
Request Success Rate of Multipathing I/O with a
Paired Storage Controller

Gangadhar Enagandula and Varsha Apte
Department of Computer Science and Engineering

IIT Bombay, Mumbai - 400 076, India
Email: {gangadhar,varsha}@cse.iitb.ac.in

Bipul Raj*

Abstract—

The success probability of I/O requests in presence of failures
is increased by a combination of failover mechanisms built into
the storage server, multiple access paths from I/O clients to
the server, and timeout-retry mechanisms at the client itself.
We define and evaluate a unified availability metric, request
failures per million (RFPM), which quantifies request failure
probability while taking into account client-side as well as server-
side mechanisms. We calculate this metric using a two-level
model of I/O service - a probability tree that captures the I/O
driver behaviour, and a set of CTMC (Continuous Time Markov
Chain) models that capture failover mechanisms at the server.
The I/O driver model captures detailed timeout-retry mechanisms
including retries at multiple ports (“multipathing”). The server
model captures transient phenomena such as failure detection,
takeover and emulation behaviour of a paired storage controller.
The model shows that client retry mechanisms provide significant
improvement in request success probability. The model is then
used to study the sensitivity of RFPMs to parameters such as
timeouts, reboot time and failure detection delay. The results show
that the model can help in answering several what-if questions
related to how system parameters impact request success rate.

Keywords—availability, storage controllers, Markov chains, an-
alytical model

I. INTRODUCTION

Users today expect guaranteed 24x7 access to their data
which is stored on networked storage systems. Storage systems
use a plethora of techniques to provide high availability access
to data, such as high availability disk arrays, and redundant
storage controllers (“nodes”), with failover mechanisms built
into them, so that the chance of a I/O request succeeding,
improves [1]. An example mechanism is of pairing nodes
- where each node monitors its partner node’s health, and
takes over the partner’s function if it detects failure. When
the partner recovers, control is given back to it.

The success probability of an I/O request can also be
improved by recovery mechanisms at the client. Specifically,
client I/O drivers can detect failures, and then try to recover
from them. Failure detection is based either on receipt of error
messages from the storage nodes, or on lack of any response,
resulting in a timeout. Clients respond to these error signals
by retries.

Retries can be made to the same port, or can exploit
multipathing [2]. Multipathing implies the provision of mul-

*This work was done while this author was with NetApp, Bangalore, India

tiple connection paths between hosts and controllers [2]. A
multipathing I/O driver uses timeout and retry mechanisms to
check various paths to a controller, before reporting an I/O
failure [3].

Considering the myriad mechanisms used, it is important
that rigourous analysis be carried out to determine the effect of
these on increasing the success probability of an I/O request.
This can be done using analytical models of the systems. In
the storage domain, models of availability have been developed
in great detail for the disk subsystem, specifically for RAID
architectures [4]. However, not much work has been done
to date in developing analytical models of storage nodes
that would capture the redundancy and failover mechanisms
described above. To our knowledge, there is also no work in the
storage domain that captures the effect of the client’s failure
recovery mechanisms. A recent model by Trivedi et al [5]
in the telecommunication domain captures client and server
recovery mechanisms in detail. Our work is inspired by the
approach proposed there, and takes it further by incorporating
the specifics of the storage system that we studied.

We use the Netapp “FAServer” High Availability Pair (“HA
pair”) [6] as our storage controller system, and the SCSI
protocol with Asymmetric Logical Unit Access (“ALUA”) as
our client I/O protocol [3], and apply our modeling approach
to compute request success (failure) probability for this unified
system.

The contributions of this work are as follows:
1. We propose that storage system availability be measured in
terms of probability of I/O request success. In the presence of
client recovery mechanisms, this probability is different from
the instantaneous server availability, and needs to be studied
and quantified.
2. We create a probability tree model that captures the client
I/O protocol’s behaviour, including multipathing and retry, in
response to the state it finds the storage node in. Calculating
the branching probabilities of this tree requires (a) determining
steady-state probabilities of the states of the server system and
(b) determining the probability of transitioning from one set
of states to the other.
3. We develop a set of CTMC models to do this. A root
CTMC model is developed that captures the HA pair’s failure-
recovery behavior, and can give us the required steady-state
probabilities. Then we create a set of derived CTMCs, where
we make some states “absorbing”. We use the root CTMC
to set initial state probabilities of the derived CTMCs, and
carry out transient analysis to quantify probabilities such as

“Probability a request finds the controller down, but it finishes
rebooting before the client times out”.
4. Numerical evaluation of our model offers various insights:
first, it shows that it is worthwhile calculating request success
probability while incorporating client recovery mechanisms.
Equating this to instantaneous system availability results in
significant underestimation of probability of request success.
Second, our study of sensitivity to system parameters shows
some non-obvious results - e.g. we see that under certain
conditions, request success probability can be more sensitive to
giveback processing than to rebooting time. We also show that
under certain conditions, taking over too soon from a failed
node may not increase request success probability at all (in
fact, it can decrease it slightly).

In summary, our model gives the designers of such systems
an effective tool using which they can set values of config-
urable parameters, or decide which processes should be sped
up to get the most improvement in request success probability.

The rest of the paper is as follows: Section II describes
the high availability storage controller architecture, and the
I/O protocol’s multipathing and retry behavior. Section III
describes our model of the HA pair and of the SCSI ALUA
protocol. Section IV presents some numerical results and
insights based on the results. We conclude the paper in
Section V.

II. BACKGROUND

In this section we will first provide an overview of a high
availability dual storage controller architecture (modeled on the
Netapp FAServer “HA pair”), and then describe the relevant
features of the SCSI protocol that impact I/O request failure
rate. Finally, we review existing work in availability analysis
of storage systems.

