Sufficient conditions for existence of a fixed point in
stochastic reward net-based iterative models *

Varsha Mainkar? Kishor S. Trivedi
AT&T Laboratories Center for Advanced Computing and Communication
Rm. 1K220, 101, Crawfords Corner Rd. Dept. of Electrical and Computer Engineering
Holmdel, NJ 07733, USA Duke University, Box 90291

Durham, NC 27708-0291, USA

Abstract

Stochastic Pelri Nelt models of large systems thal are solved by generaling the underlying
Markov chain pose the problem of largeness of the state-space of the Markov chain. Hier-
archical and iterative models of systems have been used extensively to solve this problem. A
problem with models which use fixed-point iteration is the theoretical proof of existence,
uniqueness, and convergence of the fized-point equations, which still remains an “art”. In
this paper, we establish conditions, in terms of the net structure and the characteristics of
the iterated variables, under which existence of a solution is guaranteed when fixed-point
iteration is used in stochastic Pelri nets.

We use these conditions to establish the existence of a fized point for a model of a
priority scheduling system, at which tasks may arrive according to a Poisson process or due
to spawning or conditional branching of other tasks in the system.

1 Introduction

Stochastic Petrinets (SPN) [18], and their variants [1, 5] offer a powerful graphical capability
for the specification of Markov models. With the use of tools that take an SPN specification
and generate and solve the underlying continuous time Markov chain (CTMC) [6], the task
of specifying and solving a model becomes greatly simplified. However, modeling complex
systems using stochastic Petri nets often leads to the problem of a large underlying Markov
chain. This entails the solution of a CTMC with a large number of states — sometimes so
large that the CTMC infinitesimal generator cannot be stored in the memory of a fairly
large-sized workstation, even with sparse storage techniques. This problem can be solved by
using many approaches. A technique commonly used in reliability modeling is that of state
truncation [11]. In this technique, states that are highly unlikely (e.g., states with many

*This research was sponsored by IBM under the IBM/Duke University Research Agreement # RAL-
R93010-00.
tThis work was done while the author was at Duke University.

failed components in an ultra-reliable redundant system) are not generated, thus saving
state space. Another approach is that of hierarchical modeling [2, 23, 29]. Many systems
are hierarchically built; this naturally translates into a hierarchical model. In this technique,
a system is solved by identifying subsystems which can be modeled in isolation, and then
aggregating their results into (often, but not always, approximate) results for a higher level
model and so on. A hierarchical model results in a substantial reduction of state space and
solution time. In many cases, however, the model cannot be decomposed very “cleanly”,
i.e., there are interactions between submodels that cannot be ordered, and thus are not
strictly hierarchical. In such cases, fized-point iteration is used to determine those model
parameters that are not available directly as input or by solving other models [3, 4, 8, 26].
In this technique, the relationships between model parameters and model outputs result in
an equation of the type

x = G(x) (1)

where x = (#1,...,2,) is the vector of iteration variables. This is the fized-point equation
corresponding to the iterative model, and the vector x that satisfies this equation is called
a fized point of this equation. The simplest way of finding this fixed point is by successive
substitution. In this method, starting with an initial guess xq, we iterate in the following
way:

Xp, = G(Xp-1).

This iteration is terminated when the difference between two successive iterates is below
a certain tolerance level. Note that this iteration may not always converge. If it converges,
it may not always converge to the same value. Also, before we use the iterative method, we
must be sure that a solution to the Equation (1) exists.

In this paper, we focus on one of these theoretical problems that arise while using
iteration with stochastic Petri nets: specifically, stochastic reward nets (SRNs). When using
an iterative model it is extremely desirable to be able to prove the existence and uniqueness
of a fixed point and convergence of the iterative method to that point. In most cases only
existence can be proven; uniqueness has also been proven in a few instances [5, 12]. Very
often, the rate of convergence remains an issue of empirical judgment. Further, existence
may also be proven only under certain conditions [17, 26], and so far this has been done on a
case-by-case basis for each specific SRN model. In this paper, we describe general suflicient
conditions in terms of the SRN and its underlying reachability graph that guarantee the
existence of a solution to a fixed-point equation that is a result of iteration between some
SRNs. In [5], some pointers to proofs of existence were first provided, and general guidelines
for how an SRN can be decomposed were provided. Our contributions with respect to
previous work are as follows :

e We provide a general set of conditions that can be used to verify existence of a fixed
point for any SRN iteration model. This is different from previous work [4, 26], where
proofs were provided, but only for the particular example being modeled.

e In [5], some suggestions on possible approaches for proof of existence were discussed,
but definitive conditions on the SRN were not provided. In this paper, we provide

necessary conditions on the SRN in such a way that once those conditions are met,
no further delving into the details of existence theorems is required.

e We provide, for the first time, a proof of continuity of the iteration function, which is
required, but was simply assumed in the previous papers.

However, in this paper we do not address the issue of how an SRN can be decomposed,
but once a decomposition has been proposed, we present comprehensive sufficient conditions
under which existence of a fixed point can be proved. These conditions may be used as a
first “check” when one is using an iterative model, to confirm the existence of a solution.
Note that the conditions are only sufficient, not necessary. For a thorough and formal
approach on how to decompose SRN models, see [8].

The remainder of the paper is organized as follows. In Section 2 we describe an example
of an iterative model to set the background and provide some motivation for the problem;
in Section 3, we describe sufficient conditions required for the existence of a solution; in
Section 4 we present examples. In Section 5 we present an application of iterative modeling
using SRNs for analysis of a priority scheduling system. We conclude the paper in Section 6.
A brief overview of stochastic reward nets may be found in Appendix A.

2 Motivating Example

Place Description Initial #
of tokens
off-site Repairman is off site 1
on-site Repairman is on site 0
up.i Number of operational ¢
components in subsystem i
down.i Number of components 0
failed in subsystem ¢
Transition Rate or
Probability
tfail i Time to failure of a (#(up.i)) A
component of subsystem i
trepair.i Time to repair of a i
component of subsystem i
tarrive Time of arrival of Lt
repairman to the site
tdepart Repairman departs 1

Table 1: Description of the SRN for availability

To motivate the need for the work described in this paper we use an example in avail-
ability modeling, which was presented by Tomek and Trivedi in [26]. Availability at time ¢,
of a system which is subject to failure and repair is defined as the probability that the sys-
tem is operational at time {. The steady-state probability of the system being operational

off-site

(o
Lo

&on—site

-
Lo

up.1l ‘ up.n

tfail.1 i tfail.n

C\L)down.n

/ tdepart \% frepair.l %{epair.n
Transition Guard
tarrive 1 #(down.i) >0

tdepart

trepair.i

Figure 1: SRN Model for Availability

is termed steady-state availability. Tomek and Trivedi have described a steady-state avail-
ability model which accounts for the situation that the repairperson is not on site when a
failure occurs, and hence there is a need to model the added travel time. The model consists
of a system with n subsystems; subsystem 7 has ¢; components. There is only one repair-
person to be shared among all the subsystems and components. When a subsystem fails,
it may take some time for the repairperson to arrive at the site. The repairperson’s service
depends on the priority of the subsystem. Subsystems are ordered by priority according to
their importance. Thus, if components of subsystem 7 and subsystem j both fail, and 7 < 7,
the repairperson first goes to subsystem z. Further, subsystem ¢ has preemptive priority
over subsystem 7. Suppose that the mean time to failure of components of subsystem ¢ is
1/A;, the mean repair time is 1/y;, and the mean travel time is 1/u;. The SRN representing
this system as described in [26] is reproduced in Figure 1 (we assume all transition firing
times are exponentially distributed). Table 1 describes the places and transitions. The first
column contains the names of the places and transitions. The second column is a short
description, and the third column is the initial number of tokens in case of places and the
rate/probability in case of transitions. The guards corresponding to some transitions are
tabulated in Figure 1. Note that even though graphically the SRNs look “independent”
they are related through these guards.

