
New Challenges for
Performance Engineers:

Analyzing On-line Services

Varsha Apte
Associate Prof., IIT-Bombay.

(Part of the work was jointly done with: Mohit
Gupta, TCS)

Outline

Motivation
 Product performance engineering

techniques are ineffective when designing
services

Performance of on-line services
 Challenges
 Existing approaches
 Ongoing work at IIT-B

Context
A global shift is happening towards a “service
economy”, often enabled by the Internet
 Many technology providers are shifting focus

towards services or systems integration

Pressure towards accelerating time-to-market
of services
Has impacted how performance evaluation is
done

Elements of Performance
Engineering - Product

Early in
Product
Cycle

Later in
Product
Cycle

Target
Performance

Performance
Budgeting

Performance
Modeling

Performance
Test and
Measurement
(feed into the
model)

Performance Prediction
at high usage volumes,
using
models+measurement

e.g. Internet routers, switches, Web-servers, Web back-
end software, application servers, DB servers

Elements of Performance
Engineering - Product

Early in
Product
Cycle

Later in Product
Cycle

Performance Modeling Performance Test
and Measurement
(feed into the
model)

Performance
Prediction at future
usage volumes, using
models+
measurement

Performance
modeling involves
modeling internal
details of product

Detailed models
can be used in
choosing product
design

Measurement
analysis is tightly
coupled and verified
with analytical models
and with developers

Tight coupling with
development team

Performance
Requirements

Performance
Budgeting

Enter: Services

E-commerce web-sites
 Banking
 Shopping

Web-based e-mail service
Technical support service

Service Architecture-
Typical web-based service

Legacy
Product

External service
provider’s site

Custom
 Software –

Outsourced to
outside vendor

Off-the Shelf
Product

WAN

Service provider needs to integrate disparate systems for
providing a composite, seamless service

User request

Service Performance
Engineering –
Assuring good user-perceived performance

Legacy
Product

External service
provider’s site

Custom
 Software –

Outsourced to
outside vendor

Off-the Shelf
Product

WAN

Response time includes
delays through all these
disparate components,
as well as network delays

User Device

Challenges in Performance
Engineering of Web-services

Internal details of products may not be
known
 Internals of off-the-shelf products are

protected as IP
 Custom software developers may be

 Geographically “far away”
 Not very eager to share details

 Not much may be known about legacy
systems

No control over external systems

Elements of Performance
Engineering - Service

Workload
Character-
ization/
Forecast
Gathering

Early in
Service
Cycle

Later in
Service
Cycle

Performance
Requirements
–end-to-end

Performance
Budgeting
only on
boxes over
which there
is some
control

Performance
Modeling of
end-to-end
delay, of
public-
domain
protocols

Performance
Test and
Measurement at
“black box level”
(feed into the
model)

Capacity Planning and
Sizing of Service
Centers for future
usage volumes, using
models+measurement

What are the differences?

Weak coupling.
Performance
analysts use
information but
cannot give
feedback

Development teams

So What’s the Point?

Advanced queueing models for
performance analysis not possible/not
useful

Focus has to shift instead to the means
available and the needed information

“Means” and “Needs”

Means:
 Measurement analysis of black/“gray”

boxes
 Simple models for high-level architecture
 Detailed models of well-known

technologies (e.g. Web-servers, TCP/IP,
SSL))

Needs
 Capacity analysis, sizing analysis,

bottleneck analysis

… “Means”

Legacy
Product

External service
provider’s site

Custom
 Software –

Outsourced to
outside vendor

Off-the Shelf
Product

WAN

Measurement
analysis

Detailed Web
server model

End-to-end model of system

Analysis Approaches

We’ll discuss these three “means”
1. Models of well-known technologies, in

this case, Web-server

2. Measurement-based analysis
3. End-to-end modeling of systems

1. Web-server Models

Various queueing models proposed
 Reeser et al [1] first proposed a detailed

model which captured all aspects of a Web
server which serves static files

 Mainkar [6] as well as Reeser et al [2]
extended this model to represent dynamic
Web-servers

Web Server Queueing Model
Web
ServerTCP Connection

 Request (SYN)

SYN-Ack

B
R
O
W
S
E
R

Ack, HTTP Request

Servlet

HTTP
Thread

Servlet = Thread spawned by a Netscape-type
Web server, to handle dynamic processing
RTT = Round Trip Time

Queueing Model [Reeser et al]

1

2

TCP Connection Queue:
Multiple Server, no waiting
room.
Service time = Internet

RTT

1

2

HTTP Queue:
Multiple Server,
waiting room.