A. High Availability Storage Controller Pair

FAS Server
Controller A

FAS Server
Controller B

Host
port A port B

D
3

D
2

M
.b

ox

D
6

M
.b

ox

D
5

LUN A LUN B

Interconnect

Fig. 1: HA Pair Architecture.

The Netapp High Availability Storage Controller Pair (“HA
Pair”) architecture [6] is depicted in Figure 1. The storage array
is divided into two logical units, controlled by two “FAServers”
in a paired configuration. In this configuration, each controller
is connected to its partner through an interconnect, and is also
connected to its partner’s disk shelves. The logical units have
a logical unit number (LUN) and are conventionally termed
as “LUNs”.

The HA Pair configuration is asymmetric; i.e. FAServer A
is the primary owner of LUN A and FAServer B is the primary
owner of LUN B. Thus, if the host sends a request on port A to
FAServer A, but it is meant for LUN B, FAServer A forwards
the request to FAServer B.

Each controller monitors its partner’s health by listening to
a heartbeat that is sent over the interconnect. In addition, each
controller writes its heartbeat status into a special “mailbox
disk store”. Failure is detected if there is absence of the
heartbeat both from the interconnect and the mailbox disk for
a given amount of time. After this detection delay, a failover
process is started which results in the surviving node assuming
control of the LUN that was owned by the failed node. The
time required for this is called takeover time. After takeover is
completed, we say that the failed controller is being emulated
by the surviving controller. When the failed node recovers, the
surviving node must return ownership of the taken over LUN
to its partner. This process involves several steps, and is called
auto-giveback.

Failures are of two types - one where the controller recovers
by an auto-reboot, and one that requires manual repair. A
reboot may also fail, in which case we have to default to
manual repair. If takeover fails, emulation will not be possible
and the controller will be up only when it reboots or repairs.
The auto-giveback may also fail, in which case we have to use
a process of manual give-back.

The data on the LUN which the failed controller owns is
unavailable during failure detection time, takeover time and
giveback time [6].

B. SCSI Protocol with ALUA

The SCSI protocol with Asymmetric Logical Unit Access
(ALUA) is a standard that allows the host to discover and use
multiple paths to a logical unit, where each path may have
different performance characteristics [2].

ALUA supports a storage server architecture such as the
one described above - where a request to logical unit A sent on
port A will have better performance than if it were sent on port
B. ALUA specifies standard commands by which ports and
their association with LUNs as active/optimized, active/non-
optimized, standby, unavailable, etc can be discovered.

While the standard specifies this discovery, the precise
behavior of how a request times out and is retried, is up to
specific driver implementations and their configurations [3].
For the purpose of our analysis, we assume the following
(representative) behavior: First, we assume that each port is
in the “active/optimized” state for the LUN it is directly
connected to (through one controller), and in “active/non-
optimized” for the other LUN. We also assume that as a
default, I/O requests for a particular LUN are only sent out
on the port that is “active/optimized” for that LUN.

Suppose an I/O request arrives for LUN A; the driver will
first send it out on port A, and start a timer. A successful
response may be received in time, or the controller may
respond with an error code which indicates that it is rebooting.
In this case, the request will be retried multiple times at the
port A up to a certain time (termed the retry window [5]). The
server may also respond with an error code which indicates

that it is down and not rebooting. If there is a timeout, or a
non-rebootable error response from server A, the driver retries
the request at port B. At port B also, if there isn’t immediate
success, the driver may retry up to a second retry window.
Note that the request may now succeed if A reboots, because
controller B can forward the request to A. It will also succeed
if controller B starts emulating controller A within this time.

When a request arrives, if one of the ports (say port A) is
“unavailable, then there are two possibilities: the network path
from port A itself has failed, or that failover has happened for
controller A, and B is now emulating A (and thus the port that
connects to A is of no use and is marked as “unavailable”).
In this case requests to either LUNs will be routed through
port B. If the request is for LUN A and A is up, then B will
forward the request to A. If A is not up, B will still be able
to serve the request if it is emulating A.

C. Related Work

Most of the storage availability analysis work deals with
disk subsystem failures [7], which is not the focus of this paper.
Availability analysis of storage systems considering various
layers has been presented in a few papers [8], [9]. Ford et
al [8] have presented a thorough analysis of an year’s worth of
failure data corresponding to thousands of storage nodes. Apart
from statistically characterizing and determining the values of
quantities such as mean time to various types of failures, the
paper also presents a Markov model of stripe availability. The
model captures batch failures of data “chunks” in stripes, and is
sufficiently accurate in estimating system availability metrics.
However, the model only considers recovery by reconstruction
of data lost due to a “chunk” failure in a stripe. Their
storage nodes do not seem to employ takeover and emulation
mechanisms.

A fairly detailed model of the complete storage system,
including all the components at various layers was proposed
by Amiri and Wilkes [9] for helping design storage systems
that meet certain availability requirements. They also generate
a CTMC to model the failure and repair of the various compo-
nents, and to represent the impact of some recovery policies.
However, again, they do not consider systems with takeover
and emulation mechanisms. They do take a “request view”,
in the sense that performance of the request is considered in
declaring a system as available

However, both these papers do not model recovery mech-
anisms of any I/O protocol.

Our work draws significantly from work done in the context
of SIP (Session Initiation Protocol) server systems availability
and call dropping probability by Trivedi et al [5]. Their system
availability model incorporates the notion of reboot vs manual
repair failures, detection delays etc. Furthermore, their analysis
introduced the idea of computing request success probability
while taking into account its retry behavior. While we use these
contributions as a starting point, our system differs from theirs
in many ways. Specifically our servers have data ownership
roles and processes of takeover, emulation and giveback, and
our request protocol has multipathing. These are behaviors
not modeled earlier, and lead to significant difference and
complexity in the modeling methodology.