For systems with large number of subsystems and subsystem components, this SRN will
result in a very large underlying Markov reward model. Thus a decomposition approach
was proposed in [26] wherein each subsystem is considered in isolation and the effects of the
other subsystems are incorporated into transition rates and probabilities. Let ¢;_; be the
probability that the repairperson is on site repairing components of any one of subsystems
1,...,2— 1. Further, let r; denote the probability that the repairperson is busy repairing a
component of subsystem ¢. Thus

i—1
41 = § T;.
i=1

Figure 2 describes the SRN representing the isolated subsystem ¢. Table 2 describes the
places and transitions of the SRN. Note that the repair rate is now given by p;(1 — ¢;—1);
i.e., it is slowed down by a factor (1 — ¢;_1) corresponding to the probability that no
subsystem of higher priority is being repaired. This incorporates the effect of the preemptive
priority on repair exercised by higher priority subsystems. Also, the immediate transition
Toff-site.t has a probability H#i(l — r;), which is the probability that the repairperson
is off site (no other subsystem component is being repaired). Note that this transition
has probability 0 if the repairperson is already on site repairing a component of subsystem
t. This is implemented by an inhibitor arc from place Prepair.i to Toff-site.i. Note that
either #(Ptravel.i) or #(Prepair.i) represents the number of failed components. Thus,
#(Ptravel.i) x #(Prepair.i) = 0. The inhibitor arc from place Plravel.i to Ton-site.i
represents that the repairperson cannot be on-site if in transit. The arcs from Ptravel.i to
Ttravel.i and from Travel.t to Prepair.t are variable multiplicity arcs. Their multiplicity
is defined to be #(Ptravel.i), if #(Ptravel.i) > 0 and 1 otherwise.

In this decomposition, the model for subsystem ¢, M;, is parameterized by
T1yeeeyTim1,Tig1,- -+, Tn. Further, an output from model M;, i.e., r;, is used to param-

Pup.i

Ttail.i

Pbranch.i

—— Toff-site.i

> Ptravel.i

-

Ttravel.i

Figure 2: Approximate model of isolated subsystem

Place Description Initial # of tokens

Pup.i # of operational components | ¢;

Pbranch.i | Decision place 0

Prepair.i # of failed components 0

Ptravel.i Repairman traveling 0

Transition Rate or
Probability

Tfail.i Component failures #(upi) x A

Toff-site.i | Repairman off site Hj#(l - 75)

Ton-site.i | Repairman on site 1- Hj#(l -75)

Trepair.i Repair time wi(l - qiq)

Ttravel.i Travel time Lt

Table 2: Description of Approximate SRN model for Availability

eterize all the other models. Thus all the models are interdependent, and a fixed-point
iteration is necessary to solve the models. In steady state let 7'['2(]6) denote the probability
that there are k tokens in place Prepair.i. Note that this probability is a function of the
input parameters rq,...,7—1, 741, .., . Lhen the probability r; is given by

r, = Z?TZ(]C)

k=1
= g1,y Tic1, g1, - TR), T=1,...,m. (2)
If r denotes the vector (rq,732,...,7,), then the above set of equations can be written in

as

r=Gr) 3)

where G(r) = (¢g1(r), ..., gn(r)). This is the fixed-point equation corresponding to the
iterative model. The fixed point can be computed numerically by successive substitution.

The use of decomposition for this example resulted in enormous savings in computation
time. The data provided in [26] shows that when the number of subsystems is 8, the exact
solution takes 220 seconds, while the approximate solution takes about 10 seconds. With 9
subsystems, the exact solution took 650 seconds, while the approximate solution took about
12 seconds. The exact solution could not be obtained for more that 9 subsystems due to
memory constraints. The approximation error was less than 1073,

This example shows that there is a lot of practical benefit to be gained by using the
technique of decomposition and iteration. The technique would, however, stand on more
solid ground if it were theoretically supported. To do this we must prove the existence,
convergence and uniqueness of the solution of this fixed-point equation, and quantify the
accuracy of the solution. The existence of a solution was proved in [26], using Brouwer’s
fixed-point theorem for the case of this particular example. However, this example
belongs to a more general set of iterative models which satisfy certain conditions from
which existence of a solution may be directly inferred. In the following sections we will
explain these conditions, and provide a proof of existence based on these conditions.

Note that we do not suggest methods or guidelines for iterative decomposition, but only
outline sufficient conditions under which a fixed point will exist. For work regarding guide-
lines for decomposition see [8, 28]. We also do not address the uniqueness and convergence
issues in this paper; they are nonetheless very important, and are topics for further research.

3 Conditions for existence of a fixed point

In this section, we shall first give a formal definition of what we term as “Iterative SRN
models”, for establishing the framework in which we shall be providing our conditions
(Section 3.1). Then, we discuss the continuity properties of the steady-state probability
vector of an SRN, as this is required for the proof of the sufficient conditions (Section 3.2).
In Section 3.3, we give a formal statement of the conditions and a proof.

3.1 Preliminaries

We shall first define what we consider as iteration variables, and what the fixed-point
equation is:

Definition 1 (Iterative SRN models) Suppose a system is being modeled using n
stochastic reward nets labeled My, M,y,...,M,. Let 7 denote the steady state probabil-
ity vector corresponding to M;. Suppose m; measures, x},z5,...,z. are derived from

s Ymy
the steady-state solution of M;; i.e., z°

% is a function f;, of ™, ¥ j = 1,...,m;. Here
f; : (RT U {O})'Q"| — R U {0}, where Q; is the state space of the CTMC underlying the

SRN M;. Now suppose for each i, some of the transilion firing rates/probabilities of the

model M; are funclions of one or more xf, E=1,...n;1=1,...,my. Since n* is a function
of the rates/probabilities of the SRN M;,
vy = Ji(@'(ar,. o 0,) (4)
g;(x%,,w%n) j=1,...,m;. (5)
Letx = (2},...,27). Let the function G : RN — RY, where N = Y./, m; be defined
by G(x) = (91(x),95(x),...,9% (x)). Then the above equation may be wrillen in vector
form as:

x = G(x). (6)

This is the fixed-point equation corresponding to the iterative model. We term x; as the
iteration variables and x as the iteration vector corresponding to the iterative SRN model.

