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Abstract

We consider the numerical computation of response time distributions for closed product
form queueing networks using the tagged customer approach. We map this problem on to the
computation of the time to absorption distribution of a finite-state continuous time Markov
chain. The construction and solution of these Markov chains is carried out using a variation
of stochastic Petri nets called stochastic reward nets (SRNs). We examine the effects of
changing the service discipline and the service time distribution at a queueing center on
the response time distribution. A multiserver queueing network example is also presented.
While the tagged customer approach for computing the response time distribution is not
new, this paper presents a new approach for computing the response time distributions
using SRNs.

1 Introduction

Real-time systems are becoming increasingly popular in various areas like transaction pro-

cessing (airline reservation systems, automatic teller systems), process control systems etc.
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These systems are typically characterized by stringent deadlines and high availability re-
quirements. Thus, evaluation techniques for real-time systems should permit the computa-
tion of measures such as the probability of failing to meet a deadline.

Queueing networks have been successfully used in performance modeling of computer
and communication systems (Lazowska et al. [9]). They are especially suited for representing
resource contention and queueing for service. Most of the analysis techniques so far have
concentrated on the evaluation of averages of various performance measures like throughput,
utilization and response time using efficient algorithms such as convolution and mean value
analysis (MVA) (Lavenberg [7]). For real-time systems, however, the knowledge of response
time distributions is required in order to compute and/or minimize the probability of missing
a deadline.

Closed-form solutions for response time distribution in queueing networks are available
only in very few cases such as the M /M /n FCFS queue. Methods for computing the Laplace
transform of the response time distribution are available for queueing networks with special
structure. For a recent survey of these methods, see Boxma and Daduna [3]. As mentioned
in the survey, it is very difficult to obtain closed-form solutions for queueing networks with
a general structure.

Numerical computation of the response time distribution is then the only alternative
short of very expensive Monte-Carlo simulation. One such method is based on the tagged
customer approach. In this method, an arbitrary customer is picked as the tagged customer
and its passage through the network is tracked. By this method, the problem of computing
the conditional response time distribution of the tagged customer is transformed into the
time to absorption distribution of a finite-state, continuous time Markov chain (CTMC).
Using the arrival theorem of Sevcik and Mitrani [16] (Lavenberg and Reiser [8]) we can
establish the distribution of the other customers in the network at the instant of arrival of
the tagged customer. This allows us to obtain the unconditional response time distribution.

Melamed and Yadin [10, 11] present a numerical method based on the tagged customer
approach for evaluating the response time distribution in a discrete state Markovian queue-
ing network. A recent paper by Conway and O’Brien [6] suggests the use of a hybrid
analytic-simulation method for the computation of the response time distribution.

The problem in using the tagged customer approach is the difficulty of constructing
and solving rather large Markov chains. The main contribution of this paper is the use
of a variation of stochastic Petri nets called stochastic reward nets (SRN) for the compact
specification, and automated generation and solution of these large Markov chains (Ciardo
et al. [5]). This allows us to solve large and complex models.

In this paper, we present details on the use of SRNs for the computation of response time

distribution using the tagged customer approach. We briefly review the tagged customer



approach using CTMCs in Section 2. We explain the method through a simple example
in Section 3. In Section 4 we introduce stochastic reward nets (SRNs) and their solution
techniques. In Section 5 we return to the example and illustrate the response time compu-
tation using SRNs. We also examine the effects of varying the service disciplines and the
service time distributions at a queueing center on the response time distribution. These
are discussed in Sections 6 and 7 respectively. In Section 8 we compute the response time
distribution for transactions in an online transaction processing system. A few concluding

remarks and some possible extensions of our technique are given in Section 9.

2 The Tagged Customer Approach using CTMC

In this section we review the tagged customer approach for the computation of response
time distribution using CTMCs. Consider a closed queueing network with M nodes and
N customers. To begin with assume that the nodes are single server queueing stations
where service is performed according to a First Come First Served (FCFS) discipline. The
service time of a customer at node j is an exponentially distributed random variable with
parameter p;. We assume that the service times are independent of each other. When
a customer completes its service at node i, it moves to node j with probability v;;. The
stochastic matrix V = [v;;] is called the routing matrix. Note that there are no external
customer arrivals to, nor departures from the network. Hence the number of customers in
the network remains fixed at N.

Let Cy(t) be the number of customers at node ¢ at time ¢ and C(t) = (C1(?),...,Cum(1)).
Then, C = {C(t),t > 0} is a CTMC on the state space S(N) = {(n1,n2,...,0Mm) : n; >

0,5, n; = N}. The following result is well known:

Theorem 1 Suppose that V is irreducible and let X = (A1, Az,...,A) be a solution to
A = AV. Then the steady-state distribution of {C(t),t > 0} is given by
wn(n) = lim P[C(t) = n] = G(N)IIM A% n e S(N),

{—o00

where G(N ) is the normalization constant.