Up states Down States
UP Working normally RBT Rebooting
DET Detecting partner node failure REP Under manual repair
TKO Taking over service of partner ERB Rebooting while in emulation

mod
EML Emulating partner ERP Undergoing repair while in

emulation mode
GVB Giving back LUN control to

partner
TKB Taking back control of LUN

TABLE I: Possible Controller States

III. HIERARCHICAL MODEL FOR COMPUTING I/O
REQUEST FAILURE PROBABILITY

An I/O request for data which is on a particular LUN
succeeds if: a) the controller which owns that LUN (and a path
to it) is available at the time of arrival of a request, or b) it
is unavailable when the request arrives, but becomes available
sometime before the driver completely times out and reports
a failure. Here a controller is “available” if it is either itself
operational, or being emulated by its partner. Note that we do
not take into consideration the possibility that there is a failure
(or any server state change) during the processing of a request,
since request processing times are negligibly small.

As described in Section II, when a failure is detected, either
by the client, or by the partner node, each one independently
triggers recovery mechanisms. We develop a hierarchical
model that captures the intricate interplay between the driver’s
and the HA pair’s failure recovery mechanisms, as follows:
• A higher level Probability Tree for I/O Request Experience:
this model uses a probability tree that represents the various
states that an arriving request might find the HA pair in at
various points in time after its arrival. The leaf nodes of
this tree denote the eventual fate of this request (success, or
failure). The probability tree is parameterized by its branching
probabilities. These branching probabilities are either (a) the
steady state probabilities of finding the HA pair in a certain
state (e.g. “Controller A is Down”), or (b) the probability of
moving from a particular state that an arriving request found
the HA pair in (e.g. Controller A is Down), to a particular other
state, within the retry window of the request (e.g. moving to
“Controller A is being Emulated”, within 30 seconds). Once
the probability tree is created, the probability of success can be
found trivially, if the branching probabilities can be quantified.
This is done using a set of HA pair state models.
• Lower level Continuous Time Markov Chain (CTMC) models
of the HA pair: A CTMC model can be developed easily
for the HA pair, which captures all the failover, emulation,
takeover and giveback events and corresponding state changes.
This gives us the steady state probability of finding the HA
pair in a certain state. For finding the probability of moving
from one state to the other within a certain time, we define a
series of “modified” CTMCs, derived from the original CTMC,
on which we carry out transient analysis. The steady state
probabilities of the main CTMC are used to set the initial
state probabilities of these modified CTMCs.

Now we present the details of each sub-model.

A. CTMC Availability Model of the HA Pair

Our HA pair availability model focuses only on the failure
probability of the controller itself. For the analysis presented in

this paper, we assume that the LUNs are always available to the
controllers (justified by the fact that disk array MTTF is much
higher than controller MTTF [8]) and that the interconnect
never fails. We do consider the possibility that the path from
the host to the controller may fail due to hardware failure,
however that is not part of the HA pair availability model
presented in this section.

We assume that the distribution of all times are exponential.
With this assumption we can use a CTMC [10] to capture the
system failure/repair behavior. The state of the CTMC is a
tuple which represents the state of the controller A and the state
of the controller B. The possible states that a controller can be
in is shown in Table I. E.g., the state (TKO, RBT) represents
the state that Controller B is rebooting and Controller A has
started the takeover process. Similarly, state (GVB, TKB)
represents the state where controller B is now taking back
control from Controller A. These states will be considered
as unavailable states for requests for LUN B. On the other
hand, the state (EML, RBT) represents controller A emulating
controller B, while B is rebooting. This is an available state
for both LUNs.

Building a CTMC involves creating the state-transition
graph, where the arcs are labeled with rates of various
events. We consider the following events in generating this
graph: rebootable failure, non-rebootable failure, reboot, repair
from non-rebootable failure, failure detection, takeover, auto-
giveback and manual giveback. We also use the following cov-
erage factors (i.e. probability of success of): reboot, takeover
and giveback.

The CTMC modeling the HA pair (not shown, due to
space constraints) is a finite, irreducible CTMC, which can be
evaluated for its steady-state probabilities [10] using standard
methods and tools [11]. We refer to this CTMC as the CTMC
M0 and let S denote the set of states of this CTMC. Let πs

denote the steady-state probability of a particular state s ∈ S.
For a subset C ⊂ S, we also denote by πC the steady state
probability of the CTMC being in any s ∈ C. This probability
is given by

∑
s∈C πs. The transient probabilities at time t,

P 0
s (t) and P 0

C(t) are similarly defined. These state probabilities
can also be calculated numerically by specifying this CTMC
in CTMC solver tool [11].

B. I/O request success model

Figures 2 and 3 show a probability tree (split into four
parts) that models the success/failure path of an I/O request.
The nodes in the tree represent various possibilities such as the
state that the request finds the HA pair in, or events that happen
after a request arrives. The nodes are labeled with numbers
for easy reference. Each node is labeled with an event, and
the branches are labeled with the possible outcomes, and the
probabilities of those outcomes.

Consider a new I/O request arriving at a host. The request
can be for either logical unit A or B (Figure 2a, Node 1).
Suppose it is for LUN A. The default is then to try to send it
out on port A. This can only be done if the port A is active. Port
A can be inactive in two ways: either the network hardware has
failed, or network hardware has not failed, but port A has been
marked “unavailable” because controller A had failed over and

controller B is either emulating A or “giving back” to A. These
possibilities are considered in Nodes 2 and 3.

If port A is active, the request is sent out on port A to
controller A. If A is up (Node 6), the request succeeds. If not,
then the host driver behaviour depends on the type of error it
gets (Node 8).

