1.1
5.1.2

Observations

Interpretations

5.2 Methodology of Generating a phoneme from fract-phoneme

5.2.1
5.2.2
5.2.3
5.2.4

Calculation of virtual-duration
Generation of a monotonous-phoneme of virtual-duration . . .
Applying the pitch transformation.

Applying the volume transformation

vi

iii

iv

Contents

vii

53 Anexample 13

6 Conclusions 16
Bibliography 17
Appendix 18

A A sample vTrans file 18

April 20, 2004

List of Figures

5.1 fract-phoneme of i.
5.2 after applying pitch transformation

5.3 finally after applying volume transformation

viii

Chapter 1

Study of a TTS

Introduction

Incorporation of human facilities like speech and vision in to machine is a basic issue
of artificial intelligence research. The capabilities of a computer to generate speech
output is termed as speech synthesis. [1] It requires an indepth understanding of
speech production and perception and has always been a topic of great interest in
speech and cognitive sciences.

In its simplest form computer speech can be produced by playing out a series
of digitally stored segments of natural speech. The segments are coded for storage
efficiency. The technique involved is elementary and much of the work done in this

field specially in our country focuses around here.

Types of speech synthesis

Concatenative Synthesis

In concatenation synthesis, limited number of stored segments obtained from ral
speech are used. A critical issue involved in design of concatenative TTS synthe-
sizer is selection of unit size to store the segments. The text to speech synthesizer

developed at IIIT, Hyderabad! used diphonemes as their fundamental unit, where

Chapter 1. Study of a TTS 2

the end point of the splices are in the steady region of speech, so that transitions
are not missed [2] .

The basic advantage of the concatenative method is its simplicity. As the units
are taken from real speech, the cumbersome task of generating them is avoided.
Transitions like C to V are directly captured from the speech data, and the rules to
concatenate are elementary.

However the use of a database, restricts the type of speech that can be generated.

Hence a concatenative speech synthesis is a limited TTS system.

Formant Synthesis

This method curently used at TIFR, Bombay 2 is based on generation of speech
from a production model which has formant frequencies, energies, voice control
parameters and few other acousticl, phonetic parameters as control variables. It
is possible to generate any arbitary speech by applying a set of context sensitive
rules on the stored phonemic data for enacting contextual modifications and for
generating transition segments. With single phonemes as the basic unit, rules for
smooth concatenation can be formulated. With only a few additional rules and little
additional data consonant clusters can be handled elegantly. Most importantly the
effort neede to switch over to another similar language with a marginally different
phoneme set is also minimal. Overall this synthesizer has the potential to surpass a

concatenation synthesizer in both quality and versetality.

April 20, 2004

Chapter 2

Motivation

The existing TTS systems available today all make use of concatenation synthesis.
Concatenation sythesis though easy to implement, does not give control over what
is to be spoken. What can be spoken depends on the available data base of sound

sample. This is always finite, and hence it is a limited synthesis.

Why Vani?

The aim of Vani, was to allow complete specification of speech. To the best of our
knowledge, there is no system existing today that allows this control. What this
means is that one can anyway get the software to speak exactly what they want to.
This means typically that the software can also sing if so desired. Also emotions as
can be expressed. In a simple concatenative synthesizer, there is no way you can

express one word in two different ways, unless you have them in your database.

Chapter 3

Language Processing

Vani was primarily intended for Hindi. Our current implementation of Vani, sup-
ports language specific features only for Hindi. Hindi is a phonetically almost sound.
Hence very little language processing is required as opposed to languages like En-
glish. However some language processing is required even in Hindi, to make it sound

natural as we see below.

3.1 Schwa Deletion

Sanskrit which is probably from where Hindi originated, is phonetically perfect. So
for a T'TS in Sanskrit, no language processing is required. Hindi on the other hand,
does require some language processing. The vowel ”"a” which inherently occurs in
all consonants is called as schwa. There are some cases in Hindi when schwa after
certain characters are not pronounced. As an example consider ka-ma-la it would
be pronounced as ka-ma-[. The "a” following the ”1” is deleted.

There has been some work on developing Schwa deletion algorithms for Hindi.
Two most important works are those by Narsimhan B., Sproat R. and Kiraz G. [3]
and that by Anupam Basu and Monojit Choudhary [4]. The first one combines
morphological analysis with finite state transducers and cost models. The accuracy
is about 89%. The second one is a rule-based algorithm. If used without a morpho-
logical analyser it gives about 96.12% accuracy and with one it gives about 99.89%

accuracy. We will be using the second one in Vani, though without a morphological

4

3.2. The Algorithm 5

analyser.

3.2 The Algorithm

This is the rule based algorithm developed by Monojit Choudhary and Anupam
Basu [4].

