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Abstract—
We present a tool,PerfCenter, that takes as input the deploy-

ment, configuration, message flow and workload details of the
hardware and software servers in an application hosting center,
and predicts the performance of the applications. We allow for
a hierarchical specification of the data center, where software
is deployed on machines, machines consist of hardware devices
and are deployed on LANs. We also explicitly model network
links between LANs and model the contention at those links
due to messages exchanged between servers. While tools and
methodologies for such analysis have been proposed earlier, our
approach allows for the most natural specification of a “data
center” architecture, and is best suited for aiding in design
decisions regarding deployment and configuration of software
on various hardware architecture scenarios. The tool takesthis
high level input and generates the underlying queueing network,
which is then solved analytically. Since we allow for synchronous
method calls, and model contention at software as well as
hardware resources, the generated queueing network is solved
using approximate methods. We validate the solution against
results obtained from a measurement testbed, and found that
the predicted values were reasonably accurate.

I. I NTRODUCTION

The performance of online services has become one of the
main quality attributes by which current Internet users rate
them. A recent report by Jupiter Research [5], based on a study
of on-line shoppers, identifies poor Web-site performance as
second only to cost considerations, as a reason to entirely
abandon, or not re-visit an online retailing Web-site. Thus,
it is critical to offer good performance to Internet and Web
users.

Online services are typically supported by distributed ap-
plications, or “multi-tier” server systems. Thus, e.g., a Web-
based e-mail service is supported by at least three application
components, the Web server, IMAP server, and the SMTP
server. More complex services can be made of a large number
of such components. Such services are often hosted out of
a “data center” which houses the machines running these
applications. Before enabling such a service, the data center
administrator has to make several decisions - how many hosts
would be required for the service? How should the deployment
of software components on hosts be? What should be the

configuration of an application (e.g. thread pool size). For
larger organizations, a service could be composed out of
applications that are geographically separated - in such a case,
how would the network delay affect the user response time?

All these questions can be answered by building an ap-
propriate queueing model of the distributed system. However,
given the complexity of multi-tier systems, such models cannot
be built manually. Thus we need tools that can translate a high-
level specification of the distributed system into a queueing
model, and then solve it.

Over the last decade, there has been significant effort
in creating tools and techniques for analysis of distributed
systems [3]. All of the techniques are rooted in queueing
theory, where the distributed system is viewed as a complex
system of resources. The distributed system is mapped to a
queueing network and analyzed. One of the primary challenges
in such queueing network analysis has been the capturing
of the “layered” behaviour of a distributed system - i.e. the
behaviour in which the server of one queue, makes a request to
another resource on behalf of the request that it is serving.This
resource could be a hardware device (e.g. when a Web server
thread joins a CPU queue), or another software server (e.g.
when a Web server thread makes an RPC call to an application
server).

Several approaches have been proposed to solve such mod-
els. The significant ones include theStochastic Rendezvous
Network model by Woodside et al [14] and theMethod of
Layersby Sevcik and Rolia [12]. These approaches are notable
for their analyticalsolutions of the models. The work in recent
years has focussed immensely ontranslation of high-level
specification, to the formalisms accepted by such models [10],
[6], [7], [17], assuming that a tool for the solution of the
model is available. Some amount of work has also been done
in developing more accurate (as opposed to generic) models
of a system, so that more detailed behaviour can be specified
and analyzed [8], or in developing models specific to certain
software technologies [11], [16].

While existing tools and techniques have progressed con-
siderably, we believe there is still room for improvement in
the ease with which some of the features of a distributed



system can be specified. Specifically, a direct approach by
which a “data center architecture” can be specified would
be very convenient. In other words, we would like to spec-
ify the hardware architecture (such as how many machines,
of what type), the network architecture (how the machines
are deployed on LANs, and perhaps separated by a WAN),
the software architecture (the message flows for various use
cases), and the deployment and configuration details of the
software and hardware. To our knowledge, none of the existing
tools/methodologies allow such specification.

