Approximate Analysis of Priority Scheduling Systems Using
Stochastic Reward Nets

Varsha Mainkar
Department of Computer Science

Duke University
Durham, NC 27708

Abstract

We present a performance analysis of a heteroge-
neous multiprocessor system where tasks may arrive
from Poisson sources as well as by spawning and prob-
abilistic branching of other tasks. Non-preemptive pri-
ority scheduling is used between different tasks. We
use Stochastic Reward Nets as our system model,
and solve it analytically by generating the underly-
g continuous-time Markov chain. We use an ap-
proximation technique based on fized-point iteration to
avotid the problem of a large underlying Markov chain.
The iteration scheme works reasonably well, and the
existence of a fized point for our iterative scheme 1is
guaranteed under certain conditions.

1 Introduction

Resource sharing systems require scheduling disci-
plines to share the resources in a fair manner. When
the processor is shared, disciplines such as FIFO,
round-robin or priority may be employed to schedule
the tasks, depending on the particular performance
requirements of that system. In cases where it is im-
portant that the response time for certain jobs should
be predictably short, priority scheduling of tasks is
used [5, 6, 7]. In this paper we present a perfor-
mance analysis of a heterogeneous multiprocessor sys-
tem which uses priority discipline to schedule its tasks.
The tasks may arrive to ths system from a Poisson
source or due to spawning or conditional branching of
other tasks in the system.

Priority queues with tasks that could feedback into
the system through spawning and conditional branch-
ing were analyzed in [4, 12]. Similar multi-tasking
systems have also been modeled in [11, 13] though
not in the domain of priority scheduled systems. Re-
cently, Nishida [8] analyzed a heterogeneous multipro-
cessor system with priority scheduled jobs which arrive
from a Poisson source. A continous-time Markov chain
(CTMC) is employed for the analysis, and a lumping
scheme is used to tackle the problem of large state
space of the Markov chain.

*This research was supported in part by the National Science
Foundation under Grant CCR-9108114.

Kishor S. Trivedi*

Department of Electrical Engineering

Duke University
Durham, NC 27708-0291

Our focus in this paper is to consider a more gen-
eral task arrival behavior. Specifically, we allow task
arrivals to the system to depend on the number of ex-
ecutions of another task; we also allow tasks that can
arrive to the system externally, as well as through feed-
back; furthermore, tasks can be brought to the system
by spawning/probabilistic branching of a number of
other tasks.

This task structure models many computing sys-
tems of today. In fault-tolerant computer systems,
diagnostic tasks are often spawned by other tasks on
occurrence of certain events or errors. On the other
hand, a routine which uses a hardware component may
initiate diagnostic routines on that component after
every n uses of the component. Our focus in this pa-
per is to model such systems.

We choose Stochastic Reward Nets (SRN) as our
analytical model for this system. SRNs are essen-
tially a specification technique for automatic gener-
ation of Markov reward models [1]. SRNs have built-
in constructs, such as transition priorities, which ren-
der them very useful in modeling priority scheduling
systems. Rewards, which can represent performance
indices, can be specified at the net level.

Since SRN models are solved by generation of the
underlying continuous-time Markov chain, we even-
tually confront problems of a large state space as the
model size increases. We resolve this problem by using
state lumping along with a fixed-point iteration tech-
nique [3] to avoid generation and solution of a large
state space and balance equations. The existence of
a solution for our fixed-point iterative scheme is guar-
anteed under certain conditions.

The rest of the paper is organized as follows: in Sec-
tion 2 we provide an overview of SRNs; in Section 3 we
describe our system specification. Section 4 describes
the SRN model corresponding to such a system. In
Section 5 we present a performance evaluation of an
example system using SRNs. Section 6 introduces our
iterative scheme. In Section 7 we illustrate the scheme
with our example, compare the approximation results
with the exact results, and prove the existence of a
fixed point for the example model. We conclude with
some remarks on future work in Section 8.