Input: String of graphemes (word without schwa deleted eg. aa-ma-ntra-Na)

Output: The word with schwas deleted appropriately aa-ma-ntra-N

1. Mark all the full vowels, viz. vowels not associated with consonants
as full and also all consonants followed by vowels other than the
inherent schwa and all ”h”s as full, unless explicitly marked half by
use of halant.

This is because of the empirical observation that the schwa following h is
always retained. Mark all consonants foolowed by consonants or halants as

half. Mark all remaining as undetermined.

2. If in the word, y is marked as undetermined and is preceded by

i,I,ri,u or U, mark it as full.

7,0

The consonant ”y” is a glide from a high vowel to a medium vowel. Therfore if
schwa is deleted in the context when ”y” is preceded by a high vowel, this glide
will be lost, and y will not be appropriately pronounced. Eg. in ”tRitlya” the

bR

7a” following ”y” needs to be retained. But it may be deleted from ”hoya”.

3. If ’y”,’r”.,”1” or ”v” are marked as undetermined and preceded by
consonants marked half, then mark them as full.

2N

This is because of phonotactic constraint. Eg. "kAvya”, ”samprati”, ”ashva”.

4. If consonant marked as undetermined is followed by a full vowel,
then mark it as full. This is to maintain lexical distinctions. Eg. if from
"baDhal”, the schwa after Dh is deleted, then ”badhal” will be indistinguish-

able from ”baDhi”.
April 20, 2004

3.2. The Algorithm 6

5. While traversing from left to right, if a consonant marked undeter-
mined is encountered before any consonant or vowel marked full,

then mark it as full.

The schwa following the first syallable is never deleted. This may result in ille-
gal consonant clusters and may change the identity of the word. Eg. "kalama”,
if the schwa following "k” is not retained it will be "klama”. This changes the

identity of the word.

6. If the last consonant is marked undetermined, mark it half.

This is again empirically observed. Eg. "kalama” may be "kalam”, ”banda”

should be "band” and so on.

7. If any consonant is marked undetermined and immediately followed
by a consonant marked half, then mark it as full.
This is mainly because of phonotactic constraints. Eg. ”sAphalya”, the schwa

after ”y” needs to be produced, to make the word sound. This is because

pronouncing ”phly”is not possible.

8. While traversing from left to right, for every consonant marked un-
determined, mark it half if it is preceded by full, and followed by

undetermined or full, otherwise mark it as half

9. For all consonants marked half, if it is followed by a schwa in the
original word, then delete the schwa from the word. The resulting

word is the required ouput.

April 20, 2004

Chapter 4

vIrans

As we have seen earlier the motivation behind Vani, was to give complete freedom
of expression to the user. For this we need to develop some encoding scheme. This
is vTrans. For representing text in Indian languages a standard encoding scheme
called iTrans has been developed which is standardly used. However for speech, we
need to represent more than just characters, in order to give complete freedom to

the user.

4.1 What vTrans contains

vTrans document will contain a head and a body. In the head there will be parame-
ters and styles defined. Parameters used will be those which need to be changed for
changing speech. Parameters that we are using in Vani to control speech are pitch,
volume and duration. However, in principle vIrans allows you to use any number of
parameters to vary speech. Also for parameters one should specify whether or not
that parameter should be allowed to vary with other parameters. This may be done
using the attribute allowstyle. Also along with parameters, there are styles which
specify, how a parameter should vary. In the definition style is simply defined as a
step function. Since step-size is arbitary you may define anyfunction you want as
accurately as you want. The function should be defined from unit interval [0,1] to

R. This will later be scaled as required.

4.2. The formal definition 8

Apart from this the body section contatins various tags. They may be nested but
text may be put only in the innermost of the tags. The text in the tags should be
iTrans encoded. The tags may be any of the parameters defind in the head section.
The attributes assigned to the tag maybe, ”style” which determines what style to
use, if the parameter definition so allows. Also the attribute args allows the user
to scale and translate the function used. The latest values of all parameters will be

used while producing the output sound.