If A sends a “rebooting” error response , the driver retries
at port A upto its retry window (see Figure 3b, Node 24) . If
A reboots within this window, then the request succeeds. If A
does not reboot in time, the driver retries at port B (and starts
a new timer). If port B is inactive (either hardware down, or
marked unavailable), the request now fails (Nodes 25, 26).

If port B is active, and if controller B is up (Node 27),
then it can serve the request if either A reboots, or if B starts
emulating controller A within the driver’s retry window. If the
driver now exhausts its retry window, the request fails (Node
29).

If B itself was down (Node 28), then the request can
be successful only if the following happens within the retry
window: B had a reboot failure, and it itself reboots and A
also reboots, or only B reboots and starts emulating A.

Now lets go back to Node 2. If port A hardware has failed,
then the request is tried directly at port B (Node 4). In this
case it is possible that port B hardware has failed, or that it is
marked unavailable. In either case, the request fails. If port B
is active, the request is sent out on the port. Then the request
success depends on whether controller B is up or down.

Figure 2b shows the tree continued from the Nodes 5 and
7, “Yes” branch. In either case, Node 9 is reached because
the request was for LUN A, but port A was inactive but port
B was active. Note that although the structure of the subtree
under Node 9 is the same, the probabilities of the branches are
different when the subtree is under Node 5 vs under Node 7.

Now if controller B is down and experiencing a non-
rebootable failure, then the request will fail (Nodes 9, 10).
If it responds with a rebootable failure code, the driver will
retry the request. If B reboots within the retry window (Node
12), then the request will succeed if A is either up or being
emulated by B. Note that this probability will also be different
based on whether we reached here through Node 5 or Node
7.

The rest of the tree, shown in subtrees in Figures 2 and 3
can be explained in a similar way. The nodes and branches
are labeled in a self-explanatory way. Once the tree has been
parameterized with branching probabilities, the probability
of request success is simply the sum of the probabilities
of reaching one of the leaf nodes labeled “success”. The
probability of reaching a particular leaf is the product of the
branch probabilities in the path from the root to the leaf node.
In the following subsection we describe how we obtain these
branching probabilities.

C. Calculating the branching probabilities of the tree

Some of the branching probabilities of the probability
tree are input parameters: the probability of a new request
arriving for either LUN A or LUN B (PLunA, PLunB) and
the probability that a host port is down because of a network

New request
arrives to?

Is port A
H/W up?

Similar to
LUN A

1
LUN A LUN B

(PLunA) (PLunB)

Is port B
H/W up?

Is port A is
available?

2
Yes No

(PAportdown)(PAportup)

Failure Is port B
available?

4
No Yes

(PBportdown) (PBportup)

Failure 9

7
No Yes

(1-PBportavail7)
(PBportavail7)

Is controller
A up?

Is port B
H/W up?

3
No Yes

(PAportavail3)(1-PAportavail3)

Failure9

5
Yes No

(PBportdown)
(PBportup)

SuccessResponse from
controller A?

6
No Yes

(PAup6)(1-PAup6)

18 24

8
RebootRepair

(1-PAreboot8) (PAreboot8)

(a) Top level tree

Is controller
B up?

Is Controller
A up?

Response
from B?

9
YesNo

(PBup9)(1-PBup9)

Success
Is B

emulating A?

11
NoYes

(PAup11) (1-PAup11)

A reboots or
B emulates

A within rw?
Success

13
Yes No

(1-PAemulated13)(PAemulated13)

SuccessFailure

15
No Yes

(PArecovers15)(1-PArecovers15)

B reboots
within rw? Failure

10
RepairReboot

(PBreboot10) (1-PBreboot10)

Is controller
A up ?Failure

12
No Yes

(PBrecovers12)(1-PBrecovers12)

Success
Is B

emulating A?

14
NoYes

(PAup14) (1-PAup14)

A reboots or
B emulates

A within rw?
Success

16
Yes No

(1-PAemulated16)(PAemulated16)

SuccessFailure

17
No Yes

(PArecovers17)(1-PArecovers17)

(b) Subtree rooted at Node 9, under “Yes” branch at Nodes 5 and 7

Fig. 2: Request modeling of SCSI protocol with ALUA

Is port B
H/W up?

Is port B
available? Failure

18
NoYes

(PBportup) (PBportdown)

Is controller
B up? Failure

19
NoYes

(PBportavail19) (1-PBportavail19)

B emulates A
within retry

window?

Response from
controller B ?

20
No Yes

(PBup20)(1-PBup20)

Success Failure

22
NoYes

(PArecovers22) (1-PArecovers22)

Failure
B reboots and
emulatates A
within rw?

21
Reboot Repair

(1-PBreboot21)(PBreboot21)

Success Failure

23
NoYes

(PArecovers23) (1-PArecovers23)

(a) Subtree rooted at Node 18, under Node 8,“repair” branch

A Reboots
within retry

window?

Success
Is port B
H/W up?

24
YesNo

(PArecovers24)(1-PArecovers24)

FailureIs port B
available?

25
Yes No

(PBportdown)(PBportup)

Is controller
B up? Failure

26
Yes No

(PBportavail26) (1-PBportavail26)

A reboots or
B emulates A
within retry

window?

Response
from filer B?

27
YesNo (PBup27)(1-PBup27)

Success Failure

29
NoYes

(PArecovers29) (1-PArecovers29)

Failure

B reboots and
either A reboots
or B emulates
A within rw?

