
A Measurement Study of the Linux TCP/IP Stack Performance and
Scalability on SMP systems*

Shourya P. Bhattacharya
Kanwal Rekhi School of Information Technology

Indian Institute of Technology, Bombay
Email: shourya@it.iitb.ac.in

Varsha Apte
Computer Science and Engineering Department

Indian Institute of Technology, Bombay
Email: varsha@cse.iitb.ac.in

Abstract— The performance of the protocol stack
implementation of an operating system can greatly
impact the performance of networked applications
that run on it. In this paper, we present a thorough
measurement study and comparison of the network
stack performance of the two popular Linux kernels:
2.4 and 2.6, with a special focus on their performance
on SMP architectures. Our findings reveal that inter-
rupt processing costs, device driver overheads, check-
summing and buffer copying are dominant overheads
of protocol processing. We find that although raw CPU
costs are not very different between the two kernels,
Linux 2.6 shows vastly improved scalability, attributed
to better scheduling and kernel locking mechanisms.
We also uncover an anomalous behaviour in which
Linux 2.6 performance degrades when packet process-
ing for a single connection is distributed over multiple
processors. This, however, verifies the superiority of
the “processor per connection” model for parallel
processing.

I. INTRODUCTION

The phenomenal growth of networked applica-
tions and their users has created a compelling need
for very high speed and highly scalable commu-
nications software. At the heart of any application
written for use over a network, is the lower layer
protocol stack implementation of the underlying
operating system. For any application to run at
high speed and achieve high scalability, the protocol
stack implementation that it runs on must also be
high speed, and must not become a bottleneck.
Thus it is important to study and understand the
performance of the protocol stack implementation
which the application will use.

—————————————————
*This work was sponsored by UNM Systems (India) Pvt. Ltd.

Recent trends in technology are showing that
although the raw transmission speeds used in net-
works are increasing rapidly, the rate of increase
in processor speeds has slowed down over the last
couple of years. While the network backbone speed
has increased in orders of magnitude from the
100Mbps Ethernet to Gigabit Ethernet and 10 Gi-
gabit Ethernet, CPU clock frequency has increased
linearly [22].

A consequence of this is that network protocol
processing overheads have risen sharply in compari-
son with the time spend in packet transmission [25].
In the case of Internet-based application servers,
the protocol processing, i.e. TCP/IP processing, has
to be carried out on the general purpose hardware
that the server runs on. At high load conditions,
the network protocol processing can consume a
large fraction of the available computing resources,
which can degrade the throughput of the higher
layer application.

Several approaches have been employed to scale
up the protocol stack implementations. Since par-
allel processing architectures are becoming increas-
ingly available [16], protocol stack implementations
can be optimized to exploit these architectures.
In the context of TCP/IP, offloading the protocol
processing to dedicated hardware in the NIC, has
also been proposed [17], [24].

For the purpose of determining the TCP/IP com-
ponents that have the highest processing require-
ments, or to determine how the implementation
scales to SMP architectures, a careful performance
study of the TCP/IP stack implementation of the
operating system in question must be done. In this
paper, we discuss the results of such a study done

for the Linux Operating System. The Linux OS
has been a popular choice for server class systems
due to its stability and security features, and it is
now used even by large-scale system operators such
as Amazon and Google [11], [13]. In this paper,
we have focused on the network stack performance
of Linux kernel 2.4 and kernel 2.6. Until recently,
kernel 2.4 was the most stable Linux kernel and
was used extensively. Kernel 2.6 is the latest stable
Linux kernel and is fast replacing kernel 2.4.

Although several performance studies of the TCP
protocol stack [1], [6], [9], [10] have been done, this
is the first time a thorough comparison of Linux 2.4
and Linux 2.6 TCP/IP stack performance has been
carried out. We have compared the performance
of these two Linux versions along various met-
rics: bulk data throughput, connection throughput
and scalability across multiple processors. We also
present a fine-grained profiling of resource usage
by the TCP/IP stack functions, thereby identifying
the bottlenecks.

In most of the experiments, kernel 2.6 performed
better than kernel 2.4. Although this is to be ex-
pected, we have identified specific changes in Linux
2.6 which contribute to the improved performance.
We also discuss some unexpected results such as
the degraded performance of kernel 2.6 on SMP
architecture when processing a single connection
on an SMP system. We present fine grained kernel
profiling results which explain the performance
characteristics observed in the experiments.