Note that in this process, the iteration variables are the xé’s. However, an implicit
iteration will be carried out on the steady-state probability vector of the two SRNs. The
definition of the fixed-point equation could as well have been made in terms of the steady-
state probability vectors themselves. However, the definition in terms of measures that
aggregate these probabilities is more natural, and corresponds more to the way in which a
modeler would most likely implement the iteration process. Since the primary motivation
of this work is simplifying the proof of existence, we have chosen to define our fixed-point
equation in terms of these measures, which are functions of the steady-state probability.
However, we would like to stress the point that one of the key properties that will be
exploited in building sufficient conditions, is that the iteration variables depend on each
other only through the steady-state probabilities. This will be explained more clearly in the
following sections.

3.2 Background

The sufficient conditions under which Equation (6) has a fixed point are proven using the
following theorem:

Theorem 1 (Brouwer’s fixed-point theorem [21]) Let G : § ¢ RY — RY be con-
tinuous on the compact, convex set S, and suppose that G(S) C S, where G(S5) stands for
Uzes{G(z)}. Then G has a fized point in S.

The conditions that we will outline in the Section 3.3 are such that if the iteration
function G satisfies those conditions, it also satisfies the conditions of the Brouwer’s fixed-
point theorem. In our proof of the sufficiency of those conditions, therefore we must prove
each property of G as outlined in the above theorem. Note that among other properties, the
continuity of the function G is required. From Equation (5), it is clear that continuity of the
function G depends on the continuity of the steady-state probability vector w. Therefore,
as a background for the theorem and its proof, we will first establish the continuity of
the steady-state probability vector of an SRN under certain conditions. The steady-state
probability is a function of the entries of Q, the infinitesimal generator matrix corresponding
to that SRN. In the next section, we shall discuss the continuity of this function .

3.2.1 Continuity of the steady-state vector

The infinitesimal generator matrix Q, that corresponds to an SRN that is a part of an
iterative model, has some entries that are variable. Consider first the case of continuity at
values of these variables at which Q remains irreducible. For this case, the steady-state
vector 7 is given by

TQ =0, Zm:l.

The above equation can be transformed into a discrete-time Markov chain (DTMC)
steady-state equation by defining P = Q/¢ + I, where ¢ > max;{—Q;;}. The DTMC
constructed in this way is aperiodic, and has a unique steady-state vector. This DTMC
vector is equal to the steady-state vector corresponding to the CTMC with generator matrix
Q. Let P*® =lim,_,,, P"™. For an aperiodic, irreducible, finite DTMC this limit is unique,
all the rows of P* are equal, and are equal to the steady-state vector of the DTMC [15].
Now, define

B =adj(I-P),

where adj(A)is the adjoint of the matrix A. Let M;; be the matrix obtained by deleting the
ith row and the jth column of matrix A. Let det(A) denote the determinant of matrix A.
Then the (4,5)th entry of the adjoint matrix is given by (—1)(#*/)det(M;;). Furthermore,
suppose ¢(7) is the characteristic polynomial of P, i.e., ¢(y) = det(yI — P). Let ¢((y)
denote its first derivative. Then ¢(1)(1) is the value of this derivative function at 1. Then
P is given by [16]

B

— (1)’

Since the entries of the adjoint matrix, B, are determinants, they are polynomials in
terms of the entries of matrix Q. Thus its entries are continuous functions of the entries
of matrix Q. The operation of division is also continuous', hence entries of the matrix P>
are continuous functions of the entries of matrix Q. It follows then, that 7 is a continuous
function of the entries of matrix Q.

o0

!The division operation is continuous if the denominator is non-zero. Since this definition of P* is made
only for aperiodic, irreducible DTMC’s, we know that P°° exists and is unique. Thus, in this case the
denominator cannot be zero, and the operation is continuous.

Figure 3: A CTMC with one communicating class

Consider now, the case of continuity at points which affect the connectivity of the states
of the CTMC. For example, consider an irreducible CTMC with a state space Q. Let
the structure of the CTMC be as shown in Figure 3. Thus Q@ = {1} U C, where C is a
communicating class?. Consider the simple case when only A is the variable and all other
transition rates are constant. Such a CTMC will correspond to a Q matrix as follows:

—# pu 0
QA =1{ A Qe(Y) |,
OT

where Q¢ is the (|| —1) x (|| —1) matrix restricted to the communicating class C' depicted
in Figure 3 and 0 denotes a row vector of zeroes. Note that even though all other transition
rates are constant, Qc is a function of A, because ()22 is defined as — > ;cq ;29 @2 ;. Since
(2,1 = A, this entry of the sub-matrix Q¢ is a function of A.

The steady-state solution, m, of this CTMC is given by solving the following system of
linear equations:

T(A)Q(A) =0, Zm =1 (7)

2 A subset of states in a CTMC is called a communicating class if all the states in this subset are reachable
from each other. A communicating class C is closed if the states outside class C are not reachable from
states in class C.

10

Thus 7 is also a function of A. At A > 0, the continuity of this function is guaranteed
by the previously addressed case. However at A = 0, the CTMC is no longer irreducible,
and the continuity needs to be verified. Thus we need to prove that

lim 7(A) = «(0).

A—0

We would like to properly define 7(0). At A = 0, the CTMC has one communicating
class C'. Let T denote the set of transient states. Let X(¢) denote the state at time ¢.

For reducible CTMCs, with one transient class T, and sets of closed communicating
classes Cq,...C}, the steady state is defined as follows [15]: let for ¢ € T and 1 < r < k,

a;(r)= P[X(t) € C, for some t > 0 | X(0) = 1].
Further for j € C., define the conditional probability,

7, = lim P[X(t)=j| X(0)€e C,].

J t—o0
Then, for ¢ € T and j € C,, the steady state probability of being in state j given that the

initial state was ¢ is given by [15]:

lim PX(t)=j]| X(0)=1t]=oy(r)r}.

t—o00

The conditional steady state solution vector 7" = [ﬂ';] (j € C;) is computed by solving:

" Qc, = 0, Z T = 1. (8)
J€Cy
where Q, is the generator matrix restricted to class C,. Also, for j € T', lim;_, o, P[X () =
jl=0.
In our case, we have only one closed communicating class C; = C. Also, we have

T = {1}. Thus it is obvious that a;(1) = 1, Vi € 7. Thus for j € C, the unconditional
steady-state probability =; is given by 7; = 7r]1~. Also, m; = 0. Let us denote the restriction
of the steady-state probability vector to class C', by 7¢. Thus, m7¢ = 7!, where 7! is given
by Equation (8).

Thus 7(A) is given by Equation (7), when A > 0 and by (0, 7¢) when A = 0. Given this
definition we shall now check 7(A) for continuity at 0.

Equation (7) can be written as

—um 4 Aty = (9)
pm QL) = 0 (10)
cQu(A) = 0 i>2 (11)

12)

Zm:l (

where QZC denotes the ¢th column of the matrix Q¢.