In practice closed queueing networks arise as follows. A customer completing service at
node ¢z moves to node j with probability p;-j or leaves the system altogether with probability
d;=1- Z]]\il p;-]-. When a customer leaves the system it is instantaneously replaced by a
new customer at node j with probability d;;, (E]]\il d;; = 1), thus keeping the number of
customers equal to N. The newly arrived customer is statistically identical to the departing
customer. This can be modeled by a closed queueing network with routing matrix v;; =

p;.j + d;d;;. Note that E]]\il v = 1.



With this model we can define the response time of a customer as the amount of time
that a customer spends in the network before departing. The following theorem from Sevcik
and Mitrani [16] (Lavenberg and Reiser [8]) is useful in this context. Let Yj be the state
of the network just after the kth departure but just before the compensating customer is
admitted to the system. Then Y is also the state of the system as seen by the (k + 1)st

entering customer (not including itself).
Theorem 2 limy_ o, P[Yy = n] = wy_1(n),n e S(N —1).

This theorem forms the basis of the “tagged customer” approach for computing the
response time distribution. Consider an arbitrary customer arriving at queueing station
L and tag it. Theorem 2, also referred to as the Arrival Theorem, states that in a closed
queueing network an arriving customer would see the network in equilibrium with one less
customer. Thus if we are evaluating a system with N customers, the tagged customer sees
the network in equilibrium with N — 1 customers. The arrival theorem gives the probability
distribution for the state of the system as seen by the arriving customer.

By tracking the movement of the tagged customer until it departs from the system,
conditioned on the state of the system upon entry, we are able to obtain the conditional
response time distribution. Construct a modified CTMC to keep track of the tagged cus-
tomer as follows. Assume that the tagged customer enters the system at time 0. Let /()
represent the index of the node where the tagged customer is located at time 6 and J(6) be
its position in the queue at node K (). If the tagged customer has left the network by time
6 we set K() =.J(0) =0. Let C = {C(6),0 > 0} be the stochastic process describing the
closed queueing network with N — 1 customers in it. Then the modified CTMC is obtained
as C' = {(C(0);(K(0),J(0))),0 > 0} where C(#) € S(N —1) describes the state of the N —1
untagged customers in the queueing network, while (K(6), J(8)) keep track of the tagged
customer.

Let R = min{f > 0 : (K£(6),J(8)) = (0,0)} be the first passage time in this modified
CTMC. Then, R is the response time of the tagged customer, and hence the response time
of an arbitrary customer. Thus the computation of the response time distribution is reduced
to the computation of a first passage time (or time to absorption) for a CTMC.

To compute the unconditional response time distribution of the tagged customer, we use
the arrival theorem (Theorem 2) to establish that the arriving customer sees the network in
steady-state with one less customer. This is accomplished by setting the initial probability
of those states in the modified CTMC C’ in which the tagged customer has just arrived to
the steady state probability of the corresponding state of the original CTMC (C) with one

less customer. More precisely:

PI(C(0); (K(0), 7(0))) = (n; (L, + 1)) = wx_a(n), 1<L<M



where n = (n9,n9,...,np) € S(N — 1). All the other states in C’ are assigned an initial
probability zero. Let A be the set of absorbing states in the CTMC that is used to track
the tagged customer. Then A = {(n;(0,0)):n € S(N — 1)} and,

PR <7]=Y Pi(7)
jeA
where P;(7) is the probability that the CTMC €’ is in state j at time 7.

One major problem in implementing this approach is that the input to the numerical
procedure that computes the distribution of R is the rate matrix of the CTMC C’. However,
building this rate matrix is a non-trivial task. We illustrate this by an example in the
following section and later show how this task can be automated by using stochastic reward

nets.

3 A Motivating Example

Computing the response time distribution using the tagged customer approach is a two-step

process.

1. Compute the steady-state probabilities for each of the states of the queueing network

with one less customer, wny_1(n).
2. Use these probabilities to compute the response time distribution, P[R < {].

The following simple example illustrates each of these steps.

3.1 System Description

Do Disk1
D1
new program path s
CPU L
P2 Disk2

Figure 1: Central Server Model of a Computer System.

Let us consider a central server model (CSM) of a computing system as shown in Fig-

ure 1. We assume that the service discipline at all the queues is FCFS and the service time



distributions are exponential. The service rates of the CPU, Diskl and Disk2 are uc, pup1
and ppo respectively. When a customer finishes receiving a burst of service at the CPU, it
will request access to Diskl or Disk2 with probability p; and py respectively, After complet-
ing the disk access, the customer rejoins the CPU queue for another burst of service. The
customer will complete execution and exit the system with probability po = 1 — (p1 + p2).
At the same time a statistically identical customer enters the system as indicated by the
new program path in the figure. We assume that there are N customers in the system. For
this model we define the response time as the amount of time elapsed from the instant at
which the customer enters the CPU queue for its first service until the instant at which it

emerges on the new program path.

3.2 Computing Initial State Probabilities

"p2 Hcopy
001 100 010
UCp2 HD1

State label : (7 j k)
i:  No. of customers in CPU
7. No. of customers in Diskl
k: No. of customers in Disk2

Figure 2: CTMC for Computing the Steady-state Distribution of the Non-tagged Customer.