The rest of the paper is organised as follows.
In Section II, we review previous work in TCP/IP
profiling, and discuss some approaches for protocol
processing improvement. Section III discusses the
improvements made in Linux kernel 2.6 which
affect the network performance of the system. Sec-
tion IV presents results of performance measure-
ment on uniprocessor systems, while Section V
discusses results of performance measurement on
multiprocessor systems. In Section VI we discuss
the kernel profiling results and inferences drawn
from it. In Section VII we conclude with our main
observations.

II. BACKGROUND

Several studies have been done earlier on the
performance of the TCP/IP stack processing [1],
[5], [6], [9], [10]. Copying and checksumming,
among others, have usually been identified as ex-
pensive operations. Thus, zero copy networking,
integrated checksum and copying, header prediction
[6], jumbo frame size [1] etc are improvements that
have been explored earlier. Another approach has
been to offload the TCP/IP stack processing to a
NIC with dedicated hardware [24].

Efforts have also been made to exploit the paral-
lelism available in general purpose machines itself,
by modifying the protocol stack implementation
appropriately. Parallelizing approaches usually deal
with trade-offs between balancing load between
multiple processors and the overhead due to main-
tenance of shared data among these processors [3],
[4], [19]. Some of the approaches that are known
to work well include “processor per message” and
“processor per connection” [23]. In the processor-
per-message paradigm each processor executes the
whole protocol stack for one message (i.e. packet).
With this approach, heavily used connections can
be efficiently served, however the connection state
has to be shared between the processors. In the
processor-per-connection paradigm, one processor
handles all the messages belonging to a particular
connection. This eliminates the connection state
sharing problem, but can suffer from uneven distri-
bution of load. Other approaches include “processor
per protocol” (each layer of the protocol stack is
processed by a particular processor) and “processor
per task” (each processor performs a specific task or
function within a protocol). Both these approaches
suffer from poor caching efficiency.

III. IMPROVEMENTS IN LINUX KERNEL 2.6

The Linux kernel 2.6 was a major upgrade from
the earlier default kernel 2.4 with many perfor-
mance improvements. In this section we discuss
some of the changes made in kernel 2.6, which
can have an impact on the performance of the
networking subsystem.

A. Kernel Locking Improvements

The Linux kernel 2.4 uses a lock, termed as the
Big Kernel Lock (BKL), which is a global kernel
lock, which allows only one processor to be running
kernel code at any given time, to make the kernel
safe for concurrent access from multiple CPUs [12].

The BKL makes SMP Linux possible, but it does
not scale very well. Kernel 2.6 is not completely
free of the BKL, however, its usage has been greatly
reduced. Scanning the kernel source code revealed
that the kernel 2.6 networking stack has only one
reference of the BKL.

B. New API - NAPI

One of the most significant changes in ker-
nel 2.6 network stack, is the addition of NAPI
(“New API”), which is designed to improve the
performance of high-speed networking with two
main tricks: interrupt mitigation and packet throt-
tling [14]. During high traffic, interrupt mitigation
allows interrupts to be disabled, while packet throt-
tling allows NAPI compliant drivers to drop pack-
ets at the network adaptor itself. Both techniques
reduce CPU load.

C. Efficient copy routines

The Linux kernel maintains separate address
space for the kernel and user processes for pro-
tection against misbehaving programs. Due to the
two separate address spaces, when a packet is sent
or received over the network, an additional step of
copying the network buffer from the user space to
the kernel space or vice versa is required. Kernel
2.6 copy routines have therefore been optimised, for
the x86 architecture, by using the technique of hand
unrolled loop with integer registers [7], [21], instead
of the less efficient “movsd” instruction used in
kernel 2.4.

D. Scheduling Algorithm

The kernel 2.4 scheduler, while being widely
used and quite reliable, has a major drawback: it
contains O(n) algorithms where n is the number of
processes in the system. This severely impedes its
scalability [15]. The new scheduler in kernel 2.6 on
the other hand does not contain any algorithms that

run in worse than O(1) time. This is extremely im-
portant in multi-threaded applications such as Web
servers as it allows them to handle large number of
concurrent connections, without dropping requests.

