
A Methodology and Tool for Performance Analysis of
Distributed Server Systems

Rukma Prabhu Verlekar, Varsha Apte
Department of Computer Science and Engineering

Indian Institute of Technology
IIT Bombay, Mumbai 400 076, India

rukma@cse.iitb.ac.in, varsha@cse.iitb.ac.in

ABSTRACT
We present a methodology and tool for performance anal-
ysis of distributed server systems, which allows high-level
specification of the system, and generates and solves the un-
derlying queueing network model. Our approach is different
from the existing ones in that the specification captures the
natural manner in which application servers are deployed
on machines and machines are deployed on networks. The
model does not impose any strict tiers on the server system.
Multiple use case scenarios can be specified, and the tool
computes measures such as end-to-end response times for
each scenario while taking into account queueing delays at
the hardware device, software threads and at the network.
The development of the tool is ongoing, and will include
detailed network protocol models as well as more flexible
distributed system behavior, in the future.

Categories and Subject Descriptors: D.2.8 Software
Engineering Metrics [performance measures, tools]

General Terms: Performance, Design

Keywords: Software performance models, queueing net-
work models, distributed systems.

1. INTRODUCTION
Most on-line services of today are provided using hetero-

geneous distributed server systems. Such systems consist
of a multitude of software servers, deployed on hundreds
of different types of machines, which could be distributed
on a LAN or a WAN. Users of such services now also ex-
pect a certain minimum performance from the transactions
they perform on such systems. These requirements are of-
ten codified in the form of service level agreements (SLAs).
Although models such as queueing networks can be used to
predict whether a given service will meet its SLA, the com-
plexity of the system is such that it is nearly impossible to
do so manually. Thus, tools are required that can trans-
late software and hardware design into performance models.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

The use of such tools during software development and dur-
ing deployment of software onto server machines can result
in significant performance improvement or cost savings.

Over the last two decades, a lot of effort has been di-
rected towards developing methods and tools that will re-
sult in tighter coupling of performance engineering with
software engineering [1]. The early efforts in this direction
were focussed on queueing models that would appropriately
capture the contention at software as well as hardware re-
sources [5]. However efforts are now directed more towards
automated translation of software design specifications to
performance models [2, 4]. E.g. Menasce [2] presents an
extremely comprehensive approach to build a performance
model of a client-server system, and models such fine de-
tails as database accesses, internal program behavior along
with many hardware architectural details such as resources,
machines and network topology. However, the scope of the
methodology seems to be limited to two or three tier archi-
tectures. In contrast, there are fairly generic tools such as
SPE·ED [6] and UCM2LQN [4]. However, these do not in-
clude rich specification capability for hardware and network
architecture.

In our work, we have attempted to meet the need of be-
ing able to specify software and hardware design in a simple
and intuitive manner. E.g., we allow specification of types
of “server machines”. A number of different types of ma-
chines and also the different types of the software servers
that can be deployed on these machines, can be specified.
The tool then uses this information to figure out the con-
tention on the devices of these machines. We maintain the
feature, offered by most tools, of specification of multiple
use case scenarios, which can include synchronous as well
as asynchronous calls. We allow machines to be distributed
across networks, while abstracting WANs as simple point-
to-point links. The resulting model is solved analytically
to derive various performance measures. We do not impose
any strict layers among the software servers. Our methodol-
ogy has been coded into a tool, that takes a textual input as
specification and generates and solves the underlying perfor-
mance model. To our knowledge, no existing tool captures
the hardware, software and network details of the system in
the flexible and natural manner as allowed by our tool.

The development of the tool is currently in progress.
When complete, we plan to capture further details of net-
work protocol behavior, and sophisticated queueing models
for various queueing disciplines, etc. At this stage, the tool
makes several simplifying assumptions regarding the net-

work and abstracts all resources with simple queuing mod-
els. However, we believe our approach is fresh enough to
be reported at an intermediate stage of completion. In the
next section, we will describe our system model, methodol-
ogy and an example with preliminary results. In Section 3
we conclude with discussions and future work.