11

From Equation (9), we can see that the limit of 71 as A tends to zero, is 0. Substituting
71 = 0 in Equations (10) , (11) and, (12) yields

TcQc(A) =0, Y mei=1,
jec
which gives as defined before (Equation (8)), the solution of the CTMC when A = 0. Thus
the steady-state solution vector m(), is continuous at A = 0 in this case. Note that the
continuity depended on the fact that the number of closed communicating classes in the
CTMC was not more than one at A = 0. If there were more than one communicating class,
the steady state vector would not have been uniquely defined, and the function would not
have been continuous. Using an argument similar to the one above, we can conclude that :

The steady-state vector of a CTMC as a function of some non-zero entries
A1, Ag, ..o, Ap of the Q matrix, is continuous at all values of A\; > 0,0 =1,2,...,k
if for all values of A\; > 0,7 =1,2,...,k, the CTMC has exactly one closed com-
municating class.

As an example of a case when 7 is not continuous, consider again the CTMC as shown
in Figure 3. In this case, if we consider A and g both as variables, then w(A,u) is not
continuous at (0,0), since at this point, the CTMC is reducible with two disjoint closed
communicating classes. The steady-state vector will now depend on the initial state of the
CTMC, and 7(0,0) will not be uniquely defined.

3.3 Statement of Conditions
The conditions for existence of a fixed point for Equation (6) are now stated as follows:

Theorem 2 Consider a set of interdependent SRNs as described in Definition 1 with a
fized-point equation given by FEquation (6). Suppose J; can be expressed as one of the
following:

L fi=f+
2. fi=fix fo,
3. [i=(h)"

4. fi=ex fu,
5. fi=h+e,
6. f} =},

where a,c are constants and a,c € RT. f; and f, are non-negative real-valued func-
tions and f1 and fy can also be expressed in one of the ways described above.

Then,¥Yi=1,...n; j=1,...,m;, we can find l;-,ué- € R U {0} such that x; € [l;,ué-],
whenever x; exists and is well-defined. Suppose the underlying CTMC corresponding to

12

each M; is such that it has exactly one closed communicating class for all values of w; €

[l;, fy] Vi= 1 ,n; 7 =1,...,m;. Then, a fized poinl .I;, corresponding to this equation
exists in [l’, ut].
Proof

We prove this result by establishing that the function G satisfies the conditions required in
Brouwer’s fixed-point theorem. Recall that G is defined as

G(x) = (g1(x),...,g7 (%)) (13)
= (AE'x),..., fir (77(x))) (14)

1. The Set S: We must first identify the set S for which we can show that G(.5) C §. This is
done by showing that if f; is defined at some point y € (RT U{0})/%l | then f;(y) € [l;-, u;]
for some l;, u; € Rt U {0}. It is at this point that we shall be making use of the restricted
definition of f;, and the fact that it is a defined in terms of 7".

Since f;(y) is defined recursively, we shall prove this by structural induction. We first
consider the base case of f; = ﬂi. Then f;(y) € [0,1]. This forms the basis of our induction.
Now, suppose fi(y) € [l1,u1] and fa(y) € [la, ug] where Iy, uy,ly, us € R U {0}. Then if

L fi(y) = h(¥) + fo(y), then fi(y) € [l + Iz, ur + uz).
2. fiy) = fily) X fo(y), then fi(y) € [l1 X Iz, u1 X ua).
3. Fily) = ()*(y), then [i(y) € [(1)*, (un)?].

4. fi(y) = ¢ x fi(y), then fi(y) € [ely, cuy].

5. fiy) = e+ fi(y), then fi(y) € [c+ 1, ¢+ us].

Thus, by induction, fZ [l i, ué], where l;, u; is defined by one of the sets above. From
Equation (14), gi(x) = fi('(x)), therefore, gi(x) is also in [I}, u%]. Since z% = gi(x), this
implies that % € [I%, u}].

Now, since we assume (according to the theorem) that for all Th € [l;, u;], the underlying
CTMC of every SRN has only one communicating class, the steady-state solution m; will
be unique and well-defined whenever x. € [l;,]] (from Sectlon 3.2, 1),foralli=1,...,m
and j = 1,...,m,. From the deﬁmtlon of fZ it is clear that 1f T exists, fZ exists, Wthh
implies that gj- exists . Therefore g](x) is defined whenever 2’ € [l;,]] Vi=1,...,m and
7=1,...,my,.

Define S = [If, uj]x...x[I% ,u”]. Then, from the preceding discussion, x = G(x) € 5,
whenever G exists, and G() exists whenever x € §. That is :

G(S)C S.

13

2. The compactness and closedness of S: Since S is closed, it is compact [10]. S is also
convex because any interval on the real line is a convex set (Example 3, Section 1-4 in [10])
and convexity is preserved under the operation of cartesian product (Prop. 1.2.3, Chap III,
Sec 1.2 in [14]).

3. Continuity of G: G is continuous in 9, if each f; is continuous in the set {7*(x)|x €
S}. When x is in5, we have assumed that the underlying CTMC of each SRN has a single
closed communicating class. Therefore, from the discussion of Section 3.2, the steady-state
vector, ¢, is continuous in S, Vi = 1,...,m.

The operations in (1)—(6) that are involved in the definition of f; are also all continuous.

Therefore, f;(ﬂ’) is continuous in [0,1]. Therefore it is also continuous in {7%(x)|x € S}.
Therefore, we can conclude that G is continuous in 5.
Thus, G satisfies all the conditions of the Brouwer’s fixed-point theorem, and a fixed
point x € § exists such that x = G(x).

Corollary : It follows from the above theorem that if the variables w; are expected reward
rates and the underlying CTMC of each SRN model M; has exactly one closed communi-
cating class for all values of xé-, a fixed point will exist. The constructive method outlined
in the proof above can identify the set in which a fixed point will be found.

This corollary is especially useful with the use of SRN tools. In other words, if an
iterative SRN model is being specified through an SRN tool and the variables being iterated
upon are expected reward rates (specified through the tool), then the second condition of
one closed communicating class can be verified (also using a SRN tool such as SPNP [7]),
and existence of a fixed point can be confirmed.

4 Examples

In this section we show how the sufficient conditions make proof of existence of a fixed point
in SRN-based iterative models easier. The first example is the motivating example from
Section 2. In this case, the proof of existence was given in the original paper, here we show
that it is a special case of our general conditions [26]. The next example is a trivial example
to show a case where the theorem conditions are not satisfied, and hence existence could
not be proven.

4.1 Availability Modeling

Equation (3) from Section 2 can be proved to have a fixed point using Theorem 2. The
function r; = Y.7_, 7'(k) obviously satisfies the conditions of the theorem. Now, at some
values of rj,7 = 1,...,n, in [0, 1] the probability of either transition Toff-site.i or Ton-site.i
is zero. Further, the rate of transition T'repatr may also evaluate to zero. However, it can
be verified (using, for instance, a SRN to CTMC mapping tool such as SPNP [7]) that at
these and all other values of r; € [0, 1], the SRN gives rise to a CTMC with only one closed

communicating class. Thus a fixed point exists for this equation in the interval [0, 1].

14

4.2 Example : Trivial Pair of SRNs

Now we show an example where conditions of the theorem are not met, and hence existence
of a fixed point cannot not be proven using this theorem.