2 Overview of SRNs

A Petri net [10] is a directed bipartite graph with
two types of nodes called places (represented by cir-
cles) and transitions (represented by rectangles or
bars). Directed arcs (represented by arrows) connect
places to transitions, and vice versa. If an arc ex-
ists from a place (transition) to a transition (place),
then the place is called an input (output) place of that
transition. Places may contain tokens (represented
by dots). The state of a Petri net is defined by a
vector of the number of tokens in each place, called
a marking of the Petri net. Typically, places repre-
sent conditions or resources, and transitions represent
events or choices. The token flow along the directed
arcs reflect the changes in the system due to various
events.

A multiplicity is a non-negative integer that may
be associated with an input or output arc. A transi-
tion is said to be enabled if each of its input places
contains at least as many tokens as that input arc’s
multiplicity. An enabled transition can fire. When
it fires, as many tokens as the corresponding input
arc’s multiplicity are removed from each input place,
and as many tokens as the corresponding output arc’s
multiplicity are deposited in each output place.

Structural extensions to Petri nets include in-
hibitor arcs (denoted by an arc with a circle instead
of an arrow head), which connect places to transitions.
A transition can be enabled only if the number of to-
kens in its inhibitor place is less than the multiplicity
of the inhibitor arc. A set of transitions is said to be
conflicting when the firing of one disables the rest.
Transitions may be assigned priorities that can be used
to resolve conflicts between transitions.

Timed Petri nets associate a time delay with tran-
sitions. The Stochastic Reward Net [1] is a type
of Petri net that allows transitions to have an expo-
nentially distributed time delay (timed transitions,
represented by rectangles) or a zero time delay (im-
mediate transitions, represented by bars). The fir-
ing rate of the timed transitions may be marking-
dependent. A marking of a SRN is said to be van-
ishing if at least one immediate transition is enabled
in it and is said to be tangible otherwise. Conflicts
among immediate transitions in a vanishing marking
may be resolved by assigning probabilities to conflict-
ing sets of immediate transitions. This probability
may also be marking-dependent. Multiplicities of arcs
may be marking-dependent. Such arcs are termed
variable cardinality arcs. Further, enabling func-
tions or guards may be associated with transitions.
Guards are marking-dependent predicates which must
be satisfied for transitions to be considered enabled.

The reward structure is obtained by associating re-
ward rates with markings of the SRN. We associate
a reward rate r; with every tangible marking of the
SRN. This SRN can be mapped to a CTMC. If this
CTMC is irreducible, we can solve it for its steady
state probability vector w, then the expected reward
rate at steady-state can be computed as), r;7;.

With the use of appropriate reward rates, the ex-
pected reward at steady state can yield various useful

measures of a model. In our SRN models, reward rates
will be various performance indices; thus expected re-
ward rate at steady-state will give us the average val-
ues of the performance measures of the system.

3 System description

We study a heterogeneous multiprocessor system
with non-preemptive priority scheduling of tasks. We
classify the tasks by the way they arrive to the system.

e Poisson Tasks: these arrive according to a Pois-
son process, so that the interarrival time of these
tasks is exponentially distributed.

e Sporadic Tasks: these arrive to the system by
spawning or conditional branching of other Pois-
son and/or sporadic tasks.

e Poisson and Sporadic: These arrive from a
Poisson source or are created by other tasks.

Each task has a buffer where its instances wait to
execute on a processor. For instances of the same
task, the service discipline is FIFO. Different tasks
are served according to different priorities. After a
task acquires a processor, it executes on the proces-
sor for an exponentially distributed amount of time.
A task may create some instances of other sporadic
tasks. Each wait buffer has a limit on how many tasks
can be waiting in it to be executed. When this limit
is reached, any new arriving task of the corresponding
type is lost.