28
Reboot Repair

(1-PBreboot28)

(PBreboot28)

Success Failure

30
NoYes

(PArecovers30) (1-PArecovers30)

(b) Subtree rooted at Node 24, under Node 8, “reboot” branch

Fig. 3: Request modeling of SCSI protocol with ALUA

Subset Name Corresponding states of the CTMC
Aup {(UP/DET/TKO/EML, RBT/REP), (GVB, TKB), (UP, UP) }
Bup {(REP/RBT, UP/DET/TKO/EML), (TKB, GVB), (UP, UP) }
Adown S - Aup
Bdown S - Bup
Aemulated { (REP/RBT, EML), (REP/RBT, ERB), (REP/RBT, ERP) }
Bemulated { (EML, REP/RBT), (ERB, REP/RBT), (ERP, REP/RBT)}
Anotemulated S - Aemulated
Bnotemulated S - Bemulated
Aportunavail { (REP/RBT, EML), (REP/RBT, ERB), (REP/RBT, ERP), (TKB, GVB) }
Bportunavail { (EML, REP/RBT), (ERB, REP/RBT), (ERP, REP/RBT), (GVB, TKB) }
Aportavail S - Aportunavail
Bportavail S - Bportunavail
Areboot {(RBT, UP/EML/ERB/ERP/TKO/DET/RBT), (ERB, RBT/REP/TKB) }
Breboot {(UP/EML/ERB/ERP/TKO/DET/RBT, RBT), (RBT/REP/TKB, ERB) }
Arepair {(REP, UP/EML/ERB/ERP/TKO/DET/RBT), (ERP, RBT/REP/TKB) }
Brepair {(UP/EML/ERB/ERP/TKO/DET/RBT, REP), (RBT/REP/TKB, ERP) }

TABLE II: Controller States and corresponding CTMC states

path failure from that port to the corresponding controller
(PAportup, PBportup).

The rest of the branching probabilities are calculated from
CTMC models of the HA pair. Some of these probabilities
correspond to the request finding the HA pair in a certain set
of states on its arrival. We assume that a new arrival finds the
system in steady state, so we use the steady state probabilities
of CTMC M0 for this calculation. Some branching probabili-
ties are probabilities of transitioning from one subset of states
to another subset of states in a given amount of time. These are
found by evaluating the transient state probabilities of derived
CTMCs. The details of how we do this is as follows.

For convenience of calculation of these probabilities, we
first define states that a controller can be in, and the subset of
states of the CTMC that this corresponds to. These controller
states, and their corresponding CTMC subsets are shown in
Table II.

1) Probabilities based on steady state analysis: Consider
the branching probability at a node to which the path from
the root of the tree does not contain a node of the type
“reboots/takes over/emulates within rw”. Thus the path to
this node contains branches based only on the steady state
of the system. For such a node, the branching probability is
the conditional probability that the request finds the system in
the state corresponding to this branch, given that the request
had found the system in the subset of states common to all
the branches on the path to this branch. E.g. consider Node
9 when it is attached under Node 5. Here the probability that
controller B is up is given by

πBup|Aportunavail =
πBup∩Aportunavail

πAportunavail

The intersection set Bup∩Aportunavail is easily defined
based on Table II. Note that, in this calculation, we do not
include the probabilities of port hardware being up or down,
as the CTMC state probabilities are independent of these
probabilities. The rest of the branching probabilities of this
type are defined similarly and are given in Table III.

2) Probabilities based on transient analysis: Now consider
the nodes of the type “reboots/takes over/emulates within rw”
and their children nodes. E.g. consider Figure 3b, Node 24 (“A
reboots within retry window?”). This node represents the event
that the request is for LUN A, port A was active but controller
A sent a “rebooting” response. In this case, the request will

Branch Probability calculation from Availability model
PAportavail3, PBportavail7 πAportavail, πBportavail

PAup6, PAreboot8
πAportavail ∩ Aup

πAportavail
,

πAportavail ∩ Adown ∩ Areboot
πAportavail ∩ Adown

PBup9−5, PBreboot10−5
πAportunavail ∩ Bup

πAportunavail
,

πAportunavail ∩ Bdown ∩Breboot
πAportunavail ∩ Bdown

PAup11−5
πAportunavail ∩ Bup ∩ Aup

πAportunavail ∩ Bup

PAemulated13−5
πAportunavail ∩ Bup ∩ Adown ∩ Aemulated

πAportunavail ∩ Bup ∩ Adown

PBup9−7
πBportavail ∩ Bup

πBportavail

PBreboot10−7
πBportavail ∩ Bdown ∩Breboot

πBportavail ∩ Bdown

PAup11−7
πBportavail ∩ Bup ∩ Aup

πBportavail ∩ Bup

PAemulated13−7
πBportavail ∩ Bup ∩ Adown ∩ Aemulated

πBportavail ∩ Bup ∩ Adown

PBportavail19
πAportavail ∩ Adown ∩ Arepair ∩ Bportavail

πAportavail ∩ Adown ∩ Arepair

PBup20
πAportavail ∩ Adown ∩ Arepair ∩ Bportavail ∩ Bup

πAportavail ∩ Adown ∩ Arepair ∩ Bportavail

PBreboot21
πAportavail ∩ Adown ∩ Arepair ∩ Bportavail ∩ Bdown ∩ Breboot

πAportavail ∩ Adown ∩ Arepair ∩ Bportavail ∩ Bdown

TABLE III: Branching probabilities from steady-state analysis

be retried until its “retry window” (rw) is reached. Then the
probability that the request succeeds at port A is given by the
probability that A reboots before this retry window [5]. This is
equal to the probability of the CTMC starting in states S24 =
Aportavail ∩ Adown ∩ Areboot and entering states: F24 = Aup

within time rw. Note that we ignore the possibility that the
controller will have a second failure in this duration.