Service time =
Total time that a
servlet is active

M/M/c/0

M/M/c/K

I/O server

Web Server Queueing Model

Original queueing model captures
details of system I/O queues and the
rate at which they are “drained”
 Shows that web-server throughput

depends on whether users access it mainly
over dial-up or over a LAN (lower when
dial-up)

 Has deep impact on how results based on
performance measurement on a LAN are
extrapolated to a dial-up scenario

Dynamic Web Model
Response Time vs Hit Rate - LAN test, 512 thread limit

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

Hit rate per hour

Model

Test

Response Time vs Arrival Rate - dialup test, 512 thread limit

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

Arrivals per hour

Model

Test

•Dynamic server model
validated with tests

•Validation shows good
results

Two layered model
(requests queue at HTTP
threads, HTTP threads
queue at CPU)
Solved using iteration

2. Performance Measurement
For web-based services,
 Off-the-shelf load generator and

performance monitoring products

Performance measurement may have to
be of a “black box” (internals not known)

Performance
Monitoring

Tools

Load generator software

•User-oriented results
•System performance
 measures

Performance Measurement –
Tools

Commercial load generator tools focus
on ease-of-use for “system test group”
There is a need for better tools targeted
towards performance analysts

Load generator

Testing team
focus: Check if
service meets
requirements

Performance analyst’s focus: Take everything into account and produce a
performance/capacity analysis, sizing plan, as well as architectural
improvements

Measure-
ment tools

Performance Measurement –
Tools
Using Existing Tools for Capacity Analysis:

Load
generator
software

Performance
Monitoring

Tools

Manual Coordination Required. E.g.
collecting measurement data on the
server corresponding to different
loads, averaging snapshot data,
discarding warm-up, cool-down data
etc.

•User-oriented results
•System performance
 measures

Post-processing required for
capacity analysis such as
bottleneck throughput,
bottleneck server, max number
of users supported etc.

•Not Rocket Science!
•Needs to be done
 repeatedly

Should be automated

Performance Measurement –
Tools
Ongoing work at IIT-B (nascent stage)

Load
generator
software

Performance
Monitoring

Tools

Tool that intelligently co-ordinates
working of load generator and
gathering of performance statistics at
the server (e.g. rules for detecting
steady state, for range of load over
which measurement is to be done)

•User-oriented results
•System performance
 measures

Tool does intelligent analysis
of data collected by
performance monitors that
were run during the
measurement period.

Performance Measurement –
Tools
In short, the tool’s aim is:

Intelligent
Load
generator
software

Smart Performance
Monitoring

Tools

Measurement-based
Capacity analysis of
client server system

Performance Measurement –
New Challenges

“Box” internals are not known
Apart from capacity analysis, diagnosis of
performance problems may be required
Analyst can work only with measures
collected by operating system

Performance
Monitoring

Tools

Load generator software

•User-oriented results
•System performance
 measures

Performance Measurement –
New Challenges

Different approach required for such
analysis
Signature-based analysis is one such
approach, described in [3]
 Signatures are characteristic, repeatable

behaviors of server software
 Approach involves deducing the

performance problem by observing
measurement signatures

Signatures example

•Two charts form
a “signature” for
a fatal memory
leak

3. Performance Modeling

Estimation of end-to-end delay requires
queueing network models
 Only simple models need be used, because of the

unpredictability of service components

End-to-end delay/capacity analysis requires
modeling of hardware and software resources
 Layered queuing network approach is needed

Desirable to have “standard” specification
methods converted into queuing network
models

Existing Approaches

Various tools and models for distributed
system modeling – using a “layered
approach”
 Tool: Spe*ed[7]

 Queueing network model generation from a
software model specification, both
hardware/software resources are specified

 Layered Queueing Networks (M. Woodside
et al)[5]
 Generated from Use Case Maps, similar

 Method of Layers (Roila, Sevcik)[4]

Ongoing Work at IIT-B

A tool for performance analysts
Should be simple
Should have intuitive specification
Should do simple models
 Take away repetitive tasks from

performance analyst
 Leave advanced tasks to performance

analyst

CFA- Call Flow Analyzer

Specification
based on
“call flow”
Currently,
simple
calculations
based on
approximate
open
queueing
models

Joint work with Mohit Gupta, now with Tata
Consultancy Services.