The task system consists of a set of tasks, 7 =
{T1,Ts,..., Ty }. Each task T; is characterized by:

e); : the parameter of the Poisson process accord-
ing to which the tasks arrive to the computing
system. If the task is strictly sporadic, A; = 0.

o A parent set : P; = {(Tj,mj:,n5:,4q5:) |1; €
T,T; spawns task T;}. In the
4-tuple (Tj,m;;,nj4,45:), ¢, is the probability
that n; ; instances of task 7; are spawned by task
T; after the m; ;th execution of 7;. This set is
empty for strictly Poisson tasks.

e y; : the parameter of the exponentially dis-
tributed service demand. (Service demand could
be number of instructions to be processed, or
some other measure of the amount of service re-
quired by a task.)

e M, : the maximum number of instances of task
T; that can be waiting to be executed.

e p;, 1 < p; < N : task priority; we use the con-
vention that p; > p; implies that 7; has higher
priority than 7j.

A task system in which each task is a strictly spo-
radic task, is a degenerate system. Hence we require
that at least one of the tasks in the task system be
Poisson.

The processing system is specified by the following;:

tps;
pw; 0) pa;
ng/
?
ple; <>
te; =7
o
pwi
Wit 1
tne; qi,l
m; md
| N
L=qii pdig e,

Figure 1: The Stochastic Reward Net Model

e Number of processors: P, the jth processor is

denoted by F;.

e The capacity of each processor: C;,;i=1,..., P.
The capacity of a processor is its rate of provid-
ing service, for example it could be number of
instructions that it can process in one second.

e Discipline for allocation of idle processors to
tasks: we assume this also to be by order of pre-
assigned priority. Let pp; denote the priority of
the processor P;, where 1 < pp; < P.

We would like to compute performance measures
such as the throughputs, utilizations, mean queue
lengths and mean response times of this system.

4 The Stochastic reward net model

The system described in the above section can be
translated into a stochastic reward net as shown in
Figure 1. In the net a subscript ¢ corresponds to a
task ¢ and subscript j corresponds to a processor F;.
Corresponding to each task 7; there is a place pw;
which represents the wait buffer. Suppose that 7; is
a Poisson task. A timed transition ¢ps;, with firing
rate A;, deposits tokens in place pw;, representing the
arrivals of the task according to the Poisson process.
The arc from tps; to pw; has the marking dependent
multiplicity of min{l, M; — #(pw;)}. This represents
the fact that tasks arriving to a full wait buffer are

lost. (In the figure, variable cardinality arcs are de-
noted by a “Z” across the arcs.) A token in place pa;
says that processor P; is available. Transition gp; ;
represents the acquisition of processor F; by task 7;.
The priority scheduling discipline is reflected in the net
by assigning the following priority to transition gp; ;
: max{P, N} x p; + pp;. On firing, transition gp; ;
puts ¢ tokens into place pte;, indicating that task 7;
is executing on processor F;. The firing rate of te;
must be the execution rate of task 7; on processor F;
and is given by p;Cj, when #(pte;) = i. On firing,
transition te; removes all tokens from place pte; and
deposits a token back in pa;. It may also deposit the
same number of tokens that it removes from pte;, into
ptd;, if the task 7; that just finished is a parent of any
other tasks. If it is not a parent of any other task, te;
puts zero tokens in place ptd;. Note that the number
of tokens in place pte; is used to identify the task that
is executing on processor F;.