IV. PERFORMANCE ON UNIPROCESSOR SYSTEMS

As a first step of the study, we measured “high-
level” performance of the two OS versions - that is,
without fine-grained profiling of the kernel routines.
These tests help us characterise the performance,
while the kernel profiling results (Section VI) help
us explain those characteristics. Thus, in this section
we compare performance measures such as connec-
tion throughput and HTTP throughput for Linux
2.4 and Linux 2.6. We also carried out high-level
profiling to get a basic idea of the processing needs
of the socket system calls. The tests were carried
out on two platforms - 1)A single CPU 1.6 GHz
Pentium IV machine with 256MB RAM henceforth
referred to as the “Pentium IV server” and 2) A
Dual CPU 3.2 Ghz Xeon(HT) machine with 512MB
RAM, henceforth referred to as the “Xeon server”.

A. Performance comparison of socket system calls

In this test, the CPU requirement of the socket
system calls was measured using strace [26], while
clients ran a simple loop of opening and closing
connections with servers. The tests were run on
kernel-2.4.20 and kernel-2.6.3 on the Pentium IV,
with clients and servers on the same machine,
connecting over the loopback interface.

Kernel ⇒ 2.4.20 2.6.3

socket() 18.05 20.56
bind() 2.91 3.37
listen() 32.37 25.97

connect() 98.97 89.19

TABLE I

AVERAGE TIME SPENT (µS) IN SOCKET SYSTEM CALLS.

The results obtained are shown in Table IV-A. It
shows that there is not much difference in the bind()
and socket() system call overheads between the two
kernels, but the listen() and connect() system calls
are slightly cheaper in kernel 2.6. Table IV-A does
not show accept and close system calls, as these

were blocking calls - an accurate resource usage of
this could not be obtained from strace.

A separate experiment was done to profile the
accept and close system calls. In this experiment,
the clients were on a separate machine, with the
servers on the Pentium IV server. Instead of using
strace on the server, the CPU time consumed in
server system calls (accept and close) was estimated
by the “utilization law” [8] (i.e. utilization was
divided by throughput, to give CPU time). The re-
sults, shown in Table II, indicate that the processing
time in kernel 2.6 for connection setup and tear
down is higher than that of kernel 2.4. This can
be attributed to the many security hooks that kernel
2.6 socket code contains. For example, the socket
system call in kernel 2.6 additionally invokes the
functions security_socket_create() and
security_socket_post_create().

CPU Time/conn. (µs)

Kernel 2.4 95.02
Kernel 2.6 105.30

TABLE II

TIME SPENT IN accept AND close CALLS.

B. Connection throughput

The socket system call profiles did not reveal
significant differences in performance between the
two kernels. However, these measurements were
done at a low to medium load on the system (unto
60% utilization). We are, however, also interested in
the maximum achievable capacity of the two kernels
- specifically, to confirm whether throughput contin-
ues to increase proportionally with the offered load
coming to the system. Using the numbers shown
in Table II, we can estimate maximum connection
rate achievable by Kernel 2.4 to be 1

95.02µs
≈ 10500

connections per second and that for Kernel 2.6 to
be 1

105.3µs
≈ 9500 connections per second.

Figure 1 shows the throughput vs number of
active connections for an experiment in which mul-
tiple clients repeatedly connected and disconnected
from the server without transmitting any data. The
peak throughput agrees with the projected capacity

quite well, for both the kernels; thus in this experi-
ment, where maximum number of open connections
were 100, there were no unexpected bottlenecks.

To stress the system further, we carried out the
following experiment: the server had 300 threads
with open ports out of which at any time a subset of
N ports were made active (i.e. with which clients
opened and closed connections). Results obtained
from the experiments, where N was varied from
10 to 100 are also shown in Figure 2.

Figure 2 shows a completely different throughput
curve for kernel 2.4, and only a slightly different
curve for kernel 2.6. While kernel 2.6 through-
put continued to show a proportional increase in
throughput with increasing load, kernel 2.4 reveals a
significant slowdown (e.g. when clients double from
20 to 40, throughput increases from 4000 to only
about 5200 - far from double). Kernel 2.6 maximum
capacity came down to about 8500 (achieved with
30 connections), while kernel 2.4 capacity was
about 9000 - achieved at 100 active connections.
We believe this is due to the superiority of the
kernel 2.6 scheduler. The kernel 2.4 scheduler has to
cycle through all the processes listening on the open
ports in the system irrespective of the fact that they
are active or not. On the other hand the kernel 2.6
scheduler is relatively less affected by the number
of open ports in the system and its performance
remains comparable to the earlier case.