We introduce such a specification in the form of a software
tool, called PerfCenter, which we believe is both intuitive
and straightforward, and present the analytical methodology
for derivation of various performance measures based on this
specification. We validate the results of our tool with the actual
measurements, and find that the model provides reasonable ac-
curacy in predicting values of important performance measures
of the distributed system.

The rest of the paper is as follows: in Section II, we present
a motivating example and review existing work in this area. We
describe the elements of our system model in Section III. In
Section IV, we present the formal specification and analytical
solution of the model. In Section V, we present validation
results, and illustrate the use of our tool by running various
“what-if” scenarios. We conclude the paper in Section VI.

II. M OTIVATING EXAMPLE : A WEBMAIL SERVICE

Consider a Web-based e-mail (Webmail) service, which is
provided using the following software components: the Web,
the Authentication, the IMAP and the SMTP servers. A typical
Webmail service allows the user to login, on which it displays
a list of messages from the user’s default folder. The user
may then read, send, delete messages, and carry out a variety
of other transactions on the IMAP/SMTP servers through the
Web interface. Each arriving Web request triggers a flow of
messages through the software components, which interact
with each other to fulfill the user request. Each such type
of request or a transaction is termed ause case scenario. A
visual formalism called a Message Sequence Chart (MSC) [1]
is often used to depict a use case scenario. Figures 1 and2
depict the MSCs corresponding to the login, read, send and
delete scenarios for the Webmail system.

In the login scenario, the Web server processes the
user request and makes a call to the authentication server
(send to auth) while passing on the user login id and password
for authentication to it. The authentication server then verifies
the credentials (verify password) and sends back the reply. We
assume that the login request is rejected due to authentication
failure with probability 0.1, whereas with probability 0.9the
user is authenticated. If authenticated, the Web server issues
a request to the IMAP server to display the message box of
the requesting user (send to imap). The IMAP server then
sends the contents of the message box (list messages) to
the Web server which formats it for sending it to the user
(changeto html). The rest of the scenarios are similar to the
login scenario.
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Several questions arise for this system, which depend on
the hardware deployment and software configuration of the
servers. E.g., for a given deployment, what would the bot-
tleneck machine be? What would be the scenario response
times? Would the machines be adequately utilized? How many
threads should the Web-server be configured with? What if one
of the servers is geographically separated?

To answer such “what-if” questions, we would like a tool
that would allow input specification in a manner that would
be natural to a data center architect. In the following section,
we review existing tools that try to meet this need.

A. Existing Methodologies and Tools

A large amount of research has been done over the last
decade to address the problem of analyzing the performance of
software systems. Here, we focus on approaches that propose
analytical solutions to the performance models.

The Method of Layers technique [12] was among the
early approaches, which proposed a model and an analytical
solution for capturing the “layered” behaviour of software
systems - i.e. where one “layer” of servers uses the services
of another layer of servers, where the lowest layer is that of



the hardware devices. All calls between layers are assumed to
be synchronous.

The Stochastic Rendezvous Network [14] is a powerful
model, which captures many interesting behaviours of a dis-
tributed system. Apart from synchronous calls to servers at
different layers, the model allows execution of a service in
phases. This allows capturing of post-processing that is done
by a server, even after a reply is sent back to the caller. The
solution method of this model is implemented in a tool called
the LQNSolver [15]. Further attempts have mainly focussed
on mapping higher-level specification formalisms to the for-
malism that LQNSolver can accept (e.g. UCM2LQN [10],
UML2LQN [17]). Some extensions to the “power” of the
model have also been made (e.g. adding the capability of
modeling forks and joins [10]) in the processing of the request.

Another significant body of work has been done by Balsamo
et al [1], [2], [4] who have used queueing networks with finite
capacity queues to model software architectures, including
those that allow synchronous calls between servers.

After the initial efforts in defining stochastic models that
could capture important behaviours, recent work has mainly
been directed towards making specification easier for a soft-
ware developer, so that the process of performance analysis
can be integrated into the development cycle. A detailed survey
is out of the scope of this paper, and the reader is instead
referred to the excellent review by Balsamo et al [3].