2. OUR SYSTEM MODEL
Our distributed system model consists of various soft-

ware and hardware components. We list them below in a
“bottom-up” manner.
1. Hardware Devices: At the lowest level, there are hard-
ware devices which are parts of server machines (e.g. CPU).
Each such devices can be declared, by giving each type a
symbolic name which is used later for referencing it.
2. Server Machines: We can define different “types” of
server machines, and specify how many of each type there
are in the system. One machine is distinguishable from an-
other in terms of the types and the quantity of the various
hardware devices that it possesses.
3. Network Architecture: We allow our system to consist of
several LANs that can be separated by point-to-point links.
For each such point-to-point link we specify the values of
transmission rates, propagation delays and the Maximum
Transmission Unit (MTU). The server machines in the dis-
tributed system can be mapped onto different LANs. Multi-
ple machines of the same type can be independently mapped
to the various LANs.
4. Software Servers: Each of the software servers in the
distributed system is specified with its corresponding set of
tasks and the number of threads it possesses. A task is as-
sumed to be a continuous piece of computation, which holds
a device of its host machine, for a specified amount of time.
The mapping of these software servers to the corresponding
server machines and the execution times of each task of a
software server on each device of the system is specified.
5. Use Case Scenarios: The interaction of the software
servers to provide a variety of services is specified through a
formalism similar to message sequence charts. Each use case
scenario consists of an ordered sequence of tasks of various
software servers, with certain annotations. Once a thread
executes a task locally, it may make a synchronous or asyn-
chronous call to a task of another server. We allow proba-
bilistic branching to reflect different paths that may be taken
in a single scenario. We also have a notion of a message sent
when a task makes a remote call. Thus each such call is
annotated with a SYNC/ASYNC tag, and a message size
in bytes. The use case scenario itself is annotated with a
symbolic name and its corresponding arrival rate.

2.1 The Analytical Modeling Approach
For the system model described above, there are several

performance measures of interest such as the end-to-end re-
sponse times of use case scenarios, or utilizations, queue
lengths and response times at specific servers or devices.
We calculate these measures analytically by converting the
system model to a queueing network model, and employing
judicious approximations wherever necessary. In this sec-
tion, we describe our analytical modeling approach.

The main exercise in the analytical approach is to iden-
tify the resources of contention in the system, model these
as queues, and derive the corresponding queueing model pa-
rameters from the higher level input parameters. The queues

in the system above are of three main types: queues for
threads, for hardware devices, and for network links. The
analysis needs to derive average arrival rate, and average
“service time” at each of the queues. For example, the ar-
rival rate to a software task takes into account all the use
case scenarios that invoke this task. Similarly, arrival rates
to network links will depend on rates at which calls are made
to tasks across the network, which depends on the specified
topology. Calculation of net arrival rate to each of the hard-
ware and the software resources is illustrated in Section 2.2.

The holding times of each of these resources must be com-
puted carefully. For example, hardware devices are held only
for the amount of time that they are actually being used.
However, the holding times of threads are affected by con-
tention at the device level and time spent in synchronous (or
blocking) calls. Thus, the actual holding time of the thread
that executes a task on a device includes the waiting time
of this task at the device queue. Requests to the hardware
devices come from different threads of different servers, and
this contention is modeled by computing the overall arrival
rate to a hardware device and an overall weighted average of
execution times. This is used in the device queueing model
to compute the waiting time at the device. The holding
times of the threads (that include local execution time and
time spent in waiting for synchronous calls) are in turn used
to compute waiting times in the thread queues.

This approach is essentially very similar to the L layered
approach proposed by Rolia and Sevcik [5]. However, we
do not impose a strict layering architecture among the soft-
ware entities. In that sense we have only two “layers”: the
software layer, and the hardware layer.

The network delay of a message is calculated as follows:
we first compute the effective arrival rate and the average
packet size coming to the specified network links, from all
servers and machines deployed on that LAN and employ
a simple queueing model to compute packet waiting times.
If a message has n packets, then message delay across a
link is estimated to be the sum of transmission times of all
packets, propagation time of the last packet and the waiting
time of the first packet. In a use case scenario, wherever
calls are made across different software servers, we deter-
mine whether the call was also to a different machine. If it
was, then we add the network delay thus computed to the
response time of the scenario (network requests are assumed
to be non-blocking).

2.2 Example
In this example, we illustrate the use of the above method-

ology for the calculation of performance measures of an E-
mail system, which comprises of several use case scenarios
such as login, read message etc.