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t i

n
C

on
ne

ct
io

ns
 p

er
 s

ec
on

d

Number of Client Processes

Connection Thruput comparision

Kernel 2.6
Kernel 2.4

Fig. 1. Connection throughput comparison with varying number
of client connection threads.

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t i

n
C

on
ne

ct
io

ns
 p

er
 s

ec
on

d

Number of Client Processes

Connection Throughput comparision

Kernel 2.6
Kernel 2.4

Fig. 2. Connection throughput comparison with 300 open ports
and varying number of client connection threads.

C. Web server performance

The previous set of experiments revealed that
although raw CPU consumptions of the two kernels
were comparable, their scalability characteristics
are quite different. In this section, we take our
investigation further by observing how these differ-
ences impact application layer performance. HTTP
was the obvious choice for the application layer
protocol, whose performance on the two kernels we
wanted to study.

The Apache [2] Web server was run on the Xeon
machine (in single processor mode), and load was
generated using httperf [18]. The following two
changes were made to the default Apache configu-
ration file: MaxClients was set to the maximum
value of 4096 and MaxRequestsPerChild was
set to zero (unlimited). The clients were made to
request a static text page of only 6 Bytes in size (this
ensured that the network would not be the bottle-
neck). The clients generated requests according to a
specified rate, using a number of active connections
(up to the maximum allowed by Apache).

The maximum client connection request rate sus-
tained by the server and response time for the
requests reported by the two kernels are shown in
the Figures 3 and 4 respectively.

These graphs show dramatically better HTTP
performance on kernel 2.6 as compared with that on
kernel 2.4. Kernel 2.4 struggled to handle more than
2800 simultaneous connections and started report-

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 500 1000 1500 2000 2500 3000 3500 4000

R
eq

ue
st

 s
us

ta
in

ed
 b

y
th

e
se

rv
er

Number of Client requests per second

Server sustained request rate

Kernel 2.6 UNI
Kernel 2.4 UNI

Fig. 3. Request rate sustained by kernel 2.4 and 2.6

 0

 5

 10

 15

 20

 25

 30

 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(m

s)

Number of requests per second

Response Time

Kernel 2.6 UNI
Kernel 2.4 UNI

Fig. 4. Response time comparisons of kernel 2.4 and 2.6

ing errors beyond that point. Its connection time and
response time also started rising sharply. In contrast
kernel 2.6 could easily handle 4000 simultaneous
connections and there was no sign of any increase
in connection time or response time, suggesting that
kernel 2.6 would be able to handle even higher
number of simultaneous connections than could be
tested. Note that these tests were performed on a
faster machine than the previous tests, so the raw
CPU consumption differences between the kernels
matter even lesser. What dominates performance,
are factors that improve scalability - e.g. the sched-
uler.

V. PERFORMANCE ON SMP SYSTEMS

In the previous section, we focussed on a unipro-
cessor platform and studied the speed and scala-

bility of the kernels on a single CPU. We would
now like to investigate the scalability of the kernels
on parallel processing hardware. The basic question
that needs to be answered is, if the number of
CPUs increases, does the kernel capacity increase
proportionally? We answer this question in the case
of going from single to dual processors.

We did this by carrying out two types of experi-
ments on the Xeon dual processor machine: bulk
data throughput, and connection throughput. We
carried out tests with SMP enabled and disabled,
and observed the scale up obtained.

A. Bulk data throughput experiments

Bulk data throughput experiments were done
using iperf, which is a TCP traffic generator. The
experiments were run over the loopback interface.
The tests were run for a duration of 30 seconds
with the TCP window size set to the maximum
of 255KB. The buffer size was set to the default
value of 8KB. Three sets of experiments were run
for each kernel: 1) single TCP connection, single
processor, 2) single TCP connection, dual processor,
3) multiple TCP connections, dual processor For
kernel 2.6, an additional experiment with a single
TCP connection on dual processor with hyper-
threading disabled was also carried out.

Figure 5 shows the results of the experiments for
one and two TCP connections. Figure 6 shows the
full set of results with number of TCP connections
varying from 1 to 12.