This probability can be found by modifying the original
CTMC such that all outgoing arcs from the states F24 are
removed. For this modified CTMC (M24), let the transient
probabilities of being in state s at time t be denoted by
P 24

s (t). The initial state probability for a state s ∈ S24 is
the conditional steady-state probability of being in a specific
state s ∈ S24, given that the CTMC is in one of the states of
S24:

P 24
s (0) =

{
πs∑

s∈S24
πs

, ∀s ∈ S24,

0, otherwise.

and the required branching probability is given by

PArecovers24 =
∑

s∈F24

P 24
s (rw) = P 24

F24
(rw)

Since F24 = Aup is an absorbing state in CTMC M24, the
above probability corresponds to reaching this state anytime
before time rw [5].

Note that branching probabilities of the children nodes
of Node 24 (Nodes 26, 27, 28) will also now be transient
probabilities. These states are seen by the request after its
retry window is exhausted, which is a time rw after its arrival.
Therefore, we have to calculate the probability of the request
finding the system in the corresponding states, rw time after
its arrival. These are the state probabilities of the CTMC M24

evaluated at time rw.

The exact probabilities required are shown in Table IV.
For all the branching probabilities whose values correspond to
transient probabilities, a modified CTMC is built (denoted by
Mi for Node i), and transient analysis carried out. Transient
probabilities for state s (or subset S) of CTMC Mi are denoted
by P i

s(t) (or P i
S(t)). For transient analysis, we must specify

the initial state probabilities and for each node, we must

define the transient probability that we are interested in (which
states, at what time). We have summarized this information
in Table IV. The table displays: the label of the required
branching probability, the CTMC on which transient analysis is
carried out, the set of states in which the CTMC can start, and
their initial state probabilities, the final states (these are those
states whose outgoing arcs have been removed) and the other
states for which we will calculate transient probabilities. The
last column shows the expression for the branching probability.
Note that the nodes of the subtree under Node 9 have different
branching probabilities depending on whether they are attached
under Node 5 or Node 7, because this changes the initial
conditions. The notation in the table (“-5” and “-7”) reflects
this difference.

Some of these probabilities need further explanation. Con-
sider branch probabilities for Nodes 14 and 16 (Figure 2b). For
Node 14, we want to find PAup14, which is the probability that
the request will find controller A up, given that controller B
is up, at one of its retries. The retries may happen at random
times within the retry window rw. We approximate this event
by the probability that the request finds the system in this state
at time rw/2 after request arrival. Thus, we find the probability
that controller A is up at time rw/2 after arrival, given that
controller B was also up at that time.

Since the request is assumed to arrive at steady state, we
evaluate the original CTMC (M0) for its transient probabilities,
and determine the required state probabilities at time rw/2.
The initial state probabilities are the same as for Node 12
(conditional steady state probabilities). Then, PAup14 is given
by P 0

Aup|Bup(rw/2). PAemulated16 is calculated similarly (see
details in Table IV).

PArecovers17 is calculated as follows: we define a CTMC
M17 with arcs for states F17 = Bup ∩ (Aup ∪ Aemulated)
removed. We set the initial state probabilities also by evalu-
ating the CTMC M0 for transient probabilities at time rw/2
which gives us the probability that the request finds controller
B up but A down and not emulated when it retries (at rw/2).
Then PArecovers17 is given by the probability that A recovers
within the time remaining in the retry window (rw/2), which
is given by transient probabilities of CTMC M17 evaluated at
rw/2.

The remaining transient analysis based branching probabil-
ities are defined in Table IV.

IV. RESULTS

We evaluate the model described in the above sections
using standard CTMC solver tools, to study the impact of
various system and protocol parameters and mechanisms on
the request failure probability. We convert this probability into
a metric called request failures per million - RFPMs [5] -,
which we calculate as

RFPM = Request failure probability × 106.

Note that a validation against measurement of the results
predicted by our models was not possible as data regarding
failures was not available. However, we believe that this makes
this modeling effort all the more important, as in absence of

any data, it is the only quantification of the availability and of
relative improvements of this system.

Furthermore, while values of some system parameters
(reboot time, takeover time, giveback time) were available
(values used in this paper are close to, but not exactly equal to
the actual values for HA Pair), other system parameters such as
mean time to failure, mean time to repair, the coverage factors,
were not. For this purpose, we carry out a sensitivity analysis
of our metric to these and other parameters. The default values
used are shown in the caption of the Figure 4.

Firstly, this model should be able to quantify the improve-
ment in availability by going from a single node to a paired
configuration. Next, it should quantify the improvement pro-
vided by multipathing and timeout/retry mechanisms employed
by SCSI with ALUA.

To make this comparison, we convert system unavailability
also to a “request failures per million” metric. Thus RFPMs
for the single node and HA Pair, without taking into account
protocol behaviour were calculated as: 106× Pr[system is
unavailable]. Here, we consider the HA Pair available only
if both the controllers are available (through normal operation,
or through emulation).

Note that in the graphs, unless otherwise noted in the
legend, the plot corresponds to the RFPMs of an HA pair
with multi-pathing and retry mechanisms.

Figure 4a compares RFPMs vs reboot time for the single
node without retries, the HA pair without retries, and then
the HA pair with retries for two retry windows. For these
set of values, the paired configuration brings down RFPMs
by almost 70% of those for the single node. The client retry
and multipathing mechanisms provided an additional 67%
reduction in the RFPMs over those of the HA Pair with no
retries. The main cost of this improvement is of performance.
If the application is delay-tolerant, this might be acceptable.

In the rest of the graphs, we study client RFPMs vs various
system parameters.

Figure 4b shows the “law of diminishing returns” in action
for RFPMs vs mean time to rebootable failures. Whether this
MTTF should be improved will depend upon which part of
the graph the current MTTF is in.