While a variety of tools seem to exist for the purpose of
analyzing software systems, we claim that none of these are
suitable for analysis from the “data center” point of view.
We claim that the existing tools are ideal as tools to be used
during development, when the details of deployment may not
be available. However, at the stage when an application is
ready to be deployed in a hosting center, the architecture ofthe
data center (machine specifications and network architecture)
starts playing an important part. A data center architect would
require a tool that allows him/her to run various what-if
scenarios of deployment and configuration, and see their
effect on the performance of the application. The formalism
we propose captures the natural “language” that data center
architects speak - in terms of number of machines of a certain
type, the “specs” of a type of machine, the “deployment” of a
software application on a certain machine, and the deployment
of the machines on various different data centers that mightbe
separated by long distance network links.PerfCenteraccepts
specification at this level, and solves the underlying queueing
model which captures the complexity of the contention for
resources.

In the next section, we present the elements of our system
model, which will clarify how our formalism is suited towards
the analysis of an application that is about to be deployed in
a data center.

III. T HE DISTRIBUTED SYSTEM MODEL

Our system model attempts to formalize a “data center”
roughly hierarchically, as a typical architect would - thuswe
define machines, (software) servers, networks, and provide
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SUN[2]: CPU = 1; HP[2]: CPU = 1;

resources CPU PS;

machines

1

2

3

6

Scenario Login 12.0

WEB SUN[1]; AUTH SUN[2]; IMAP HP[1]; SMTP HP[2];

mappings
SMTP: threads = 8 sm{CPU =0.014};

IMAP: threads = 8 lm{ CPU = 0.025}, r m{CPU = 0.020};

AUTH: threads = 50 vp{ CPU = 0.010}, v s{CPU = 0.005};

lan1 SUN[1], SUN[2], HP[1], HP[2];
maplans

network

software

4

5

WEB: threads = 80 st a{CPU = 0.015}, s t i { CPU = 0.020},
s t s{CPU = 0.02}, c t h{CPU = 0.010};

WEB s t a AUTH v p 128 SYNC;

}

[0.1] {

[0.9] {

AUTH v p WEB c t h 128 ;
}

{

AUTH v p WEB s t i 256 ;
WEB s t i IMAP l m 512 SYNC ;
IMAP l m WEB c t h 2048;

}

lan1 lan2 trans=10MBps prop=2.3ms mtu=256B;

Fig. 3. Example input file for the PerfCenter tool

finer level details of the resources that constitute the machines.
We also specify deployment and configuration details for the
servers. The deployment is specified in terms of servers on
machines, and machines on LANs. The specification is done
using a simple text interface. Figure 3 shows an excerpt
from the input file corresponding to the example described in
Section II. We explain the components of our system model
using this input file as an example.

1) Hardware Devices:At the lowest level of the distributed
system, there are hardware devices (e.g. CPU, disks),
which are parts of machines. Each such device can be
declared, by giving each type a symbolic name which is
used later for referencing it and its corresponding service
discipline (eg. PS for CPU, FCFS for Disk).

2) Machines:We can define different “types” of machines,
and specify how many of each type there are in the
system. A machine is defined by the types and the
quantity of the various hardware devices (from the
declared list) that it possesses.

3) Network Architecture:We allow our system to consist
of several LANs that can be separated by point-to-point
links. For each such point-to-point link we specify the
value of transmission rate, propagation delay and the
Maximum Transmission Unit (MTU).

4) Machine deployment description:The machines in the
distributed system can be deployed onto different LANs.