First, consider the scale up achieved by kernel
2.4, as seen in Figure 5. With a single TCP con-
nection on a single processor, kernel 2.4 achieves
data throughput of 4.6Gbps, which increases only
marginally to 5.1 Gbps with two processors. With
2 TCP connections kernel 2.4 is able to achieve
6.75 Gbps throughput, which amounts to a scale-
up factor of 1.5.

Kernel 2.6, as one might expect, was faster than
kernel 2.4 in uniprocessor mode, with a throughput
of 5.5 Gbps. However its throughput in the SMP
mode oscillated between 3.4 Gbits/sec and 7.8
Gbits/sec. Since (as discussed later) this variation
seemed to be due to hyper-threading, it was dis-
abled. The throughput then remained consistently

at 3.4 Gbps - almost 40% lesser than throughput
achieved with a single processor. With two TCP
connections on two processors, however, kernel 2.6
achieved a throughput of 9.5 Gbps - a factor 1.8
scale-up over that achieved by one TCP connection
on uniprocessor.

The higher data throughput of kernel 2.6 in
uniprocessor mode is due to its more efficient copy
routines as discussed in Section III.

The degradation in throughput of the kernel 2.6
with a single connection on dual processors, can
be attributed to “cache bouncing”. In kernel 2.6
because of its better scheduling logic and smaller
kernel locks, packet processing can be distributed
on all available processors. In our tests, iperf cre-
ates a single TCP connection and sends data over
that connection, but when incoming packets of a
connection were processed on different CPUs it
would lead to frequent cache misses, as the network
buffers cannot be cached effectively in the separate
data caches. This results in poorer performance in
comparison to the uniprocessor kernel1.

This also explains the fluctuating high perfor-
mance (3.4-7.5Gbits/sec) on 2.6 SMP kernel when
hyper-threading is enabled. Since the Intel Xeon
processors are hyper-threaded, the SMP scheduler
randomly schedules the packet processing on two
logical processors of the same physical processor. In
such a situation there will not be any cache penalty
as the logical processors will have access to the
same cache. The results with HT disabled verify this
explanation. Later, in section VI we discuss kernel
profiling tests which further confirm these ideas.

The graph that shows throughput with increasing
number of TCP connections (Figure 6) confirms the
expectation that with two processors, going beyond
two TCP connections (each sending bulk data),
does not achieve further scale up. In fact, in SMP

1It is not entirely clear why Kernel 2.6 does not show this
behaviour for two TCP connections. It is possible that in the
case of the single connection, the effect of distributing the
work between the two processors is more pronounced, since the
processors are more “available’. In the two TCP connections
case, both processors will be busy with a connection each, and
the Kernel will usually not find the other processor “available” to
work on a connection that one processor is currently working on,
thus leading to processor affinity. However, these are conjectures,
and we do not have a definite explanation.

Fig. 5. Graphical representation of the data transfer rates
achieved in different test cases

 0

 3

 6

 9

 12

 0 3 6 9 12 15

D
at

a
T

hr
ou

gh
pu

t (
G

bp
s)

Number of TCP connections

Thruput comparision

Kernel 2.4-uni
Kernel 2.4-smp
Kernel 2.6-uni

Kernel 2.6-smp

Fig. 6. Data throughput with varying number of TCP connec-
tions

kernel 2.4, the data throughput rises initially with
two simultaneous connections but drops slightly as
the number of parallel TCP connections increased,
implying that kernel 2.4 SMP incurs some penal-
ties while multiplexing multiple TCP streams on a
physical processor.

B. Connection throughput on SMP systems

We carried out similar experiments as above, fo-
cussing this time on connection throughput, to study
the SMP scalability of connection set-up and tear-
down operations. Figure 7 plots the connection rate
achieved vs number of clients. Note that throughput

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50

T
ho

ug
hp

ut
 in

 C
on

ne
ct

io
ns

/s
ec

on
d

Number of client connection processes

Connection Thruput comparision on Dual CPU System

Kernel 2.6 SMP
Kernel 2.6 UNI

Kernel 2.4 SMP
Kernel 2.4 UNI

Fig. 7. Measured Connection throughput on Dual CPU system
with 300 open server ports

peaks at 10000 connections per second for all cases,
due to client bottleneck. Since the server could
not be pushed to its maximum capacity with the
available hardware, we used a different approach to
characterize scalability: we measured utilisation of
the server CPUs and drew conclusions from that.