P P2

11 2

SRN1 SRN2

Figure 4: Example where the conditions are not satisfied

Consider a trivial pair of SRNs as shown in Figure 4. Let p; and py denote the firing
rates of transitions ¢; and ¢; respectively. Let the measures derived from each of these SRNs
be the throughputs of transitions ¢; and ¢, respectively. Denote these by =} and 2%. Then :

Ty =T = (15)
i = mh, e = pa, (16)
where 7'[';1 is the probability of a token being in place p;, and 71';2 is the probability of a

token being in place p;. For the SRNs shown, it is clear that both these probabilities are
equal to 1.
Now suppose that u; depends on z? as follows :
p =2 x 3. (17)

Also, let py depend on zi as follows :

a2 =2 X 7. (18)
Then from Equation (15), (16), (17) and (18), the fixed-point equation can be written
as :
x] = 223
x} = 221 (19)

The functions f; of Theorem 2 are given here in Equation (15) and (16) and for ¢ = 1,2
and j = 1. These functions do not satisfy the requirements of Theorem 2. Though it may
seem like f; can be expressed using Rules (4) and (6) of the theorem, that is incorrect,

15

because in Rule (4), the multiplier ¢ must be a constant. In Equations (15) and (16), the
multipliers gy and py are unknowns, and hence violate this rule. Thus Theorem 2 cannot
be used to prove the existence of a fixed point for Equation (19).

Note that in the example, there is a trivial fixed point, which is (z},2%) = (0,0).
However, the conditions of Theorem 2, which are only sufficient and not necessary, could
not be used to prove the existence of this trivial fixed point.

5 Approximate analysis of priority scheduling systems

In this section® we present a performance analysis of a heterogeneous multiprocessor system
which uses priority discipline to schedule its tasks. The tasks may arrive to this system
from a Poisson source or due to spawning or conditional branching by other tasks in the
system. We model this system using SRNs and apply decomposition and iteration to solve
the model. We shall again see that Theorem 2 can be used to establish the existence of a
fixed point for the iterative model. This section is divided into the following subsections :
Section 5.1 provides a brief background and motivation. In Section 5.2 we give a precise
description of the system we are analyzing, in Section 5.3 we give an example of the system
and describe the SRN model for this system. In Section 5.4 we show how the example
model could be decomposed into two iterative SRNs. Section 5.5 shows how the existence
of a fixed point can be proven using Theorem 2, and Section 5.6 describes results showing
the savings in state space, and the accuracy of the approximation.

5.1 Background

Priority queues with tasks that could feedback into the system through spawning and con-
ditional branching were analyzed in [9, 24]. Similar multi-tasking systems have also been
modeled in [13, 25] though not in the domain of priority scheduled systems. Nishida [20]
analyzed a heterogeneous multiprocessor system with priority scheduled jobs which arrive
from a Poisson source. A continuous-time Markov chain is employed for the analysis, and
a lumping scheme is used to tackle the problem of large state space of the CTMC.

In a previous paper [17], we had extended this work in priority queues to consider a
more general task arrival behavior. We allow tasks that can arrive to the system externally
as well as through spawning/probabilistic branching of other tasks; furthermore this arrival
may depend on the number of executions of another task.

This task structure models some important computing systems. For instance, in fault-
tolerant computing systems, diagnostic tasks are often spawned by other tasks on occurrence
of certain events or errors. On the other hand, a routine which uses a hardware component
may initiate diagnostic routines on that component after every n uses of the component.
The performance of such systems may be analyzed using the model presented in [17]. Since
the resulting state-space is very large, decomposition and iteration was used. In [17] a
general model was developed for such systems, and a generalized iterative decomposition

#This section is based on the paper “Approximate Analysis of priority scheduling systems using stochastic
reward nets” that was presented at the “Thirteenth International Conference on Distributed Computing
Systems” in May, 1993.

16

scheme for such models was presented. A proof for existence of a fixed point was also
provided in [17]. In this paper we shall only present an example of such a system, and show
that it again fits into the set of general models satisfying certain conditions as described in
this paper. Thus we will prove the existence of a fixed point by applying Theorem 2.

5.2 System description

The system analyzed in this section is a heterogeneous multiprocessor system with non-
preemptive priority scheduling of tasks. The tasks are classified according to the way they
arrive to the system.

¢ Poisson Tasks: these arrive according to a Poisson process, so that the interarrival
time of these tasks is exponentially distributed.

¢ Sporadic Tasks: these arrive to the system by spawning or conditional branching of
other Poisson and/or sporadic tasks.

¢ Poisson and Sporadic: These arrive from a Poisson source or are created by other
tasks.

Each task has a finite buffer where its instances wait to execute on a processor. For
instances of the same task, the service discipline is FCFS. Different tasks are served accord-
ing to different priorities. After a task acquires a processor, it executes on the processor
for an exponentially distributed amount of time. A task may create some instances of
other sporadic tasks. When the finite buffer limit is reached, any new arriving task of the
corresponding type is lost.

The task system consists of a set of tasks, 7 = {11,T5,...,Tn}. Each task T; is
characterized by:

e J; : the parameter of the Poisson process according to which the tasks arrive to the
computing system. If the task is strictly sporadic, A; = 0.

o A parent set : P; = {(1j,m;;,n;i,q;:) | T; € T,T; spawns task T;}. In the 4-tuple
(15, m;ji,m54,45,), ¢j; is the probability that n;; instances of task 7; are spawned by
task 7} after the m;;th execution of 7. This set is empty for strictly Poisson tasks.

e 1; : the parameter of the exponentially distributed service demand. (Service demand
could be number of instructions to be processed, or some other measure of the amount
of service required by a task.)

e M, : the buffer limit.

e p;, 1 <p; <N : task priority; we use the convention that p; > p; implies that 7; has
higher priority than 7;.

A task system in which each task is a strictly sporadic task, is a degenerate system; i.e.,
if we start with an emply system, no task will ever arrive to the system. Hence we require
that at least one of the tasks in the task system be Poisson.

The processing system is specified by the following:

17

e Number of processors: P, the ¢th processor is denoted by F;.

e The capacity of each processor: C;,i = 1,..., P. The capacity of a processor is its
rate of providing service, for example it could be number of instructions that it can
process in one second.

e Discipline for allocation of idle processors to tasks: we assume this also to be by
order of pre-assigned priority. Let pp; denote the priority of the processor P;, where
1< pp;i <P

We would like to compute performance measures such as the throughputs, utilizations,
mean queue lengths and mean response times of this system.

5.3 An example

Consider a two processor heterogeneous system, that maintains information which is reg-
ularly read and updated. In this system, we would like to provide the read tasks with as
up-to-date information as possible. One way to achieve this effect is to give preference
to the update tasks, so that the read tasks are executed after the latest update has been
performed. Thus update tasks are assigned higher priority than the read tasks. To avoid
excessive scheduling overhead, the system adopts non-preemptive priority.

Let T denote the update task, and 74 denote the read task. During its execution, the
update task may come across an erroneous condition in the system. If this error is not
critical, the update task spawns an error-handler task* denoted by 75. As a measure of
preventive diagnostics, the update task also schedules a diagnostic task (denoted by T%)
after every five executions. Task T35 runs short diagnostic checks on the system. After every
ten executions of the error-handler task (7%), it schedules another diagnostic task, 75. This
task runs further in-depth diagnostics on the entire system. We assume that the priority
of these tasks is in the order p; > ... > p5 (thus 77 has highest priority and 75 has lowest
priority). We also assume that priority of processor P; is greater than that of P,. We
further assume that tasks 77 and T4 arrive to the system according to independent Poisson
processes with parameters Ay and A4 respectively. Finally, let ¢ denote the conditional
probability that a non-critical error occurs in the system given that T3 is running.