5) Servers:Here, by “servers” we mean the server applica-
tions such as Web server, IMAP server, that run on the
machines. Each of the servers in the distributed system is
specified with the number of threads it possesses and its
corresponding set of “simple” tasks. A “simple” task is
defined as a continuous piece of execution, which holds
a device of its host machine, for a given amount of time.
(We will explain the concept of simple tasks further, in



Section IV).
6) Server deployment description:The deployment of these

servers to different machines is also specified.
7) Use Case Scenarios:The interaction of the servers to

provide a variety of services is specified through a
formalism similar to message sequence charts which
are a part of the UML specification. Each use case
scenario consists of an ordered sequence of tasks of
various servers, with certain annotations. Once a thread
executes a task locally, it may make a synchronous or
asynchronous call to a task of another server (denoted by
a SYNC/ASYNC tag). We allow probabilistic branching
to reflect different paths that may be taken in a scenario.
We also have a notion of a message sent when a task
makes a remote call. Thus each such call is annoted with
a message size in bytes. The use case scenario itself
is given a symbolic name and its corresponding arrival
rate is specified in terms of requests per second. Thus,
currently we assume “open” arrivals to the system.

With the above specification, the performance measures of
interest would be:

• Response times of the use case scenarios
• Utilization of the hardware resources
• System capacity (in terms of maximum aggregate request

rate that can be supported)
• Bottleneck server (hardware or software).

We derive all these measures using an analytical modeling
approach that essentially views the entire system as a layered
network of queues. The analytical methodology works by
deriving two parameters: request arrival rate, and average
service time, for each of the queues in the network. The
arrival rate to each of the resources of the system depends on
factors such as high-level use case scenario arrival rates,as
well as the deployment of servers on machines, and machines
on networks. The average service time of a server, in this case
better termed as “holding time” of a resource is a complex
quantity for this system: it depends on contention for resources
that are requested while holding this resource - e.g. the holding
time of a thread would depend on the time required for
receiving a response from a remote server, when a synchronous
call is made. It would also depend on the workload on the
CPU on which the thread is executing - since there could
be contention for the CPU. Thus, the methodology must take
into account delays caused by all such interactions within the
system. In the following section, we present in detail, the
analytical solution for deriving the measures. Since it makes
several assumptions along the way, the analytical solutionis
approximate.

IV. T HE ANALYTICAL SOLUTION

Before we present the formal model and solution of the
queueing network underlying our system, we explain a few
key concepts and definitions:

• Synchronous vs asynchronous calls: A software server
often calls a task of another server to fulfill the request

that it is processing (e.g. in the Webmail example, the
Web server calls the “list message” task of the IMAP
server). This can be done in two ways. The first is to
simply “forward” the request to the next server, without
waiting for a response, thereby releasing the thread which
was executing the request on this server. This is termed
as anasynchronouscall. The second way is to call the
task of the other server, and wait for the response. In
this case, the thread which makes the call,blocks, and
is held until the response is received, and is continued
to be held until either it makes an asynchronous call, or
finishes processing and returns the response to the user
(request exits). When we calculate queueing delays at
software servers, the type of calls its tasks make is a
very important factor that determines how long the thread
resource is held by a request.

• Simple vs Compound tasks: The tasks that a server
carries out can be of two types: simple, and compound.
Simple tasks consist purely of instructions that execute on
local devices of the machine. Compound tasks represent
functions or methods of servers that may not only have
some local computation, but also includesynchronous
calls to other tasks. Thus, when a server thread performs
a compound task, it is held during local computation
as well as during the times that it is blocked on re-
sponses from synchronously called servers. E.g.,in the
Webmail example, the Web server executes a compound
call involving local processing (s t a, c t h, s t i) and
synchronous calls to the authentication and IMAP servers.

With the above clarification, we first proceed to formally
express the specification given in the previous section, then
derive the parameters of the underlying queueing network,
and lastly, derive the performance measures of the queueing
network.

A. Formal model of the input parameters

• Let there beD types of devices,M machines andS
servers in the system.

• A machine m is characterized by the set:
{qm1, qm2, . . . , qmd, . . . , qmD} where qmd is the
number of typed devices present in machinem. Two
different machines that are characterized by the same
set, are considered to be the sametypeof machine.

• Let A = [asm] denote the server-to-machine allocation
matrix. Thus,asm = 1 if servers is deployed on machine
m, and 0 if not. Thenas =

∑
m asm denotes the number

of machines on which servers has been deployed.
• Let B = [bmn] denote the machine-to-LAN allocation

matrix. Thus,bmn = 1 if machine m is deployed on
LAN n, and 0 if not, with

∑
n bmn = 1. Further, letβm

denote the index of the network on which machinem is
deployed.