Table III shows the utilisation measured for the
experiment with 30 clients. First consider kernel
2.4. We can see that for the same throughput of
about 10000 connections per second, the utilisation
of the dual processor is almost the same as that
of the uniprocessor - the ideal would be half of
the utilisation of the single processor. For kernel
2.6 the results are significantly better. For the same
throughput, utilisation of the dual processor system
is two-thirds of the uniprocessor utilisation. These
results again demonstrate the superior scalability of
the Linux kernel 2.6. The kernel 2.4 results show
that there would be almost no benefit in adding
hardware resources, if a kernel 2.4 system shows a
connection throughput bottleneck. However, adding
CPUs will definitely relieve similar bottlenecks in
the case of kernel 2.6.

VI. KERNEL PROFILING RESULTS

In addition to the above high-level experiments,
we did detailed profiling of both the Linux kernels
using OProfile [20]. Oprofile is a statistical profiler
that uses hardware performance counters available
on modern processors to collect information on
executing processes. The profiling results provide

Server Utilisation
Kernel 2.4 UNI 20.08 %
Kernel 2.4 SMP 21.09 %
Kernel 2.6 UNI 21.00 %
Kernel 2.6 SMP 15.58 %

TABLE III

SERVER UTILISATION FOR NUMBER OF CLIENTS = 30.

valuable insight and concrete explanation of the per-
formance characteristics observed in the previous
experiments- specifically, the observed anomalous
behaviour in section V of SMP kernel 2.6, process-
ing a single TCP connection on a dual CPU system.

A. Breakup of TCP packet processing overheads

The breakup of TCP packet processing over-
heads are shown in Table IV. It lists the ker-
nel functions that took more than 1% of the
overall TCP packet processing time. The function
boomerang interrupt function is the inter-
rupt service routine for the 3COM 3c59x series
NIC, which was used in our experiments. The
other boomerang * functions are also part of
the NIC driver involved in packet transmission and
reception. copy from user ll copies a block
of memory from the user space to kernel space.
csum partial is the kernel checksumming rou-
tine.

Thus we can see that the NIC driver code, in-
terrupt processing, buffer copying, checksumming
are the most CPU intensive operations during TCP
packet processing. In comparison TCP functions
take up only a small part of the overall CPU time.

B. Analysis of kernel 2.6 SMP anomaly

In Section V we had observed that there was a
sharp drop in the performance of SMP kernel 2.6
when a single TCP connection was setup on a dual
CPU system, as compared with the uniprocessor
system, but as the number of TCP flows were
increased to 2 and more, kernel 2.6 performed
extremely well.

To analyse this anomalous behaviour, we re-ran
the data throughput experiments for kernel 2.6 in
both SMP and Uni-Processor mode, and profiled

CPU Samples % Function Name

24551 12.0273 boomerang interrupt
15615 7.6496 boomerang start xmit
14559 7.1323 copy from user ll
12037 5.8968 issue and wait
8904 4.3620 csum partial
6811 3.3366 mark offset tsc
5442 2.6660 ipt do table
5389 2.6400 csum partial
4913 2.4068 boomerang rx
4806 2.3544 ipt do table
3654 1.7901 tcp sendmsg
3426 1.6784 irq entries start
2832 1.3874 default idle
2382 1.1669 skb release data
2052 1.0053 ip queue xmit
2039 0.9989 tcp v4 rcv
2013 0.9862 timer interrupt

TABLE IV

BREAKUP OF TCP PACKET PROCESSING OVERHEADS IN THE

KERNEL

CPU Samples % Function Name

122519 13.1518 copy from user ll
94653 10.1605 copy to user ll
45455 4.8794 system call
41397 4.4438 (no symbols)
35921 3.8559 schedule
35829 3.8461 tcp sendmsg
31186 3.3477 switch to

TABLE V

TCP PACKET PROCESSING OVERHEADS IN KERNEL 2.6 UNI

WITH A SINGLE TCP CONNECTION

the kernel during that period. In these experiments,
each TCP connection sent and received exactly 2GB
of data. This allowed us to directly compare the
samples collected in both the situations.