Our example system consists of three software servers
namely the Web, the Auth and the IMAP server, and two
machines of type “SUN” and “HP”. The HP is configured
with dual CPUs and dual Disks, the SUN with four CPUs
and four Disks. The two machines are deployed on two dif-
ferent LANs, denoted by LAN-1 and LAN-2 respectively.
The Web and the IMAP server are deployed on the SUN
machine whereas the Auth server is on the HP machine.
The machines are connected by point to point links. Ta-
bles 1 and 2 show the software server parameters and the
network parameters, respectively. For the sake of simplicity,
we consider the Message Sequence Diagrams of only the lo-

Table 1: Software Server Parameters

Server Resource demands
description in milliseconds

Server Threads Tasks CPU Disk

WEB 4

s a p 30 30
s a s 80 20
s i 80 20
c h 10 20

AUTH 2
v p 72 20
v s 10 20

IMAP 4
r m 70 30
l m 20 70

Table 2: Network Parameters

MTU

Across LANs
512

bytes

On LAN-1
1500
bytes

On LAN-2
1500
bytes

Trans rates (Mbps)/
prop delays (millisec).

LAN-1 LAN-2

LAN-1
3Mbps 3Mbps
2ms 3ms

LAN-2
3Mbps 3Mbps
4ms 2ms

gin and the read message scenarios (Figure 1). In the login
scenario the user sends a request to the Web server with a
user name and password. The thread handling this request
executes task s a p, and then makes a synchronous call to
the task v p (“verify password”) of the Auth server. If the
authentication fails (probability 0.1), a reply is sent back to
the Web server thread which executes task c h locally and
sends a reply back to the user. In the case where the au-
thentication succeeds, the task s i is executed locally, and
the “list message” task (denoted as l m) of the IMAP server
is called synchronously. After a reply is received, task c h is
executed by the Web server thread locally, and this ends the
server-side flow of the request. The read message scenario
is very similar to this scenario.

To calculate measures such as the end-to-end response
time our first step is to calculate the effective arrival rates
to the software tasks. For a login arrival rate of 10 requests
per second and read arrival rate of 5 requests per second,
it is clear, for example, that arrival rate for task r m is 4,
for task l m is 9, while task c h is 15. This calculation is
carried out for all tasks.

The next step would be to estimate the thread holding
times. E.g., for the unsuccessful login scenario, the Web
server thread holding time will be sum of the response time
of the task s a p at the CPU and disk of the SUN machine,
the time it waits till it receives a response from task v p

of the Auth server (which will include network delays) and
again the time for the execution of task c h on the devices of
SUN machine. Initial estimates of waiting times at hardware
devices are set to zero.

The contention at the devices is now to be modeled. The
arrival rates to each device is the sum of the throughput of
all the software tasks which contend for it. In this example,
the total arrival rate to the CPU of the SUN machine is
the sum of the throughput of the Web server tasks s a p,
s a s, c h, s i and the throughput of IMAP server tasks
namely r m and l m. We calculate the effective service time
at the device as the weighted average of “raw” execution

User

c h

c h

s a p

l m
2K

0.1

Web Auth

Login/passwd

128 bytes

Sync

(ok)

128 bytess i

2K

0.9Message Box

128 bytes v p

(Not-Ok) 128 bytes
v p

Sync 128 bytes

Login

IMAP

WebUser Auth

c h

c h

v s

v s
(ok) 128 bytes

Message Text 2K

128 bytes
0.2

0.8

Imap

r m

(Session Expired)

2K

s i Sync 128 bytes

SessionId

Sync 128 bytess a s

128 bytes

Read Message

Figure 1: Login and Read Message Scenarios

times of all the above mentioned tasks and their throughput.
Using the total arrival rate at each of the device and the
effective service times of the device we can calculate the
waiting times of each task on this device. The total response
time of the task for the local computation is then the sum
of the response times of the task on each of the devices to
which it makes a request. For example the total response
time of s a p on the SUN machine is its response time at
the CPU as well as the Disk of SUN machine.

The hardware and software layer models are interdepen-
dent,and are solved iteratively until convergence is achieved.
Interdependence in the model is due to the fact that arrival
rates at the hardware layer are derived from the software
layer throughputs and the thread holding times depend on
the response times of the tasks at the hardware layer.

In case all calls are synchronous (as shown), the response
time of a scenario is simply the response time at the Web-
server thread queue of a request of that scenario.

In case all calls are asynchronous, the delays at each soft-
ware task and at each network link can be added up ac-
cording to the sequence shown in the use case scenario, to
arrive at the end-to-end response time of that scenario. The
details of the analytical modelling technique can be found
in [7].