• Let rnn′ , δnn′ , and MTUnn′ denote the bit-rate, the
propagation delay and the maximum packet size (“Max-
imum Transmission Unit”) respectively of the point-to-
point link between the two LANsn andn′.



• Each servers is characterized by asimple task set:
{Es

1
, Es

2
, Es

3
, . . . , Es

ns
}. We also specify the number of

threadscs that the server can have.
• Associated with each simple taskEs

t , is the execution
time that it requires on each deviced, denoted byτs,t,d

• There areF use case scenarios in the system. The arrival
rate of scenariof is denoted byλf . A use case scenario,
f , is specified as a tree denoted astf , where each node
corresponds to asimpletask and can be denoted bytfi . An
arc from one node (task) to the next node (task) signifies
that the first task has called the next task. Each such arc is
annotated with the attributes: the probability of the call,
whether the call is synchronous or asynchronous, and the
size of the message transfered as a result of the call. Let
G(tfi , tfj ) denote the probability that in scenariof , tree
nodetfi , representing taskEs

t , will call a tree nodetfj ,
representing taskEs′

t′ . wheretfi is an immediate parent
node oftfj . Nf is the total number of nodes in a tree for
scenariof . The root of the tree is the first simple task of
the scenario.

• Let ls,t,s′,t′ denote the average size of the message sent
from taskEs

t to Es′

t′ in a scenario (thus, we assume that
for a given sequence of one task calling another task, the
average message size remains the same).

The above structures and parameters form theinput to our
analytical model.

B. Deriving the Parameters of the Queueing Network

Based on the above input, some intermediate values need
to be calculated, for deriving the performance measures of
the system. Briefly, these values are the arrival rates and the
average holding times that characterize the queueing models
corresponding to the soft and hard resources of the system.

Before deriving these quantitative parameters, the tool car-
ries out the important step of identifying thecompoundtasks
of a server. Recall that the tool user, in the specification, only
provides details of the simple tasks of a server. The complete
task set of a server is revealed only by inspecting the use case
scenarios (algorithm given in [13]). Note that a simple taskis
a special case of a compound task, and thus, henceforth we
refer to the compound tasks as simply “tasks”.

Let the complete task set for the servers be denoted by
T s = {T s

1 , T s
2 , . . . , T s

Cs
}, where Cs is the total number

of tasks in the task set of servers. Each taskT s
i in T s

corresponds to an execution sequence of steps, which are either
local computations (simple tasks) or synchronous calls. We
represent this asT s

i = Xs
i,1, X

s
i,2, X

s
i,3, X

s
i,4, . . . , X

s
i,Qs

i
where

Qs
i is the total number of steps in the compound taskT s

i in Ts.
Xs

i,j is either a simple taskEs
t of servers or a synchronous

call to a taski′ of another servers′, denoted byS(T s′

i′ ). We
assume that every task consists of a simple task as its first step,
possibly followed by an alternate sequence of synchronous
calls and simple tasks.

Once the task set for each server is built, we can proceed
to derive the parameters of the various queueing models:

• Task arrival rates:The task arrival rates to simple tasks,
denoted byλEs

t
are calculated based on the use case

scenarios and their arrival rates.
Using preorder tree traversal algorithm, we can calculate
the total arrival rate to any simple task in a scenario by
visiting each tree node. In a tree, nodetfj represents task
Es

t and there can be many such nodestfj1 ,tfj2 ,tfj3 ,. . .,tfjn
.

which also represent taskEs
t in the tree for anyjn ≤ Nf .

Arrival rate to a particular nodetfj which represents task
Es

t is λ
t
f

j

= λ
t
f

i

G(tfi , tfj ), wheretfi is the immediate par-

ent node oftfj . If tfj is the root node thenλ
t
f

j

=λf . Hence
the total arrival rate to any taskEs

t in a scenariof is

then
∑Nf

j=1,t
f

j
=Es

t
λf

tj
. Since we assume that if the server

is deployed on multiple machines, the load is equally
distributed among all the servers, the total effective task
arrival rate will beλEs

t
=

∑F

f=1

∑Nf

j=1,t
f

j
=Es

t
λf

tj
/as.