CFA- Call Flow Analyzer

Intuitive specification analytical
solution
Layered model
 Software servers executing on hardware

server
 Hardware resources can be specified

separately (server uses x ms on CPU, y ms
on Disk)

 Simple model of network links also
included

CFA- Call Flow Analyzer*

Developed by Mohit Gupta, TCS

CFA- Call Flow Analyzer

Analysis results in
 End-to-end response

times of each user
request

 Maximum possible
throughputs for each
“call-flow”

 Also computes
maximum supportable
arrival rate under
average response
time constraint

Summary

Service performance engineering has
significantly different challenges than those of
product performance engineering
 Many are not traditional queuing theory problems
 Focus should be on available means and relevant

analyses – this shifts focus to measurement tools,
and tools that translate intuitive specifications to
simple models

 More work necessary on understanding how to
analyze a gray box based on operating system
measurements (some patent-pending work done
in AT&T labs)

References

 P.K. Reeser, R. D. van der Meri, R. Hariharan, “An Analytic Model of a Web Server”,
ITC-16, 1999.

 R. Hariharan, W.K. Ehrlich, D. Cura, P.K. Reeser, “End-to-end modeling of Web Server
Architectures”, ACM Conference on Performance Analysis of Web Servers, 2000.

 A. Avritzer, R. Farel, K. Futamura, M. Hosseini-Nasab, A. Karasaridis, K. Meier-
Hellstern, P. Reeser, P. Wirth, F. Hubner, D. Lucantoni, “
Internet Application Performance: A Signature-Based Empirical Approach”, in ITC-18,
2001.

 J.A. Rolia and K.C. Sevcik, "The Method of Layers", IEEE-TSE, SE-21, 8 (August
1995), 689-700.

 Dorin Petriu, Murray Woodside, "Software Performance Models from System Scenarios
in Use Case Maps", Proceedings of Performance TOOLS 2002, London, April 2002

 V. Mainkar, “A Model of a Web Server with Dynamic Content”, INFORMS Fall 1999
Meeting, Philadelphia, PA.

 “SPE*ED – The Software Performance Engineering Tool”, http://www.perfeng.com/

Back-up slides

CFA- Call Flow Analyzer

Performance Measurement –
Tools
Ongoing work at IIT-B

Load
generator
software

Performance
Monitoring

Tools

•User-oriented results
•System performance
 measures

Examples of co-ordination work: Consider a load generator which
is running in a mode in which it increases the load level every 10
minutes. The tool can do two types of tasks:

•Routine: e.g. automatically mark data collected on the server side
so that the corresponding load level can be identified

•Intelligent: e.g. figure out how long a duration of test is necessary
to get “steady-state” results

Performance Measurement –
Tools

Ongoing work at IIT-B

Load
generator
software

Performance
Monitoring

Tools

•User-oriented results
•System performance
 measures

Examples of capacity analysis work:

Routine calculations:
Load level (number of users, request rate, resource
utilizations…) at which some performance
requirement is met.
Generating graphs of throughput vs number of users,
response time vs throughput, etc.

Intelligent calculations: “knee” of response time
curve, where does throughput curve flatten out…

Queueing Model : CPU
Flow of typical servlet that generates dynamic content :

Request for CPU : t1 secs

Request for CPU : t2

Request for CPU : t3

Wait for I/O with back end system : w1 secs

Wait for I/O with back end system : w2

CPU modeled as a processor sharing queue
Arrival rate of requests to this queue = Web transaction throughput
rate X number of CPU request segments in the servlet

Hierarchical Queueing Model

Then, holding time of servlet is =
w1 + w2 + ….
+ Rcpu(t1) + Rcpu(t2) + Rcpu(t3) + …
where Rcpu(t) is the response time of a

request in the CPU queue

Model variables are interdependent, so iterate
until convergence is achieved.