As mentioned earlier, the response time distribution computation can be formulated in
terms of the absorption time distribution of a CTMC. Suppose we need to solve for the
response time distribution of the CSM with two customers (N = 2). The first step in the
process involves the solution of the queueing network with N — 1 customers, which in our
case is 1. The corresponding CTMC (C) is shown in Figure 2. This figure has three states
corresponding to the non-tagged customer being present at the CPU, Diskl and Disk2,
respectively. The three components in the labels of the state correspond to the number of
customers at the CPU, Diskl and Disk2 respectively.

3.3 Computing the Response Time Distribution

The second step involves constructing the modified CTMC C’ whose absorption time
distribution yields the response time distribution. The corresponding CTMC is shown in

Figure 3.



State label : (i j k { m)
No. of customers other than the tagged customer in CPU
No. of customers other than the tagged customer in Disk1
No. of customers other than the tagged customer in Disk2
Queue in which tagged customer is present
(1=CPU, 2=Diskl, 3=Disk2)
m: Position of tagged customer in queue

— TS, .

Figure 3: CTMC for Computing the Response Time Distribution.



In this figure, the first three components of the state label correspond to the number
of customers in the CPU, Diskl and Disk2 respectively, other than the tagged customer
(C(0)). The next two components give the position of the tagged customer; the first one
is the index of the queue in which the tagged customer is residing (/K(6)) and the second
corresponds to the position of the tagged customer in the queue (J(#)). The queues are
numbered as: 1 (CPU), 2 (Diskl) and 3 (Disk2). Here, (K(8),J(#)) = 00 indicates that
the tagged customer has departed from the system. There are three absorbing states in the
Markov chain, namely, (10000), (01000) and (00100). These states are explicitly identified
in the figure by the squares enclosed within the circles. The tagged customer may arrive
into the queueing system in states (10012), (01011) and (00111) which correspond to the
other customer being at the CPU, Diskl and Disk2 respectively. These three states are
explicitly identified in the figure by double circles.

The important observation to be made here is that even a network with two customers
and three queueing centers results in a fairly complex Markov chain (Figure 3). With
increase in number of customers (or queueing stations), the Markov chain may even have
more than 100,000 states, with a non-trivial rate matrix. Thus it is crucial that we have
higher level descriptions from which such large rate matrices can be automatically generated
and solved. Stochastic reward nets (SRNs) provide such a higher level description language.
They are much simpler to describe than Markov models, and they can be mapped onto
Markov reward models automatically. We will introduce SRN models and illustrate their

use in computing response-time distributions in the following sections.

4 Stochastic Reward Nets

4.1 Definitions and Basic Terminology

A stochastic reward net (SRN) is an extension of a stochastic Petri net (SPN). The latter
is in turn an extension of Petri nets. A rigorous mathematical description of stochastic
reward nets may be found in Ciardo et al. [4].

A Petri net (PN) is a bipartite directed graph whose nodes are divided into two disjoint
sets called places and transitions (Peterson [13]). Directed arcs in the graph connect places
to transitions (called input arcs) and transitions to places (called output arcs). A marked
Pelri netis obtained by associating tokens with places. A marking of a PN is the distribution
of tokens in the places of the PN.

In a graphical representation of a PN, places are represented by circles, transitions are
represented by bars and the tokens are represented by dots or integers in the places. Input
places of a transition are the set of places which are connected to the transition through

input arcs. Similarly, output places of a transition are those places to which output arcs



are drawn from the transition.

A transition is considered enabled in the current marking if each of its input places
contains at least one token. The firing of a transition is an atomic action in which one or
more tokens are removed from each input place of the transition and one or more tokens
are added to each output place of the transition, possibly resulting in a new marking of the
PN.

A multiplicity may be associated with an arc of the PN, whereby a transition is enabled
only if the number of tokens in each input place is at least equal to the the multiplicity of
the input arc from that place. Upon firing the transition, the number of tokens deposited
in each of its output places is equal to the multiplicity of the output arc. If the multiplicity
of an arc is a function of the marking, then the arc is a variable cardinality arc.

If an inhibiltor arc is drawn from a place to a transition then the transition cannot fire if
the place contains at least one token. A multiple inhibitor arc implies that the place must
contain at least as many tokens as the multiplicity (possibly marking-dependent) of the arc,
to prevent the transition from firing.

A (boolean) guard G(.) can be associated with each transition (Ciardo et al. [5]). When-
ever a transition satisfies all the input and inhibitor conditions in a marking M, the guard is
evaluated. The transition is considered enabled only if the guard function G(M) = TRUE.

A Priority relationship defines a partial order among transitions. Thus a priority rela-
tionship between two transitions ¢; and {3 can be defined for example as t; > 13 implying
that ¢; has higher priority compared to 3. In this case, whenever {; is enabled, then i,
is automatically disabled, since ¢; has priority over {;. This added flexibility provides a
simple way to model the situation where ¢y > 15, t3 > {4, but {; has no priority relation
with respect t3 or 4.