Assuming no probabilistic branching in scenarios, the
arrival rate at a compound task,λT s

i
is equal to the arrival

rate of the first simple task in its execution sequence.
Thus, if Ti = Xs

i,1, X
s
i,2, X

s
i,3, X

s
i,4 , . . . , Xs

i,Qs
i
, where

Xs
i,1 = Es

t then λT s
i

= λXs
i,1

= λEs
t
. This can be

easily generalized to the case where there is probabilistic
branching.
The total arrival rate to a servers on a machinem is
then given by

λs
m =

∑

i∈T s

λT s
i

(1)

• Thread holding times for each task:Let the holding time
of taskT s

i , at machinem, be denoted byhs
i,m.

Then,

hs
i,m =

Qs
i∑

j=1

Rm(Xs
i,j) (2)

whereRm(Xs
i,j) is either the response time at the devices

of a simple task or of a synchronous call. IfXs
i,j is a

simple taskEs
t ,

Rm(Xs
i,j) =

D∑

d=1

Rmd(E
s
t ) (3)

whereRmd(E
s
t ) is the response time of taskEs

t at device
d on machinem. If Xs

i,j is a synchronous call, say to task
T s′

i′ , then letXs
i,j−1

be a simple taskEs
t , and letEs′

t′ be
the first simple task ofT s′

i′ . Then the message size for
this call isls,t,s′,t′ , and the reply is of sizels′,t′,s,t. Then
Rm(Xs

i,j) is given by
∑

m′ as′m′ [Dmesg
m,m′(ls,t,s′,t′) + Rm′(T s′

i′ ) + Dmesg
m′,m(ls′,t′,s,t)]

as′

(4)
if bmβm

bmβm′
= 0, and by

∑
m′ as′m′Rm′(T s′

i′ )

as′

(5)



otherwise.
whereRm′(T s′

i′ ) is the average response time of the(i′)th

task of(s′)th server on machinem′, andDmesg
m,m (ls,t,s′.t′)

and Dmesg
m′,m(ls′,t′,s,t) are the delays for transferring the

message corresponding to the request and the response,
respectively.

• Average thread holding time:The average thread holding
time of servers at machinem, denoted byhs

m is given by
the weighted average of holding times of the individual
tasks:

hs
m =

∑Cs

i=1
λT s

i
hs

i,m∑Cs

i=1
λT s

i

(6)

• Arrival rate to devices:The total arrival rate of simple
tasks to a device of a machines is the sum of all the
requests coming from all the tasks of all the servers
deployed on that machine

λm,d =
S∑

s=1

ns∑

t=1

asm1(τs,t,d > 0)λEs
t

(7)

where1(τs,t,d > 0) is 1 if the Es
t uses deviced and 0

otherwise.
• Average device holding times:Although device holding

times are given directly as an input, theaverageholding
time of a device must be calculated, for characterizing
the device-level queue. This average will depend on
the relative arrival rates at which requests from various
simple tasks with different holding times arrive to the
devices.
Hence the average holding time of a deviced on machine
m is given by

τm,d =

∑S
s=1

∑ns

t=1
asmλEs

t
τs,t,d

λm,d

(8)

• Arrival rates to links:Let λcall
s,t,s′,t′ be the rate at which

a call is made toEs′

t′ from Es
t . Then

λcall
s,t,s′,t′ =

∑

f

Nf∑

i=1,t
f

i
=Es

t

Nf∑

j=1,t
f

j
=Es′

t′

λ
t
f

i

G(tfi , tfj )

as

(9)

If λcall
s,s′ denotes the total rate at which a servers sends

messages to a servers′, then

λcall
s,s′ =

∑

t

∑

t′

λs,t,s′,t′ (10)