2.3 Results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18

U
til

iz
at

io
ns

 in
 p

er
ce

nt
ag

e

Total Arrival rate in the system

CPU-4
Web-4 threads

CPU-8
Web-8 threads

Figure 2: Hardware/Software Utilization Vs. Ar-
rival Rate

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 2 4 6 8 10 12 14 16 18

E
nd

-t
o-

E
nd

 R
es

po
ns

e
tim

es
 in

 s
ec

on
ds

Total Arrival-rate in the system

SYNC
ASYNC

Figure 3: Response time Vs. Arrival Rate

In this section we present some of the results from our
modelling tool, with the above mentioned example parame-
ters as the input. The modelling tool implements the analyt-
ical methodology discussed in the previous section. Figure 2
shows the utilization of the Web server and of the CPUs of
SUN machine (labelled as Web-4 threads, CPU-4 threads),
when all calls are synchronous. The arrival rate shown is
total, where the mix of login and read scenarios is assumed
to be one read request per two login requests. Let us as-
sume that we want to determine whether this system can
support a total arrival rate of 15 requests per second. The
Web server reaches 100% utilization at 15 requests per sec-
ond, indicating that this system cannot support this load.
We change the configuration of the SUN machine to have 8
CPUs, 8 Disks, and 8 Web server threads. The utilizations
of the Web server and the CPUs (labelled as Web-8 threads
and CPU-8, respectively) are now below 60% at 15 requests
per second.

For the upgraded configuration, Figure 3 shows the aver-
age end-to-end response time of the system with the login
and read scenarios, for the case where all remote calls are
synchronous, vs. when all calls are asynchronous. As ex-
pected, for the same configuration, synchronous calls result
in higher end-to-end response times.

3. DISCUSSION AND FUTURE WORK
As illustrated with the E-mail application example, our

specification formalism is simple and emulates the way de-
ployment decisions are made (i.e. software servers on ma-
chines). We believe that what-if scenarios can be run in a
very intuitive way using our specification.

Our analytical methodology imposes no constraints on the
interactions between software servers–e.g. software servers
do not have to belong to any particular “layer”. Any server
thread can remotely call any other server thread in a syn-
chronous as well as asynchronous manner.

We believe that because of the intuitive specification for-
malism, we are on the path of developing a tool that would
be useful to software developers as well as data center design-
ers. However, the tool has several drawbacks, that we hope
to remove. E.g. the tool requires details of execution times
by tasks on various hardware devices. We are addressing this
problem by developing related tools, e.g. for automatically
deriving resource consumption profiles of transactions [3].
A simulator is being developed, which takes the same input
specification as the analytical modelling tool. The results of
simulation will be used for the validation of our results.

In the future, we propose to develop a more robust sys-
tem to model various software resources such as log files,
critical sections etc, and relevant details of common net-
work protocols such as TCP and HTTP. We also plan to
develop algorithms for suggesting configurations that would
meet the user specified performance constraints.

4. REFERENCES
[1] S. Balasmo, A. D. Marco, and P. Inverardi.

Model-based performance prediction in software
development: A survey. IEEE Transactions on Software

Engineering, 30(5), 2004.

[2] D. A. Menasce and H. Gomaa. A method for design
and performance modelling of client/server systems.
IEEE transactions on software engineering, 26(11),
November 2000.

[3] B. Nagaprabhanjan and V. Apte. A tool for automated
resource consumption profiling of distributed
transactions. In International Conference On

Distributed Computing and Internet Technology.
Springer-Verlag, December 2005.

[4] D. Petriu and C. Woodside. Software performance
models from system scenarios in use case maps. In 12th

Int. Conf. on Modelling Tools and Techniques for

Computer and Communication System Performance

Evaluation, 2002.

[5] J. Rolia and K. Sevcik. The method of layers. IEEE

transactions on software engineering, 21(8), August
1995.

[6] C. U. Smith and L. G. Williams. Performance and
scalability of distributed software architectures: An
SPE approach. Parallel and Distributed Computing

Practices, 3(4), December 2000.

[7] R. P. Verlekar and V. Apte. A methodology and tool
for performance analysis of distributed server systems,
CSE Department, IIT Bombay,
http://www.cse.iitb.ac.in/∼rukma/papers/lqm.pdf,
Feb 2006.