This system can be represented by an SRN as shown in Figure 5. Corresponding to
each task 7;,¢ = 1,...,5 there is a place pw; which represents the buffer. For Poisson
task 17 (14), a timed transition {ps; ({pss4), with firing rate A\; (A4), deposits tokens in
the place pwy (pwa), representing the arrivals of the task according to the Poisson process.
For each 7 = 1,4, the arc from itps; to pw; has the marking dependent multiplicity of
min{1l, M; — #(pw;)}. This represents the fact that tasks arriving to a full buffer are lost.
(In the figure, variable cardinality arcs are denoted by a “Z” across the arcs.) A token in
place pa; denotes that processor P; is available, for j = 1,2. Fori=1,...,5and 7 = 1,2,
the transition gp;; represents the acquisition of processor P; by task 7. The priority

*If the error is critical, the processor may take drastic actions such as shutting the system down. Since in
this section we are concerned only with performance of a system while it is operational, we do not consider
this possibility.

18

tCL? Pd1,2 pd5 3 tC573

Figure 5: SRN corresponding to the example

19

scheduling discipline is reflected in the net by assigning the following priority to transition
gpi; + max{P, N} X p; + pp;, where P =2 and N = 5.

On firing, transition gp; ; puts ¢ tokens into place pte;, indicating that task 7} is executing
on processor P;. The transition fe; represents the execution time of a task on processor
P;. When there are 7 tokens in place pte;, the firing rate of te;, j = 1,2 must represent the
execution rate of task 7; on processor P; and is given by p;C;, when #(pte;) = ¢; thus it
is a marking-dependent firing rate. On firing, transition te; removes all tokens from place
pte; and deposits a token back in pa;. When the number of tokens in pte; is equal to either
1 or 5, te; also deposits the same number of tokens that it removes from pte;, into ptd;.
When the number of tokens in pte; is equal to 2,3 or 4, transition fe; puts zero tokens in
place ptd;. This is because we need to keep track of the number of executions of tasks that
spawn other tasks. For each such parent task 7; (¢ = 1,5) and processor P;, j = 1,2, there
is a transition ¢d;; that recognizes the completion of task 7; by the arrival of 7 tokens in
place ptd;. This is accomplished by having an input arc from ptd; with multiplicity ¢, and
an inhibitor arc from ptd; with multiplicity 7 4+ 1 (except when 7 = 5, we do not need the
inhibitor arc). Thus td;; fires when there are exactly ¢ tokens in place ptd;. For each child
task 1 of a parent task T, there is a place pd; ; with an output arc from ¢d;; to pd;; (places
pdy 5, pdy 2 and pds 3 in the figure). The place pd;; together with transition ¢¢;; counts the
number of completions of task 71; required to spawn an instance of task 7;. This is done by
setting the multiplicity of the arc from pd;; to tc;; equal to m;;. In the case of place pd; 5
there is also an arc from this place to a transition ¢nc; 5. This is to reflect the probabilistic
spawning of task 1’5 by task 7. Thus tcq 5 has probability ¢ and {nc; 5 has probability 1 —g¢.
Transition ¢ney 5 sinks the token out of place pd; 5 signifying the event that task 75 was not
spawned.

Each transition t¢;; deposits tokens in place pw; (which is the place representing the
buffer for task 17); the marking-dependent multiplicity of the arc from tc;; to pw; is defined
as min{n;;, M; — #(pw;)}. The priorities of immediate transitions ¢d;;,tc;; and tnc;; are
set to be higher than the priorities of all the transitions gp; ;.

This SRN can be mapped to an irreducible CTMC. We can solve this CTMC for its
steady-state behavior, and compute the required performance measures, using the SRN
specification and solution tool SPNP [7].

5.3.1 Performance measures

Performance measures of the system are derived using appropriate rewards. Define I; ;(m),
a function of marking m, as 1 if #(pte;) = ¢ and 0 if #(pte;) # ¢ in marking m. If
we assign a reward rate I; j(m) to marking m, the expected reward rate at steady state
is the utilization of P; by T;. Average throughput of task 7; is calculated by assigning
a reward rate p;Cyl;1(m) + p;Col;2(m) to a marking m of the SRN. The mean queue
length (including the tasks in service), of task T is calculated by assigning a reward rate of
#(pw;) + I; 1 + 1; 2 to each marking.

Let A; be the throughput of task 7;, and let L; be its average queue length. Then by
Little’s law [27], mean response time is given by: R; = L;/A;.

20

5.4 Approximate model of the example system

The model described in Section 5.3 gave rise to 17574 states in the underlying CTMC,
when M; = 1,Vi = 1,...,5. The state space increases exponentially in terms of the model
parameters such as the number of task types.

We use a well-known lumping technique [20] to reduce the size of the state space gen-
erated by the SRN model. This lumping technique is based on the following observation:
from the viewpoint of task 7T;, there are only two sets of tasks: tasks that have a priority
higher than itself, and tasks that have a priority lower than itself. In other words, it does
not matter which of the higher priority tasks are waiting to be executed on the processor;
if any of them is, task 7T; will not acquire the processor. Similarly, all lower priority tasks
matter only when they are already executing on the processor(s), and task 7; has to wait
for them to finish. We apply this observation to decompose the model into two submodels
as follows: the first submodel only models tasks 17,7 and T35 separately as individual tasks
and lumps tasks 74 and 7’5 into one task, Ty5 of priority 2 (lowest). In submodel 2, we
lump tasks 73,75 and 75 into one task of priority 3 (highest) and represent tasks 74 and 75
separately as individual tasks. (Note that this lumping is largely ad-hoc, and for expository
purposes only. The tasks could have been partitioned into other groups of high priority and
low priority tasks). Figures 6(a) and (b) depict the SRNs for the two resulting submodels.
(In the figures, we continue to use the subscript 4 to denote task 745 and the subscript 3 to
denote task 7733, so as to avoid cluttering).

Note that in submodel 1, the arrival of task T5 can no longer be explicitly represented
as a spawning from task 75, because task T5 is not individually represented. Therefore, the
arrival of task T35 is approximated by a Poisson process. The average rate at which task 75
would have been spawned by task 75, is the rate of completion of T divided by the number
of executions after which it spawns task T3. Thus the arrival rate of task T3 is equal to
As5/10.

The spawning of task Ts by task T} is now interpreted as the spawning of task Ty5 by
T1, and the places and transitions are changed to reflect that. The service demand of task
Ty5 is approximated as a weighted sum of the individual service demands of task T4 and
Ts. The weights are the conditional probability that tasks Ty or Ts have arrived, given that
the “lumped” task Ty45 has arrived. Thus, pg45 is :

Mk
_/\4-|-/\5'u4 /\4+/\5N57

K45

where A5 = gAq, which is the average rate of arrival of task T5. The buffer limit for the
task Ty5 is set equal to My + Ms.