Each distinct marking of the PN constitutes a separate state of the PN. A marking is
reachable from another marking if there is a sequence of transition firings starting from the
original marking which results in the new marking. The reachability set (graph) of a PN is
the set (graph) of markings that are reachable from the other markings. In any marking of
the PN, a number of transitions may be simultaneously enabled.

Associating exponentially distributed firing times with the transitions results in a stochas-
tic Petri net (Molloy [12]). Allowing transitions to have either zero firing times (immediate
transitions) or exponentially distributed firing times (timed transitions) gives rise to the
generalized stochastic Petri net (GSPN) (Ajmone-Marsan et al. [1]). (Timed transitions are
represented by hollow rectangles while immediate transitions are represented by thin bars.)

The markings of a GSPN are classified into two types. A marking is vanishing if at
least one immediate transition is enabled in the marking and is tangible otherwise. Conflicts

among immediate transitions in a vanishing marking are resolved using a random switch [1].



The firing rates of the timed transitions and firing probabilities of immediate transitions

maybe marking dependent.

By associating reward rates with the markings of the SPN we obtain stochastic reward
nets (SRN) (Ciardo et al. [4]). An SRN can be automatically converted into a Markov
reward model thus permitting the evaluation of not only performance and availability but
also their combination. Putting all this together, we define the SRN as (Ciardo et al. [4]):

Definition 1 A (marked) SRN is a tuple

A= (P,T,DI,DO,DH,G,>,\ PS, Mg,r)

where

P =A{p1,...,pn} is a finite set of places.
T =A{t1,...,ta} is a finite set of transitions.

Vp, € PVi; € T,DI; ; : INV — IN is the marking dependent multiplicity of the input

arc from place p; to transition t;; if the multiplicity is zero, the input arc is absent.

Vp, € P,Vt; € T,D0O;; : INN — IN is the marking dependent multiplicity of the output

arc from transition t; to place p;; if the multiplicity is zero, the output arc is absent.

Vp, € PVt; € T,DH;; : INV — IN is the marking dependent multiplicity of the
inhibitor arc from place p; to transilion t;; if the multiplicily is zero, the inhibitor arc

s absent.
Vi, eT,G;: INY — {0,1} is the marking dependent guard of transition i;.

> is a lransitive and irreflexive relation imposing a priorily among transilions. In a
marking M;, 1, is enabled iff it satisfies ils input and inhibitor conditions, its guard
evaluates to 1, and no other transition ty exists such that to > t1, and ty satisfies all

other conditions for enabling.

Vi; € T, such that t; is a timed transition, A; : NV — R* is the marking dependent
firing rate of transition t;, and A = [A;].

Vi; € T, such that t; is an immediate transiltion, PS5y, : INY — [0,1] is the marking

dependent firing probability for transition t;, given that the transition is enabled.
My € NV is the initial marking.
r; € IR is a reward rate associated with each tangible marking M; that is reachable

from the initial marking My, and r = [7‘]'].
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4.2 Solution Techniques for SRN model

The behavior of a SRN can be entirely described by generating its extended reachability
graph (ERG) (Ajmone Marsan et al. [1]). The ERG corresponding to a SRN can be con-
structed as follows. Each node in this graph corresponds to a marking of the SRN. If the
firing of a transition ¢; changes the marking of the SRN from M; to My, then an arc is
drawn from the node corresponding to marking A; to the node corresponding to marking
Mj. Depending on whether the transition is immediate or timed, the arcs are labeled with
probabilities or rates. The time complexity for the generation of ERG from the SRN is
O(MNnpr+ eN log nps) where npy is the number of markings in the ERG, e is the number
of arcs in the ERG, M is the number of transitions and N is the number of places in the
SRN.

The extended reachability graph can be converted into a CTMC by eliminating the arcs
labeled with probabilities. Let V represent the set of vanishing markings and 7 represent the
set of tangible markings. The matrix PY = [PYY|PVY7] describes the probability of transi-
tion from vanishing to vanishing (PYY) or tangible (P¥7) markings, and U7 = [U7Y|U77]
gives the rates of transitions from the tangible markings to vanishing (U7V) or tangible
(UTT) markings. The generator matrix Q of the underlying CTMC is obtained from the
matrix description of the ERG using the following equation (Ajmone Marsan et al. [1]):

Q=U"7 yuTVw (1)

where [I — PYY]W = PVY7. Let nyr = |7|, ny = |V| and nyy and 57y be the number of
nonzero entries in (I —PYY) and U7V respectively. If nyy is O(ny) and 57y is O(ny +nr)
then a bound on the number of floating point operations required by this transformation of
the ERG to CTMC is O(nr(nyv + n1v)).

The transient behavior of a CTMC can be described by the Kolmogorov differential

equation (Trivedi [17]):
p)=P1)Q.  P0)=po. 2)

Here P(t) is the state probability vector at time ¢ and pg represents the initial probability
vector of the CTMC.