If T; does not spawn any task, the description above
is sufficient to model the execution of task 7;. Sup-
pose T; spawns a task 13, i.e., (T;,mi1,ni1,¢i1) € Pr.
Then transition ¢d; ; recognizes the completion of task
1; by the arrival of 7 tokens in place ptd;. This is
accomplished by having an input arc from ptd; with
multiplicity ¢, and an inhibitor arc from ptd; Witfl mul-
tiplicity ¢ + 1. Thus td; ; fires when there are exactly
t tokens in place ptd;. For each child task 7; there
is a place pd;; with an output arc from td;; to pd; ;.
This place counts the number of completions of task
T; required to spawn an instance of task 7;. Place
pd; 1 together with transitions tc;; and tnc;; counts
the number of completions of task 7;. This is done
by setting the multiplicity of the arc from pd; ; to tc;;
(and tne; ;) equal to m;;. The firing probability of
transition tc;; {tnc; i} is ¢iq {1 — ¢; 1}, which repre-
sents the proBabilistic spawning of 7;. Transition tc; ;
deposits tokens in place pw;; the marking-dependent
multiplicity of the arc from tc;; to pw; is defined as
min{n; ;, M; — #(pw;)}. Transition tne; ; sinks the to-
kens out of place pd; ; signifying the event that task 7;
was not scheduled. The priorities of immediate tran-
sitions td; ;,%¢;; and tnc;; are set to be higher than
the priorities of all the transitions gp; ;.

We illustrate the above model with an example, in
the next section.

5 An example

Consider a two processor heterogeneous system,
that maintains information which is regularly read and
updated. In this system, we would like to provide the
read tasks with as up-to-date information as possible.
One way to achieve this effect is to give preference to
the update tasks, so that the read tasks are executed
after the latest update has been performed. Thus up-
date tasks are assigned higher priority than the read
tasks. To avoid excessive scheduling overhead, the sys-
tem adopts non-preemptive priority.

Let T} denote the update task, and Ty denote the
read task. During its execution, the update task may
come across an erroneous condition in the system. If
this error is not critical, the update task spawns an

5
tcin pdi 2 pds 3 tes 3

Figure 2: SRN corresponding to the example

error-handler task! denoted by Ts. As a measure of
preventive diagnostics, the update task also schedules
a diagnostic task (denoted by T5) after every five ex-
ecutions. Task T3 runs diagnostic checks on the sec-
ondary storage on which the updates are performed.
After every ten executions of the error-handler task
(T5), it schedules another diagnostic task, T5. This
task runs further in-depth diagnostics on the entire
system. We assume that the priority of these tasks
is in the order p; > ... > ps. We also assume that
priority of processor P is greater than that of P,. We
further assume that tasks 77 and Ty arrive to the sys-
tem according to independent Poisson processes with
parameters A; and A4 respectively. Finally, let ¢ de-
note the conditional probability that a non-critical er-
ror occurs in the system given that 7 is running.

As described in Section 4, this system can be rep-
resented by an SRN (Figure 2). This SRN can be
mapped to an irreducible continuous time Markov
chain (CTMC) [1]. We solve this CTMC for its steady-
state behavior, and compute the required performance
measures, using the SRN specification and solution

tool SPNP [2].
5.1 Performance measures

Performance measures of the system are derived
using appropriate rewards. Define I; j(m), a func-

1If the error is critical, the processor may take drastic ac-
tions such as shutting the system down. Since in this paper
we are concerned only with performance of a system while it is
operational, we do not consider this possibility.

10 .

Ry

NejiNejNeo e

O 00 O R D o
|
|

oo oo

2 3 4 5
Priority of task 74

0.10.20304050.60.70.80.91.0

Utilization of processor P;

Figure 3: (a)Response Time of T4 vs Priority if Ty (b)
Throughput of tasks vs processor utilization

tion of marking m, as 1 if #(pte;) = ¢ and 0 if
#(ptej) # i in marking m. If we assign a reward
rate I; j(m) to marking m, the expected reward rate
at steady state is the utilization of P; by T;. Average
throughput of task 7; is calculated by assigning a re-
ward p;C11; 1(m)+ p; CaI; »(m) to a marking m of the
SRN. The mean queue length, of task 7; is calculated
by assigning a reward of #(pw;) + i1 + I; » to each
marking.

Let A; be the throughput of task 75, and let L; be
its average queue length. Then by Little’s law [14],
mean response time is given by: R; = L;/A;.

Figure 3(a) shows how average response time of
task Ty varies as its priority varies from 2 to 5 (low to
high). Figure 3(b) shows the throughputs of tasks 75
and Ty as processor utilization varies.