Note that the places and transitions representing the creation of task 15 by 17 are left
intact, because both tasks 77 and 15 are represented individually in the model.

To solve this submodel, we require the measure A5 and A;. A5 can be derived from sub-
model 2 since it represents task 1’5 individually, whereas Ay must be derived from submodel
1 itself, by iterative approximation.

Similarly, in submodel 2, arrivals of tasks T; and T are approximated by Poisson pro-
cesses with rates A1/5 and ¢gA; respectively. Note that the transition {psy, which has rate

21

o

N
N

22

Figure 6: (a) Submodel 1 (b) Submodel 2

A1/5 puts tokens into place pws, and so does transition ¢ps;. This is equivalent to having
a single transition with the rate which is the sum of these two rates. The figure shows two
transitions for ease of understanding. The service demand of task 7793 is approximated by

B A 4 A2 N A3
S VNI VTS W L VNI VIS W S VIO Wi W

where Ay = A1/5, A3 = A5/10. The buffer limit for task T’ 93 is set equal tp My + Mo+ Ms.

To solve this submodel, we need the value of Ay, and As. Ay can be obtained from
the solution of sub-model 1, since it represents task 73 individually. As must derived from
submodel 2 itself, by iterative approximation.

The two models are clearly interdependent, and must be solved using fixed-point iter-
ation. We must first ensure that a fixed point exists. In the following section, we shall
formally define our fixed-point equation, and verify its properties with Theorem 2.

5.5 Existence of a fixed point

In the submodels of Figure 6 there are two iteration variables: Aj, the throughput of task
11, and As, the throughput of task T5. The throughputs are calculated as follows:

Al = Z ,ul(clll,l(m) + Cgflvz(m)) ﬂg)(AhAﬂ (20)
melh

AS = Z HS(CIIS,l(m) + 021572(771)) ﬂg)(Al,A5) (21)
meEfly

where in Equation (20), € is the set of states of submodel 1, and in Equation (21),
Q, is the set of states of submodel 2. 7(1) denotes the steady-state probability vector of
of submodel 1 and 7(?) denotes the steady-state probability vector of of submodel 2. Note
that 7(1) is a function of Ay and As, because the firing rates of the transitions ¢ps3 and te;
in SRN 1 are approximated using As and A; respectively. Similarly 7(2) is a function of A4
and As, because the firing rate of transitions ¢pss and te; in SRN 2 are approximated using
Ay and Aj respectively. Thus Equations (20) and (21) are the fixed-point equations in two
variables corresponding to our iterative scheme.

When A; and Aj are both greater than zero the two SRNs obviously give rise to irre-
ducible CTMCs with more than one state. When either or both of A; and Aj are zero it
can be verified again that SRNs 1 and 5 give rise to irreducible CTMCs with more than one
state. Further, the functions of 7(1) and 7(?) in Equations (20) and (21) above satisfy the
conditions of Theorem 2, because these functions are weighted sums of state probabilities,
where the weights are constants. Therefore a fixed point will exist in a closed subset of
(R* U {0})%. This subset can be identified as follows: From Equation (20), we have,

A < Z Nl(Cl + Cz) = Nl(Cl + Cg) X |Qll = u (say). (22)
’iEQl

23

Similarly from Equation (21),

A5 < Z ,u5(C1 + Cg) = ,u5(01 + Cg) X |QQ| = Us (say). (23)
’iEQQ

A fixed point then exists in the set [0, u1] x [0, us).

5.6 Numerical Results

In all our experiments, the iteration process converged fairly rapidly, in about 5-6 iterations.
The savings gained in space were enormous. Table 3 shows the number of states of the
underlying CTMC generated by the same system in the complete model, and in the two
sub-models, when the buffer limit on tasks is varied. For system sizes where we could

Exact | Submodel 1 | Submodel 2
6788 1085 1630
9134 1301 2170
10157 | 1625 1900
13676 | 1949 2530
17574 | 1533 1510
26182 | 2029 2230
101398 | 6689 4690

Table 3: Savings in state space size

0.45
0.4
0.35 F
0.3

0.25
Throughput
EP%.2

0.15
0.1
0.05

O 1 1 1 1 1 1 1 1

0.10.20.30.40.50.60.70.80.91.0

Utilization of processor Py

Figure 7: Exact vs approximate throughputs

24

1.4 I I I I I I I I

1.2
L
Mean g
time 0-6

0.4
0.2

0
0.10.20.30.40.50.60.70.80.91.0

Utilization of processor Py

Figure 8: Exact vs Approximate response times

solve both the approximate and the complete model, we compared the approximation results
with the exact results.

Figures 7 and 8 compare the exact vs approximate throughput and the response time,
respectively, for different utilization levels of processor P;. The approximation error of high
priority tasks at very high utilization levels stays quite low (< 5%). The approximation
error of response times of lower priority jobs is small for lower utilizations but deteriorates
as the utilization increases.

6 Conclusions

In this paper we outlined some conditions that provide an easy check to verify the existence
of a fixed point for an iterative SRN model. This theorem is useful because in many SRN
models, the iteration variables are expected reward rates which automatically satisfy part of
the conditions. This paper pointed out the intricate properties of continuity etc., that must
be kept in mind before assuming that a fixed point exists. This work contributes towards
the possibility of automating the solution of SRNs by decomposition and aggregation.

We showed that some existing models from the literature fit into the conditions described
in this paper, and also applied this technique to a priority scheduling system with branching
and spawning of tasks.

There are many related issues that need further research : the convergence of the iter-
ative method, the correctness and uniqueness of the fixed point, and the errors resulting
because of the use of an iterative method, are all problems that are still unresolved in the
general context.

25

Acknowledgements

The authors would like to thank Dr. Phil Chimento, the referees of PNPM’95 and the
referees of IEEE-TSE for very detailed and useful comments.

References

[1] M. Ajmone Marsan, G. Conte, and G. Balbo. A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems. ACM Trans. Compul.
Syst., 2(2):93-122, May 1984.

[2] J. T. Blake and K. S. Trivedi. Reliability analysis of interconnection networks using
hierarchical composition. IEEE Trans. Reliability, R-38(1):111-120, Apr. 1989.

[3] A. Chesnais, E. Gelenbe, and I. Mitrani. On the modeling of parallel access to shared
data. Comminications of the ACM, 26(3):196-202, 1983.

[4] Hoon Choi and Kishor Trivedi. Approximate performance models of polling systems
using stochastic Petri nets. In Proceedings of the IEEE INFOCOM 92, pages 2306—
2314, Florence, Italy, May 1992.

[5] G. Ciardo. Analysis of Large Stochastic Petri Net Models. PhD thesis, Department of
Computer Science, Duke University, Durham, NC, Apr. 1989.

[6] G. Ciardo, A. Blakemore, P. F. Chimento, and K. S. Trivedi. Automated generation and
analysis of Markov reward models using stochastic reward nets. In A. Freidman and
Jr. W. Miller, editors, Linear Algebra, Markov Chains, and Queueing Models, IMA
Volumes in Mathematics and ils Applications, volume 48, pages 145-191. Springer-
Verlag, Heidelberg, 1993.