By taking limits of both sides of the above equation, we get the equation for the steady-
state probability vector = of the CTMC:

TQ =0, Em:l- (3)

Numerical methods for obtaining the steady-state and transient solutions of SRN models

are described in detail in Ciardo et al. [4].
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4.2.1 Computation of Measures at the SRN Level

Suppose X represents the random variable corresponding to the reward rate in steady-state,

then the expected reward rate E[X] can be computed as,

M;eT
where 7; is the steady-state probability of tangible marking A, (the probability of a van-
ishing marking is zero).
Besides the steady-state analysis of SRNs we also carry out transient and cumulative
transient analysis. Thus, the expected value of the reward rate as a function of time,
E[X(t)], can be computed as,

EX(W)]= Y ribi()
M;eT
where P;(t) is the probability of tangible marking M; at time ¢.
Alternatively, we might be interested in the accumulated reward, Y (¢), over the interval

[0,7). The expected value of the accumulated reward, E[Y(t)], can be computed as,
E[Y (1) Z T /
The expected accumulated reward until absorption E[Y (o0)] can also be computed as,
E[Y(x Z T /

It must be noted that the definition of reward rates is orthogonal to the analysis type that
is used. Thus with the same reward definition we can compute the steady-state expected
reward rate as well as instantaneous reward rate at time ¢, expected accumulated reward
and expected time-averaged reward over the interval [0,t).

In the following sections we will discuss the use of SRNs for modeling the behavior of
queueing networks and illustrate how the response time distribution can be computed by

associating an appropriate reward rate to the SRN model.

5 The Tagged Customer Method for the CSM using SRNs

The response time distribution computation using the SRN proceeds in two steps as illus-
trated in Figure 4. We will illustrate this procedure for the central server queuing network

model shown in Figure 1.

12



Steady State Analysis of the SRN
Step 1 with N-1 customers.

l TN-1

Transient Analysis of the SRN
Step 2

with N-1 customers and the Tagged Customer

lpwgﬂ

Figure 4: Steps in Computing Response Time Distribution for a Closed Queueing Network.

pdlg
I
ou N
P tedl tdisk1
ted2 tdisk2
tcpu  pbrch N H
N
pd2q

Figure 5: SRN Model of the Central Server System.
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5.1 Computing Initial State Probabilities using SRNs

Given that there are N customers in the system, the first step involves solving for the
steady-state probabilities w_1 with one less customer. To evaluate these probabilities, we
construct an SRN model corresponding to the queueing network as shown in Figure 5. In
this figure, places pcpug, pdlq and pd2q represent the CPU, Diskl and Disk2 queues. Timed
transitions tepu, tdiskl and tdisk2 represent the service of customers at the CPU, Diskl and
Disk2 respectively. Immediate transitions lcc, tedl and ted?2 represent the branching of cus-
tomers after a CPU burst. The corresponding probabilities for these immediate transitions
are given by pg, p1 and py respectively.

We compute the steady-state probabilities of the system being in state (¢, 7, N —(i4+j+1))
with ¢ customers at the CPU, 5 customers in Diskl and the remaining N —(i¢4+j+1) customers
in Disk2. In the SRN, the state (4,7, N —(i+j+ 1)) corresponds to having ¢ tokens in place
pepug, j tokens in place pdlq and N — (i + 7 + 1) tokens in place pd2q respectively.

5.2 SRN Model for Computing the Response Time Distribution

In the second step, we consider the motion of the tagged customer through the network.
This is obtained by the SRN shown in Figure 6. In the figures #(p) represents the number
of tokens in place p and a # associated with a transition means that its firing rate is marking
dependent. An inhibitor arc is represented by a circle (instead of an arrow) at its head. A
zigzag line on an arc indicates that the multiplicity of that arc is marking dependent.

In the SRN of Figure 6, places pcpugo, pepug, ptepug and transitions tcoi, lepu, tlepu
together implement the FCFS queue corresponding to the CPU. When the tagged customer
is in the queue, all customers ahead of the tagged customer are represented by the tokens in
place pcpug ( for convenience we shall call this place the inner queue) and customers behind
the tagged customer are in place pepugo (we shall also refer to this place as the catchment
area). The tagged customer will be scheduled for service only when all the customers ahead
of it receive service and leave the queue. This is implemented by the inhibitor arc from place
pepug to transition tiepu. All customers arriving after the tagged customer are deposited in
place pcpugo. These customers cannot move into the inner queue while the tagged customer
is still in the queue. This is implemented by the inhibitor arc from place ptcpug to transition
tcoi. These customers are moved into the inner queue when the tagged customer departs
from the queue.

If the tagged customer is not in the queue, an arriving customer can directly proceed
from the catchment area into the inner queue. This is implemented using the variable arc
function defined in Figure 6. The variable arc function defines the multiplicity of the input

arc from pcpugo to tcoi and the output arc from tcoi to pepug to be equal to the number of

14
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Variable Arc Function
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tdloi — pdlq

max(1, #(pdlqo))
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max(1, #(pd2qo))
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Figure 6: SRN Model of the CSM to Compute Response Time Distribution.



tokens in pcpugo, if it is not empty and 1 if pcpugo is empty. Whenever, the transition tcoi
is enabled, it will move all the tokens from pcpugo to pcpug. A similar mechanism is used
at the disk queues. The guard is used to stop the firing of all the transitions once the token

corresponding to the tagged customer reaches pfin.