The most striking fact emerging from
Table VI and V is the large increase in
time spent in the kernel copy routines. The
functions copy from user ll() and
copy to user ll() are used for copying

buffers from user space to kernel space and from
kernel space to user space respectively. There
is a very sharp increase in the time spent by
these two functions of the SMP Kernel with a
single TCP connection. More than 50% of the

CPU 0 Samples % CPU 1 Samples % Total % Function Name

373138 28.54 417998 31.72 791136 30.1354 copy from user ll
293169 22.42 264998 20.1076 558167 21.2613 copy to user ll
74732 5.71 82923 6.2921 157655 6.0053 tcp sendmsg
26537 2.02 24047 1.8246 54153 2.0628 schedule
25327 1.93 28826 2.1873 50584 1.9268 (no symbols)
23410 1.79 23275 1.7661 46685 1.7783 system call
21441 1.64 21757 1.6509 43198 1.6455 tcp v4 rcv

TABLE VI

TCP PACKET PROCESSING COSTS IN KERNEL 2.6 SMP WITH SINGLE TCP CONNECTION

CPU 0 Samples % CPU 1 Samples % Total % Function Name

129034 11.215 127949 11.1399 256983 11.1775 copy from user ll
121712 10.5786 127182 11.0731 248894 10.8256 copy to user ll
59891 5.2054 56946 4.958 116837 5.0818 schedule
47992 4.1712 46888 4.0823 94880 4.1268 tcp sendmsg
44767 3.8909 46023 4.007 90790 3.9489 system call
32413 2.8172 30421 2.6486 62834 2.733 switch to
26090 2.2676 25822 2.2482 51912 2.2579 tcp v4 rcv

TABLE VII

TCP PACKET PROCESSING COSTS IN KERNEL 2.6 SMP WITH TWO TCP CONNECTION

total time is spent in these functions. Such a
sharp increase in the cost of copy routines can be
attributed to a high miss rate of processor cache.
To verify this, the copy from user ll()
and copy to user ll() routines were further
analysed and it was found that more than 95%
time in these routines were spent on the assembly
instruction
repz movsl %ds:(%esi),%es:(%edi)

The above instruction copies data between the
memory locations pointed by the registers in a
loop. The performance of the movsl instruction is
heavily dependent on the processor data cache hits
or misses. The significantly higher number of clocks
required by the movsl instruction in the case of
SMP kernel 2.6, for copying the same amount of
data can only be explained by an increase in the
data cache misses of the processor.

If you further compare the Tables VII and V
you will observe that the times spent by the ker-
nel functions are very similar, i.e. when two TCP
connections are run on the dual CPU system, both
CPU’s are utilised in a similar pattern as when a

single TCP connection running on a uniprocessor
system is utilised. This is unlike the case of a single
TCP connection running on dual CPU system.

VII. CONCLUSION

Our study of the performance and scalability
of the two Linux kernels primarily confirms that
performance of software used for communications
can be impacted greatly by the underlying operating
system. E.g. the HTTP results show dramatic dif-
ference in throughput and response time measures
when operating over the two different kernels.

The improvements made in kernel 2.6 seem
to have had a great impact on its performance.
Kernel 2.6 could handle extremely large number
of simultaneous connections and sustained higher
data transfer rates. We were able to correlate these
observations with the architectural changes in kernel
2.6, specifically its O(1) scheduler, efficient copy
routines and finer kernel locks.

The experiments offer valuable insights into the
SMP behaviour of the TCP stack. In kernel 2.6 we
were able to get a scale up of more than 1.8x in
the data throughput tests, on a dual CPU system

with two or more TCP connections, while kernel
2.4 showed a scale up of less than 1.5x.

We also identified the most dominant overheads
involved in packet processing, namely, the interrupt
costs, device driver overheads, checksumming and
buffer copying. TCP layer overheads were compar-
atively insignificant.

One of the most significant conclusions that can
be drawn from our SMP experiments is that the
data throughput of a TCP connection is heavily
dependent on the processor cache. An inference that
can be drawn from this is that in traditional SMP
systems where each processor has a separate cache,
the OS scheduler should follow the “processor per
connection” paradigm. One the other hand, if the
data cache gets shared by the processing cores like
in HT technology, then “processor per message”
approach can be effective.

REFERENCES

[1] V. Anand and B. Hartner. TCP/IP Network Stack Perfor-
mance in Linux Kernel 2.4 and 2.5. World Wide Web,
http://www-124.ibm.com/developerworks/opensource/linu
xperf/netperf/ols2002/tcpip.pdf, 2002.

[2] The Apache Software Foundation. World Wide Web,
www.apache.org.