6 The iterative decomposition scheme

The small example model described in Section 5
gave rise to 17574 states in the underlying CTMC,
when M; = 1,Vi=1,...,5. The state space increases
exponentially in terms of the model parameters such
as the number of task types.

We use a well-known lumping technique [8] to re-
duce the size of the state space generated by the SRN
model. This lumping technique is based on the follow-
ing observation: from the viewpoint of task 75, there
are only two sets of tasks: tasks that have a priority
higher than itself, and tasks that have a priority lower
than itself. In other words, it does not matter which
of the higher priority tasks are waiting to be executed
on the processor; if any of them is, task T; will not ac-
quire the processor. Similarly, all lower priority tasks
matter only when they are already executing on the
processor(s), and task 7; has to wait for them to fin-
ish. Thus in our lumping technique, we create a series
of sub-models, each corresponding to one task in the
system, where we have three tasks: the original task
T;, an “aggregate” task T/, which represents all the
tasks that have a priority higher than 7; and a task
T} 41, which represents all the tasks with priority lower
than task 7;.

This lumping can be further generalized, so that we
do not necessarily create one sub-model for each task,
but, rather, for a group of tasks. Suppose the tasks in
a system are 71,...,Tn, where p1 > ps > ... > pN.
(Task 77 has highest priority and T has lowest prior-
ity.) Thus we create a series of sub-models in which we
represent tasks T;, 7541, ..., T} individually and lump
all the tasks 77....,7;_1 into one higher priority task,
and all the tasks Tyy1,..., 7w into one lower priority
task. This generalization is very beneficial, because
for some models the acute lumping (one sub-model
per task) is not necessary, and the generalized lump-
ing delivers more accurate results.

In the kind of systems considered in this paper,
lumping affects the interdependence between task ar-
rivals. We have to especially account for tasks that are
created by parent tasks. These parent tasks may no
longer be represented individually in the sub-model,
hence we need to approximate the creation of sporadic
tasks.

In particular, Suppose that a task system 7 =
{T1,..., Ty} is ordered so that p; > ps > ... >
pn. Further, suppose one of the lumped submod-
els represents tasks 7;, Tiy1, ..., Ty individually. Let
T!_, denote the aggregate task which represents tasks

Ty,...,Ti—y and T}, represent the aggregate task

which represents tasks Tj41,...,7n. Then we define
a modified task system for the submodel as follows:

1. The set of tasks is {7} 1, Ti, Tig1, .-, T, T, }-
.,Tn} and every

2. For every sporadic 177 € {71, ..
] Tk}:

parent task 7, of 17, where T, ¢ {1, ..

(a) If (I,,m,n,q) € P, approximate the spo-
radic creation of 17 by a batch Poisson pro-
cess with parameter A, ; = A, x ¢/m.

(b) Remove the tuple corresponding to 7, from
the parent set P; of Tj.

3. Define the service demand of the aggregate tasks
T{_y and Ty, to be exponentially distributed

with rate pi_; amd pj | respectively where,

i—1 N
L =Sk Dk Siky
Hio1= -1 Me+1= =N
Z]’:1 85 Ej:k-H 85
and s; is the total arrival rate of task 7} defined

as A
qn
2. T

(Tp,m,n,q)€P;

5]':/\]'—{—

4. Define the priority of task T}_; equal to p;_; and
priority of task Tl;+1 equal to pry1.

5. Define the maximum size of the wait buffer for
task T}_, tobe M/_, = M1+ My+...+M;_; and
that of task 7} ,; tobe M{ | = Mpy1+.. .+ My.

6. Set the parent set of the task 7/ ; equal to

U;_:ll P;, and that of 7} ., equal to U;V:kﬂ P;.