5.3 Computing the Response Time Distribution

As we mentioned earlier, the probability vector wx_1 is used to define the initial probability
distribution of the CTMC that is used in computing the response time distribution. A
similar process can be adopted in using SRNs. We used the software package SPNP (Ciardo
et al. [5]) to solve our SRN models. SPNP provides a mechanism for defining the initial
probability vector over the set of states in the underlying Markov chain, in terms of the net
level entities like the number of tokens in a place. For example, the initial probability for
a state with ¢ customers at the CPU, 5 customers at Diskl and k& customers in Disk2 at
the instant of arrival of the tagged customer, in the SRN model shown in Figure 6 can be
specified by assigning this probability to the marking in which there are 7 tokens in place
pepug, 7 tokens in pdlg and k tokens in pd2q, the token corresponding to the tagged customer
is in place ptcpug and all the remaining places are empty. These initial probabilities are
obtained by solving for the steady-state probabilities of the SRN shown in Figure 5.

The probability of place pfin being non-empty at time 7 gives the probability that the
tagged customer has completed by time 7. This can be computed as the expected value of
the instantaneous reward rate E[X(7)] by attaching a reward rate r; with tangible marking

M; as follows:
ri = #(ptfin, M;)

In this paper, #(p, M;) represents the number of tokens in place p in marking M;. The
above reward rate specification assigns a reward rate r; = 1 to all the markings in which
place pfin is non-empty and reward rate r; = 0 to all the other markings. The distribution
of the response time is evaluated by computing E[X (7)] for different values of 7. The mean
time to absorption (token appearing in place pfin) gives the mean response time for the
queueing network. This was used in validating the SRN model since the mean response
time can be computed using product form solution techniques like mean value analysis and

convolution.

5.4 Numerical Results

The response time distributions of the central server model for different numbers of
customers (5, 10 and 15) are shown in Figure 7. In this example, we assume that uc = 50.0,
tp1 = 30.0, pp2 = 20.0, p; = 0.45 and p; = 0.3.
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Given that the response time distribution can be computed, the next important question
is the size of the problems that can be handled by this method. Table 1 gives the number of
states and the number of arcs in the Markov chain as a function of the number of customers
in the CSM model with one CPU and two disks. From Table 1, one can easily observe
that our method can handle queueing networks of moderate population sizes. The other
important factor causing an increase in the state space is the number of queues in the model.
The CSM model lends itself easily to variation in the number of queues, in that we can vary

the number of disks in the model.

No. of No. of | No. of
Customers | States Arcs
5 120 335

10 715 2420

15 2160 7880

20 4830 | 18340

25 9100 | 35425

30 15345 | 60760

35 23940 | 95970

Table 1: Markov Chain Sizes For Different Number of Customers.

No. of No. of No. of | No. of
Disks | Customers | States Arcs
2 5 120 335
3 5 315 1120
4 5 700 2926
5 5 1386 6510
2 10 715 2420
3 10 3080 | 13915
4 10 10725 | 59202
5 10 32032 | 205205
2 15 2160 7880
3 15 12920 | 64260
4 15 61200 | 347920

Table 2: Markov Chain Sizes vs the Number of Disks.

Table 2 summarizes the sizes of the Markov chains as a function of both the number of

disks in the CSM model as well as the number of customers. It is easy to see from the table
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that with an increase in the number of queues there is a dramatic increase in the size of the
state space. However, we have successfully generated and solved CTMCs with nearly half

a million states.

6 Effect of Different Service Disciplines

From the BCMP theorem (Baskett et al. [2]), we know that the mean response time for a
customer in a queueing network is independent of the service disciplines at queueing centers
as long as the service rates remain the same and the service discipline is either first come
first served (FCFS), processor sharing (PS) or last come first served preemptive resume
(LCFSPR). However, the response time distribution is sensitive to the service discipline. In
this section, we will vary the service discipline at the CPU for the central server model and
compare the response time distribution for each of the cases. In each of these cases (FCFS,
PS and LCFSPR) the SRN model used to compute the steady-state probabilities remains

the same and is shown in Figure 5.

6.1 SRN with Tagged Customer for the PS Service Discipline

Figure 8 shows the SRN model used in computing the response time distribution of the
CSM with PS discipline at the CPU. We notice that modeling PS is easier than FCFS since
we need not keep track of the position of the tagged customer in the CPU queue. The firing
rates of transitions lepu and tlepu are now marking dependent since each customer receives

a fraction of the CPU service based on the number of customers in the queue.