[7] G. Ciardo, J. Muppala, and K. Trivedi. SPNP: Stochastic Petri net package. In Proc.
Int. Conf. on Petri Nets and Performance Models, pages 142-150, Kyoto, Japan, Dec.
1989.

[8] G. Ciardo and K. S. Trivedi. A decomposition approach for stochastic Petri net models.
Perf. Fval., 18(1):37-59, July 1993.

[9] J. Daigle and C. E. Houstis. Analysis of a task oriented multipriority queueing system.
IEEE Trans. Commaunications, 29(11):1669-1677, Nov. 1981.

[10] W. Fleming. Functions of Several Variables. Springer-Verlag, New York, 2nd edition,
1977.

[11] B. R. Haverkort. Approximate performability and dependability analysis using gener-
alized stochastic Petri nets. Performance FEvaluation, 18(1):61-78, July 1993.

[12] P. Heidelberger and K. Trivedi. Queueing network models for parallel processing
with asynchronous tasks. IEEE Transactions on Computers, C-31(11):1099-1108, Nov.
1982.

26

[13] P. Heidelberger and K.S. Trivedi. Analytic queuing models for programs with internal
concurrency. IEEF Transactions on Computers, 32:73-82, 1983.

[14] Jean-Baptiste Hiriart-Urruty and Claude Lemarechal. Convez analysis and minimiza-
tion algorithms. Springer-Verlag, Berlin, 1993.

[15] V. G. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman Hall, London,
1995.

[16] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, San
Diego, CA, U.S.A., 2nd edition, 1985.

[17] V. Mainkar and K. S. Trivedi. Approximate analysis of priority scheduling systems
using stochastic reward nets. In Thirteenth International Conference on Distributed
Compuling Systems, pages 466-473, Pittsburgh, PA, May 1993.

[18] M. K. Molloy. Performance analysis using stochastic Petri nets. IEEFE Trans. Comput.,
C-31(9):913-917, Sept. 1982.

[19] J. K. Muppala and K. S. Trivedi. Composite performance and availability analysis
using a hierarchy of stochastic reward nets. In G. Balbo, editor, Proc. Fifth Int. Conf.
on Modelling Techniques and Tools for Compuler Performance Fuvalualion, Torino,
Italy, Feb. 1991.

[20] T. Nishida. Approximate analysis for heterogeneous multiprocessor systems with pri-
ority jobs. Perf. Fval., 15:77-88, June 1992.

[21] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in
Several Variables. Academic Press, Inc., New York, 1970.

[22] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Engle-
wood Cliffs, NJ, U.S.A., 1981.

[23] R. A. Sahner and K. S. Trivedi. A hierarchical, combinatorial-Markov method of solving
complex reliability models. In Proc. of the Fuall Joint Comput. Conf., pages 817825,
Dallas, Texas, Nov. 1986.

[24] B. Simon. Priority queues with feedback. Journal of the ACM, 31(1):134-149, 1984.

[25] A. Thomasian and P.F. Bay. Analytic queuing network models for parallel processing
of tasks systems. IFFFE Trans. on Computers, 35(12):1045-1054, Dec. 1986.

[26] Lorrie A. Tomek and K. S. Trivedi. Fixed-point iteration in availability modeling. In
M. Dal Cin, editor, Informatik-Fachberichte, Vol. 91: Fehlertolerierende Rechensys-
teme, pages 229-240, Berlin, 1991. Springer- Verlag.

[27] K. S. Trivedi. Probability & Statistics with Reliability, Queueing, and Computer Science
Applications. Prentice-Hall, Englewood Cliffs, NJ, U.S.A., 1982.

27

[28] K. S. Trivedi and R. Geist. Decomposition in reliability analysis of fault-tolerant
systems. IEEE Trans. Reliability, R-32(5):463-468, Dec. 1983.

[29] M. Veeraraghavan and K. S. Trivedi. Hierarchical modeling for reliability and perfor-
mance measures. In S. K. Tewksbury, B. W. Dickson, and S. C. Schwartz, editors,
Concurrent Computations: Algorithms, Architecture and Technology. Plenum Press,
New York, 1987.

A Overview of SRNs

A Petri net [22] is a directed bipartite graph with two types of nodes called places (repre-
sented by circles) and transitions (represented by rectangles or bars). Directed arcs (rep-
resented by arrows) connect places to transitions, and vice versa. If an arc exists from a
place (transition) to a transition (place), then the place is called an input (output) place
of that transition, and the arc is called an input (output) arc of that transition. Places
may contain tokens (represented by dots or numbers). The state of a Petri net is defined
by the number of tokens in each place, and is represented by a vector M = (Iy,lz,- -, l;),
called a marking of the Petri net, where [; is the number of tokens in place ¢z and % is the
number of places in the net. The notation #(7, M) is used to denote the number of tokens
in place ¢ in marking M. A multiplicity is a non-negative integer that may be associated
with an input or output arc. A transition is said to be enabled if each of its input places
contains at least as many tokens as that input arc’s multiplicity. An enabled transition
can fire. When it fires, as many tokens as an input arc’s multiplicity are removed from the
corresponding input place, and as many tokens as an output arc’s multiplicity are deposited
in the corresponding output place.

Structural extensions to Petri nets include inhibitor arcs (denoted by an arc with a circle
instead of an arrow head), which connect places to transitions. A transition can be enabled
only if the number of tokens in its inhibitor place is less than the multiplicity of the inhibitor
arc.

A set of transitions is said to be conflicting when the firing of one disables the rest.
Transitions may be assigned priorities that can be used to resolve conflicts between transi-
tions.

Stochastic Petri Nets [18] are Petri nets in which we associate an exponentially dis-
tributed time delay with transitions. Generalized Stochastic Petri Nets [1] allow transitions
to have an exponentially distributed time delay (Zimed transitions, represented by rectan-
gles) or a zero time delay (immediate transitions, represented by bars) associated with them.
The firing rate of the timed transitions may also be marking-dependent. A marking of a
GSPN is said to be vanishing if at least one immediate transition is enabled in it and is said
to be tangible otherwise. Conflicts among immediate transitions in a vanishing marking
are resolved by by assigning probabilities to conflicting sets of immediate transitions. This
probability may also be marking-dependent.

GSPNs can be mapped to continuous-time Markov chains [5]. If the resulting CTMC is
irreducible, we can compute the steady-state probability vector, 7 of the CTMC.

28

A Stochastic Reward Net [19] is obtained by associating reward rates with markings of
a GSPN. We associate a reward rate r; with every tangible marking of the SRN, then the
expected reward rate at steady-state can be computed as >, r;m;. Several more extensions
have been made in SRNs, which include allowing multiplicities of arcs to be marking-
dependent. Such arcs are termed variable cardinality arcs. Further, enabling functions or
guards may be associated with transitions. Guards are marking-dependent predicates which
have to be satisfied (should evaluate to true) for transitions to be considered enabled.

With the use of appropriate reward rates, the expected reward rate can give us several
useful measures of a model. In our SRN models, reward rates will be various performance
indices; thus expected reward rate at steady-state will give us the average values of the
performance measures of the system.

29