We use the description for the general case in Sec-
tion 4 to construct an SRN for this task system, with
the following modifications:

1. Transitions tps;,1 < j < ¢ — 1, if any, are re-
tained, with the change that output place is pw;_1
and multiplicity is min{l, M{_; — #(pwi—1)}.
Similarly, transitions tps;, k +1 < 57 < N, if
any, are retained, with t]he change that output
place is pwy 41 and multiplicity is min{1, M, —

#(pwry1)}-

2. For each task 77,7 <[< k, whose creation by a
parent 7, was approximated by a batch Poisson
process with parameter A, ;, create a transition
tpsp; with firing rate A, ;, output place pw;, and
multiplicity of output arc equal to min{n, M; —
#pw)}. Tl < i—1(> k+ 1), transition
tps, 1 has output place pw;_1 (pwg41), and mul-
tiplicity of output arc equal to min{n, M/ , —

#(pwi-1)} (min{n, M{,, — #(pwe+1)})-

The above steps can be used to construct the se-
ries of sub-models corresponding to the complete SRN
model. If these sub-models are interdependent, they
should be solved iteratively.

7 Example of approximation method

We apply the task lumping technique to the exam-
ple described in Section 5. We lumped the five tasks
in the following way: In submodel 1 we lump tasks
T, and Ts into one task of priority 2 (least), while
representing tasks 77, T and T3 separately as individ-
ual tasks. In submodel 2, we lump tasks 77,75 and
T3 into one task of priority 3 (highest) and represent
tasks T and Ty separately as individual tasks. Note
that this lumping is largely ad-hoc, and for expository
purposes only. The tasks could have been grouped

3]

N

d175 ‘ ptdl Ptd2
tdl,l td271 2

Figure 4: (a) Submodel 1 (b) Submodel 2

in many other ways. Figures 4(a) and (b) depict the
SRNs for the two resulting submodels. Note that in
submodel 1, arrival of task T3 is now approximated by
a Poisson process, whose rate is A5/10. Similarly in
submodel 5, arrivals of tasks 7% and 75 are approxi-
mated by Poisson processes with rates A;/5 and qA4
respectively. The two models, are therefore interde-
pendent, and are solved iteratively, until successive
values are below a certain error tolerance level.

In all our experiments, the iteration process con-
verged fairly rapidly, in about 5-6 iterations. The sav-
ings gained in space were enormous. Table 5 shows
the number of states of the underlying CTMC gener-
ated by the same system in the complete model, and
in the two sub-models.

Exact Submodel T | Submodel 2
6788 1085 1630
9134 1301 2170
10157 1625 1900
13676 1949 2530
17574 1533 1510
26182 2029 2230
101398 | 6689 4690

Figure 5: Savings in state space size

7.1 Accuracy of approximation

For system sizes where we could solve both the ap-
proximate and the complete model, we compared the
approximation results with the exact results.

Figures 6(a) and 6(b) show the approximation er-
rors for different utilization levels of processor P;. The
approximation error of high priority tasks at very high
utilization levels stays quite low (< 5%). However ap-
proximation of response times of lower priority jobs
deteriorates as the utilization increases. This is be-
cause the performance of a lower priority task is more
sensitive to service demands and arrival rates of tasks
whose priority is higher than itself. In the aggregation,
the service demand of the aggregate task is approxi-
mated by an exponential distribution, which is one
source of error. On the other hand, the approximation
of sporadic tasks by Poisson arrivals produces an er-
ror in the arrival rates of these tasks. The net effect is
that the performance measures of a lower priority task
at high utilization values are poorly approximated.

Figure 6(c) shows the exact and approximate re-
sponse times of tasks 77 and 7} for various utilization
levels, when the service demand distributions of the
jobs are the same. Clearly, the approximation is much
better in this case even for higher utilizations. This
shows that the underestimation of variance that is a
result of aggregation of tasks has a great effect on the
accuracy of the approximation.