6.2 SRN with Tagged Customer for the LCFSPR Service Discipline

Figure 9 shows the SRN model used in computing the response time distribution of the
CSM with LCFSPR service discipline at the CPU. In this figure we notice that whenever
the tagged customer arrives into the CPU queue (ptcpugo), all the customers waiting at
the CPU, in place pcpug, are moved into the outer queue pcpugo since the incoming tagged
customer preempts the customer in service. This is implemented by adding a place plcpugo
(to signal the arrival of the tagged customer into the CPU queue), the immediate transition
tcio together with the variable multiplicity arcs from pepug to tcio and tcio to pepugo.
Similarly, any customer coming to the CPU after the tagged customer will preempt the
tagged customer. This is handled by the inhibitor arc from place pepug to the transition
ttcpu. When the tagged customer departs from the CPU queue, all the previously preempted
customers may resume execution. This is handled by the immediate transition tcoi together

with its variable cardinality input and output arcs.
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6.3 Numerical Results

Figure 10 plots the response time distribution for the three different service disciplines. In
all the cases, we assume that the number of customers is 10. We can see that both PS
and LCFSPR perform better than FCFS for smaller time values. Both PS and LCFSPR
disciplines tend to favor short customers at the cost of additional delays for long customers.
In the LCFSPR environment a long customer has a much higher probability of being pre-
empted than a short customer. All the three curves have crossover points because the mean

response time is the same in all the three cases.

7 Effect of Different Service Time Distributions

The BCMP theorem (Baskett et al. [2]) also states that the mean response time is inde-
pendent of the nature of the service time distribution at a queueing center as long as the
service discipline is either PS or LCFSPR, the mean service time remains the same, and
the service time distribution has a rational Laplace transform. In this section we study the
effect of changing the service time distribution at the CPU on the response time distribu-
tion of a customer. We assume that the service discipline at the CPU is PS. We know that
the coefficient of variation C, for exponential distribution is 1. It would be interesting to
study the queueing system for C, < 1 and C, > 1. We know that C, is greater than 1
for hyper-exponential distributions and C), is less than 1 for hypo-exponential and Erlang
distributions. For the same number of stages, the Erlang distribution gives a smaller C,
compared to a hypo-exponential distribution. Thus we choose to compare the response
time distribution for the exponential, 4-stage Erlang and 3-stage hyper-exponential service
time distributions. The parameters of these distributions (uc1,...,pca for Erlang and
HC1, - - -, o3 for hyper-exponential) are chosen in such a way that the mean remains the

same in all the cases.

7.1 SRNs for 4-stage Erlang Distribution

The SRN model used to compute the steady-state probabilities for the CSM with 4-
stage Erlang service distribution at the CPU is shown in Figure 11. The SRN model used
to compute the response time distribution in this case is shown in Figure 12. In these
figures we notice how the four stages of the Erlang distribution are modeled using four
places pcpuql through pcpugi and four transitions tepul through lepuj with exponentially
distributed firing times. The marking dependent rates of each of these transitions are also

shown. Thus a customer could be in any of the four stages of the Erlangian service.
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Figure 11: CSM with Erlang Service Time Distribution.

7.2 SRNs for 3-stage Hyper-Exponential Distribution

The SRN model used to compute the steady-state probabilities for the CSM with the
three stage hyper-exponential service time distribution at the CPU is shown in Figure 13.
The SRN model used to compute the response time distribution in this case is shown in
Figure 14. Each of the three stages of the hyper-exponential distribution are again modeled
using three places pepugl through pepuqd and three transitions tepul through tepud. A
customer arriving at the CPU may enter any of the three stages with probabilities a1, as

and ag respectively. This is modeled by the three immediate transitions tc1 through tc3.

7.8 Numerical Results

Figure 15 plots the response time distribution for the three different service time distribu-
tions. For the 4-stage Erlang case, we use pcy = poz = pes = poga = 200.0. The other
parameters remain the same as in the exponential case. For the 3-stage hyper-exponential
case, we use pucy = 120.0, a3y = 0.8, pey = 22.5, ay = 0.15, pes = 7.5 and az = 0.05
respectively. For the exponential case, pc = 50.0. We note that for small time values, the
hyper-exponential service times provide a lower response time than the exponential case
which in turn provides a smaller response time than the Erlang case. As the mean response
time is the same in each case, the three curves cross over and the order reverses after the

intersection.
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Figure 12: SRN for Computing the Response Time Distribution with Erlang Service Times.

25



pcpugl  tcpul

tel . pdiq

¢

pcbr pepug?2  te
tc2 [l

pepugd

;

[ pd2q
tc3 tcpud tee
Transition | Rate Function
tcpul nc1#(pepugl)/(#(pepuql) + #(pepuq?) + #(pcpug3))
tcpu2 noa#(pepuq2)/(#(pepuql) + #(pepuq?) + #(pcpug3))
tcpu3 noa(pepug3)/(#(pepuql) + #(pepuq?) + #(pcpug3))
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8 Multiserver and Infinite Server Models

In this section we model a practical example based on an online transaction processing
system (OLTP). An OLTP system is needed when many users require fast access to in-
formation such as records in large databases. Examples of such systems include airline
reservation systems and automated bank-teller systems. These systems are characterized

by high throughput and high availability requirements.