4.2 The formal definition

The vTrans document must contain and element document which contains the head

and the body tag.

head
Head element may or may not be present. If head is not present then the contents
of the body is pure iTrans and no tags are used. The head contains elements pa-

rameters and styles.

parameters

Parameters may or may not be present. Again if there are no parameters defined
then no tags should be present in body section. It will be purely iTrans text.
Parameters will contain several elements parameter. A parameter will have three
attributes name, default and allowstyle which determine the name of the parameter,
the default value to be used for the parameter if no value is specified by user, and
whether the parameter is allowed to vary with other parameters or not. The value

of default should be a double, and allowstyle should be ”yes” or "no”.

styles
Styles will contain several elements style. Each style will contain an attribute name
which determines the name of the style. In addition it will contain several elements

point which has attributes z and y which determine the (x,y) of the function. The x

April 20, 2004

4.2. The formal definition 9

s should be in increasing order and all between 0 and 1. The y s should be positive
real numbers. This defines a step function which is y1 for 0 to x1, ys for 1 to x5 ..

and so on, and y, for x,,_; to x,, which should be 1.

body

Whatever text is present in the body will be read out. The tags contained in the
body should only be those for parameters defined the parameters section. No text
should be present excpet in the innermost of the nested tags. The parameter tags
could have attribute of wal if the allowstyle was defined to be "no”. In this case
the value of the val attribute will be used as the value, if absent default value will
be used. If allowstyle was defined to be ”"yes”, then it may contain the attributes
style which should be name:param where name is the name of the style to be used,
and param is the parameter with which it should vary. If no style is present, then
default funtion which is contant in [0,1] and value 1 is used. Also the atribute args
defined as a:b is used to scale the funtion to f*a + b. If no args is present then

default value for a, and 0 for be will be used.

April 20, 2004

Chapter 5

Generation of Unlimited Speech

The next step to the completion is the generatio of the speech from a given vTrans
file. This chapter and our work does not deal with the generation of vTrans rep-
resentation, but with the conversion of vIrans to unlimited speech. We first begin
with our assumptions based on observations and experiments and then describe How
we are able to generate any speech sample from any given frequency and volume

distribution functions.

5.1 Theoritical Aspects

A vTrans has theoritical capability of representation of any voice sequence. The
algorithms to convert it to an audible form have to be sound and capable of carrying

out any desired transforations.

5.1.1 Observations

The waveforms of a spoken hindi file is not very difficult to analyze. The consonants
are arbritary samples of very small durations where vowels are continuous repeata-
tions of a simple waveform with some variances. More than 90 percent of the CV pair
is dominated by V alone, which looks like a continuous repeatation of a very small
segment, which taken together will be called as fract-phoneme. A CV pair consists
of a consonant fract-phoneme and 50-52 repeatations of vowel fract phonemes. The

repeatations are not monotonous, and there are variances in pitch and volume but

10

5.2. Methodology of Generating a phoneme from fract-phoneme 11

the fundamental structure remains as same. This implies, our fundamental assump-
tion, that “Any unlimited speech can be generated using fract-phonemes as a basic

unit.”

5.1.2 Interpretations

Duration of a consonant is very small. The variance in durations and pitch need
not consider/change the duration of a consonant. Hence only volume variances
are considered. Any desired effect can be achieved by varying pitch, duration and
volume of fract-phonemes of respecting vowels and consonants.

To understand this, consider the waveform of vowel 'a’ in the figure. The first
figure is a recorded waveform of ’a’. The second waveform is fract-phoeneme of ’a’
which is extracted somewhere from between. The waveform of a human voice can
be divided into some 50 similar fract-phonemes. All these fract-phoenemes share
similar structure with fract-phoneme of 'a’ with some variances. Now the variance
can be either in x-direction or in y-direction!. Variance in x-direction is obtained
by varying pitch and in y-direction is obtained by varying volume. Hence, if we
are able to generate a fract phoneme with any arbitrary distribution of volume and
pitch, we will be able to generate Unlimited Speech. What that function is 7, is
not a problem we are trying to answer. vTrans allows definition of any arbitrary

function and we present a model for applying it to generate the required waveform.

5.2 Methodology of Generating a phoneme from
fract-phoneme

Given the volume and frequency curves and the duration a phoneme can be gener-

ated using fract-phoneme as per the following procedure.
e Step 1: Calculation of virtual-duration.

e Step 2: Generation of a monotonous-phoneme of virtual-duration.

! Any modification in y-scale is constrained from -1.0 to 1.0

April 20, 2004

5.2. Methodology of Generating a phoneme from fract-phoneme 12

e Step 3: Applying the pitch transformation.

e Step 4: Applying the volume transformation.

We shall now look into each steps in detail.

5.2.1 Calculation of virtual-duration

virtual-duration is defined as the required duration to which a phoneme has to be
generated so that after applying the pitch transformation we get the phoneme of

the required(actual) duration. Its calculated as a solution of the equation

/Oltﬁdx:T.

where,
f(x) is the frequency function curve defined over 0 to 1
t is the virtual-duration

T is the actual-duration

5.2.2 Generation of a monotonous-phoneme of virtual-duration

Monotonous phoneme is the phoneme of duration actual-duration without any varia-
tions of pitch and/or volume. After the calculation of virtual-duration its generation
is simply done by concatenating the base fract-phoneme repeatedly until a phoneme

of required duration is obtained.