The average number of packets generated betweenm and
m′, by the call fromEs

t to Es′

t′ is

nlink
s,t,s′,t′,m,m′ = ceiling(

ls,t,s′,t′

MTUβm,βm′

) (11)

The corresponding average packet size is given by

lpack
s,t,s′,t′,m,m′ =

ls,t,s′,t′

nlink
s,t,s′,t′,m,m′

(12)

The arrival rate of packets on the link(m, m′), λm,m′ is
given by:

∑

s

∑

t

∑

s′

∑

t′

asmas′m′λcall
s,t,s′,t′n

link
s,t,s′,t′,m,m′ (13)

and the overall average packet size,lm,m′ is given by:
∑

s

∑
t

∑
s′

∑
t′ asmas′m′ lpack

s,t,s′,t′,m,m′λcall
s,t,s′,t′n

link
s,t,s′,t′,m,m′

λm,m′

(14)
Thus, the link utilization ρm,m′ is given by
λm,m′ lm,m′/rm,m′ where lm,m′/rm,m′ is the average
packet transmission time.
Given the average packet size, link rate and packet arrival
rate, the link can be approximated as a simpleM/M/1
queue, whose waiting time can be calculated. Let this
waiting time be denoted byWm′m′ . The packet transfer
delay of a packet of a particular sizel is then simply
given byDm,m′ = Wm,m′ + l/rm,m′ + δm,m′

We approximate themessagedelay for a message of size
L:

Dmesg
m,m′(L)

= Wm,m′ + δm,m′+

L

rm,m′

C. Performance measures

The above analysis resulted in derivation of arrival rates and
average holding times for all the queues in the model. Now,
the performance measures of the system can be derived as
follows:

• Device throughput:Since we consider lossless queueing
systems, device throughput,Λm,d is simply λm,d, if
λm,dτm,d < qmd andqmd/τm,d otherwise.

• Device utilization:The device utilization for a deviced
at machinem is given by

ρm,d =
λm,dτm,d

qm,d

(15)

• Device response times:These are given by:

Rmd(E
s
t ) = Wm,d + τs,t,d (16)

where Wmd can be calculated by approximating the
device as a simpleM/M/c queue, withqmd servers,λm,d

arrival rate, andτm,d service time.
• Server throughput:Again, since we consider lossless

queueing systems, server throughput is simplyΛs
m =∑

λT s
i
, if λs

mhs
m/cs < 1 andcs/hs

m otherwise.
• Server utilizations:The utilization of a servers on

machinem (denoted byρs
m) is given by

ρs
m =

λs
mhs

m

cs

(17)

• Task response times:The task response times are given
by

Rm(T s
i ) = hs

i,m + Wm,s (18)



where Wm,s can also be calculated by approximating
the software server as a simpleM/M/c queue, withcs

“servers”,λs
m arrival rate, andhs

m service time.
• Scenario response times:Without loss of generality, let us

consider scenarios without probabilistic branching. The
scenario can then be defined by a sequence of tasks. The
scenario response time,Rf , then, is given by the sum of
response times of all the tasks in the scenario. However,
the response times of tasks that are called synchronously
are not included in this sum, as they are already accounted
for in the holding times of the calling tasks.
The average scenario response time is the weighted sum
of response times of all the scenarios, and is given by:

Ravg =
∑

f

λf Rf

λf
(19)

Equations 2 to 18 can be solved iteratively till the
corresponding values of thread holding times in the suc-
cessive iterations converge, in order to yield the desired
performance measures. The iteration starts with the initial
values of waiting times set to zero. Thus,Wm,m′ , Wm,d

andWm,s should be set to 0.

V. RESULTS

While there is a lot of work on models of distributed
systems, very few report on their practical usability, which
would depend greatly on the accuracy of the predictions of
the model. We chose, therefore, to validate our model, with
measureddata. A testbed emulating the Webmail application
as described in Section II was built, and experiments were
carried out on it. The four different servers - Web, Authenti-
cation (Auth), IMAP and SMTP; were hosted on four different
machines.