[3] M. Björkman and P. Gunningberg. Locking effects in mul-
tiprocessor implementations of protocols. In Conference
proceedings on Communications architectures, protocols
and applications, pages 74–83. ACM Press, 1993.

[4] M. Björkman and P. Gunningberg. Performance mod-
eling of multiprocessor implementations of protocols.
IEEE/ACM Trans. Netw., 6(3):262–273, 1998.

[5] J. Chase, A. Gallatin, and K. Yocum. End systems opti-
mizations for high speed TCP. Communications Magazine,
IEEE, 39(4):68–74, April 2001.

[6] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An
analysis of tcp processing overhead. pages 23–29. IEEE
Communications, 1989.

[7] J. W. Davidson and S. Jinturkar. Improving instruction-
level parallelism by loop unrolling and dynamic memory
disambiguation. In MICRO 28: Proceedings of the 28th an-
nual international symposium on Microarchitecture, pages
125–132. IEEE Computer Society Press, 1995.

[8] R. Jain. The Art of Computer System Performance Anal-
ysis: Techniques for Experimental Design, Measurement,
Simulation and Modeling. Wiley-Interscience, New York,
April 1991.

[9] J. Kay and J. Pasquale. The importance of non-data touch-
ing processing overheads in tcp/ip. In SIGCOMM ’93:
Conference proceedings on Communications architectures,
protocols and applications, pages 259–268, New York, NY,
USA, 1993. ACM Press.

[10] J. Kay and J. Pasquale. Profiling and reducing processing
overheads in TCP/IP. IEEE/ACM Trans. Netw., 4(6):817–
828, 1996.

[11] How Linux saved Amazon millions. World
Wide Web, http://news.com.com/2100-1001-
275155.html?legacy=cnet.

[12] Big Kernel Lock lives on. World Wide Web,
https://lwn.net/Articles/86859/.

[13] Google Relies Exclusively on Linux Plat-
form to Chug Along. World Wide Web,
http://www.hpworld.com/hpworldnews/hpw0 09/02nt.html.

[14] Network Drivers. World Wide Web,
http://lwn.net/Articles/30107/.

[15] Linux Kernel 2.6 Scheduler Documentation. World Wide
Web, http://josh.trancesoftware.com/linux/.

[16] D. Marr, F. Binns, D. Hill, G. Hinton, and
D. Koufaty. Hyper-Threading Technology
Architecture and Microarchitecture. Intel Technology
Journal, http://www.intel.com/technology/itj/2002/vo
lume06issue01/art01 hyper/p15 authors.htm, 2002.

[17] J. C. Mogul. TCP offload is a dumb idea whose time has
come. In Proceedings of HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems, May 2003.

[18] D. Mosberger and T. Jin. httperf—a tool for measuring
Web server performance. ACM SIGMETRICS Performance
Evaluation Review, 26(3):31–37, 1998.

[19] E. M. Nahum, D. J. Yates, J. F. Kurose, and D. F. Towsley.
Performance issues in parallelized network protocols. In
Operating Systems Design and Implementation, pages 125–
137, 1994.

[20] OProfile profiling system for Linux 2.2/2.4/2.6. World Wide
Web, http://oprofile.sourceforge.net.

[21] V. S. Pai and S. Adve. Code transformations to improve
memory parallelism. In MICRO 32: Proceedings of the
32nd annual ACM/IEEE international symposium on Mi-
croarchitecture, pages 147–155. IEEE Computer Society,
1999.

[22] K. Quinn, V. Turner, and J. Yang. The next evolution in
enterprise computing: The convergence of multicore x86
processing and 64-bit operating systems. Technical report,
IDC, April 2005.

[23] D. C. Schmidt and T. Suda. Measuring the impact of
alternative parallel process architecture on communication
subsystem performance. In Protocols for High-Speed
Networks IV, pages 123–138. Chapman & Hall, Ltd., 1995.

[24] P. Shivam and J. S. Chase. On the elusive benefits of
protocol offload. In Proceedings of the ACM SIGCOMM
workshop on Network-I/O convergence, pages 179–184.
ACM Press, 2003.

[25] J. M. Smith. Programmable networks: Selected challenges
in computer networking. Computer, 32(1):40–42, 1999.

[26] Strace Homepage. World Wide Web,
http://www.liacs.nl/ wichert/strace/.