5.2.3 Applying the pitch transformation

This step involves first the conversion of the generated phoneme-wave to time do-
main. Let us call denote the representation of the monotonous-phoneme, we ob-
tained in step 2 as o(t). The frequency function is f(x):[0,1]-;R which will be appro-
priately scaled to be applied to o(t). We need to calculate n(t) the new wave which
will be generated after the application of f(x)? to o(t).

2f(x) is defined over 0 to
April 20, 2004

5.3. An example 13

Duration of o(t) is t.> and

Duration of n(t) is T*. The equation which we derived to generate the n(t) is :-

b1
n(/0 5) = ol

Note that this equation has no trivial solution and the computation of n(t) has to be
done numerically. Due to computational restriction no algorithm can successfully
determine n(t). We devised a heuristic algorithm for its calculation. The new wave

generated is of duration T, as required.

5.2.4 Applying the volume transformation

Till this step we have generated a sound wave with applied frequency distribution.
Application of volume function is fairly straight forward, since we only need to scale

the amplitude according to the function. The equation is simply

n(t) = v(t) * o(t)

Finally, we have the required phoneme with the desired features that can be used

in speech synthesis.

5.3 An example

Before ending this chapter let us see an example of application of above algorith to
generate a phoneme for 'i’. The required DSP Parameters are

Duration : 1000

Volume Distribution

f(t) = 0.6t < 0.2

f(t) =1.102<=1t<0.8
f(t) = 0.8 0.8<=t<=1.0

3Virtual Duration, as calculated above
4Actual Duration

April 20, 2004

5.3. An example 14

Figure 5.1: fract-phoneme of i

Figure 5.2: after applying pitch transformation

Frequency Distribution
v(t) = 0.6 t<0.2

v(t) = 0.8 0.2<=t<0.7
v(t) = 0.9 0.7<=t<=1.0

April 20, 2004

5.3. An example 15

fHH_EHlH}

Figure 5.3: finally after applying volume transformation

April 20, 2004

Chapter 6

Conclusions

In this report we have briefly discussed the development of Vani. The major aspect
of this whole project, was the introduction of the vTrans encoding scheme. Currently
due to lack of experimentation, and the shortage of a good database of sound, the
quality of sound produced by Vani, isn’t very good. But we hope to work on this,
and soon it will be able to produce good quality speech.

However what we have presented here, is that it is possible, to make arbitary vari-
ations in speech, given the appropriate database of phonemes and fract-phonemes,
as described in the report. Also we have given an encoding scheme, which enables
one to produce such speech. In these aspects, our work differs significantly from

other works in this area.

16

Bibliography

[1] Aniruddha Sen and Xavier A Furtado

Synthesis of unlimited speech in Indian Languages using formant-based rules ,

[2] S.P. Kishore , Alan W Black
Unit Size in Unit Selection Speech Synthesis,

[3] Narsimhan B., Sproat R. and Kiraz G. ,2001
Schwa Deletion in Hindi Text-to-Speech Synthesis,

[4] Anupam Basu and Monojit Choudhary, 2002
A Rule Based Schwa Deletion Algorithm for Hindi,

17

Appendix A

A sample vTrans file

<?xmlversion = "1.0"encoding ="UTF — 8’7 >

< documenttype = "text/vtrans” >

< head >

< parameters >

< parametername = "vol” de fault = 70.8” allowstyle = "yes” >
ToControltheV olume.

< /parameter >

< parametername = " pitch” de fault =" 1.0" allowstyle = " yes” >
Tocontrolthepitch.Itsbasicallythescaling factor

< /parameter >

< parametername = " duration” de fault = 7 1200” allowstyle = "no” >
Tocontroltheduration.

< /parameter >

< [parameters >

< styles >

< stylename = "arbit” >

< pointr ="1.0"y ="1.0" >< /point >

< [style >

< stylename =" jarsj” >

< pointx =70.2"y ="0.6" >< /point >

< pointr ="0.8"y ="1.1" >< /point >

18

Appendix A. A sample vTrans file 19

< pointx ="1.0"y ="0.8" >< /point >
< [style >

< stylename =" jarsj2” >

< pointx ="0.2"y ="0.6" >< /point >
< pointr ="0.7y ="0.8" >< /point >
< pointr ="1.0"y =70.9" >< /point >
< /style >

< /styles >

< /head >

< body >

< pitchstyle =" jarsj : duration” >

< wolstyle =" jarsj2 : duration” >

< durationval ="7200" >

i

< /duration >

< Jvol >

< /[pitch >

< /body >< /document >

April 20, 2004