The Web server is an Apache server executing PHP scripts
to emulate synchronous calls to the Auth, IMAP and SMTP
servers. The backend servers were written in C++.

Multiple experiments were conducted on this distributed
test-bed. For load generation,httperf [9] was used, while
server performance measures were obtained through Linux
utilities such as sar, ps, etc. The service times of the tasks
in seconds were as specified in the input file of Figure 3. The
mix of the request was as follows: one read and send request
each is issued for every two logins.

The measurements were carried out up to the point at
which one of the servers bottlenecked. The values obtained for
response time and CPU utilization were then matched against
the results obtained fromPerfCenter.

Figures 4 and 5 compare the measured and model pre-
dicted values of average scenario response times and CPU
utilizations, respectively, for the system specified in Figure 3,
for varying load. The predicted CPU utilizations are highly
accurate, while the the predicted scenario response times are
also within reasonable accuracy up to the point where the Web
server CPU reaches 80% utilization.

This indicates that the model predictions are fairly reli-
able and can be used for making a number of deployment
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and configuration decisions by the data center architect. For
example, it is clear from the utilizations that the machines
hosting SMTP and Auth server are under-utilized, whereas
the machine hosting the Web-server is over-utilized (100% at
22 requests/second). Thus, we could deploy the Web-server
on two machines, while allocate only one machine to Auth
and SMTP. Figure 6 shows the utilizations of the Web, AUTH
and SMTP (both mapped to one machine) CPU’s under this
scenario as predicted byPerfCenter. As we can see, the CPU
utilizations are now balanced better, with the Web server CPU
at 50% and the Auth and SMTP CPU at23%, at22 reqs/sec.

Finally, we evaluate a scenario where the resource demands
of simple taskss t a andv s have been changed from15ms to
55ms and5ms to55ms respectively. We still wish to support
a maximum load of22 req/sec. Here, we use PerfCenter to
determine the optimal number of threads required to support
this request rate. Too few threads may result in lesser capacity
than required, and under-utilization of hardware resources,
while too many threads are undesirable, since this implies
system overheads. Thus, we evaluate the system with a varying
thread configuration for the Web server. Figure 7 shows the
change in Web CPU as well as the (software) server utilization
with increasing number of threads for the server. We can
see that as number of available threads increase, the CPU
utilization and system throughput increases initially. After a
certain point, however (after19 threads), there is no benefit



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0  5  10  15  20  25

U
til

iz
at

io
n 

in
 p

er
ce

nt
ag

e

Arrival rate in requests per second

Web server CPU 
Auth, SMTP server CPU

Fig. 6. Utilization values with the new deployment.

 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26

 0

 5

 10

 15

 20

 25

U
til

iz
at

io
n 

in
 p

er
ce

nt
ag

e

S
ys

te
m

 th
ro

ug
hp

ut

Number of Web server threads

Web server 
Web CPU 

System throughput

Fig. 7. Using PerfCenter to find the minimum number of threadsfor the
Web server for a system with higher resource demands.

in adding more threads - even though the server utilization
decreases, the system throughput and CPU utilization flatten
out. Thus the “optimal” number of threads for this workload
is 19.

VI. SUMMARY AND CONCLUSIONS

In this paper, we introduced a system model that supports
easy specification of data center design, and software archi-
tecture details, so that performance measures under various
architecture, deployment and configuration options can be gen-
erated. We presented an analytical method for the approximate
solution of the model. We compared our results with measured
data, and found that the predicted results match quite well with
the measured data.

This tool can be a part of a more ambitious vision of self-
tuned systems, which optimize themselves for better perfor-
mance. Several approaches have been proposed that utilize
a modeling engine in a “control loop” for tuning system
parameters. This tool could be used as one such engine.

One of the drawbacks of this approach is that it requires
detailed information about the system. This is an area of
research we are actively focussing on - to auto-discover the
message flows and resource consumption details that would
serve as an input to this model. Once discovered, these inputs
can be automatically converted into a specification format,

acceptable by the tool. Furthermore, the tool needs to be
validated on industrial-scale server appliations.
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