Figure 4c shows low level of sensitivity of RFPMs towards
reboot time. This is possibly because in the single node, the
repair time dominates the unavailability figure. This is seen
in Figure 4d, which shows higher sensitivity to repair time
(especially the single node). In case of HA pair with or without
client retries, other factors such as takeover and emulation
reduce the impact of reboot times, since a partner may takeover
and start emulating a node that is rebooting.

This is confirmed in Figures 4e and 4f, which show higher
level of sensitivity towards takeover and (auto-) giveback. This
is because the takeover time is now the actual time for the
LUN to be available again, rather than the reboot time. In this
scenario, the giveback processing time is also very important,
since a LUN remains unavailable during giveback processing.

We notice another interesting trend in the RFPM vs
takeover time which is also seen in RFPM vs detection

Branch CTMC
Initial States

Initial State Final States (F) or Branch
Probability Label probabilities Ps(0) Other States (R) Probability
label

PBrecovers12−5 M12
S12−5 = Aportunavail πs

πS12−5
, ∀s ∈ S12−5 F12 = Bup P 12−5

F12
(rw)∩Bdown ∩ Breboot

PAup14−5 M0 S12−5
πs

πS12−5
, ∀s ∈ S12−5 R′

14 = Aup ∩ Bup, P
0−5
R′

14
(rw

2)

P
0−5
F12

(rw
2)

R14 = Adown ∩ Bup

PAemulated16−5 M0 S12−5
πs

πS12−5
, ∀s ∈ S12−5 R16 = R14 ∩ Aemulated P

0−5
R16

(rw
2)

P
0−5
R14

(rw
2)

PArecovers17−5 M17 S17 = Bup ∩ Adown ∩ Anotemulated P 0−5
S17

(rw
2), ∀s ∈ S17 F17 = Bup ∩ (Aemulated ∪ Aup) P 17−5

F17
(rw

2)

PBrecovers12−7 M12 S12−7 = Bportavail ∩ Bdown ∩ Breboot
πs

πS12−7
, ∀s ∈ S12−7 F12 P 12−7

F12
(rw)

PAup14−7 M0 S12−7
πs

πS12−7
, ∀s ∈ S12−7 R′

14, R14 P
0−7
R′

14
(rw

2)

P
0−7
F12

(rw
2)

PAemulated16−7 M0 S12−7
πs

πS12−7
, ∀s ∈ S12−7 R16

P
0−7
R16

(rw
2)

P
0−7
R14

(rw
2)

PArecovers17−7 M17 S17 P 0−7
S17

(rw
2), ∀s ∈ S17 F17 P 17−7

F17
(rw

2)

PArecovers15−5 M15
S15−5 = Aportunavail ∩ Bup∩ πs

πS15−5
, ∀s ∈ S15−5 F15 = F17 P 15−5

F15
(rw)

Adown ∩ Anotemulated

PArecovers15−7 M15
S15−7 = Bportavail ∩ Bup∩ πs

πS15−7
, ∀s ∈ S15−7 F15 P 15−7

F15
(rw)

Adown ∩ Anotemulated

PArecovers22 M22
S22 = Aportavail ∩ Adown ∩ Arepair∩ πs

πS22
, ∀s ∈ S22 F22 = F17 P 22

F22
(rw)

Bportavail ∩ Bup

PArecovers23 M23
S23 = Aportavail ∩ Adown ∩ Arepair∩ πs

πS23
, ∀s ∈ S23 F23 = F17 P 23

F23
(rw)

Bportavail ∩ Bdown ∩ Breboot

PArecovers24 M24 S24 = Aportavail ∩ Adown ∩ Areboot
πs

πS24
, ∀s ∈ S24

F24 = Aup,
P 24

F24
(rw)

R24 = Adown

PBportavail26 M24 S24 ’ ’ R26 = Adown ∩ Bportavail P24
R26

(rw)

P24
R24

(rw)

PBup27 M24
S24 ’ ’

R27 = Bup ∩ R26

P24
R27

(rw)

P24
R26

(rw)
R′

27 = Bdown ∩ R26

PBreboot28 M24 S24 ’ ’ R28 = Breboot ∩ R27 P24
R28

(rw)

P24
R′

27
(rw)

PArecovers29 M29 S29 = Adown ∩ Bportavail ∩ Bup P24
s (rw)

P24
S29

(rw)
, ∀s ∈ S29

F29 = F17 P 29
F29

(rw)

PArecovers30 M30
S30 = Adown ∩ Bportavail

P24
s (rw)

P24
S30

(rw)
, ∀s ∈ S30

F30 = F17 P 30
F30

(rw)∩Bdown ∩ Breboot

TABLE IV: Branching probabilities from transient analysis

delay (Figure 4g). We see that for large retry windows, the
RFPMs show an initial insensitivity to increasing takeover
time or detection delay. This is because, if a takeover happens
quickly (if detection delay and takeover processing is very
fast), before a failed node reboots, but later the failed node
reboots successfully, this is an “unnecessary” failover, which
resulted in the system being unavailable again during giveback
processing. Thus although unavailability due to rebooting is
reduced, it increases due to giveback processing. Thus taking
over “too soon” may not be useful, especially for requests with
long retry windows.

Figure 4h shows a high level of sensitivity of RFPMs, and
a linear decrease w.r.t. reboot coverage factor for requests with
short retry windows. Having longer retry windows (as usual)
reduces the sensitivity to this parameter also.

V. SUMMARY AND CONCLUSIONS

The availability analysis of systems is usually carried out
by taking into account the failure and repair behaviour of
the server components. However, client protocols also have
“failure recovery” mechanisms built into them that must be
analyzed. In this paper, we presented a model that took into

account not only the details of the transient failover and
recovery mechanisms of the server system, but also captured
the request failure recovery mechanisms at the client in great
detail. The analysis was able to provide insights into how
various configuration parameters affect the request success
probability. For example, it showed that in presence of takeover
mechanisms, reboot time becomes less important. Additionally,
it showed that if time available for retries (the retry window)
is large, then takeover should not be triggered too soon - the
system should wait to see if reboot is working.