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0 | | | | | | | |
0.10.20.30.40.50.60.70.8 0.9 1.0

Utilization of processor P;

1.4
1.2

1
0.8
0.6
0.4
0.2

0
0.10.20.30.40.50.60.70.80.91.0

Utilization of processor P;

3 Y S B B B R B NN
2.5 Ex. R1 A— -
9 _App Rl R]
e
1.5 -
1 - —
0.5 F i -
0 4 | | | | |

0.00.10.20.30.40.50.60.70.80.91.0

Utilization of processor P;

Figure 6: (a) Exact vs approximate throughputs (b)
Exact vs approximate response times (¢) Approxima-
tion with identical service demands

7.2 Existence of a fixed point

In our experiments with the iteration technique we
saw a very good convergence behavior. In theory, we
shall prove that a fixed point always exists when a
decomposition of this form is made. We shall present
a proof for our example model.

In the submodels of Figure 4 there were two iter-
ation variables: Aj, the throughput of task 77, and
As, the throughput of task 75. The throughputs are
calculated as follows:

Av= " m(Cilia(m) 4 Caly s(m)) 7 (As) (1)

meS;
As = Y (CiIs 1(m) 4 Cols 5(m)) 7 D0(A1) (2)
meSsy

where in Equation (1), S; is the set of states of
submodel 1, and in Equation (2), Sz is the set of states
of submodel 2.

Note that 7(1) is a function of As, because the fir-
ing rates of the transitions ¢{pss and te; in SRN 1 are

approximated using As. Similarly 7(5) is a function
of Ay, because the firing rate of transitions ¢pss and
te; in SRN 2 are approximated using A;. Thus Equa-
tions (1) and (2) are the fixed point equations in
two variables corresponding to our iterative scheme.
Let the function corresponding to the above equations
be G. Then we must prove that a solution exists to
the fixed point equation:

A=G(A)
where A = (A1, As).

We use Brouwer’s fixed point theorem [9] to prove
the existence of a solution to the above equation.

Theorem 1 (Brouwer’s fixed point theorem)
Let G : S C R* — R™ be continuous on the com-
pact, convex set S, and suppose that G(S) C S. Then
G has a fized point in S.

Proof of existence of a fixed point:

e The set S: We first remark that we do not consider
the degenerate case that the underlying CTMC of ei-
ther SRN 1 or SRN 2 has only one state. (This could
be achieved, for instance, by setting M;, ..., M5 = 0,
in this example.) With this assumption and the fact
that the underlying CTMCs of SRN 1 and SRN 2 are

irreducible; we can say that Vi € S1, 0 < WEU < land

Vie Sy, 0< 7rl(»2) < 1. Then from Equation (1), we
have,

A1 <2 X p1Cmar X |S1] = w1 (say) (3)

where Cyy0p = max{Cy, Cy}. Similarly from Equation
(2),
A5 <2 X psCrar X |Sa2| = us (say) 4)

where |S1| and |S3| are sizes of the underlying

CTMCs of SRN 1 and SRN 2 respectively when both

A; > 0 and A5 > 0. It is also obvious that A, A5 > 0.
Thus we choose our domain, S, as [0,u;] X [0, us)].
Note than whenever either Ay = 0 and/or A5 = 0,
the underlying Markov chains corresponding to SRN
1 and 5 remain irreducible and their steady state bal-
ance equations have a unique solution. Thus Equa-
tions (1),(2),(3),(4) remain valid. Therefore, G is
defined on all points in S. It is also obvious from
the above discussion and Equations (3) and (4) that
G(S) c S.

e Since S is a closed set in R?, it is compact and
convex.

e Continuity of G: The function G has two types of
operations in it:

e Algebraic: Multiplication, addition. These oper-
ations are continuous.

e Solution of a linear system of equation: This is
the operation required to obtain the probability

vectors 7(1) and 7(?). The continuity of the opera-
tion at points where A1, A5 > 0 is obvious. When
either or both of A; and A5 are zero, we note as
before, that SRNs 1 and 5 give rise to irreducible
CTMCs; this property assures continuity at these
points.