8.1 The OLTP System Description

A typical architecture of an OLTP system is shown in Figure 16. The front-end of
the system is composed of a transaction generator, e.g., a terminal, barcode reader etc.
and transaction processors (TP) which analyze the submitted transaction to determine
the information needed from the databases and also provide error recovery capabilities.
The back-end of the system consists of a set of database processors (DBP) which handle
reading and updating the records in the databases according to the requests submitted by
the transaction processors. The transactions visit the TPs and DBPs in succession until
the necessary processing is completed. Thus a good measure of performance for an OLTP
system is the response time of a transaction. The OLTP can best be modeled by a closed
queueing network with terminals. A queueing network model for an OLTP based on these
assumptions is shown in Figure 17.

In this model it is assumed that the TPs have a single queue from which transactions

are selected for processing on a first come first served (FCFS) basis. The TPs are modeled
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using a multi-server queue with the number of servers in the queue equal to the number of
TPs. The DBPs are similarly configured. The service times of the TPs are exponentially
distributed with rate prp and the service times of the DBPs are exponentially distributed
with rates uppp. The average time between completion of a transaction and submission of
the next transaction at a terminal, which is equivalent to the think time at the terminal,
is exponentially distributed with rate A. The number of terminals available in the system
is assumed to be N. The number of TPs and the number of DBPs are assumed to be Npp

and Nppgp respectively.

8.2 The SRN Models for Computing Response Time Distribution

‘ tpt
pterm 2 ptpg % tpd  pdbpg %

_ I | I

1N AN I
tterm ttp pbrch tdbp
Transition | Rate Function
tterm #(pterm)A
ttp min(Nrp, #(ptpg))ure
tdbp min(Npsp, #(pdbpq))upsP

Figure 18: SRN of the OLTP System.

The SRN model for the steady-state computation is shown in Figure 18. The SRN
model for computing the response time distribution is shown in Figure 19. We have already
seen how the position of the tagged customer is tracked through a single server queue in
an earlier example. In this case, we need to see how multiple servers are handled while
keeping track of the tagged customer. In the SRN shown in Figure 19, the places pipqo,
pipg, pttpg and the transitions ipoi, tip, ttlp together implement the multi-server FCFS
queue corresponding to the TPs. The tagged customer will be scheduled for service only
when the number of customers ahead of it becomes less than the number of TPs. This
is implemented by the guard controlling the firing of the transition ¢t{p. Whenever a TP
becomes available and the tagged customer is already in service, another customer can be
admitted into the inner queue from the catchment area and scheduled for service. A similar

mechanism is used for the DBP queue.

8.3 Numerical Results
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Figure 19: SRN for Computing the Response Time Distribution of the OLTP System.
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The response time distributions for various configurations of the OLTP system are shown
in Figure 20. We assume that the number of TPs is equal to the number of DBPs. We
also assume that with every additional processor, the number of terminals is increased by
5. We set A = 1.0, urp = 50.0, uppp = 20.0 and pg = 0.8. The plots indicate the response
times for different number of TPs and DBPs ((1,1), (2,2) and (4,4)). It is interesting to note
that the probability of completion for a customer at any time ¢ increases with increase in
the number of processors available even though the number of terminals is correspondingly
increased. The size of the Markov chains and the number of arcs in the Markov chain for

each case are shown in Table 3.

No. of No. of | No. of | No. of
TPs/DBPs | Terminals | States Arcs
1 5 85 205

2 10 405 1305

3 15 1088 3722

4 20 2262 7998

8 40 14428 | 53932

10 50 28660 | 108601

Table 3: Sizes of the Markov Chains for Different Configurations.

9 Conclusions and Future Extensions

We presented a method of numerically computing the response time distribution for closed
product form queueing networks. The ability to generate and solve for the transient prob-
abilities of large Markov chains using SRNs is the basis for our technique. We considered
the effects of variation of the service disciplines and the service time distributions on the
response time distribution. A realistic model of an OLTP system was also presented. The
response time distribution is very useful in studying the performance of such real-time sys-
tems. This method of numerically computing the response time distribution can easily be
applied to any moderate-sized closed BCMP network.

As we have seen earlier in this paper, our method is applicable to moderate sized queue-
ing networks. It must be noted that the size of the queueing networks that can be handled
is limited by the size of the memory available on the computer and is not a limitation of the
method. In order to handle large queueing networks, we may either consider the use of a
supercomputer with a large main memory or the use of approximation techniques. Several

approximation methods have been suggested in the past by Raatikainen [14], Salza and
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Lavenberg [15]. We are in the process of adapting these approximation techniques in the
context of SRNs.

We have restricted ourselves to product form queueing networks in this paper. The
primary reason is that the distribution of remaining customers at the instant of arrival
of the tagged customer is easily computable in this case. Consequently, computing the
unconditional response time distribution is also easier. It is of interest to see how we could
extend our technique to general Markovian queueing networks which do not necessarily
satisfy the product form assumptions.

The method of response time distribution computation in this paper is based on the
assumption that the queueing network is in steady state when the tagged customer arrives
at the queue. Transient response time distribution where we consider the response time

distribution for the n {h arriving customer is also of interest.
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