There are several future directions for this work. The
main direction is to scale this model so that it can work
for larger (N-way redundant) systems. The model should also
be compared against data to validate its prediction accuracy.
Finally, since retry mechanims affect performance (response
time of requests) a combined performance+availability study
of the HA pair must be carried out.

ACKNOWLEDGMENT

This work was supported by a grant from the Netapp
Advanced Technologies Group, Bangalore, India.

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80 100 120

R
FP

M

Mean time to reboot (sec)

rw = 20s

+ +

+
rw = 120s

× ×

×
HA pair - no retries

∗ ∗

∗
Single Node - no retries

� �

�

(a) RFPM vs Mean time to reboot

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200 1400 1600

R
FP

M

Mean time to rebootable failure (hours)

rw = 20s+

+

+
+

+
+ + ++ ++ + ++ + ++ ++ + ++ + ++ ++ + +

+
rw = 60s

×

×
×××××××××××××××××××××××××××

×
rw = 120s

∗
∗
∗ ∗

∗

(b) RFPM vs Mean time to rebootable failure

0

20

40

60

80

100

120

20 40 60 80 100 120

R
FP

M

Mean time to reboot (sec)

rw = 20s

+ +

+
rw = 60s

× ×

×
rw = 120s

∗ ∗

∗

(c) RFPM vs Mean time to reboot

0

200

400

600

800

1000

1200

1400

1600

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
FP

M

Mean time to repair (hours)

rw = 20s

+ + + + + + + + + +

+
rw = 120s

× × × × × × × × × ×

×
HA Pair - no retries

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
Single Node - no retries

�

�

�

�

�

�

�

�

�

�

�

(d) RFPM vs Mean time to repair

0

20

40

60

80

100

120

0 20 40 60 80 100 120

R
FP

M

Mean time to takeover (sec)

rw = 20s

+
+

+ +

+
rw = 60s

× ×

×
rw = 120s

∗ ∗

∗

(e) RFPM vs Mean time to takeover

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

R
FP

M

Mean time to giveback (sec)

rw = 20s

++ ++ + ++ + ++ ++ + ++ + ++ ++ + ++ + ++ ++ + ++
rw = 60s

××××××××××××××××××××××××××××××

×
rw = 120s

∗ ∗

∗

(f) RFPM vs Mean time to giveback

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

R
FP

M

Mean time to detection (sec)

rw = 60s rt = 20s
++ ++ + ++ + ++ ++ + ++ + ++ ++ + ++ + ++ ++ + +

+
rw = 60s rt = 60s

××××××××××××××××××××××××××××××

×
rw = 60s rt = 100s

∗ ∗

∗

(g) RFPM vs Detection time

10

20

30

40

50

60

70

80

90

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

R
FP

M

Reboot coverage factor

rw = 20s
+

+
+

+
+

+
+

+
+

+

+
rw = 60s

× × × × × × × × × ×

×
rw = 120s

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

(h) RFPM vs Reboot coverage factor

Fig. 4: RFPMs sensitivity. Unless otherwise specified, values used are: Mean time to non-rebootable failure: 10000hrs, Mean time to rebootable failure: 500hrs,
Mean time to failure detection: 15s, Mean time to takeover: 10s, Mean time to reboot (rt): 50s, Mean time to repair: 3hrs, Mean time to auto-giveback: 90s,
Mean time to forced giveback : 100mins, Probability that auto-takeover succeeds : 0.9, Probability that auto-reboot succeeds: 0.9, Probability that auto-giveback
succeeds: 0.9, Probability that request is for LUN A or B: 0.5, Probability that port hardware is up: 0.9999, Retry window (rw):20,60,120s

REFERENCES

[1] J. White, “Storage subsystem resiliency guide,” Netapp, Tech. Rep. TR-
3437, Sep. 2011.

[2] A. T and V. Rao, “Netapp host multipath strategy,” NetApp, Tech. Rep.
WP-7135, May 2011.

[3] Linux Enterprise Server 11 SP2: Storage Administration Guide, Novell,
April 2012.

[4] M. Malhotra and K. S. Trivedi, “Reliability analysis of redundant arrays
of inexpensive disks,” Journal of Parallel and Distributed Computing,
no. 17, pp. 146–151, 1993.

[5] K. S. Trivedi, D. Wang, and J. Hunt, “Computing the number of calls
dropped due to failures,” in IEEE International Symposium on Software
Reliability Engineering (ISSRE), Nov. 2010, pp. 11–20.

[6] M. Liese, “High-availability pair controller configuration overview and
best practices,” NetApp, Tech. Rep. TR-3450, October 2011.

[7] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What
does an MTTF of 1,000,000 hours mean to you?” in Proceedings of
the 5th USENIX Conference on File and Storage Technologies, 2007.

[8] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed storage
systems,” in Proceedings of the 9th USENIX conference on Operating
systems design and implementation. USENIX Association, 2010, pp.
1–7.

[9] K. Amiri and J. Wilkes, “Automatic design of storage systems to meet
availability requirements,” Technical Report HPL–SSP–96–17, Hewlett-
Packard Laboratories, Tech. Rep., 1996.

[10] K. S. Trivedi, Probability and Statistics with Reliability, Queuing, and
Computer Science Applications. New York, 2001: John Wiley and
Sons, 2001.

[11] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of
probabilistic real-time systems.” in Proc. 23rd International Conference
on Computer Aided Verification (CAV’11), ser. LNCS, vol. 6806.
Springer, July 2011, pp. 585–591.