Thus G is a continuous function. Since G meets all the
conditions of Brouwer’s fixed point theorem, G has a
fixed point in S. The uniqueness of the solution and
convergence of the fixed point iteration method have
not yet been established.

It is easy to observe that this iteration scheme will
always have a fixed point as long as the underlying
CTMC models are irreducible. The iteration vari-
ables that result from the use of this scheme are always
throughputs of certain tasks. Therefore the proof of
existence of a fixed point in the general case follows as
a straightforward generalization of the proof described
above.

8 Conclusions

In this paper we modeled a heterogeneous multi-
processor system with priority scheduling. We built
a model which can be used to evaluate systems in
which tasks arrive to the system in a very general, in-
terdependent manner. We can conclude that the use
of SRNs provides the modeler with a great degree of
flexibility in experimenting with different design issues
such as priority assignments.

The proposed lumping technique was shown to pro-
vide highly accurate results for higher priority tasks
at all levels of processor utilization. However, a great
loss of accuracy is seen in performance measures of
lower priority tasks for higher processor utilization lev-
els. We conclude that this lumping technique is useful
when measures of higher priority tasks are of inter-
est. It is also useful when the service demands of the
tasks are not very different. Further, under a simple
condition, existence of a fixed point is guaranteed.

Further enhancements to this model include allow-
ing a task to be preemptive, computing response-time
distribution and deterministic service demands.

References

[1] G. Ciardo, A. Blakemore, P. F. Chimento, and
K. S. Trivedi. Automated generation and analy-
sis of Markov reward models using stochastic re-
ward nets. In Linear Algebra, Markov Chains,
and Queueing Models, IMA Volumes in Mathe-
matics and its Applications, volume 48. Springer-

Verlag, Heidelberg, 1992.

[2] G. Ciardo, J. Muppala, and K. Trivedi. SPNP:
Stochastic Petri net package. In Proc. Int. Conf.
on Petri Nets and Performance Models, pages
142-150, Kyoto, Japan, Dec. 1989.

[3] G. Ciardo and K. S. Trivedi. A decomposition
approach for stochastic Petri net models. Perf.
Eval., 1993. to appear.

[4] J. Daigle and C. E. Houstis. Analysis of a task
oriented multipriority queueing system. I[EEE
Trans. Communications, 29(11):1669-1677, Nov.
1981.

[5] N. Jaiswal. Priority Queues. Academic Press,

New York, 1968.

[6] L. Kleinrock. Queueing Systems Volume II: Com-
puter Applications. John Wiley and Sons, New
York, 1976.

[7] 1. Mitrani and P.J.B. King. Multiprocessor sys-
tems with preemptive priorities. Perf. Fval.,

1:118-125, 1981.

[8] T. Nishida. Approximate analysis for heteroge-
neous multiprocessor systems with priority jobs.

Perf. Eval, 15:77-88, June 1992.
[9] J. M. Ortega and W. C. Rheinboldt. Iterative

Solution of Nonlinear Equations in Several Vari-
ables. Academic Press, Inc., 1970.

[10] J. L. Peterson. Petri Net Theory and the Model-
ing of Systems. Prentice-Hall, Englewood Cliffs,
NJ, USA, 1981.

[11] P.Heidelberger and K.S. Trivedi. Analytic queu-
ing models for programs with internal concur-

rency. [EEE Transactions on Computers, 32:73—
82, 1983.

[12] B. Simon. Priority queues with feedback. Journal
of the ACM, 31(1):134-149, 1984.

[13] A. Thomasian and P.F. Bay. Analytic queu-
ing network models for parallel processing of

tasks systems. IEEFE Trans. on Computers,
35(12):1045-1054, Dec. 1986.

[14] K. S. Trivedi. Probability & Statistics with Relia-
bility, Queuneing, and Computer Science Applica-
tions. Prentice-Hall, Englewood Cliffs, NJ, USA,
1982.

